A neural network for noise correlation classification:
Supplementary material

Patrick Paitz
August 17, 2017

General Information

This is the documentation for the supplementary material to the paper ’A neural network for noise
correlation classification’ by Patrick Paitz, Alexey Gohkberg and Andreas Fichtner in the Geophysical
Journal International. Reference needs to be added when publishing . This document allows you to apply
the algorithms described in the paper to a small example dataset and to therefore understand them in
greater detail. The newly developed feature extraction algorithm (Wavelet Based Feature Extraction,
WBFE) is further described and an application example is presented.

This supplementary material includes a software toolbox consisting of four different packages:
1. Visual classification of seismic data
2. Feature extraction for time-series data (wavelet based and frequency domain)
3. Creating subsets out of larger datasets based on specific properties

4. Artificial Neural Networks for seismogram classification

The software is written by Patrick Paitz. For any questions and remarks please contact him via email:
patrick.paitzQerdw.ethz.ch| . The documentation has various interactions with code and the terminal.
The following background colors are used for different types:

Terminal interaction: Input and execution of commands

Terminal outputs and interaction with outputs (dialogs)

Changes in existing .py files


mailto:patrick.paitz@erdw.ethz.ch

Contents

[1__Prerequisites|
[T Tnitialize your project] . . . . . o v v v v i

|2 Tool for visual classification of seismograms|

[2.2  Configuration| . . . . . . . . ...

2.3 sing the Tool|l . . . . . . . . . .

13.1.2  Frequency Domain Feature Extraction 'FDFE’| . . . . . ... ... ... ... ...
8.2 Configuration] . . . . . . . . .. e
3.3 Using the tool|. . . . . . . . . . e

[4_Tool for subset creation|

[ Tool for seismogram classification with artificial neural networks|
b.1  Training and testing the artificial neural network] . . . . . .. ... .. ... ...
9.2 Extracting specific data out of your initial dataset| . . . . .. . ... ... ... ... ...
5.3  Convergence and parameter tests| . . . . . . . . ... L oL oo




1 Prerequisites

In order to use the included software, some prerequisites must be met. A Python 3 distribution should
be installed. Furthermore the following packages are needed (in brackets are the used versions, other
versions may also work but have not been tested for stability):

e (0s, glob, sys, inspect, pathlib, these are standard python libraries)
e numpy (v 1.12.0)

e scipy (v 0.18.1)

e pandas (v 0.19.2)

e matplotlib (v 2.0.0)

e PyQt4 (pyqt v 4.11.4)

e ObsPy (v 1.0.2) (Krischer et al.| (2015))

If you do not want to install python and the packages manually, we suggest the use of miniconda. You
can download miniconda from https://conda.io/miniconda.html. After that you can create a python
environment to interfere with other python installations.

conda create —n ann python=3.5
conda config —add channels conda—forge
source activate ann

A A A A

conda install numpy scipy pandas matplotlib pyqt=4.11.4 obspy
# If you want to deactivate your conda environamnet:
$ source deactivate ann

If these prerequisites are met, you are ready to initialize the toolbox. Therefore move the software
package directory (’Ann’) to your wanted path (including all the subfolders). Then go to that path.

$ mv Ann /your/path/

1.1 Initialize your project

You can have various projects at the same time. To initialize your project run the following;:

$ cd /your/path/Ann
$ python initialyze.py

You can choose if you want to create a project ’1’ or delete an existing project '2’. We start with (1).
After entering 1 and confirming with ENTER you have to insert a project name. Lets call your project
‘example’ and confirm with ENTER. Now some folders are created:

created /FOLDER/subfolders

Once the project is initialized it can also be deleted again by running the same command and choosing
the init mode ’2’.

Note: deleting a project deletes all files created for that project so far - so make sure to back up the
data you want to keep outside of the software directory. The project removal also needs to be
confirmed in the terminal.


https://conda.io/miniconda.html

2 Tool for visual classification of seismograms

2.1 About

This python tool can be used to visually classify seismograms into two distinct categories - here called
(1) "good” and (2) "bad”. In the application example mentioned in the paper, this refers to (1) suitable
and (2) unsuitable correlations for noise tomography respectively, but other classification examples can
also be used.

