
GI version 0.1
Documentation

Andreas Fichtner
Department of Earth Sciences, ETH Zurich, Switzerland

Contents

1 Structure and functionality of the programme package . 1
1.1 Programming language and packages . 1
1.2 Directory structure and basic functionality . 1

2 Input files . 3
2.1 setup.txt . 3
2.2 receivers.txt . 3
2.3 correlation field and kernels.txt . 3
2.4 ensemble correlation.txt . 4
2.5 earthquake catalogue.txt . 4
2.6 processing.txt . 4
2.7 windows.txt . 4

3 Task descriptions . 5
3.1 Random wavefield computations . 5

3.1.1 Computing inter-station correlations from random wavefields . 5
3.1.2 Computing source and propagation correctors . 5
3.1.3 Computing effective correlations . 6

3.2 Deterministic wavefield computations . 6
3.2.1 Computing inter-station correlation functions for a given power-spectral density

distribution . 6
3.2.2 Computing snapshots and movies of the interferometric wavefield 6
3.2.3 Computing source kernels . 6

v

Foreword

GI is a code package for the computation of inter-station correlations, effective forward models for correlations
functions, and sensitivity kernels for wave field sources and Earth structure. It is written in Python.

GI is deliberately simplistic. It operates under the assumption that the Earth is two-dimensional, acoustic, ho-
mogeneous and infinitely extended. Thus, it is made to understand basic physics.

GI is not a black box. It does not perform any checks on the meaningfulness of the input parameters. GI is not
optimised or paralellised at all. Some parts of the code package may be very slow slow.

This documentation explains the input files of GIand the different code elements that may be used to compute
correlation functions, sensitivity kernels, effective media, etc. Additional information is available in the form
of numerous comments in the programme code itself.

Zurich and Stanford, Spring 2016 Andreas Fichtner

vii

Chapter 1
Structure and functionality of the programme package

1.1 Programming language and packages

GI is written entirely in Python. This language was chosen in order to ensure that (i) no commercial software
is needed, and (ii) also relatively unexperienced programmers can modify the code and adapt it to their needs.
Clearly, GI is not designed to be highly performant. The following standard Python packages are needed to run
GI : matplotlib, numpy, time.

1.2 Directory structure and basic functionality

Most of the code, in the form of Python programmes, is located directly in the main directory. The following is
a list of codes with a very brief description of their purpose:

1. correlation function.py: Compute and plot an inter-station correlation function based on the
power-spectral density ditribution of the sources.

2. correlation field.py: Compute snapshots of the correlation wavefield for specific times or make a
movie from a sequence of snapshots.

3. source.py: Compute and plot the spatial and frequency distributions of the sources.

4. green.py: The 2D Green function for a homogeneous, acoustic full space.

5. correlation random.py: Compute inter-station correlations based on the summation of random
wavefields.

6. processing.py: Apply various processing schemes during the computation of correlations based on
random wavefields.

7. correction factors.py: Compute source and propagation correctors for a specific processing scheme.

8. correlation effective.py: Compute the effective correlation function based on previously com-
puted source and propagation correctors.

9. kernels.py: Compute Fréchet kernels for sources and structure.

10. adsrc.py: Compute a frequency-domain adjoint source needed for the computation of Fréchet kernels.

1

2 1 Structure and functionality of the programme package

The directory PLOT contains several pieces of code to visualise output written by some of the codes mentioned
above. A brief listing:

1. correctors.py: Plot source and propagation correctors.

2. correlations.py: Plot raw, processed and effective correlation functions.

3. earthquakes.py: Plot the spatial and temporal distribution of the transient, point-localised sources
(acoustic ‘earthquakes’).

All output is written to the OUTPUT directory. GI is not very flexible here, just to keep the code as simple as
possible.

Chapter 2
Input files

All input files are located in the directory INPUT. The following is a brief description of their content.

2.1 setup.txt

This file contains the basic geometric setup, the medium properties and the properties of the sources. The
variables xmin, xmax and dx are the boundaries of the computational domain in x-direction in km and the
grid point spacing in km, respectively. The variables ymin, ymax and dy are the same in y-direction. The
grid spacing should be sufficiently fine to ensure that space integrals are approximated accurately. GIdoes not
check if the spacing fine enough.

The acoustic medium is described in terms of its density rho [kg/m3], velocity v [m/s], and Q.

