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ABSTRACT

Full-waveform inversion (FWI) for ultrasound computed tomography is an advanced method to provide quanti-
tative and high-resolution images of tissue properties. Two main reasons hindering the widespread adoption of
FWI in clinical practice are (1) its high computational cost and (2) the requirement of a good initial model to
mitigate the non-convexity of the inverse problem. The latter is commonly referred to as “cycle-skipping”, which
occurs for phase differences between synthetic and observed signals and usually traps the inversion in a local
minimum. Source-encoding strategies, which simultaneously activate several emitters and have been proposed
to reduce the simulation cost, further contribute to this issue due to the multiple arrivals of the wavefronts.

We present a time-domain acoustic full-waveform inversion strategy utilizing a recently proposed misfit func-
tional based on optimal transport. Using a graph-space formulation, the discrepancy between simulated and
observed signals can be computed efficiently by solving an auxiliary linear program. This approach alleviates
the common need for either a good initial model and / or low-frequency data. Furthermore, combining this
misfit functional with random source-encoding and a stochastic trust-region method significantly reduces the
computational cost per FWI iteration.

In-silico examples using a numerical phantom for breast screening ultrasound tomography demonstrate the
ability of the proposed inversion strategy to converge to the ground truth even when starting from a weak prior
and cycle-skipped data.
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1. INTRODUCTION

Full-waveform inversion (FWI) is a powerful imaging technique providing quantitative models of tissue properties
in 2D slices or 3D volumes of the human body. Modeling the entire space-time evolution of the ultrasonic wavefield
enables FWI to infer high-resolution images from both transmission and reflection data. Previous works on several
applications including ultrasound computed tomography (USCT) for soft tissue,1–3 transcranial ultrasound4,5

and photoacoustic imaging6 have demonstrated the ability of FWI to precisely reconstruct properties such as
sound speed, density, or attenuation. However, challenges related to the computational cost and the non-
convexity of FWI need to be overcome in order to pave the way toward widespread adoption of FWI in clinical
systems.

Compared to geophysical data, ultrasound transducers typically operate within a narrow bandwidth, and
striking a balance between lower and higher frequencies is challenging. On the one hand, high frequencies are
desirable to improve the expected spatial resolution of the reconstruction, but the computational cost of the
simulations increases substantially. On the other hand, low frequency contents in the waveforms are crucial to
extend the basin of attraction around the initial model and avoid getting trapped in a local minimum.7

It is well-known that the conventionally used least-squares misfit between observed and simulated waveforms
has only a very narrow range in which it is locally convex with respect to phase shifts of the signals. This

Further author information: (Send correspondence to C.B.)
C.B.: E-mail: christian.boehm@erdw.ethz.ch, Telephone: +41 44 633 3332

Medical Imaging 2022: Ultrasonic Imaging and Tomography, edited by Nick Bottenus, Nicole V. Ruiter, 
Proc. of SPIE Vol. 12038, 1203809 · © 2022 SPIE · 1605-7422 · doi: 10.1117/12.2605894

Proc. of SPIE Vol. 12038  1203809-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



issue – commonly referred to as “cycle-skipping” – necessitates an accurate prior model or the inversion will
fail. Other misfits such as cross-correlations8 are robust with respect to time shifts in the signal, but require
identifying distinct phases, which would rely on careful picking of arrival times from the A-scans. Time- and
frequency-dependent phase misfits9 are routinely used in continental-scale seismology, but limited to small phase
shifts in pre-selected time windows. In addition to adaptive full-waveform inversion10,11 using the Wasserstein
metric as a misfit functional has recently gained substantial attention in seismic imaging, because of its ability
to mitigate cycle-skipping.12,13

In this contribution, we adapt the graph-spaced approach proposed by Métivier et al.13 to ultrasound
computed tomography and demonstrate its ability to recover models close to the ground truth when starting
from a poor prior model or in the absence of low-frequency data for in-silico examples using numerical phantoms.
This is particularly interesting when combined with source-encoding strategies14,15 to simultaneously simulate
the superposition of the pressure field for multiple emitters.

2. METHODS

2.1 Full-waveform inversion with encoded sources

We consider time-domain (visco-)acoustic wave propagation, where the tissue properties m = (c, ρ,Q) are pa-
rameterized in terms of space-dependent sound speed c, density ρ and quality factor Q. The wave equation can
then compactly be written as

