

Food Day @ETH 2022

Can organic farming practices increase N use efficiency and decrease N losses in tea plantations in Sri Lanka?

Mashita Chiewattanakul¹, Srimal Rathnayaka², Jananey Balasubramaniyam^{2,3}, Deepthi Amarasena³, Astrid Oberson¹, Keerthi Mohotti³, Janaki Mohotti², Emmanuel Frossard¹

¹Group of Plant Nutrition, ETH Zurich; ²University of Peradeniya; ³Tea Research Institute of Sri Lanka

1 Motivation and Method

-As the world's most popular manufactured drink, **tea** often receives excess mineral N fertilisers for increased yields – resulting in losses to adjacent environments.

-Organic practices offer an emerging solution, but their effectiveness is yet to be evaluated.

-Improving N use efficiency in tea cultivation systems requires understanding N dynamics in the plant

Tender shoots are harvested every 7–10 days. Ν N taken up by tea plant

2 Preliminary Results

Natural ¹⁵**N** abundance values (δ^{15} N) in soils and plants tend to reflect N sources and transformation processes in the system.

leaves

Table 1. Natural abundance $\delta^{15}N$ values of fertiliser inputs and soil at 0-15 cm from the TRIORCON trial. (Brackets are SD; n=4).

Treatment	δ ¹⁵ N ‰ fertiliser	δ' ^s N ‰ topsoil
Tea waste	2.9 (0.02)	6.8 (0.4)
Neem oil cake	7.9 (0.03)	8.7 (0.2)
Compost	4.3 (0.05)	7.2 (0.3)
Urea	TBD*	7.8 (0.5)
Fallow	_	6.8 (0.0)
*To be determined.		
<i>possible</i> degraded <i>N input</i> fertiliser −>	$soil \longrightarrow$	mineralisation soil / N s organic>

from the TRIORCON trial. (Errors are SD; n=4).

matter

and soil compartments.

N down soil depth

losses

To address these gaps, we will investigate the sources and use of N by tea plants and soil in a long-term trial in Sri Lanka (TRIORCON, 1996), starting with basic chemical characterisation.

0 8 δ¹⁵N (‰) Figure 1. Natural abundance $\delta^{15}N$ values of tea leaves

= leaf = harvested = mature tea shoots litter leaves

3 Conclusion

in soil

The TRIORCON field trial in Talawakelle, Sri Lanka. (Image: M.Chiewattanakul, January 2022).

4 Contribution to Sustainable Food Systems

A tea picker in Sri Lanka. (Image: A. Rathnayake, April 2022).

Our research

LIFE **D** ON LAND

Improved N management in agriculture can alleviate the harmful impacts of current food systems on our planet. Our work also engages with the **UN Global Campaign on** Sustainable Nitrogen Management, aiming to halve N losses by 2030.

In collaboration with:

Funded by: Swiss National Science Foundation

World Food System Center