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S U M M A R Y
In this paper, we present a series of mathematical abstractions for seismologically relevant
wave equations discretized using finite-element methods, and demonstrate how these abstrac-
tions can be implemented efficiently in computer code. Our motivation is to mitigate the
combinatorial complexity present when considering geophysical waveform modelling and in-
version, where a variety of spatial discretizations, material models, and boundary conditions
must be considered simultaneously. We accomplish this goal by first considering three distinct
classes of abstract mathematical models: (1) those representing the physics of an underlying
wave equation, (2) those describing the discretization of the chosen equation onto a finite-
dimensional basis and (3) those describing any spatial transforms. A full representation of
the discrete wave equation can then be constructed using a hierarchical nesting of models
from each class. Additionally, each class is functionally orthogonal to the others, and with
certain restrictions models within one class can be interchanged independently from changes
in another. We then show how this recasting of the relevant equations can be implemented con-
cisely in computer software using an abstract object-oriented design, and discuss how recent
developments in the numerical and computational sciences can be naturally incorporated. This
builds to a set of results where we demonstrate how the developments presented can lead to
an implementation capable of multiphysics waveform simulations in completely unstructured
domains, on both hypercubical and simplical spectral-element meshes, in both two and three
dimensions, while remaining concise, efficient and maintainable.
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1 I N T RO D U C T I O N

As mechanical waves pass through a medium, they acquire infor-
mation about that medium. By investigating the character of the
waves at a series of detectors, this information can be used to recon-
struct a 3-D model of that medium’s interior. This reconstruction is
the goal of full-waveform inversion. First introduced theoretically
in the 1980s (Lailly 1983; Tarantola 1984; Gauthier et al. 1986),
increasing computational power has allowed for the technique’s ap-
plication to ever larger and more realistic domains. The method is
now a workhorse in the seismic exploration industry (Pratt et al.
1998; Brenders & Pratt 2007; Virieux & Operto 2009; Prieux et al.
2013), where it is used to probe domains many kilometres in size
for natural resources. In academic settings, the method is widely
applied at the regional (Tape et al. 2009; Colli et al. 2013; Fichtner

et al. 2013; Simutė et al. 2016) and the global (French & Romanow-
icz 2014; Afanasiev et al. 2016; Bozdag et al. 2016; Fichtner et al.
2018) scales. Recent applications have also moved beyond the field
of seismology, into medical imaging (Pratt et al. 2007; Korta Mar-
tiartu et al. 2017) and nondestructive material testing (Rao et al.
2016; Seidl & Rank 2017).

An essential ingredient in full-waveform inversion is a method
to compute synthetic waveforms. As closed-form solutions exist
for only the simplest of media, numerical solutions to the wave
equation are essential to the method’s success. The first, and likely
still most common, method used for the numerical computation of
waveforms is the finite-difference method (see Moczo et al. (2014)
for a comprehensive review). First applied to wave propagation
problems on regular grids (Alterman & Karal 1968; Boore 1970;
Kelly et al. 1976), more sophisticated staggered-grid approaches
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brought an increase in solution accuracy relative to computational
cost (Madariaga 1976; Virieux 1984, 1986). Physical sophistication
was further developed by the proper treatment of boundary con-
ditions and material discontinuities (Robertsson 1996; Ohminato
& Chouet 1997; Moczo et al. 2002), the incorporation of general
anisotropy (Igel et al. 1995), and formulations in terms of spherical
coordinates for axisymmetric (Igel et al. 1995; Chaljub & Tarantola
1997) and fully 3-D domains (Igel & Weber 1995). Other work
focused on increasing the combined spatial and temporal accuracy
using ‘optimal’ operators (Geller & Takeuchi 1998), and applica-
tions via natural neighbours to more general, unstructured domains
(Braun & Sambridge 1995; Käser et al. 2001; Käser & Igel 2001).

While finite-difference methods are highly efficient for simu-
lating wave propagation on rectilinear meshes, some factors limit
their usefulness for domains with complex geometries, a compli-
cated material structure, or which require more advanced bound-
ary conditions. For studies in areas with strong topography, along
with applications in medical imaging and nondestructive testing,
this limitation can become especially severe. Recent work shows
promising extensions of finite-difference methods to more complex
domains via curvilinear coordinate transforms (Fornberg 1988; Hes-
tholm 1999; de la Puente et al. 2014; Petersson & Sjögreen 2015;
Shragge 2016), but these extensions still require a continuous and
smooth surface, and are associated with a higher computational
cost. Furthermore, the explicit implementation of boundary con-
ditions becomes increasingly difficult as the geometric complex-
ity of the domain evolves. Finally, increasing the spatial accuracy
of the finite-difference operators is associated with a growth in
stencil size which can negatively affect the parallel scaling char-
acteristics in larger applications demanding distributed memory
parallelism.

A common response to these limitations is the use of finite-
element and finite-volume methods, which elegantly include the ef-
fects of boundary topography, and do not suffer from severe commu-
nication overheads as the spatial approximation order is increased.
This is fortunate, as low-order variants of either method are too
inefficient to be useful (Marfut 1984; Käser & Igel 2001). Recent
work on arbitrarily high-order finite-volume methods has shown
promising results (Dumbser et al. 2007), but the computational
cost for a given solution accuracy seems to favour discontinuous
Galerkin methods over finite-volume (de la Puente et al. 2007;
Käser et al. 2007; Wilcox et al. 2010; Tago et al. 2012). A particu-
lar advantage of both these schemes is their efficient and arbitrarily
high-order discretization on unstructured simplicial meshes (tetra-
hedra, triangles). While discontinuous Galerkin methods are more
flexible than their continuous counterparts across elemental bound-
aries, they are computationally more expensive, with additional
work needed to compute the flux terms while also requiring a more
restrictive CFL condition as a recent study by Ferroni et al. (2017)
shows.

Thus, in applications with complex bounded domains which can
be meshed with hypercubic elements (quadrilaterals, hexahedra),
the spectral-element method has emerged as the most efficient nu-
merical technique for solving wave propagation problems (Seriani &
Priolo 1994; Faccioli et al. 1996, 1997; Komatitsch & Tromp 1999;
Capdeville et al. 2003; Chaljub et al. 2003; Fichtner & Igel 2008;
Peter et al. 2011; Nissen-Meyer et al. 2014). A high-order variant
of classical finite-element methods, the spectral-element method

combines high-order interpolating polynomials on each element
with a specific quadrature rule which results in a globally diagonal
mass matrix. This feature, coupled with the fact that the element-
wise operations can be formulated as dense matrix–matrix products,
makes the method especially suitable for the current generation of
SIMD (single instruction, multiple data) computing architectures.
This is in contrast to classical finite-element approaches, in which
the global mass matrix is not diagonal, and the time evolution of
the wavefield may involve the solution of a sparse linear system at
each time step.

Improvements in the quality and quantity of seismological data, as
well as increasing computational power, make it desirable and pos-
sible to model wave propagation physics in more detail. This trend,
coupled with the variety of appropriate spatial discretizations and
the ever-expanding network of applications where waveform mod-
elling is relevant, risks to complexify wave propagation codes to a
level where they become unmaintainable. In this paper we describe a
series of theoretical and practical developments useful for designing
software for full-waveform modelling and inversion based on the
spectral-element method, with a focus on time-domain approaches.
The results are inspired by popular finite-element packages such as
FENICS (Logg et al. 2012), DEAL.II (Bangerth et al. 2007), GRINS
(Bauman & Stogner 2016) and DUNE (Dedner et al. 2010) in that
many details of the underlying numerical methods are abstracted
away. The developments allow us to make additional generaliza-
tions regarding the implementation of the wave equation for a wide
variety of rheologies. We discuss the use of distributed data struc-
tures provided by PETSC (Balay et al. 1997, 2017a,b) and DMPLEX

(Knepley & Karpeev 2009; Lange et al. 2016), and demonstrate
how such structures allow for scaling to problems involving more
than hundreds of millions of unknowns, and discretized onto gen-
eral, unstructured meshes. Finally, we present several benchmark
results on both 2-D and 3-D simplicial and hypercubic meshes,
along with several other proof-of-concept examples, demonstrating
the variety of scales and domains to which our SEM implemen-
tation can be applied. While several high-quality spectral-element
implementations focused on FWI currently exist (Komatitsch &
Tromp 2002a; Cupillard et al. 2012; Gokhberg & Fichtner 2016),
none encapsulates the flexibility offered by the abstraction presented
herein.