The spatial source distribution is given by the parameter type. The various options are listed in the function
space distribution in the source code source.py. The natural source spectrum (e.g. the spectrum
of the noise sources) natural and the instrument response instrument are implemented in the function
frequency distribution, also in the source code source.py. Possible values for these parameters
are listed there. New options are likely to be added from time to time.

2.2 receivers.txt

The number of positions of the receivers in km are listed in this input file. As in all other input files, the format
of this file is not allowed to change. Specifically, blank lines should neither be added or deleted.

2.3 correlation field and kernels.txt

This file contains parameters needed for the computation of correlation functions and sensitivity kernels based
on the power-spectral density distribution of the sources. The frequency band [Hz] extends from fmin-
fwidth to fmax+fwidth, where fwidth is the width of the taper that drops off linearly for frequencies
lower than fmin and higher than fmax. The frequency increment used in the inverse Fourier transforms is
given by df.It is up to the user to choose df sufficiently small.

The time variables tmin, tmax and dt denote the minimum and maximum times after the inverse Fourier
transform. The time increment is dt.

3

4 2 Input files

2.4 ensemble correlation.txt

This input file contains parameters describing the computation of correlation functions based on a random
wavefield, i.e. via the explicit computation of (noise) traces originating from sources with random phase. This
task is performed by the programme code correlation random.py. The input parameter Nwindows is
the number of time windows. Inter-station correlations for these individual time windows are averaged to form
the final ensemble correlation. Twindows is the length of these windows in s.

As mentioned above, the random wavefield is excited by sources with random phase. Thus, in principle, each
realisation is different. To ensure repeatability, as specific seed for the random number generator can be
chosen. This can be any integer number. Using the same seed will produce the same results.

2.5 earthquake catalogue.txt

In the computation of correlations based on the actual random wavefield, performed by correlation random.py,
transient deterministic sources, i.e. earthquake equivalents, may be added. This input file lists the number of
earthquakes (Neq), their origin time in s (t*), x- and y-coordinates (x*, y*) in km, and source strength (m*)
in N2s/m6.

2.6 processing.txt

All available processings that may be applied to compute processed correlations are listed in this file. Processed
correlations can be computed with the code correlation random.py, which computes correlations ex-
plicitly from single station traces for individual time windows.

The bandpass that may also be used as source and instrument spectrum (see setup.txt above) is described
by its cutoff-frequencies fmin and fmax, and by the width of the linear taper fwidth. The remaining pa-
rameters can be set to either 0 (processing is not applied) or 1 (processing is applied). Their meaning is as
follows: onebit: apply one-bit normalisation to raw recordings, rms clip: clip raw recordings above their
rms value, whiten: apply spectral whitening to raw traces, causal acausal average: compute the av-
erage of the causal and acausal branches, correlation normalisation: normalise correlations for each
time window by their maximum, phase weighted stack: compute a phase-weighted stack, instead of a
linear stack. The processing is implemented by the source code processing.py.

2.7 windows.txt

This file contains a list of measurement windows needed for the computation of Fréchet kernels. The first datum
is the number of windows. It is followed by a listing of the windows, each line containing the left and right
boundaries of a window in s, and the width of the cosine taper in s that determines the sharpness of the window.
The file is read by adsrc.py, which is called by kernels.py.

Chapter 3
Task descriptions

This chapter is split in two parts: The first one is about computations using actual random wavefields, excited by
sources with random phase. This includes, for instance, the computation of correlation functions by summing
(processed) correlations for many time windows, and the computation of source and propagation correctors.
The second part is about deterministic computations based on correlation wavefields excited by a deterministic
power-spectral density distribution of sources. This includes the computation of ensemble correlations and
sensitivity kernels.

3.1 Random wavefield computations

3.1.1 Computing inter-station correlations from random wavefields

The function correlation random computes raw and processed correlation functions through the sum-
mation of correlations for individual time windows. The individual time window correlations are computed by
modelling a wavefield excited by sources with random phase.

In the setup.txt file, the source distribution can be set via the parameter type. It can be visualised using
the functions contained in source.py. The processing applied to the raw synthetics or raw correlations is
speficied in processing.txt. The input file ensemble correlation.txt contains the length of the
individual time windows Twindow and the number of time windows Nwindow. To ensure reproducibility
of the random simulations, the random seed can be specified via the parameter seed. It can be any integer
number.