2.2 Configuration

Before configuring the classification tool, please make sure to do the initialization procedure (section
[1.1)). Then you can adjust the details in your configuration file. You can open this file with the following
command (after going to the right directory):

$ cd /your/path/Ann/CLASSTOOL
$ open mydetails.py # use your favorite editor

We will now see the details you can adjust:

project = 'example’

name = 'My_Name’

fname = 'example.npy’

path_waveforms = '/your/path/to/seismograms /%.SAC’

here you adjust the project variable to be the project you just created: ’example’. You can also specify a
name. The variable fname specifies the name where the result of the (visual) seismogram classification
is stored (more in the next step). It is important to specify the path to your seismic data in the variable
path_waveforms as a string (in quotation marks) together with you file endings. The asterisk means that
it will read all data located in the specified directory. If the path is set correctly and the project name
is the exact same as specified in the previous step (initialyze.py), you can run the classification tool.

2.3 Using the Tool

The classification tool has a graphical user interface (GUI) that is depicted in Figure This can be
started by running the file re.py (for run classificationtool)

$ python rc.py

[ JoX ) Classifier
Good Quality: 1/8 (12.5)% Classified Traces: 8/43
10 B 9/43 G MBO.00.LHZ-G TAM. 00 LHZ all SAC
0.5
0.0
—0.5
—-1.0
T T T T T T
[ 500 1000 1500 2000 2500
previous next
bad (arrow down) good (arrow up)
save and quit (automatically after last trace)

Figure 1: The interface of the classification tool. The red line indicates the estimated surface wave arrival
based on a specified surface wave velocity. (Note: The seismograms are plotted normalized.)

At the top of the GUI you can see some statistics about your classification progress. By pressing the
‘arrow up’ on your keyboard or by clicking on the ’good’ button you classify the currently plotted
seismogram as 'good’. 'arrow down’ classifies the current seismogram as bad. The red line indicates the



expected surface wave arrival based on an estimated surface wave velocity. This velocity can be changed
in the re.py function in line 25 (self.velocity). If you want to stop your classification at this point you
can click save and quit. This will result in not all seismograms to be classified and once you start the
program again you have to start over. If you classified the last seismogram, the program will save and
close automatically. Some information will be viewed in the console window as well where you started
the program:

é;;)d Quality: 21 / 42 (50.0)% Classified Traces: 42/43
Good Quality: 22 / 43 (51.2)% Classified Traces: 43/43
The results then are saved into:
/your/path/Ann/CLASSTOOL/ classified /project/fname
or, in your example:

/your/path/Ann/CLASSTOOL/ classified /example/example.npy



3 Tool for feature extraction

3.1 About
3.1.1 Wavelet Based Feature Extraction "WBFE’

This tool is used for the wavelet based feature extraction (WBFE) as described in the paper (see
section 3). The purpose of the feature extraction is to reduce the dimensionality of our noise corralation
(or any waveform-like data) in order to reduce the computational costs and improve the accurracy of an
automated classification by an artificial neural network.

This tool will also run the frequency domain feature extraction (FDFE) in the background (the algo-
rithm is based on [Valentine and Woodhouse| (2010])). For every iteration, a wavelet is extracted and nine
features are saved in an array.

The WBFE method combines different information sources described in the paper and is based on
wavelets. The following paragraphs within this subsection are adjusted from |Paitz (2016]).

First we need at least one wavelet function. We decided to use a Morlet wavelet ¥ :

U(t,w,s=05) =71 (e« — 670'5*((*}2)) em05+ (%) g = [0,1,....]] (1a)

with [ denoting the length of the wavelet, w a proxy for the number of significatn oscillations, s denoting
a scaling factor that windows the wavelet from —2s7 to +2s7 and i denoting the imaginary unit. The
reason for choosing a Morlet wavelet is that possible surface wave arrivals of the noise correlation data
seem to resemble a Morlet wavelet quite well.

In the first feature extraction step we extract the time at which the amplitude maximum of the noise
correlation 1 occurs. With the noise correlation 7 at lag time ¢ and feature number n, this time ¢
can be described as:

Nmax

b (1) = t(maz(n(t))) (2)

With w denoting the number of significatn oscillations, the start time ¢, and end time ¢, of the feature
that can be described as:

ts =t (w,n=0,t,..) (3a)

te =tT(w,n=0,t,,..) (3b)

where ¢t~ and tT are the w-th zero crossing before and after ¢ The duration of the feature ¢4 then

is defined as:

Nmaz *

tg =te — ts (4)