Section 2 reviews the strong and weak forms of the elastic and
acoustic wave equations, and illustrates how they can both be
written in a similar functional form. Piece by piece, this form is
then related to a general continuous Galerkin finite-element dis-
cretization. Following this, we see how the functional notation
can also lend itself to a concise representation of wave propa-
gation through more complex rheologies, such as viscoelasticity,
and coupled acoustic/elastic media. Section 3 relates these ab-
stractions in a one-to-one manner to concepts from software en-
gineering, showing how they lead naturally to ‘function decora-
tors’. We then show some simple examples of how such decorators
can be implemented with C++ template mixins. Following this
is a demonstration of how the individual decorators can be used
to automatically construct functionals in complex unstructured do-
mains, using the unstructured mesh abstractions in DMPLEX. Fi-
nally, we comment on some preliminary performance and scaling
statistics, and follow with a short discussion on the benefits of
flexibility.
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2 A N A B S T R A C T F O R M U L AT I O N O F
T H E S E I S M I C WAV E E Q UAT I O N

In this section, we explain the motivation behind selecting the finite-
element method as a spatial discretization. We then show how the
mathematical details of the method can be abstracted and imple-
mented efficiently on a computer. Finally, we show how the details
of a particular wave equation can themselves be generalized, leading
to efficient implementations of coupled domains and viscoelasticity.

2.1 The weak form

Consider the wave equation for a simple elastic solid in an n-
dimensional domain G (n = 1, 2 or 3) and time interval (0, T]
with T > 0 (Aki & Richards 2002):

ρ∂2
t u = ∇ · σ + f in G × (0, T ]. (1)

Here ρ is density, u is displacement, σ is stress and f represents
an external forcing term. The time and space dependency of these
last three terms is taken as implicit to simplify notation. A simple
way to relate stress to displacement in a purely elastic medium is
via Hooke’s law

σ = C : ∇u, (2)

where C is a fourth-order tensor characterizing the stiffness of the
medium, and the symbol : denotes a contraction over adjacent
indices. Taken together, eqs (1) and (2) define the strong form of the
linear elastic wave equation. Boundary conditions (such as the free-
surface conditions), along with quiescent initial conditions, must be
included explicitly in order to obtain a unique solution. Boundary
and initial conditions take the form

σ · n̂|∂G = τ̄ (x), u|t=0 = ū(x), v|t=0 = v̄(x), (3)

respectively, where τ̄ (x), ū(x) and v̄(x) represent spatially varying
distributions of traction, displacement and velocity, respectively. n̂
is the outward pointing normal vector from ∂G (the boundary of the
domain).

Replacing the spatial and temporal derivatives by discrete point-
wise approximations forms the backbone of finite-difference meth-
ods. In contrast, finite-element methods work with the weak, or
variational, formulation of the governing equations (Brenner &
Scott 2007; Quarteroni et al. 2010). Here a major advantage arises
from approximating the wavefield by suitably chosen basis func-
tions, which leads to a natural representation of the solution and its
derivatives on the whole domain, that is not only on a discrete set
of points, and it enables us to compute integrals over volumes and
surfaces.

To obtain the weak form of eq. (1) we first multiply with a smooth
function w (referred to as a test function), which gives for any t ∈
(0, T]:∫

G
ρw · ∂2

t u dn x =
∫

G
w · (∇ · σ ) dn x +

∫
G

w · f dn x, (4)

where the test function w does not depend on time t. Applying the
divergence theorem to the first term on the right in eq. (4) gives∫

G
ρw · ∂2

t u dn x =
∫

∂G
w · (σ · n̂) dn−1x

−
∫

G
∇w : σ dn x +

∫
G

w · f dn x. (5)

Note the explicit appearance of the boundary integral in eq. (5). This
term vanishes if the free-surface boundary (σ · n̂|∂G = 0) condition

from (3) is inserted, and eq. (5) reduces to∫
G

ρw · ∂2
t u dn x = −

∫
G

∇w : σ dn x +
∫

G
w · f dn x, (6)

The free-surface condition is now implicitly included without any
special effort. This inclusion is a major advantage over finite-
difference methods, especially when modelling wave propagation
through regions with strong topography, considering sea bottom
bathymetry or dealing with applications in engineering where the
domains may exhibit an arbitrary level of geometric complexity. Of
course, we may also specify any other boundary condition we like,
with the caveat that the integral over ∂G may become non-zero. This
is the case, for example, along the interface between coupled fluid
and solid domains, or any internal discontinuity where the normal
stresses are continuous.

In seismology, it is often desired to solve the acoustic (scalar)
version of the wave equation in addition to the elastic (vector)
version. This is useful in modelling wave propagation through fluid
or coupled fluid–solid systems (Komatitsch et al. 2000; Komatitsch
& Tromp 2002b; Nissen-Meyer et al. 2008; Korta Martiartu et al.
2017), and also as a computationally efficient approximation to the
elastic wave equation (Pratt et al. 1998; Prieux et al. 2013; Cance
& Capdeville 2015). We can derive the weak form of the acoustic
wave equation in a similar way to that demonstrated above. Starting
from the strong form

ρ−1c−2∂2
t u = ∇ · (ρ−1 ∇u) + f in G × [0, T ], (7)

where c is the speed of sound and u is a scalar displacement po-
tential (Chaljub & Valette 2004), we multiply with the (scalar) test
functions w, integrate, and apply the divergence theorem to obtain:∫

G
ρ−1c−2w ∂2

t u dn x =
∫

∂G
ρ−1w ∇u dn−1x

−
∫

G
ρ−1∇w · ∇u dn x+

∫
G

w f dn x. (8)

At this stage, it is instructive to note the similarity between eqs
(4) and (8). Each includes four distinct terms: a term involving a
volume integral of density and acceleration (the mass term), a term
involving a surface integral of the normal component of stresses (the
boundary term), a term involving the volume integral of internal
forces (the stiffness term), and a term involving a volume integral
over external forces (the forcing term). All terms also involve the
dot product with either the test functions w or their gradients ∇w,
and act on either the wavefield u or its gradient ∇u. It is understood
that in the case of the scalar wave equation, the vector quantities
simply reduce to their scalar counterparts.

With these similarities in mind and using the notation (a, b)G =∫
G a · b dn x and 〈a, b〉∂G = ∫

∂G a · b dn−1x, we can write eqs (5)
and (8) in a more compact form. The weak forms now read: for all
t ∈ (0, T] and all w ∈ V n (resp. w ∈ V), find u (resp. u) such that(
ρ∂2

t u,w
)

G
− 〈

(C : ∇u) · n̂, w
〉
∂G

+ (C : ∇u,∇w)G

= ( f , w)G , (9)

or(
ρ−1c−2∂2

t u, w
)

G
− 〈(

ρ−1∇u
) · n̂, w

〉
∂G

+ (
ρ−1∇u, ∇w

)
G

= ( f, w)G , (10)

where we have used the elastic constitutive relationship given in
eq. (2) and where V denotes a suitably chosen Galerkin space that
will be defined in the next section. In this form, the similarities
between the two equations are quite apparent. The only significant
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difference comes in the way material coefficients are multiplied
into each term, and the dimensions of the dynamic fields and test
functions.

We can use these similarities to add one additional layer of ab-
straction. Here we will use the concept of a ‘mathematical model’
to describe a set of equations. Each model encompasses a specific
term in eqs (9) and (10), and includes a description of the relevant
material parameters, the choice of the test functions space, and the
associated mathematical operations. We denote such a model by the
symbol I and define it as

II (P), where I ∈ {A, E}, P ∈ {M, B, S, F}, (11)

where A and E refer to the acoustic and elastic wave equation, and
M, B, S, F refer to the mass, boundary, stiffness and forcing terms,
respectively. In this notation, we can represent the acoustic or elastic
wave equations with the simple expression

II (M) − II (B) + II (S) = II (F), (12)

or even more compactly as
∑

P∈{M,B,S,F}
II (P) = 0. (13)

In essence, we have compressed all the information that does not
change through time into I.