L(u,m) = f , (1)

with initial conditions
ut=0 = 0, ∂tut=0 = 0, (2)

and where L denotes the wave operator, u is a scalar displacement potential and f is the energy injected by
an external source. For fixed m and f , the solution u = u(m; f) to the wave equation is unique.16 While the
parameter-to-solution map m 7→ u(m) is non-linear, the dependence on the right-hand-side is linear, i.e., for
fixed m the solution u depends linearly on f . A typical USCT dataset consists of a collection of A-scans recorded
by a multitude of transducers distributed across the sidewalls of a scanning device. Emitting transducers are
activated in sequence producing scans for each transducer location. FWI can be formulated as a non-linear
minimization problem governed by a vector of wave equations with right-hand-sides fi for each emitter,

min
m

ns∑
i=1

χ(ui(m); uobs
i ) subject to L(ui,m) = fi, i = 1 . . . , ns, (3)

where uobs
i denotes the observed data for emitter i, and χ is a misfit functional to compare synthetic and observed

ultrasound scans. When using checkpointing to reduce the memory burden of time-domain simulations of the
wave equation, each iteration of FWI requires at least three simulations per emitter to evaluate both the misfit
functional χ, and its gradient with respect to changes in the tissue material. The latter is the outcome of a
so-called adjoint simulation in conjunction with a check-pointed forward simulation. The setup in eq. (3) using
a wave equation with a different source term for each emitter thus results in 3ns simulations per iteration for ns
independent sources. Although the simulations for different emitters are embarrassingly parallel, reducing the
computational cost is a key target to make FWI more widespread affordable.

Source-encoding14,15,17 exploits the linearity of the wave equation with respect to the source term, which en-
ables us to simulate the superposition of multiple emitters and comparing those signals to the stacked recordings.
Using weights β = (βi)i for each emitter, we obtain

uβ =

ns∑
i=1

βiui for L(uβ ,m) =

ns∑
i=1

βifi and L(ui,m) = fi. (4)

A common strategy is to (1) only activate a subset of emitters in each encoded sources, i.e., βi = 0 for inactive
emitters, (2) consider a small number of encoded sources in the FWI objective, eq. (3), using different weights,
and (3) choose the non-zero weights from {−1, 1}. Additionally, the onset time of the source injection can vary,
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assuming that either data recordings are available for a longer time interval or padding with zeros is acceptable
because of attenuation.

In the FWI algorithm, we combine source-encoding with a stochastic trust-region method18 that extracts
curvature information from L-BFGS with a diffusion-based Hessian initialization. Here, the initial guess of the
Hessian operator is implicitly obtained by solving diffusion equations for each parameter field in m as initial
values

∂tq(x, t)−∇ ·
(
D(x)∇q(x, t)

)
= 0, (5)

with a symmetric second-order diffusion tensor D. This can be related to a Wiener process using

D(x) =
1

2
σ(x)σ(x) T , (6)

with direction- and space-dependent smoothing lengths σi. Incorporating the smoothing operator into the L-
BFGS approximation is an effective alternative (or addition) to explicit regularization terms in the objective.
The smoothing lengths can be chosen proportional to the wavelength to mitigate small-scale artifacts in the
gradients which are frequently obtained in FWI.

Each batch consists of multiple randomly encoded sources, using random weights for the source amplitude
and onset time. The initial batch selection and time shifts of the encoded sources are determined by an auxiliary
optimization problem using approximate time-of-flights of the prior to maximize coverage of the encoded wave-
field. This is particularly important for ring-shaped apertures (cf. section 3) to avoid focusing of the encoded
wavefield at the center of the ring.

The main challenges of source-encoding are twofold. First, interference in the stacked wavefields leads to a
loss of information. This can be mitigated by modifying the encoding weights in every iteration. Second, the
stacked traces contain multiple primary and secondary arrivals from all emitting locations. This contributes to
the issue of cycle-skipping and increases the risk of converging toward a local minimum, which is why a careful
choice of the misfit functional is crucial.

2.2 Graph-space optimal transport misfit

To address the issue of cycle-skipping, we consider a misfit functional based on optimal transport, which is
closely related to the Wasserstein distance.12,13 It has been observed that this metric is convex with respect to
time-shifted patterns in the signal, and optimal transport has been applied successfully in many image processing
applications. Because A-scans have positive and negative amplitudes and the total energy contained in synthetic
and observed traces can differ, some adjustments are required to apply optimal transport as a misfit functional
in FWI. Following the work of Métivier et al.,13 we consider an approach that is based on matching point clouds
originating from the discretized signals. To this end we consider two time series v, w : [0, T ]→ R defined on the
same time interval [0, T ], as well as their graphs G(v), G(w), where the graph G of a time series s is defined as:

G(s) := {(t, s(t)), t ∈ [0, T ]}. (7)

After discretizing v and w on the same computational grid using nt equidistantly-spaced time samples, we obtain
two point clouds v,w ∈ Rnt×2 approximating the graphs, where the i-th row is given by vi = (ti, v(ti)) and
wi = (ti, w(ti)), respectively. The Wasserstein metric applied to v and w will then compute the space-time-
distance between both point clouds. This graph-space approach results in an auxiliary optimization problem
to compute the misfit, which can be reformulated as a Linear Sum Assignment Problem (LSAP).13 Here, each
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tuple (vi,wj) is assigned a weight dij which encodes the mapping of both points in the graph-space.

min
dij

nt∑
i,j=1

dij‖vi −wj‖22

subject to dij ≥ 0, ∀ i, j = 1, . . . , nt,
nt∑
i=1

dij = 1, ∀ j = 1, . . . , nt,

nt∑
j=1

dij = 1, ∀ i = 1, . . . , nt.