Because the actual waveforms of the noise correlation are not necessarily symmetric in time, two addi-
tional parameters are introduced: 75 as a time shift and 7. as a time stretching. The times t. and t, are
adjusted with these 7 parameters so that:

te = ts + T — Te (5a)

te = te+7s + 7 (5Db)

The duration from Eq. [ therefore becomes:

tg — tqg + 27, (6)
The waveform W fitting onto the noise correlation 7 in the interval [¢,, t.] for a normalized noise correlation
can be defined as (by normalizing the real part R of the wavelet ¥ and using t4 of Eq. |§| in Eq. :
R{V (ta, )}

U(t, U, tg,w,n) = maz(R{V (tg,w

)}) X mam(n(tnmm)) (7)



We choose the parameters w, 75 and 7. so that the misfit function M:

te

M(TS)TC) = Z(|77(t) - \I’(\I’aT&Twn)') (8&)

t=ts

is minimal. We currently do this by iterating through all possibilities and keeping the parameter com-
bination with the lowest misfit, but other and more efficient methods are possible. Values for 74 within
(—40, 40), for 7. within (—5,5) and for w within (0, 10) are identified to work well for our data.

Extracted Features

The set of extracted features for one iteration of WBFE then consists of the following variables:

The start-time ts (Eq. and the duration t4 (Eq. @ The ratio T between the expected first arrival
time t.s obtained from the surface velocity vsecrion from the noise correlation section, the inter-station
distance d;,te,r and the start time:

ls

dinter

T = (93)

Vsection

The next extracted feature is the number of samples of the total noise correlation N. We can use that to
reconstruct the wavelet and compare it to the actual noise correlation over the whole time period. The
next stored feature is the side-lobe number w. The feature fit F' of waveform and the noise correlation
as well as the residual energy R are also stored with:

Pt = D) = 770 ) (10a)

=1 l 3
=g egtime) (1) — (W, 7, 70,1)|)
N

R(t) = (10b)
Because sometimes the better fit is obtained when the wavelet is upside down, the polarity information
p is also stored (in form of —1 for an upside down wavelet and +1 otherwise). The last stored feature
is the Amplitude Ratio A between the maximum Amplitude of the Wavelet ¥ and maximum amplitude
of the full noise correlation 7. This becomes important for extracting more than one waveform. After
storing the 9 variables into a vector, the wavelet is subtracted of the original noise correlation. This
modified noise correlation can then be used to extract the next features and so on. Therefore, the ratio

A will decrease as the number of extracted features increases. An overview about all the stored variables
for one iteration of WBFE is provided in Tab.



Table 1: Extracted variables for one WBFE iteration. If more than one iteration is performed, the
next iteration is performed on the noise correlation with the first waveform removed. So every iteration
returns 9 features.

Variables extracted by the Wavelet Based Feature Extraction Algorithm
# Variable Short description

1t Start time of the waveform (Eq. |5a))

2 g Duration of the waveform (Eq.

3 Start time ratio (Eq.

4 p Polarity

5 w Number of significatn oscillations of the wavelet
6 F Fit of wavelet and noise correlation (Eq.

7 R Residuals (Eq.

8 N Number of samples within 7

9 A Amplitude ratio




3.1.2 Frequency Domain Feature Extraction "FDFE’

Besides the WBFE, this tool is also used to extract Features in the Frequency Domain. This approach
was introduced by |Valentine and Woodhouse| (2010). An N-point representation P, of the entire dis-
cretized power spectrum f(w) is defined for a modest N as:

1 wa+nde,
P, = —/ If(w)?|ldw (n=1,2,..,N) (11a)
0w S, t+(n-1)s.,

o= [l (11b)

Wa,

Wp — Wq

b= (11c)

with w, < wp as outer bandpass limits.

The authors used N = 15, based on empirical decisions. In addition to this 15-point representation of
the power-spectrum, the epicentral angle A and the event depth z are appended to the power spectrum
representation, resulting in an 17-point representation of an earthquake event. All the parameters were
chosen to be in the range (0,1). For example the depth therefore needs to be normalized over all available
events. These representations are then used to train and test an ANN with 60 Nodes in one hidden layer
with two output nodes with initialized weights in the range (—1,1). The output of (1,0) corresponds to
an acceptable output whereas (0, 1) corresponds to unacceptable waveforms. To improve confidence and
reduce random errors, a committee of 10 independent networks is used and the output averaged over
all ten ANNs. The training was independent. The first layer activation function was a sigmoid function
and the output layer activation function a linear activation function (Valentine and Woodhousel [2010)).