Such a model is passed the time-varying field u as an argument
to P = P(u), on which it acts in much the same way as a function.
As before, we allow u to reduce to its scalar equivalent in the case
of the acoustic, or any other scalar, wave equation.

2.2 Galerkin approximation

In order to solve eq. (13) numerically we need to choose a proper
finite-dimensional approximation Vh ≈ V. For simplicity and ef-
ficiency we consider the Ritz–Galerkin approach, which is also
commonly known as Galerkin method (Zienkiewicz et al. 2005).
Here, the test functions w and the solution u are approximated by a
set of functions φ chosen from the same space. Let B be a basis of
Vh and let N denote its size. We can form a discrete approximation
of any continuous function g, which could represent a component
of the displacement u, or the stress σ , by expanding this basis with
coefficients Fj:

g(x) ≈
N∑

j=1

Fjφ j (x). (14)

The derivatives of g can then be approximated by the derivatives of
φ j :

∇g(x) ≈
N∑

j=1

Fj∇φ j (x) (15)

The accuracy of this approximation will be limited by how well Vh

approximates the original function space V.
In addition to the accurate evaluation of these fields and their

derivatives, we must also evaluate integrals like (u, w)G and〈∇u · n̂,w
〉
∂G

. To do this, we turn to numerical quadrature. Here,
we combine a set of M integration weights Wi, with g(x) and ∇g(x)
evaluated on a set of integration points xi , resulting in

∫
G

g(x) dn x ≈
M∑

i=1

W G
i

N∑
j=1

Fjφ j (xi ) (16)

for volume integrals, and

∫
∂G

g(x) dn−1x ≈
M∑

i=1

W ∂G
i

N∑
j=1

Fjφ j (xi ) (17)

for surface integrals. Note that the only difference between these
two terms is the superscript on W. This allows us to write both n-
and (n − 1)-dimensional integrals in the same form, however in
reality the weights W∂G are only defined on ∂G.

To work the model B into the wave equation, we can expand the
definition of I and insert any choice of the basis B as an additional
argument into eq. (13), which encodes all operations introduced in
this section∑
P∈{M,B,S,F}

II (P,B) = 0. (18)

Consider the powerful generalizations obtained when writing the
wave equation in this manner. In addition to generalizing over the
acoustic and elastic wave equation, we have not yet specified ex-
actly which function space B describes. In fact, we are able to use
any function space, as long as eqs (14)–(17) are well defined. Ad-
ditionally, we have not yet specified the spatial dimension. Indeed,
the same form holds for 1, 2 and 3 dimensions. All that is required
is that the integrals in eqs (16) and (17) exist for a given dimen-
sion n. For example, in 2-D these equations refer to surface and line
integrals, while in 3-D they refer to volume and surface integrals, re-
spectively. Most importantly, we can separate all physical quantities
(encoded in P) from the finite-element discretization (parametrized
by B).

We can now analyse the steps needed to compute II (S,B) (the
stiffness term). First, we useB to approximate the displacement field
u with some finite-dimensional basis, for example polynomials, via
eq. (14), resulting in a discretized approximation of u. We then use
additional functionality internal to B to compute the gradient of the
discretized displacement via eq. (15). This gradient, equivalent to
the elastic or acoustic strain, is now passed on to II . For I = A (the
acoustic wave equation), this action involves multiplication by the
inverse density ρ−1, while for I = E (the elastic wave equation) this
involves a contraction with the elastic tensor C. If we consider the
strain and stress as being represented in Voigt notation [see Babuška
& Cara (1991), for example], then the above operations simplify to
a scalar-vector or matrix–vector product, respectively. The result
of either operation is equivalent to the acoustic or elastic stresses.
We then rely on B again to first compute the gradient of the test
functions ∇w, and finally perform the numerical integration via the
quadrature rule from eq. (16). This completes the computation of
II (S,B).

Eq. (18) describes the semi-discrete system of the weak form
of the wave equation and does not yet include the discretization
in time. Again, this can be seen as another layer independent to
the physics and the spatial discretization. Commonly used explicit
time marching schemes for are, for instance, the second-order New-
mark central-differences scheme (Hughes 2000; Peter et al. 2011),
second-order leap-frog (Ferroni et al. 2017), fourth-order symplec-
tic schemes (Nissen-Meyer et al. 2008) or high-order Runge–Kutta
methods (Wilcox et al. 2010).

2.3 Finite-elements

In seismology, we are often concerned with accurately representing
different discontinuities within the Earth. These can include sev-
eral phase-transition boundaries within the mantle, the core–mantle
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boundary, or, on a much smaller scale, the ocean bottom. Across
these discontinuities the model parameters and strain field are not
differentiable, and for this reason a smooth polynomial basis over the
entire domain G is usually not appropriate. To mitigate this problem
we turn to the finite-element method (FEM), where the domain G is
subdivided into a set of non-overlapping elements, each enclosing
the volume Ge. The basis B then consists of continuous functions on
G which are restricted to piecewise polynomials defined on the in-
dividual elements. Within each element, we approximate functions
and their derivatives as in eqs (14) and (15).

While using the FEM, for reasons of efficiency, we can take
advantage of pre-tabulated integration weights and basis function
derivatives defined on a reference element, which are often defined
in an element-specific reference coordinate system ξ . To transform
these integrals and derivatives to the physical coordinates x, we re-
quire an element-specific Jacobian ∂x/∂ξ , which defines the map-
ping from reference to physical coordinates. With this transform,
eqs (14)–(17) become

g(x) ≈
N∑

j=1

Fjφ j (ξ (x)), (19)

∇g(x) ≈
N∑

j=1

Fj
∂

∂ξ
φ j (ξ (x))

∂ξ

∂x
(20)

∫
Ge

g(x) dn x ≈
M∑

i=1

W Ge
i

N∑
j=1

Fjφ j (ξ (xi ))

∣∣∣∣∂x

∂ξ

∣∣∣∣
n

x=xi

, (21)

and
∫

∂Ge

g(x) dn−1x ≈
M∑

i=1

W ∂Ge
i

N∑
j=1

Fjφ j (ξ (xi ))

∣∣∣∣∂x

∂ξ

∣∣∣∣
n−1

x=xi

, (22)

respectively. To assemble the integrals in eqs (21) and (22) over the
whole domain G, one simply needs to sum contributions from each
element. With this in mind, the only difference to eqs (14)–(17) is
the dependence on the reference coordinate system ξ , along with the
determinant of the Jacobian matrix and its inverse, which describes
the local mapping from reference to physical coordinates in an n-
dimensional manifold. To calculate these additional quantities, all
that is required is the definition of the mapping from the reference
element to the physical domain. Let us now define E as a model
containing this data, along with instructions on how to compute
the Jacobian for a given element type. Then, in the finite-element
discretization of the weak form, we can rewrite B as B(E), and thus
eq. (13) becomes∑
P∈{M,B,S,F}

II (P,B(E)) = 0. (23)

The additional layer introduced by E allows us to specify the
reference element type independently of the basis B. For instance,
we can use linear or quadratic functions to define the geometry of
the reference element. Of course, there are some restrictions implied
by the dimensionality of the problem and the details of B but with
these restrictions eq. (23) is valid whether the domain is partitioned
into either simplex- or hypercube-type meshes, or something else
more exotic. The choice of these functionals depends on the specific
problem at hand.