Transient, deterministic sources mimicking earthquakes may be added by editing the input file
earthquake catalogue.txt.

Output in the form of individual correlation functions, i.e. for the individual time windows, is written to
OUTPUT/correlations individual/. This is needed for the computation of effective correlations us-
ing correlation effective (see below).

3.1.2 Computing source and propagation correctors

Source and propagation correctors for synthetic correlations can be computed with correction factors,
which calls correlation random. When the parameter save is set to 1, the correction factors are saved
to OUTPUT/correctors, and the ensemble correlations for all station pairs are saved to
OUTPUT/correlations.

5

6 3 Task descriptions

3.1.3 Computing effective correlations

After computing and storing correlations for individual time windows with correlations random and
correction factors with correction factors, effective correlations can be computed with
correlation effective. When the parameter save is set to 1, the effective correlations are saved to
OUTPUT/correlations.

3.1.4 Plotting source and propagation correctors

The source file PLOT/correctors.py contains various functions to plot source correctors (source),
propagation correctors (propagation) and the frequency-dependent geometric spreading of the effective
Green function (geometric spreading). They that correctors have previously been computed and stored.

3.1.5 Plotting raw, processed and effective correlations

Provided that these have been computed, PLOT/correlations.py can be used to visualise raw, processed
and effective correlations.

3.1.6 Plotting the spatial and temporal distribution of earthquakes

This can be done using PLOT/earthquakes.py.

3.2 Deterministic wavefield computations

3.2.1 Computing inter-station correlation functions for a given power-spectral density
distribution

To compute an inter-station correlation function, run correlation function.py. It requires input from
setup.txt, correlation field and kernels.txt, receivers.txt, and processing.txt
in case the bandpass is used for the natural source spectrum or the instrument response. The function returns
the time- and frequency-domain correlation functions, and plots them when the parameter plot is set to 1.

3.2.2 Computing snapshots and movies of the interferometric wavefield

The code correlation field.py contains two functions: snapshot to compute the interferometric
wavefield for a specific time, and movie to save .png files for a sequence of snapshots.

Both functions read input from the same files as textttcorrelation function.py, described above. To speed up
computations, snapshot uses a very simplistic multi-grid method. In the first stage, the wavefield is com-
puted only on a coarse grid, e.g. every 5 grid points when the parameter mg level is set to 5. In the second
stage, the remaining grid points around the previously visited grid points are filled up, provided that the wave-

3.2 Deterministic wavefield computations 7

field on the coarse-grid point is larger than mg tol times the maximum on the coarse grid. snapshot returns
the wavefield snapshot. The snapshot can be plotted and saved when the parameters plot and save are set to
1, respectively.

The function movie operates similar to snapshot, the only difference being that it does not employ a multi-
grid method. Internally, movie computes a three-dimensional array containing the wavefield for all the snap-
shot times provided in the input array time axis. This means that the function is rather slow, and it requires
large memory. So, be a bit careful.

3.2.3 Computing source kernels

Before computing Fréchet kernels for sources, a time-domain correlation function must be computed by run-
ning correlation function.py (see above). The time-domain correlation and the time axis are input
for the function source kernel in kernels.py. The former computes and plots a source kernel for the
measurement windows defined in the input file windows.txt.

Internally, source kernel first computes the frequency-domain adjoint source for a specific type of mea-
surement by calling adsrc.py. The adjoint source then acts as a frequency-domain multiplier with a product
of two Green functions. The kernel is then computed by integrating over all frequencies, which is equivalent
to assuming that the power-spectral density of the sources is frequency-independent, i.e. only dependent on the
space coordinate.

	Structure and functionality of the programme package
	Programming language and packages
	Directory structure and basic functionality

	Input files
	setup.txt
	receivers.txt
	correlation_field_and_kernels.txt
	ensemble_correlation.txt
	earthquake_catalogue.txt
	processing.txt
	windows.txt

	Task descriptions
	Random wavefield computations
	Computing inter-station correlations from random wavefields
	Computing source and propagation correctors
	Computing effective correlations

	Deterministic wavefield computations
	Computing inter-station correlation functions for a given power-spectral density distribution
	Computing snapshots and movies of the interferometric wavefield
	Computing source kernels