The information about the epicentral angle and the event depth are not usable in the noise correlation
scenario. But in addition to the normalized amplitude spectra we store o and the distance between the
stations as separate inputs when implementing this method. We also normalized the amplitude spectra
as well as the N—point representation so that the input to the neural network is within an acceptable
range.



Accepted

: —— Processed Noise Correlation 1

Norm. Amplitude
Norm. Amplitude
o

1000 2000 2700 0 1000 2000 2700
Lag Time [s] Lag Time [s]

Lo . FDFE Features Noise Correlation

—— FFT Noise Correlation

Norm. Power Spectrum
Norm. Power Spectrum

100 125 3 50 100 125

75 75
Period [s] Period [s]

Rejected

1 1

Norm. Amplitude
o

Norm. Amplitude
)

1000 2000 2700 1000 2000 2700
Lag Time [s] Lag Time [s]

Norm. Power Spectrum
Norm. Power Spectrum

100 125 30 50 100 125

75
Period [s]

75
Period [s]

Figure 2: Example for the FDFE for two accepted (top) and two rejected noise correlations (bottom).
The upper picture shows the processed noise correlation and the lower picture shows the power spectrum
(black line) as well as the extracted FDFE features (grey dots, connected with dashed grey line).

The problem with the FDFE is that the spectra of the accepted and rejected noise correlations are
too similar for an accurate automated classification - for this application example. Two examples are
displayed in Fig. [2l The spectra at the bottom (rejected) do not strongly deviate from the spectra of the
top (accepted). This is the reason why we developed the WBFE algorithm to improve the classification
accurracy.

10



3.2 Configuration

Similar to the tool for classification you also have a configuration file which can be opened via:

$ cd /your/path/Ann/FUNCTIONS/PREP
$ open mydetails.py

where you can specify your project, paths and filenames again:

project = 'example’

name = 'My_Name’

fname = 'example.npy’

path_waveforms = '/your/path/to/seismograms /%.SAC’

The reason why there is another configuration file is that it makes it possible to work in various projects
that are at different states at the same time.

3.3 Using the tool

We can run the feature extracter by running the file fe.py (for feature extracter):

$ python fe.py

This results in a small dialog where you can set various parameters:

Running the feature extraction. Please be sure that your traces have the attributes
trace.data and trace.stats.dist.

How many iterations do you want to perform?

>> 2

Lower Period limit for Bandpass Filter [s]

>> 50

Upper Period limit for Bandpass Filter [s]

>> 100

Approx. surface wave velocity [m/s]

>> 3800

Extracting FT features ...

Extracting WBFE features ...

This may take a while

done

The extracted features for the WBFE and the FDFE are saved in:

/your/path/Ann/FILES/features /example
/your/path/Ann/FILES /features /example/ft

respectively.

Important note: It is important that the *.SAC’ seismic traces have the attribute ’trace.stats.dist’
because this information is required in the feature extraction process. Furthermore an approximate sur-
face wave velocity needs to be specified. This can be obtained by plotting the section with obspy and
estimating a velocity from the plot. For a plotting tutorial with obspy, see
https://docs.obspy.org/tutorial /code_snippets/waveform_plotting_tutorial.html.

A plot like Figure 3 of the paper can be created as well to visualize the extracted features. The first
step is to copy the function Ann/FILES/plots/fplt.py to the project plotting directory (in your case
Ann/FILES /plots/example/fplt.py):

$ cp /your/path/Ann/FILES/plots/fplt.py \
/your/path/Ann/FILES/plots/example

This ensures that you can have a separate plotting function for every project. You then must prepare

the data you want to plot. It is currently only possible to plot one seismogram with two iterations of
the WBFE in this process. You prepare the data with:

11


https://docs.obspy.org/tutorial/code_snippets/waveform_plotting_tutorial.html

$ cd /your/path/Ann/FUNCTIONS/PREP
$ python pfplt.py

Where you are asked which seismogram you want to plot (and also for which project - this would be
‘example’ in our example ). After this has been executed correctly you can run the actual plotting
function:

$ cd /your/path/Ann/FILES/plots/example
$ python fplt.py

The result (in your example project, two iterations of the WBFE and seismogram number 30) is depicted
in Figure [3]

WBFE lteration 1 WBFE Iteration 2

[
&
I
I
I
I
i
I

T T T T
Mo eCorreIationmele for 1.5 61
1.00
0.75 1 I

0.50 1 n

.LHZ.all.5AC

0.25 4

0.00 4

—0.25 +

NORMALIZED AMPLITUDE

—0.50 +

—0.75 +

-1.00

0 250 600 13001450 2000 2700
LAG TIME [s]

Figure 3: Example output plot of the fplit.py function (2 WBFE iterations, example dataset, seismogram
30).