For most of the results presented in the next sections, we follow
the classical spectral-element discretization commonly used in seis-
mology, and choose the tensorized GLL basis as our discretization

model (Komatitsch & Tromp 2002b; Fichtner et al. 2009; Cupillard
et al. 2012). This also restricts our choice of finite-elements to those
of a hypercubical character. It is important to note that this choice of
basis prevents us from integrating the discrete mass term with full
accuracy, as the GLL quadrature rule is only exact for polynomials
up to order 2n − 1. As we use the same polynomials of order n to
represent both the dynamic field variables and the test functions, the
mass term includes polynomials of degree 2n. Given a field with a
fixed spatial complexity (e.g. a band-limited wavefield) this inaccu-
racy can always be mitigated for a given domain and model through
both mesh refinement and/or increasing the order of the polyno-
mial approximation. In Section 3.3, we show examples validating
the accuracy of the spectral-element method for select media with
constant material parameters through benchmark results comparing
numerically generated and semi-analytic solutions. Once material
parameters are allowed to vary within each element, either linearly
or otherwise, the order of the corresponding polynomial approxima-
tions increase in turn. While this suggests that the accuracy of the
simulated scalar displacement potential given in eq. (10) is degraded
to a higher degree than the elastic wave eq. (9) due to the product
of the inverses of material coefficients, this can be remedied with a
change of parameterization. For instance, by parameterizing eq. (10)
with compressibility (ρ−1 · c−2) and inverse density, the accuracy
of the discrete solutions to (10) and (9) are identical. A thorough
study of the convergence properties of spectral-element methods is
beyond the scope of this paper. A recent and comprehensive study
can be found in Ferroni et al. (2017).

2.4 Complex rheologies

While the abstractions introduced so far allow us to construct a
general finite-element discretization of the seismic wave equation,
their utility extends to the mathematical models describing wave
propagation physics as well. Consider a move beyond linear elastic-
ity into viscoelastic and weakly non-linear regimes. Many of these
effects these rheologies have on the wavefield can be expressed as
modifications to the elastic or acoustic stresses, which are contained
within the term II (S,B(E)). Consider the viscoelastic wave equa-
tion. In this case, the stiffness term in eq. (9) depends on the entire
strain history

(C : ∇u, ∇w) →
(∫ t

−∞
∂t C(t − τ ) : ∇u(τ ) dτ, ∇w

)
. (24)

It is common to approximate this time-dependence by a discrete
Laplace transform (or discrete relaxation spectrum) that can be
equivalently represented as generalized Zener or Maxwell bodies
(Emmerich & Korn 1987; Robertsson et al. 1994; Moczo & Kris-
tek 2005; van Driel & Nissen-Meyer 2014). Using this discrete
formulation, we can rewrite the stiffness term in (24) as⎛
⎝CU : ∇u(t) −

nm∑
j=1

M j (t),∇w

⎞
⎠ , (25)

where the M j (t) are memory variables which encode the strain
history of the Maxwell bodies. CU refers to the ‘unrelaxed elastic
tensor’, the coefficients of which represent the instantaneous elastic
response to a strain impulse.

Note the following similarities between eq. (25) and the purely
elastic stiffness as defined in eq. (9), and written in model notation
as IE (S,B(E)). The operations provided by B(E) are identical. The
gradient of the displacement u and test functions w maintain the
same form. On the element level E , we require the same mapping
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to physical coordinates which have already been provided. Further-
more, we retain the contraction of a fourth-order tensor with the
displacement gradient u, although the elastic tensor is modified to
take on an un-relaxed state through the subtraction of the mem-
ory variables. We can encode these additional instructions in a new
model A(·):

∑
P∈M,B,S,F

IE (A(P),B(E)) = 0. (26)

Assuming a free-surface condition on the boundary of G, the ap-
plication of A only modifies the term IE (S,B(E)). Thus we can
consider it as an identity operator over the other models and eq. (26)
simplifies to

∑
P∈M,F

IE (P,B(E)) + IE (A(S),B(E)) = 0. (27)

As we did with B, we now explore the steps required to compute
IE (A(S),B(E)). First, we use the conventional stress term S to
compute CU : ∇u(t), the first operation in eq. (25). The polynomial
approximation provided by B is required, which in turn requires
the Jacobian matrix provided by E . Once this term is computed,
we use the instructions on the A layer to subtract the sum of the j
memory variables M j (t). Once this is complete, we return to the
conventional stress computation S and its arguments to compute the
contraction with ∇w and the resulting integral. Finally, we use the
instructions on A to update the differential equation controlling the
time evolution of the memory variables.

Note that we have yet to specify any anisotropic symmetries
(handled by the functional P), the specifics of the polynomial inter-
polation (handled by the functional B), or the element type (handled
by the functional E). Nevertheless, we have a compact representa-
tion of the resulting weak form equation which can be used with any
valid combination of P , B, and E . This form is valid for any mod-
ification to elastic or acoustic stresses. Such is also the case when
applying gravitational corrections in the Cowling approximation
(Cowling 1941; Chaljub et al. 2007), or simulating wave propa-
gation in weakly non-linear/hyperelastic materials (Rivière et al.
2013). We simply require some modifier F which takes the physics
defined in the wave equation as an argument, and implements mod-
ifications for all those terms P for which F(P) is not an identity
transform.

Another illustrative example involves the coupling between the
acoustic elastic rheologies, relevant when simulating wave propa-
gation in combined fluid–solid domains. In this case, all elements
along the coupling boundaries must compute additional quantities
to ensure the continuity of traction between the two domains (Ko-
matitsch & Tromp 2002a; Chaljub & Valette 2004; Nissen-Meyer
et al. 2008). We can bring the (time-independent) coupling effects
into the model notation by defining CF S (fluid to solid) and CSF (solid
to fluid) and applying them to the coupled wave equation in a man-
ner similar to eq. (26). Since these only act on the boundary terms,
the application of these functionals to the wave equation results
in identity transforms for all other terms. Inserting these identity
transforms where appropriate, we obtain the simplified result

∑
I∈{A,E}
P∈{M,S,F}

II (P,B(E)) + IE (CF S(B),B(E)) + IA(CSF (B),B(E))

= 0. (28)

We can include attenuation in the solid regions by including A in
eq. (28):∑
I∈{A,E}
P∈{M,F}

II (P,B(E)) + IA(S,B(E)) + IE (A(S),B(E))

+IE (CF S(A(B)),B(E)) + IA(CSF (B),B(E))

= 0. (29)

and follow a similar process for including corrections for self-
gravitation as well.

A complete numerical model of wave propagation can be built
up from a set of functionally orthogonal models. In an abstract
sense, the utility of these models seems be limited to generating
concise representations of the discretized wave equation, which
is generalized over rheology. In the next section we will explore
their practical utility as tools for writing maintainable and efficient
numerical modelling software.

3 I M P L E M E N TAT I O N I N M O D E L L I N G
S O F T WA R E

The above abstractions have allowed us to split the physics, spa-
tial discretization and finite-element shape mappings into three
classes of logically orthogonal components. The components within
each of these classes can, with some restrictions (e.g. those in-
duced by the spatial dimension), be interchanged independently
from changes in any other class. To be of practical use, these
abstractions must be implemented in computer code, and it
must be ensured that their use does not negatively affect per-
formance. To achieve this goal, we turn to the C++ program-
ming language, and make extensive use of the ‘template mixin’
paradigm.

3.1 Models as template mixins

As a simple introduction, consider a concrete instantiation of
the model B(E). We can write a one-to-one correspondence be-
tween abstract model notation and C++ template mixin notation
as

B(E) 
→ TensorGll〈QuadP1〉 (30)

Here, following the classical spectral-element discretization com-
monly used in seismology, we have chosen the tensorized GLL basis
as our discretization model B, and restricted the support of this dis-
cretization to a 2-D 4-node quadrilateral element with a bilinear
(P1) shape mapping, which takes the place of E . In practise, each
component of the model (i.e. TensorGll) is a separate C++ class.
Alternatively, we could use the same GLL basis as B, but change
the support to a 3-D 8-node hexahedral element, and write this in
mixin notation as

B(E) 
→ TensorGll〈HexP1〉. (31)

Here we get a sense for the origin of the term ‘mixin’. Given a
collection of possible discretization schemes, and a collection of
elemental restrictions, we ‘mix-in’ the two collections together to
create a concrete instance of the abstract model B(E). The concrete
instantiations of all the abstract models can be referred to in this way.
As was the case in Section 2, the efficiency of this notation grows
and becomes more obvious as the rheologies and discretizations
become more complex.
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Consider a toy implementation of eq. (20), which computes the
gradient of some discrete function f, given in Listing 1.

