How to Intensify Organic Basmati Production in Uttarakhand, India?

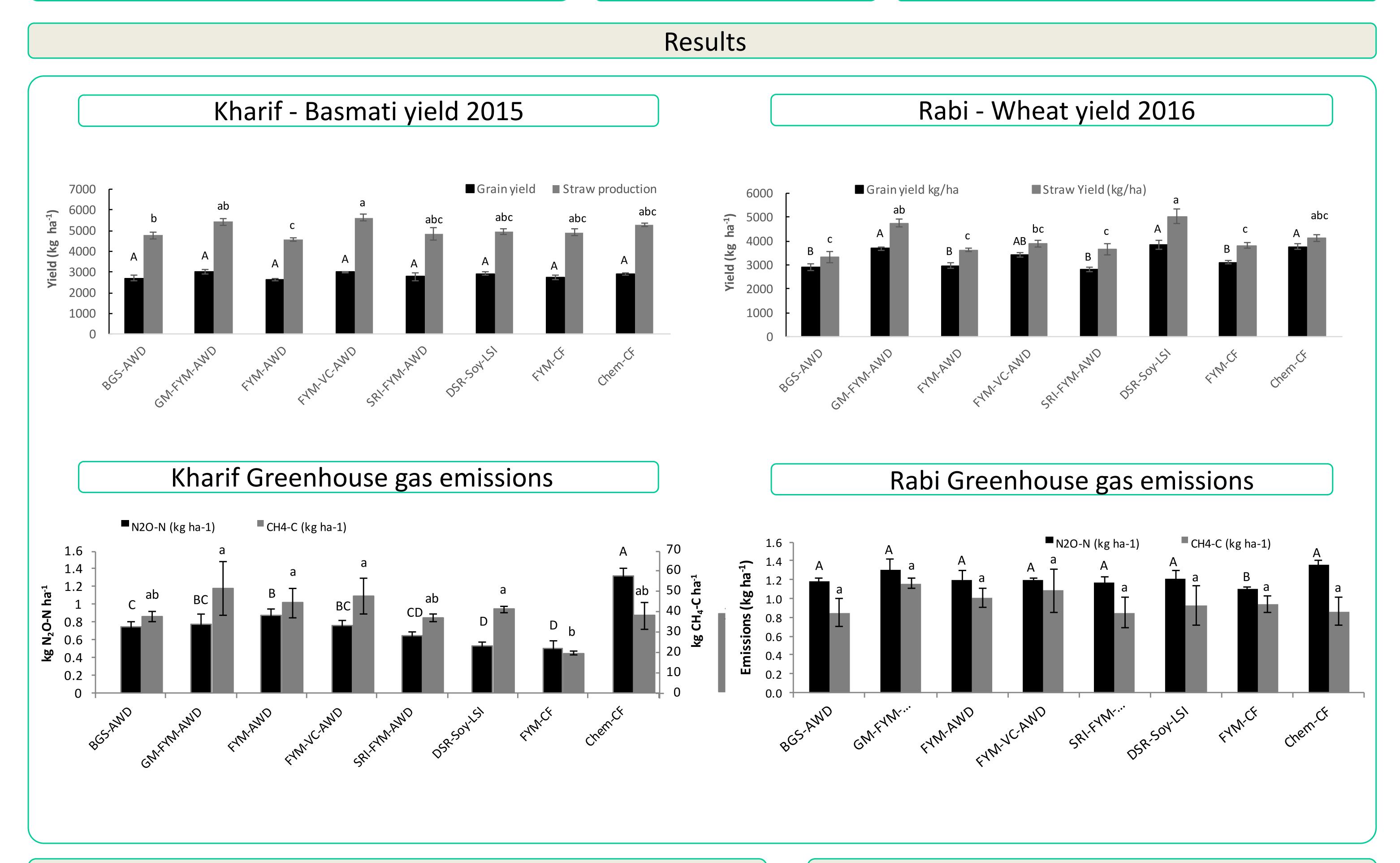
C. Decock, M. Chakraborty, D.K. Singh, A. Srivastava, F. Eyhorn, L. Ditzler, J.C. Groot, J. Six

Background and Objectives

In the state of Uttarakhand in northern India, an ongoing agricultural development project aims at improving the livelihoods of smallholder farmers through the promotion of organic and fair-trade Basmati rice production. Parallel research activities seek to assess the effect of diverse irrigation and soil fertility management on farm-level sustainability. Research results will be used to improve management recommendations and support agricultural advisory services. Here, we present data on effects of irrigation and soil fertility management

Field trial at GB Pant University of Agriculture and technology

 Determination of yields and greenhouse gas emissions (CH₄ and N₂O)


Materials & Methods

Treatments during kharif* (rice) season								
	Abbreviation	Fertilizer Application	Water mgmt	Nutrient loadings (kg/ha)				
				00	N	P	K	S
T1	BGS-AWD	Biogas slurry (10t/ha)	AWD	133	65	21	51	13
T2	GM-FYM-AWD	Green Manure & Farm yard manure (10t/ha)	AWD	553	190	34	75	22
Т3	FYM-AWD	Farm yard manure (10t/ha).	AWD	183	88	19	38	11
T4	FYM-VC-AWD	Farm yard manure (10t/ha) & Vermicompost (5t/ha)	AWD	239	139	24	45	18
T5	SRI-FYM-AWD	System rice intensification & Farm yard manure (10t/ha)	AWD	183	88	19	38	11
T6	DSR-Soy-LSI	Direct seeded rice –Soy with Life saving irrigation	LSI	183	88	19	38	11
T7	FYM-CF	Farm yard manure (10t/ha).	CF	183	88	19	38	11
Т8	Chem-CF	Chemical applications (70 kg N : 30 kg P_2O_5 : 30 kg K_2O /ha)	CF	43	70	7	13	0

on yield and greenhouse gas emissions.

AWD = alternative wetting and drying, CF = continuous flooding, LSI = Life saving irrigation. *During rabi (wheat) season, LSI was deployed. All organic treatments received 7t FYM and 5t VC. The chemical control received 120-60-40 kg NPK.

Preliminary conclusions

- Water input for Basmati cultivation can be reduced by adoption of AWD, without yield penalty
- In the kharif season, N_2O emissions were lower in the organic

treatments compared to the chemical control, suggestion that adoption of organic Basmati production could reduce N_2O emissions in this region.

- Within the organic treatments, increasing N inputs did not increase N₂O emissions, offering promising options for sustainable intensification
- The results suggests that the introduction of legumes is promising to improve soil fertility and system productivity

Acknowledgments

This research is part of the project, "How to sustainably intensify organic Basmati rice in Uttarakhand, India? (BasmaSus)," funded by the World Food System Center COOP Research Program. Additionally, we thank Intercooperation Social Development; the faculty and staff at GBPUAT in Pantnagar; and Helvetas Swiss Intercooperation for support, advice, technical assistance, and facilitation.