Note: The windows for the top subplots can be adjusted within the FILES /plots/exzample/fplt.py file in
lines 156 to 161. If the first extracted feature is at a later lag time than the second one, the variable
swap_subplots can be changed (valid values are True and False).

12



x0
x1

1300 #Left bound of first WBFE Iteration subplot
1450 #Right bound of first WBFE Iteration subplot

x2 = 250 #Left bound of second WBFE Iteration subplot
x3 600 #Right bound of second WBFE Iteration subplot

swap_subplots = True

A plot for the visualization of the FDFE (like the ones in Fig. [2)) can be created in a similar way.

$ cp /your/path/Ann/FILES/plots/fd_fplt.py \
/your/path/Ann/FILES/plots/example/ft

Then we prepare the plot:

$ cd /your/path/Ann/FILES/plots/example
$ python fd_fplt.py

and follow the same instructions as above. You are again asked which seismogram you want to plot (and
also for which project - this would be ’example’ in our example ). After this has been executed correctly
you can run the actual plotting function:

$ cd /your/path/Ann/FILES/plots/example/ft
$ python fd_fplt.py

The output is depicted in Fig. [4]

l,

Norm. Ampl.
o

|
—

1000 2000 2700
Lag Time [s]

(=]

=
o
\

Norm. PS
(=]
w

©
o

w
o
18]
o
~J
w
=
o4
o

125
Period [s]

Figure 4: Example output plot of the fd_fplt.py function (2 FDFE iterations, example dataset, seismo-
gram 30).

13



4 Tool for subset creation

To check the performance of the artificial neural network you have to create a training and a testing
subset from your dataset. For this specific task you have a python file called sc.py (for subset creater).
The configuration (mydetails.py) is the same as for the feature extracter and can be opened via:

$ cd /your/path/Ann/FUNCTIONS/PREP
$ open mydetails.py

To create a subset you can run:
$ python sc.py

The number of samples in the training subset can be chosen here. The specified amount of samples will
be taken randomly for each category (’good’ and ’bad’) from the already classified data saved to your
classification file (fname in mydetails.py). An example is listed here:

How many "good” samples in the training subset?

>> 8

How many "bad” samples in the training subset?

>> 12

Choose a rank (single digit integer) as identifier of your subset.
>> 0

Creating SUBSETS ! .... PLEASE WAIT....

Rank: 0 Training size: 8 (g) 12 (b)
Training: #good 8

Testing : #good 10

Training: #bad 12

Testing #bad 13

The subsets are then saved into you project directory in (where r is your specified rank, a single digit
integer):

/your/path/Ann/FILES /subsets /example/r/
specifically in your case:

/your /path/Ann/FILES /subsets/example/0/ Test:
xgood .npy xbad.npy

/your /path/Ann/FILES /subsets/example/0/ Training:
xgood .npy *.npy

With the created subsets you now can train and test your artificial neural network. This is described in
the next step.

14



5 Tool for seismogram classification with artificial neural net-
works

5.1 Training and testing the artificial neural network

This tool again has its own configuration file for the previously mentioned reasons. It can be viewed and
changed via

$ cd /your/path/Ann/FUNCTIONS/ANN
$ open mydetails.py

Some more configurations can be done in an.py (for artificial neural network):
$ open an.py

In lines 21-83 some parameters can be changed. This will be explained further.