An exploration of this Listing gives insight into how these ab-
stract models are used in practice. First, we note that this function
is a component of the ‘Basis’ model B. In Listing 1 this is specified
by prefixing the name of the model the function belongs to (Basis)
to the function name itself (ComputeGradient). At this stage, the
element E is still abstract and waiting to be ‘mixed-in’, which is ev-
idenced by the template <typename Element> preceding the
function definition. Internal to the function, we first allocate a 2-
D array to hold the gradient of F, which is of the size (NumDof,

NumDim), or the number of degrees of freedom on this element,
and the number of dimensions of the problem, respectively. Here
we already take advantage of the abstract nature of the model no-
tation: NumDof is provided by the current discretization model, but
NumDim is currently unknown, and only provided once the complete
model is specified. Now, we loop through each dimension, and fill
up Gradient by following eq. (20) more or less verbatim. We mul-
tiply and sum F at the current integration point by the gradient
in reference coordinates of the test functions at all the integration
points. To transform this into physical coordinates, we rely on E
to provide us with the shape mapping DepsDx. Although the true
implementation of such functions can be made more sophisticated
than the example in Listing 1, the concept here is what is important:
through the C++ template mixin paradigm we are able to recognize
the benefits of the abstract and compact model notation introduced
in Section 2.

The remaining models can be implemented in the same way.
Consider the case of the acoustic, or isotropic/anisotropic elastic
stiffness term II (S,B(E)), both implemented in Listing 2. Here we
are mixing two models: the discretization (Basis), and a particular
model of computing stresses (Physics).

If we unpack the information compressed in these models, we see
that Listing 2 is written in a similar fashion as the continuous weak
form given in eqs (9) and (10). Indeed, such a function remains
unchanged across dimensions, discretization models, and element
types (of course, as long as each of these are consistent with each
other). An example of some concrete instantiations of II (S,B(E))
are

II (S,B(E)) 
→ Acoustic〈TensorGll〈QuadP1〉〉,
II (S,B(E)) 
→ Elastic〈TensorGll〈HexP1〉〉,
II (S,B(E)) 
→ Elastic〈EnrichedLagrange〈TetP1〉〉,

(32)

among many others, where EnrichedLagrange refers to a dis-
cretization model based on mixed-order Lagrange polynomials suit-
able for high-order mass lumping on simplicial elements (Chin-Joe-
Kong et al. 1999; Cohen et al. 2001; Zhebel et al. 2014; Mulder &
Shamasundar 2016).

The implementation of more complex rheologies follows in a
similar manner. Taking an implementation of viscoelasticity us-
ing memory variables, as described in Section 2.4, we can write
a simple implementation of IE (A(S),B(E)), or eq. (27), as ex-
pressed in Listing 3. The syntax we are using here can again be
related to the notation introduced in section 2. The template pa-
rameter specifies the discretized wave equation IE (S,B(E)), and
the resulting model takes the wavefield u as an argument. The
Attenuation class performs the job of A, specifically time-
stepping the state of the memory variables, and modifying the
constitutive relationship accordingly. As in Listing 2, Listing 3
is valid for all consistent dimensions, discretization models and
element types, and is also valid regardless of the exact form

of the elastic stiffness computation (i.e. isotropic or anisotropic).
XXXX

Here we note that all these functions could be made even sim-
pler by explicitly building the finite-element stiffness matrix, and
just performing one matrix-vector product to compute the internal
forces. Our reasons for not taking this approach are two-fold. First,
there are significant efficiency gains in this ‘on-the-fly’ computa-
tion of the stiffness matrix for all wave equation types, although
these gains are restricted to hypercube-type elements with a ten-
sorized basis (Deville et al. 2002). Secondly, and more generally,
this approach allows us to save costs in the computation of complex
constitutive relationships which modify the stress and / or strain.
Using the explicit stiffness matrix would require the recomputation
of these terms.

In general, the implementation of the discretized wave equation
with C++ template mixins allows an almost one-to-one correspon-
dence with the hierarchical model notation introduced in section 2.
This can be expressed with an analogy to building blocks, as illus-
trated in Fig. 1. Here we use the term ‘Decorator’ to represent any
modification to the linear elastic rheology that can be written in a
form similar to eq. (26).

3.2 Constructing mixins in complex domains

The above approach lends itself well to complex coupled domains,
as each individual element in the domain can just be constructed
from an arbitrary model/mixin. Consider, for example, the 4 element
domain illustrated in Fig. 2. Each element is alternatively solid
or fluid, the top domain boundary is of type Dirichlet, and the
other three domain boundaries are meant to absorb energy. In mixin
notation, we can write each element as follows:

Element 0 
→ AbsorbingBoundary〈DirichletBoundary
〈Acoustic〈TensorGll〈Quadrilateral〈QuadP1〉〉〉〉〉

Element 1 
→ AbsorbingBoundary〈Elastic〈TensorGll
〈Quadrilateral〈QuadP1〉〉〉〉

Element 2 
→ AbsorbingBoundary〈DirichletBoundary
〈Elastic〈TensorGll〈Quadrilateral〈QuadP1〉〉〉〉〉

Element 3 
→ AbsorbingBoundary〈Acoustic〈TensorGll
〈Quadrilateral〈QuadP1〉〉〉〉

(33)

With the equivalence of the mixin notation and the model no-
tation, this explicit characterization of each element ensures that
the proper equations will be solved on each element. The question
remains how to construct the mixins automatically for domains of
arbitrary complexity. Domains with simple fluid-solid boundaries
are found in many seismological applications. Coupling between
the mantle and outer core, and oceanic exploration surveys, are
some common examples. In these cases it is relatively simple to
mark specific facets (a generalization of edges in 2-D, and faces in
3-D) in the mesh as coupling boundaries. However, this is disad-
vantageous as such boundaries need to be re-computed if the mesh
discretization ever changes. More difficulties are encountered in
examples where each individual element may vary between a fluid
and solid. This may be the case, for example, in a saturated porous
medium. The domain illustrated in Fig. 2(a) gives a simple example
of such a pathological case. To handle such complex domains we
build on the functionality provided by DMPLEX, which is a library
for handling unstructured meshes contained within PETSC (Kne-
pley & Karpeev 2009; Lange et al. 2016). DMPLEX represents a
computational mesh as a directed acrylic graph (DAG), and allows
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Listing 1: A possible implementation of a function belonging to B(E)

Listing 2: Abstract implementation of the acoustic and elastic stiffness terms II (S,B(E))

Listing 3: Simple implementation of IE (P(S),B(E))

us to trivially construct complete mixins for elements in a domain
of arbitrary geometric and physical complexity.

The mesh outlined in Fig. 2(a) contains five distinct physical
components. On the elemental level, we consider elements that
are responsible for simulating either the acoustic (blue) or elas-
tic (brown) wave equation. In the fluid elements we consider a
formulation of the acoustic wave equation based on a scalar dis-
placement potential (eq. 8) in order to maintain an explicit time
stepping scheme (Chaljub & Valette 2004). Along the left, bottom,
and right edges we consider absorbing style boundary conditions
(green) (Clayton & Engquist 1977; Komatitsch et al. 2000). Finally,
along the top boundary we consider a homogeneous Dirichlet-type
rigid boundary (red). The right side of Fig. 2(a) also demonstrates
another way to look at the mesh, here focusing on the topological
entities. Following the same order as in the previous paragraph, we
proceed from entities of dimension two (faces FN), to entities of

dimension one (edges EN), to those of dimension zero (vertices VN).
As in Fig. 2(a), the mesh entities are coloured by the correspond-
ing physics they introduce. Here we can consider the acoustic and
elastic terms as forming the element physics, with the boundary
terms serving to mix-in with the element physics. And additional
complication introduced by the Dirichlet boundaries. Since these
operate in a point-wise fashion, they must also be associated with
the vertices of each edge they decorate, in contrast to the absorb-
ing boundary terms which only consider surface integrals over an
element facet.

