EHzürich

Iodine absorption and thyroidal uptake: a novel ¹²⁹I tracer method for their assessment in humans

V Galetti¹, O van der Reijden¹, A Mannhart¹, L Stierli¹, A Krzystek¹, C Zeder¹, M Andersson¹, I Herter-Aeberli¹, N Casacuberta², C Vockenhuber², MB Zimmermann¹

¹Laboratory of Human Nutrition, ETH Zurich; ²Laboratory of Ion Beam Physics, ETH Zurich

1 Introduction

Thyroidal iodine uptake and turnover has been measured in adults using radioactive iodine tracers, but these cannot be used safely in women or children. Iodine requirements for these populations groups have never been directly measured.

Our objective was to assess ¹²⁹I, a semi-stable isotope safe for use in human, as a novel tracer for the measurement of fractional absorption (¹²⁹IFA) and thyroidal uptake (¹²⁹ITU).

2 Study design

We administered an oral physiological dose of ¹²⁹I (¹²⁹IDose) to euthyroid adults with adequate iodine intake. Three days before until three days after the oral tracer administration, the participants consumed an iodine standardized diet. For the following 4 days, they kept a food diary and were advised to restrain from consuming high-iodine containing foods. At baseline (on the third day) and after tracer consumption, we collected complete urines (over 8 days), complete feces (over 4 days), and frequent spot plasma (over 5 days) (Fig. 1). We measured ¹²⁹I in alkaline-extracted urine (¹²⁹IU) by multicollector inductively coupled plasma mass spectrometry (ICP-MS) using isotope dilution analysis (IDA) with a known amount of ¹²⁹I and a Te standard for mass bias correction. We measured ¹²⁹I in plasma (¹²⁹IP) and feces (129IF) by accelerator mass spectrometry (AMS) using IDA to samples previously spiked with a known amount of ¹²⁷I (Woodward iodine). ¹²⁹IFA is calculated as ¹²⁹IDose minus ¹²⁹IF; ¹²⁹ITU is calculated as ¹²⁹IFA minus ¹²⁹IU. The ¹²⁹IP kinetic patterns allows the evaluation of thyroid uptake patterns.

3 Results and discussion

Four male and four female adults (mean±SD age: 26.1±4.0 y) with normal BMI (23.6±1.4 kg/m²), adequate thyroid function (median (IQR) TSH: 1.3 (1.2-1.4) mU/L; T₄: 106.3 (97.6-122.9) nmol/L) and adequate iodine intake (UIC: 123 (101-140) µg/L), consumed 12.42±0.05 µg ¹²⁹I as an oral solution together with breakfast. The iodine-standardized diet successfully maintained constant urinary iodine excretion during the study (**Fig. 2**). In urines, ¹²⁹I was first detected ≈1h after administration and a 96.8, 98.7 and 99.3% of the total ¹²⁹IU excretion was recovered within 48, 72, and 96h after administration. Cumulatively, 8.3 (7.1-8.6) µg ¹²⁹I were excreted in urines (¹²⁹IU), corresponding to 64.3±7.4% of the administered ¹²⁹IDose (range: 55-75%; inter-subject CV: 11.5%) (**Fig. 3**). Cumulative ¹²⁹I excretion in feces (¹²⁹IF) was 0.4 (0.3-0.7) µg (4.7±3.2% of ¹²⁹IDose; range: 2-11%; inter-subject CV: 67.8%). Cumulative total ¹²⁹I excretions (¹²⁹ITE) are shown in **Fig. 4**.

It resulted a calculated ¹²⁹IFA of 11.9 (11.7-12.1) μ g, meaning that 95.3±3.2% of ¹²⁹IDose (range: 89-98%; inter-subject CV: 3.3%) was absorbed at the gastro-intestinal level, and a calculated ¹²⁹ITU of 3.9 (3.5-4.2) μ g, meaning that 31.0±5.2% of ¹²⁹IDose (range: 23-39%; intersubject CV: 16.9%) reached the thyroid, as the sole site of utilization (**Tab. 1**).

Tab. 1. Administered ¹²⁹| tracer oral dose (¹²⁹|Dose), measured ¹²⁹| urinary excretion (¹²⁹|U), measured ¹²⁹| fecal excretion (¹²⁹|F), measured ¹²⁹| total excretion (¹²⁹|TE), calculated ¹²⁹| fractional absorption (¹²⁹|FA), and calculated ¹²⁹| thyroidal uptake (¹²⁹|TU).

	All (n=8)	Males (n=4)	Females (n=4)
¹²⁹ IDose (µg)	12.41 (12.40-12.42)	12.41 (12.41-12.45)	12.4 (12.37-12.42)
¹²⁹ IU (µg)	8.3 (7.1-8.6)	8.5 (8.1-8.6)	7.6 (7.1-8.4)
¹²⁹ IU (%)	64.3 ± 7.4	65.5 ± 6.4	63.2 ± 9.1
¹²⁹ IF (µg)	0.4 (0.3-0.7)	0.4 (0.3-0.6)	0.6 (0.3-1.0)
¹²⁹ IF (%)	4.7 ± 3.2	3.6 ± 1.5	5.8 ± 4.3
¹²⁹ ITE (µg)	8.6 (8.1-8.9)	8.9 (8.5-8.9)	8.3 (8.1-8.7)
¹²⁹ ITE (%)	69.0 ± 5.2	69.1 ± 5.5	69.0 ± 5.8
¹²⁹ IFA (µg)	11.9 (11.7-12.1)	12.0 (11.8-12.2)	11.8 (11.4-12.1)
¹²⁹ IFA (%)	95.3 ± 3.2	96.4 ± 1.5	94.2 ± 4.3
¹²⁹ ITU (µg)	3.9 (3.5-4.2)	3.6 (3.5-4.0)	4.1 (3.7-4.2)
¹²⁹ ITU (%)	31.0 ± 5.2	30.9 ± 5.5	31.0 ± 5.8

Data are mean ± SD for percent of ¹²⁹IDose or median (IQR) for actual measured or calculated values.

Fig. 1. Study flowchart.

4 **Conclusions**

This novel and safe ¹²⁹I tracer based method successfully quantified ¹²⁹I urinary and fecal excretion, allowing the quantification of iodine fractional absorption and thyroidal uptake. The pharmacokinetic preliminary analysis shows that iodine metabolism is best described by a 3-compartment model. We will apply this promising methodology to assess iodine requirements in vulnerable population groups and to assess iodine bioavailability from foods.

However, visual inspection of the log ¹²⁹IP concentration curves shows patterns that typically describe a 3-compartment model, suggesting that a third compartment, other than plasma and thyroid, may be involved in iodine metabolism (**Fig. 5**). Further investigations for determining the pharmacokinetic parameters is needed in order to draw thyroid uptake.

Partners

ETH Zürich System

Schweizenische Eldgehossenschaft Confederation su sse Confederazione Svizzera Confederazione Svizzera

Federal Department of Home Affairs FDHA Federal Food Safety and Veterinary Office FSVO