# USER INPUTS

subset = 0 # Training Rank (str)

n = [1] # Number of repetitions

filelist = [’'example.npy'] # Classification files

name_.id = "example_id’ # Output file ID

qlist = [1.3] # d0 Values to test

nrange — [2001] # Max. training iterations

maxerrs = [0.0001] # Max. training error to stop

repeat = 2 # No. of trained networks

hidlayl = [20] # No. of nodes in the first
# hidden layer

hidlay2 = [60] # No. of nodes in the second

# hidden layer

convergence = False # Save errors every iteration?
# if yes: provide Path and filename

mode = "all’ # Allowed Modes for the feature
# extraction. Allowed are:
# 'WBFE', 'FDFE’ and 'all’

#

e subset Which training and testing dataset should be used. The subsets are specified and created
with the tool FUNCTIONS/PREP/sc.py

e 1 : Number of networks that should be used for the testing runs.

e filelist : List of classification files (from CLASSTOOL/rc.py). If more than one file is used, the
ANN will first do the training and testing with one file and then with the other file. This can be
used to chain jobs within one file.

e name_id : Filename extension for the output file. This may help you localise and identify your
results later.

e glist : List of classification threshold values. If it is set to 1.3 it will go from 0.6 to 1.3 in steps of
0.1.

e nrange : List for maximum training iterations (epochs).

e mazerrs : Threshold values for the mean training error. If the training misfit is below this threshold,
the training will stop.

e repeat : How often do you want to repeat the full training / testing process. This saves a trained
network for every repetition.

15



e hidlayl : Number of nodes in the first hidden layer of the Ann.
e hidlay2 : Number of nodes in the second hidden layer of the Ann.

e convergence : Will be explained later

e mode : The method of the feature extraction you want to train and test your artificial neural
network with. This can be either wavelet based feature extraction ("WBFE’), frequency domain
feature extraction "FDFE’) or both (’all’). In the latter case the network will be first trained
and tested with the WBFE and then another Ann will be trained and tested with the FDFE. The
results then can be compared. The default setting here is the WBFE.

The parameters of the ANN itself can be changed in :
$ open /control/parameters.py
learning_rate_hid = 0.5
learning_rate_out = 0.2
tau_hid = 2000.

tau_out = 500.
eps = 0.01

These default parameters are adapted |Valentine and Woodhouse, (2010). After defining your network
and training parameters, you can run the training and testing with:

$ python an.py

We should get an output like this:

Running the script for the following configuration:

Output keys 1

subset size [1]

Classifile ["example.npy ']

Qualitycri [1.3]

Train Test [['/example/', '/example/']]
Create subs False

iterations [201]

maxerrors [1e—06]

addoptions None

————NEW TRAINING AND TESTING SEQUENCE
The ANN control parameters are:
Irate_hid= 0.5

Irate_out= 0.2

tau_hid = 2000.0

tau_out = 500.0

eps = 0.01

+———start —TRAINING f

—> inner_lteration: 0 | max. Error: 6.735e—01 | mean Error: 2.159e—01 | P(good):
0.47 |

—> inner_lteration: 200 max. Error: 9.517e-01 mean Error: 1.405e—01 | P(good):
0.47 |

Saving trained Network to File:
/Ann/FILES /networks/1/example//example/_extraOranklexampleexample
+—————end—TRAINING }

4+——start —TESTING }

The testing results can be viewed in the file:
/Ann/RESULTS/exampleexample_id_1FINAL1_i_.csv
+————end-—TESTING .

16



The results are saved to /RESULTS /filename.csv in a human readable csv table. The results are struc-
tured in table form (example depicted in Fig :

nnconfig fname qcr maxerr type train test iter_t iter e_tr sample nbad err(%): err(b

[20, 0] example 1.300e+00 1.000e-04 WBFE /example/ /example/ 2001 2000 3.825¢-03 20 13 44.44 0.0
[20, 601 example 1.300e+00 1.000e-04 FDFE /example/ /example/ 2001 Pl 6.347¢-04 20 13 55.56 38.46

Figure 5: Example csv output (RESULTS).

The meaning of the single columns is explained in Tab.

Table 2: CSV output columns of the ANN classification.

Result file output columns

nnconfig Configuration of the ANN (Hidden Layer Nodes)

fname Project name

qcr d0 Value

maxerr Maxmimum training error

type Type of the Feature Extraction (WBFE or FDFE)

train & test Training and testing projects

iter_t Maximum Training iterations +1 (max. epochs+1)

iter Performed training iterations (epochs)

e_tr Training error

sample Number of training samples (total)

ngood Number of 'good’ testing samples

nbad Number of ’bad’ testing samples

err(%)g Percent of misclassified 'good’ samples (good samples classified as bad)
err(%)b Percent of misclassified "bad’ samples (bad samples classified as good)
err(%)t Percentage of total misclassified samples

In the column type you will also see something like SUM_WBFEn. This means that it is the classifi-
cation based on n seperately trained networks with combined output for the WBFE (or FDFE) type. It
can happen that the number of training and testing samples slightly deviates from your specified subset
sizes. This can be due to errors happening within the feature extraction. If the peak amplitudes are too
close to the edges of the noise correlation (very early or late lag times), the WBFE currently fails (at
the current development phase).