Of course, there are several mixins which are absent from
Fig. 2(a). These are the coupling mixins which we expect along
E3, E5, E6 and E8. As well, since each model in eq. (33) is ex-
plicitly constructed once per element, it is essential that all mixins
are known at the element (FN) level. Fig. 2(b) recasts the topology
outlined in Fig. 2(a) as a Hasse diagram, functionality provided by
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Modular waveform modelling 1683

Figure 1. Visualization of the abstractions as building blocks. Constructing a complete mathematical model or mixing involves at least choosing a shape
mapping, an element type, a set of basis functions, and a fundamental wave equation (a). These individual components can be mixed together in many ways.
Some constructions equivalent in both model and mixin notation are given and visualized in (b) and (c).

DMPLEX. Here, each level, or ‘stratum’ in the diagram represents a
mesh entity of increasing dimension, with the labels on each entity
retained. The goal now becomes the efficient communication of all
relevant mixins to the base of the Hasse diagram.

We can perform this communication in two stages. First, we tra-
verse the upward and downward closure for each edge (Fig. 2c),
and investigate the labels residing on each connected entity. As an
example, for E0 the upward closure visits V0 and V1 while the
downward closure visits F0. Any labels on these entities are then
added to the set of labels on each edge. Once these sets are con-
structed, we can simply traverse one level in the upward closure of
each element (FN), and add all labels associated with the connected
edges to the set of elemental physics (Fig. 2d). At this stage we have

all the information necessary to construct the complete model for
each element.

3.3 Examples

Using the Hasse Diagrams is an attractive way of determining which
decorators to add to the element physics as it is local to each el-
ement, but also agnostic to both element type and dimension. For
simplicial elements, the number of edges and vertices associated
with each element changes, but the Hasse diagram can be drawn
in a similar way. As well, in three dimensions, another stratum is
added to the bottom of the diagram indicating element volumes,
but the discussions about closure traversal hold. Taken together,
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F1

(a)

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB

F0 F1 F2 F3

V0 V1 V2 V3 V4 V5 V6 V7 V8

(b)

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB

F0 F1 F2 F3

V0 V1 V2 V3 V4 V5 V6 V7 V8

(c)

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB

F0 F1 F2 F3

V0 V1 V2 V3 V4 V5 V6 V7 V8

(d)

Figure 2. Illustration of how decorator chains are constructed in complex domains. (a, left) Chequerboard mesh with boundaries, represented as a mesh. The
elements solve either the acoustic (blue) or elastic (brown) wave equation. A Dirichlet type boundary is placed on the top edge (red), with absorbing boundaries
on the other 3 edges (green) The Dirichlet boundaries act pointwise, and must therefore be associated with both edges and vertices. The absorbing boundaries
act on the wavefield through a surface integral, and are therefore only defined for edges. (a, right) The same mesh represented by means of topological entities
including faces F (2-D elements), edges E, and vertices V, with each entity colored by its associated label. (b) A recasting of the mesh as a Hasse diagram,
retaining the connectivity and labels outlined in (a). (c) Description of cycle 1 of the label communication: the upwards and downwards closure of each edge
is queried, and any additional labels are added to the set of labels of each edge. (d) Description of the second cycle, where the set of labels on each edge is
added to the set on each element. We now have the information necessary to combine the relevant mixins, and construct the full wave propagation model on
each element.
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Figure 3. Snapshot of wave propagation in a complex coupled domain
where each element is randomly marked as either fluid (Vp = 1500 m s–1, ρ
= 1200 kg m–3) or solid (Vp = 1500 m s–1, Vs = 1000 m s–1, ρ = 1000 kg
m–3). The source was a Ricker wavelet with a centre frequency of 1 kHz.
Such a domain may be used to represent a solid medium saturated with fluid.
The normalized amplitude of the acoustic waves are visualized with blue
hues, and the normalized amplitude of the elastic waves are visualized with
purple hues. The individual solid or fluid elements can be differentiated by
their grey or white colour, respectively. Internal coupling boundaries are
automatically detected at runtime via the methods outlined in section 3.2.

these factors allow us to flexibly and efficiently discretize complex
domains.

An example of this flexibility can be seen when considering
a medium in which each element randomly simulates either the
acoustic or elastic wave equation, with the separate solutions cou-
pled along element edges. This may, for example, represent a type
of fluid-filled porous medium, but it is more appropriate to con-
sider this example as a complex end-member in the class of cou-
pled simulations through unstructured domains. A snapshot of wave
propagation through one realization of such a domain can be seen
in Fig. 3. Note that here two distinct equations are being solved:
the isotropic elastic wave equation, and an acoustic wave equation
based on the scalar displacement potential, the weak forms of which
are given in eqs (4) and (8) respectively. On the model generation
side, all that was required was the labelling of individual elements
as either acoustic or elastic. The coupling boundaries were found
automatically at runtime by traversing the Hasse Diagram provided
by DMPLEX as outlined in Section 3.2.

The benchmarks outlined in Fig. 4 present more examples of
the benefits of both the model/mixin design and the generality
of the Hasse diagrams, in this case through the discretization of
the domain with four distinct element types. Simulated is coupled
acoustic/elastic wave propagation in 2-D and 3-D on quadrilateral,
triangular, hexahedral, and tetrahedral meshes. The 2-D or 3-D do-
main is identical in all cases, as are all models/mixins above the
level specifying the polynomial basis. The functions computing the
propagation in the acoustic and elastic subdomains, as well as the
functions computing the coupling terms, are identical. The Hasse

diagram provided by DMPLEX was used to automatically deter-
mine the coupling edges. The only differences are at the bottom of
the mixin chain with, for example, 〈TensorGll 〈QuadP1/HexP1〉〉
computing the spatial operations for the hypercubic elements, and
〈EnrichedLagrange 〈Tri1/TetP1〉〉 computing the spatial oper-
ations for the simplical elements. A detailed exploration of the
associated convergence properties is beyond the scope of this pa-
per.

4 D I S C U S S I O N

The concepts outlined in Sections 2 and 3 have been implemented
within the SALVUS software package. The next paragraphs will dis-
cuss several examples from this implementation and cover issues
such as performance and scaling.

4.1 Performance and scaling

Abstractions in software often negatively affect performance. This
point is especially relevant when considering full-waveform inver-
sion, which has its place amongst the largest PDE-constrained op-
timization problems (Afanasiev et al. 2016; Bozdag et al. 2016).
While the decomposition of the wave equation into models/mixins
allows for a very concise representation of increasingly complex
terms, in reality this approach is practically useless unless the re-
sulting software is performance competitive. Considering that a re-
alistic problem may include millions of elements, tens of thousands
of time-steps, thousands of sources, and hundreds of iterations, it
is likely that some of the functions described in the above Listings
will be called 1019 times over the course of an inversion.

Rather than being detrimental, we believe that the software ab-
stractions outlined above in fact allow for improved performance.
One of the reasons is technical, and has to do with the imple-
mentation via C++ templates. During the code compilation stage,
for each complete and meaningful wave propagation model a sep-
arate copy of the entire mixin chain is generated, meaning that
there is no runtime cost associated with determining the physics
being simulated on each individual element. On the contrary, since
the compiler is able to see all code paths during the compilation
stage, most of the function calls are actually ‘inlined’ – this is these
instances, the overhead associated with the function call itself in
completely eliminated. The inlining of all the individual compo-
nents in Listing 3 allows the viscoelastic stiffness to be calculated
without deferring to any other function. This can be contrasted with
more classical object-oriented approaches involving virtual function
lookups, where each function call would trigger a Virtual Method
Table lookup, stalling the process until the appropriate delegate was
found. This process would need to be repeated for each layer of the
mixin chain, which can grow to be quite complex. Another reason
for the efficiency of this design stems from the power of the ab-
stractions themselves. Since each individual model is simple, care
can be taken to ensure that each component is fully optimized. For
example, the functions computing the wavefield gradient for each
element type in eqs (9) and (10) are completely independent from
the rest of the code. Since these functions are called from any com-
bination of mixins, speedups in these functions have a wide-ranging
impact.

To demonstrate that the abstractions minimally impact the run-
time efficiency, we performed a simple single-thread benchmark.
The test machine was powered by an Intel R© CoreTM i7-6850K
(Broadwell) processor with a base operating frequency of 3.60 Hz.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/3/1675/5174970 by ETH

 Zürich,  andreas.fichtner@
erdw

.ethz.ch on 15 February 2019



1686 M. Afanasiev et al.

p  (Analytic)   p  (Salvus)
ux (Analytic)   ux (Salvus)
uy (Analytic)   uy (Salvus)

p  (Analytic)   p  (Salvus)
ux (Analytic)   ux (Salvus)
uy (Analytic)   uy (Salvus)

Time (s)
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Tetrahedron

Triangle

Hexahedron

Quadrilateral

N
or

m
al

iz
ed

 P
re

ss
ur

e/
D

is
pl

ac
em

en
t

p  (Analytic)   p  (Salvus)
ux (Analytic)   ux (Salvus)
uy (Analytic)   uy (Salvus)

p  (Analytic)   p  (Salvus)
ux (Analytic)   ux (Salvus)
uy (Analytic)   uy (Salvus)
uz (Analytic)   uz (Salvus)

p  (Analytic)   p  (Salvus)
ux (Analytic)   ux (Salvus)
uy (Analytic)   uy (Salvus)
uz (Analytic)   uz (Salvus)

Figure 4. Benchmark simulations of coupled acoustic/elastic wave propagation on quadrilateral, triangular, hexahedral and tetrahedral meshes (top to bottom).
The 2-D and 3-D reference elements are visualized. Simulation domain is 500 m in each dimension, with the coupling boundary placed at y or z = 250 m
(depending on the dimension). A Ricker-wavelet source with a central frequency of 100 Hz was placed 125 m below the top boundary, and was centred with
respect to the remaining boundaries (white dot). Receivers measuring pressure were placed 5 m above the interface, and those measuring displacement were
placed 5 m below (black dots). Vp and Vs in the solid were 5800 and 4000 m s–1 , respectively, while Vp in the fluid was 4000 m s–1 . ρ was 2600 kg m–3. Panels
on the right show normalized comparisons between numerically generated solutions, computed using the methods described in this paper, and semi-analytical
solutions, generated with Gar6more2D (Diaz & Ezziani 2010a) and Gar6more3D (Diaz & Ezziani 2010b). The scalar pressure (p) is plotted in the acoustic
medium, along with the vector displacement (ux, uy, uz) in the elastic medium. n-dimensional snapshots of the simulation volume are shown in panels on the
left. In the fluid domain (blue), the color scale qualitatively shows the scalar displacement potential, while in the solid domain the x-component of displacement
is visualized.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/3/1675/5174970 by ETH

 Zürich,  andreas.fichtner@
erdw

.ethz.ch on 15 February 2019



Modular waveform modelling 1687

1 2 4 8 16 32 64 128 256 512 1024

Number of nodes (12 MPI ranks per node)

1

2

4

8

16

32

64

128

256

512

1024

S
p
ee

d
-u

p

Salvus

ideal

(a) Strong scaling with a total of 729,000 elements.
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(b) Weak scaling with 2,250 elements per core.

Figure 5. Strong and weak scaling results for the time loop of a visco-elastic wave simulation on Piz Daint Cray XC50 the Swiss National Supercomputing
Centre. Each node was equipped with 12 compute cores.

The peak theoretical double precision floating-point performance of
the entire chip is reported as 345.6 GFLOPS and with six compute
cores we expect a maximum per-core performance of 57.6 GFLOPS
(Intel 2018). Our benchmark simulation consisted of a 3-D hexahe-
dral mesh with 20736 4th-order isotropic elastic elements, and was
run for 300 time steps. We measured the cumulative time spent in
the computation of the elastic internal forces, as outlined in Listing
2. Carefully counting the number of floating-point operations within
the strain, stress, and stiffness functions, we recorded a performance
of 10.57 GFLOPS for double precision calculations. As this reaches
an appreciable fraction of the maximum theoretical efficiency, and
considering the memory-bound character of the computations, we
can conclude that a significant amount of compute time is spent
performing floating point operations, rather than resolving function
calls within the mixin hierarchy. As further evidence of this, we can
look at the total time spent within the internal forces calculation,
and compare this time between single (18.37 s) and double (35.615
s) precision runs. The single precision run is almost exactly twice
as fast as the double precision run. Due to memory bandwidth limi-
tations, and fixed-width vector registers, this behaviour is expected.
As the time taken to resolve the function calls are identical in both
cases, we see that the expense of the floating-point operations are by
far the dominant factor contributing to the wall time. If performance
degradation from the mixin-based design was significant, we would
expect to see the wall-time differential between single and double
precision runs to narrow, but this is not the case.

In addition to the efficiency of the element-wise operations, par-
allel scaling performance is extremely important. To assist with
parallelism, we can again leverage the expertise of PETSC, which
provides a distributed vector API and hides the complexity of broad-
casting the degrees of freedom on partition boundaries. The diag-
onal nature of the spectral-element mass matrix ensures that the
communication halo never extends into neighbouring partitions, al-
lowing for very efficient communication patterns which scale with
the surface area of each parallel partition. Fig. 5 shows scaling statis-
tics on the Piz Daint supercomputer, an XC50 system composed of
12-core Intel Haswell nodes located at the Swiss National Super-
computing Center. Strong scaling results, where a variable number
of compute cores are used to solve a problem of a fixed size, are
shown on the left. Here we consider a 3-D mesh with 729 000 el-
ements and a polynomial degree of 4, resulting in 125 degrees of

freedom per element. Visco-elastic wave propagation is simulated.
The scaling is near optimal until the number of elements per core
drops to approximately 1000, where we see slightly greater than
100 per cent parallel efficiency. We attribute this ‘super-scaling’ to
processor cache effects; since less memory is used per core, it is
more likely that data will remain in the processor cache throughout
the simulation. Eventually, the parallel efficiency drops if there are
too few elements per core and the communication overhead starts
to dominate the cost of elemental operations. This can be seen from
the last data point in Fig. 5(a), which uses 1024 nodes (12 288 cores)
and roughly 60 elements per core. Fig. 5(b) presents weak scaling
results. In this case, the number of elements per core remains fixed
at 2250, while the total problem size is increased. Here we again
see greater than 97 per cent parallel efficiency when increasing the
total number of elements from 27 000 to 3 456 000.

To lower the communication costs associated with distributed
memory parallelism, we overlap computation and communication
during the global finite-element assembly phase. On each core the
degrees of freedom shared between neighbouring elements are
duplicated, and the stiffness term for each element is computed
sequentially. Following this, we begin a broadcast of the ghost
nodes. Asynchronously from this broadcast we sequentially as-
semble the global stiffness vector on each core, and once this is
complete halt until the communication has finished. Finally, we
finish the parallel global assembly by incorporating the communi-
cated stiffness values on each core. Currently all communication
is handled via the Message Passing Interface (MPI) (MPI Forum
2009), and no optimizations for shared memory are made. The
explicit use of shared memory is a topic for future research, but
as the communication overhead is already small we do not expect
a significant increase in performance when considering CPU-only
architectures.