If you are happy with the training and testing results you can continue with the trained network and
start extracting data out of your initial dataset by using your trained networks.
5.2 Extracting specific data out of your initial dataset

After training the Ann and saving the neuron weights, you can use it to select data with your wanted
property (the data that you classify as ’good’). You need to specify some properties and paths to do so.
You therefore open the file

$ cd /your/path/Ann/FUNCTIONS/ANN/
$ open gd.py

In lines 13 to 19 you have the parameters:

path_features = 'FILES/features/example /*.npy’

17



path_wave = '/your/path/to/seismograms /*.SAC’

path_waveO '/your/path/to/seismograms/’

path_out = '/RESULTS/waveforms/example/’

networks = '"/FILES /networks /0/example/example /*extr*.npz’
treshold = 1.0

To obtain the seismograms with the wanted property (output > threshold) you can run:

$ python gd.py

The seismograms from the path_wave will be saved to path_out. The classification is based on the trained
neural networks specified in networks. The output may then look like that:

n 'good’' files copied to: /RESULTS/waveforms/example/

(where n is the number of copied files) NOTE: If no files are copied, you may try to decrease the threshold
variable in the gd.py file.

5.3 Convergence and parameter tests

To help you getting an understanding on the behaviour of the Ann on different training parameters, you
can look at convergence plots. A convergence plot shows the training misfit in dependence of the number
of iterations. Ideally the misfit will converge towards its global minimum - that is dependent on which
misfit function you choose, how the training parameters are set up and especially dependent on the data
and its visual classification. To plot the training misfit for every iteration, you want to save that data.
You can do this by going back to the file:

$ cd /your/path/Ann/FUNCTIONS/ANN/
$ open an.py

and changing the convergence parameter to a .csv file with your wanted location. In your example:

1

convergence = '/RESULTS/convergence/example/convergence_test.csv

Important note: If you do not change the name of the output file id in an.py your networks will be
overwritten. So please go again through the full process of setting new names as identifiers if you want
to prevent that. This will help you keeping track of your files.

If you now run:

$ python an.py

you should confirm that you want to save the errors for every iteration. This will create another testing
and training sequence.

After running training and testing again, the iterations with their errors are saved to the file that you
just specified. If you now open:

$ cd /your/path/Ann/RESULTS/convergence/
$ open convergence_plot.py

and change the file variable (line 10) to the one specified in an.py
file ='/your/path/RESULTS/convergence/example/convergence_test.csv'
you can run

$ python convergence_plot.py

and you will receive a plot that looks similar to the one in Figure [6}

18



Training Convergence

o WBFE
0.25 1 + FDFE
0.20 A

=

G 0.15

=

()]

c

£

G 0.10

'—

0.05
-l.
mt
0.00 S S———

0 250 500 750 1000 1250 1500 1750 2000
Epochs

Figure 6: Example convergence plot for an Ann that is trained with WBFE and FDFE data.

Because the training of the Ann starts in a randomized state, the plots will never look exactly the same,
but in general the trend should be similar.

Remarks
For suggestions, remarks, issues and questions please do contact the author via:

patrick.paitzQerdw.ethz.ch

References

Valentine, A. P. and Woodhouse, J.H., Approaches to automated data selection for global seismic to-
mography, Geophys. J. Int. 182(2), 1001-1012

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., Wassermann, J., ObsPy:
A bridge for seismology into the scientific Python ecosystem, Computational Science € Discovery
8(1), 014003

Paitz, P., Artificial neural networks for automated classification of ambient noise correlation data, Master
Thesis, ETH Ziirich

19


mailto:patrick.paitz@erdw.ethz.ch

	Prerequisites
	Initialize your project

	Tool for visual classification of seismograms
	About
	Configuration
	Using the Tool

	Tool for feature extraction
	About
	Wavelet Based Feature Extraction 'WBFE'
	Frequency Domain Feature Extraction 'FDFE'

	Configuration
	Using the tool

	Tool for subset creation
	Tool for seismogram classification with artificial neural networks
	Training and testing the artificial neural network
	Extracting specific data out of your initial dataset
	Convergence and parameter tests