4.2 Outlook

The abstractions introduced in this paper allow for a significant
amount of application flexibility. The dimension independence pro-
motes experimentation on small 2-D domains, the results of which
can be immediately used and translated to large 3-D experiments.
An example might be experimental design in exploration seismic
surveys. Given a model of the subsurface, the optimal spacing of
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(a)
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Figure 6. Qualitative illustrations of SALVUS running forward simulations at the laboratory, exploration, regional and planetary scale. (a) Elastic simulation
of ultrasonic waves in a steel engine support clamp, using a setup similar to that described in Fig. 7(a) and discretized with approximately 10 000 elements;
(b) Elastic simulation through a 2-D slice of the SEG Overthrust model (Aminsadeh 1996), also discretized with approximately 10 000 elements; (c) Elastic
simulation of the 2017 Linthal Valley earthquake in Switzerland, using the PREM (Dziewoński & Anderson 1981) as a background velocity model, and
discretized with 6.5 million elements; (d) 6.7 million element coupled acoustic/elastic wave propagation through a radially symmetric 1-D model of Mars
(Khan et al. 2016), over which is imposed a crustal model with 3-D Moho and surface topography (Smith et al. 1999; Wieczorek & Zuber 2004). In all of
these examples, hypercube-type elements and the GLL basis were used. In addition to the different spatial scales simulated, the computing power required for
each simulation varied significantly: (a) was run on a desktop workstation with 8 processor cores, (b) was run on a single core on a laptop, (c) was run on 1200
processor cores on the Piz Daint supercomputer at the Swiss National Supercomputing Center (CSCS), (d) was run with 2400 cores on the same machine.

sources and receivers along a seismic line can be determined in 2-D,
using computing resources no more powerful than a standard desk-
top computer. Once the design is set, the same interface can be used
to scale the problem to 3-D on massively parallel supercomputers
(Fig. 6).

The flexibility also encourages the application of FWI to novel
domains. Recently, the method has been applied to problems in ul-
trasonic medical imaging (Pratt et al. 2007; Korta Martiartu et al.
2017) and non-destructive testing (Rao et al. 2016; Seidl & Rank
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10 mm
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1 km
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1000 km

(d)

Figure 7. Gallery of normalized gradients for different wave propagation physics and scales ranging from millimetres to thousands of kilometres, meant to
exhibit the range of problems accessible to a general implementation. All examples consider a single source–receiver pair. Blue hues represent regions where an
increase in the value of the relevant parameter will decrease the associated misfit measure; red hues represent the opposite. (a) L2 sensitivity to shear modulus
μ on an engine support clamp, using a wavefield generated by a 200 kHz Ricker source; (b) L2 sensitivity to the speed of sound in a synthetic breast phantom
(grey-scale image) for ultrasound tomography, using a wavefield generated by a 500 kHz Ricker source. (c) L2 sensitivity to fluid compressibility (purple/green
hues) and shear modulus (red/blue hues) in a coupled acoustic/elastic domain, using a 3 Hz Ricker wavelet in the fluid region as a source; (d) Pdiff sensitivity
to cross-correlation traveltime shifts on a 2-D slice through Earth, using PREM (Dziewoński & Anderson 1981) as a background model. The source used was
a moment tensor with a dominant period of 10 s.

2017). These situations bring realistic domains of significant com-
plexity. In medical imaging, this includes coupling between tis-
sue, which is mostly modelled as a fluid, to elastic bones, and
to the emitting devices themselves. In non-destructive testing ap-
plications, complex rheologies including hyperelastic and weakly
non-linear wave propagation physics may be essential for accu-
rate modelling. These situations can be investigated with the help
of the model/mixin approaches outlined above, without any ma-
jor changes in software design. A preliminary gallery of sensi-
tivity kernels (Tarantola 1984; Tromp et al. 2005; Fichtner et al.
2006), a first step towards FWI, is given in Fig. 7. Addition-
ally, the geometric complexities of these applications may war-
rant simulation on non-conforming meshes, motivating the imple-
mentation of discontinuous-Galerkin (DG) style basis functions
(Käser et al. 2007; Wilcox et al. 2010). As with the complex
rheologies, the implementation of these bases need only involve

the B model, without changes to the WaveEquation and Element
mixins.

5 C O N C LU S I O N S

Waveform modelling within domains of a realistic physical com-
plexity almost always requires fully numerical solutions to the wave
equation. While traditionally undertaken within a geophysical con-
text, advances in acquisition hardware, computational power, and
method development has led to the application of these solutions to
a growing variety of problems both within and external to seismol-
ogy. This growth in the application space has driven an equivalent
growth in the complexity of waveform modelling software which
represents a threat to maintainability of current and future develop-
ments. As one of the primary analytical tools used to investigate the
character of Earth, this is a serious issue.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/3/1675/5174970 by ETH

 Zürich,  andreas.fichtner@
erdw

.ethz.ch on 15 February 2019



1690 M. Afanasiev et al.

In this paper, we have introduced a set of conceptual and prac-
tical developments which attempt to mitigate the effects of the
combinatorial complexity that characterizes modern applications
of full-waveform modelling and inversion. We first focussed on a
modular interpretation of seismologically relevant wave equations,
where the wave propagation physics and the spatial discretization
were separated into distinct and functionally orthogonal mathemat-
ical models. We then showed how these abstract concepts could
be made concrete in modelling software, and gave examples of the
variety of applications made accessible by such an approach. It is
our hope that this manuscript demonstrates that it is indeed possible
and practical to develop maintainable and scalable modelling tools.
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& Fichtner, A., 2016. Foundations for a multiscale collaborative global
Earth model, Geophys. J. Int., 204, 39–58.

Aki, K. & Richards, P., 2002. Quantitative Seismology., University Science
Books.

Alterman, Z. & Karal, F.C., 1968. Propagation of elastic waves in layered
media by finite-difference methods, Bull. seism. Soc. Am., 58, 367–398.

Aminsadeh, F., 1996. 3-D salt and overthrust seismic models, in AAPG
Studies in Geology No. 42 and SEG Geophysical Developments Series
No. 5, pp. 247–256, eds., Weimer, P. & Davis, T. L., AAPG/SEG, Tulsa.
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Simutė, S., Steptoe, H., Cobden, L., Gokhberg, A. & Fichtner, A., 2016.
Full-waveform inversion of the Japanese islands region, J. geophys. Res.,
121(5), 3722–3741.

Smith, D.E. et al., 1999. The global topography of mars and implications
for surface evolution, Science, 284(5419), 1495–1503.

Tago, J., Cruz-Atienza, V.M., Virieux, J., Etienne, V. & Sánchez-Sesma, F.J.,
2012. A 3D hp-adaptive discontinuous galerkin method for modelling
earthquake dynamics, J. geophys. Res, 117(B9), B09312.

Tape, C., Liu, Q., Maggi, A. & Tromp, J., 2009. Adjoint tomography of the
southern California crust., Science, 325, 988–992.

Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic
approximation, Geophysics, 49, 1259–1266.

Tromp, J., Tape, C. & Liu, Q., 2005. Seismic tomography, adjoint methods,
time reversal and banana-doughnut kernels, Geophys. J. Int., 160, 195–
216.

van Driel, M. & Nissen-Meyer, T., 2014. Optimized viscoelastic wave prop-
agation for weakly dissipative media, Geophys. J. Int., 199(2), 1078.

Virieux, J., 1984. SH wave propagation in heterogeneous media: velocity-
stress finite difference method, Geophysics, 49, 1933–1942.

Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-
stress finite difference method, Geophysics, 51, 889–901.

Virieux, J. & Operto, S., 2009. An overview of full waveform inversion in
exploration geophysics, Geophysics, 74, WCC127–WCC152.

Wieczorek, M.A. & Zuber, M.T., 2004. Thickness of the martian crust:
Improved constraints from geoid-to-topography ratios, J. geophys. Res.,
109(E1), E01009.

Wilcox, L.C., Stadler, G., Burstedde, C. & Ghattas, O., 2010. A high-order
discontinuous galerkin method for wave propagation through coupled
elastic-acoustic media, J. Comp. Phys., 229(24), 9373–9396.

Zhebel, E., Minisini, S., Kononov, A. & Mulder, W.A., 2014. A
comparison of continuous mass-lumped finite elements with fi-
nite differences for 3D wave propagation, Geoph. Prospect., 62(5),
1111–1125.

Zienkiewicz, O.C., Taylor, R.L. & Z, Z.J., 2005. The Finite Element Method:
Its Basis and Fundamentals, 6th edn, Elsevier.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/3/1675/5174970 by ETH

 Zürich,  andreas.fichtner@
erdw

.ethz.ch on 15 February 2019

http://dx.doi.org/doi.org/10.1002/2016JB012802