(8)

Problems of this structure are well studied, and it is known that the continuous relaxation of the LSAP has an
integer solution, which means that efficient solvers for linear programs can be applied to compute the misfit.
In particular, the solution of eq. (8) can be represented as a permutation σ? of the index set {1, . . . , nt}, which
encodes the matching between the two point clouds. Hence, the misfit value χ is obtained from

χ(v) =

nt∑
i=1

‖vi −wσ?(i)‖22. (9)

Furthermore, Theorem 1 in Métivier et al.13 shows that the corresponding adjoint source is given by

∇χ(v) = 2(v −wσ?), where wσ? = (wσ?(i))i=1,...,nt . (10)

Evaluating the misfit and computing the adjoint source for optimal transport is significantly more expensive
than their counterparts in conventional misfit functionals such as the L2-norm. Note that the distance matrix
in eq. (8) is dense, although the maximum expected time shift can be used to prune portions of the graph. We
solve the LSAP independently for each trace using scipy’s19 implementation of the Hungarian algorithm.20 For
computational efficiency, the signals are downsampled before extracting the discrete point clouds. Afterwards,
the adjoint sources are upsampled again to the original time step using Lanczos interpolation. The error in the
resulting gradients is negligible and does not slow down convergence.

Figure 1. Example of graph-space optimal transport for two time series. Synthetic and observed data are significantly
different and subject to cycle-skipping. The connecting lines show the permutation of the observed signal that is identified
as the optimal transport for matching the point cloud of the synthetic signal. The color indicates the associated cost of
the assignment in the time-amplitude domain.

Fig. 1 illustrates the point cloud matching for two synthetic time series. The weighting of amplitude difference
vs. distance in time gives an important tuning parameter of the graph-space approach. Emphasizing amplitude
mismatches, i.e., assigning higher costs in the distance matrix to differences in time, yields an optimal permutation
that mimics the L2-norm misfit. Vice versa, assigning higher costs to amplitude differences yields an optimal
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permutation that moves energy along the time axis, and therefore shows similar behavior as a misfit based on
cross-correlations of the signals. We can select this tuning parameter based on the maximum expected time-of-
flight difference between synthetic and observed signals to ensure a sufficient basin of attraction even for poor
starting models in the inversion. This effect of convexifying the misfit functional with respect to time shifts
is shown in Fig. 2. Here, we consider the source wavelet of the dataset provided by Li et al.21 and compute
the misfit value as a function of time shift in the wavelet. Different choices of the tuning parameter show the
transition of the misfit shape between L2-norm and cross-correlation time shifts. Note that a misfit based on
cross-correlation time-shifts only appears convex in this idealized case of two identical, but time-shifted signals.
It would not work for more complex signals including multiple arrivals, whereas optimal transport is able to
simultaneously match both direct arrivals as well as reflection and refraction data.

Figure 2. Optimal transport misfit for two time shifted signals. (a) Wavelet considered in this test. (b) Power spectrum
of the wavelet. (c) Comparison of the optimal transport misfit for time shifted versions of the wavelet shown in (a) and
different choices of the tuning parameter. Optimal transport widens the locally convex basin of attraction to mitigate
cycle-skipping, while being able to maintain a steep slope for signals with small phase shifts.

3. RESULTS

We present an in-silico example for ultrasound computed tomography based on a numerical breast phantom.21,22

The example considers a coronal slice of a numerical breast phantom provided by Li et al.21 with reference
536035891B. The aperture consists of a ring with 1024 equi-angularly spaced transducers that all act in emitting
and receiving mode. Simulated data are generated using a Ricker wavelet with a dominant frequency of 1 MHz
as source time function and without attenuation. Each encoded source activates 32 transducers with random
spatial weights of ±1. The individual emitters fire at different starting times with a maximum time shift of 30µs.
The simulation interval for each encoded source is 200µs.

The initial model is homogeneous with a sound speed of 1500 m/s, and density equal to 1000 kg/m3. The
misfit only considers recordings starting at 100µs, thus partially excluding arrivals of the encoded sources that
have not interacted with the phantom. The maximum expected time shift to tune the optimal transport distance
is initially set to 5µs, and all traces are downsampled to 14 MHz before solving the LSAP. Fig. 3 shows an example
of source-encoded signals for the true phantom and the homogeneous initial model. While the direct arrivals
from near emitters match well, all secondary arrivals resulting from reflected or refracted waves are missing in
the synthetic trace of the initial model, and we observe severe cycle-skipping toward the end of the observation
interval.

A comparison of the ground truth and different inversion strategies are shown in Fig. 4. The sound speed map
obtained from optimal transport includes major features and is in good agreement with the true model. However,
small-scale details are missing and the outlines of the tissue are blurred. The reconstruction can be further
improved by adaptively reducing the tuning parameter and smoothing lengths during the iterations to account
for the improved waveform fit and smaller time shifts between the measurements and the improved synthetics.
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1e 17 Adjoint source [Misfit: 8.44e-18]Figure 3. Example of graph-space point cloud matching for an encoded source recording. Missing arrivals in the synthetic
data and cycle-skipping of later arrivals increase the risk of converging to the wrong model.

Additionally, this strategy accelerates convergence, as the optimal transport misfit functional approaches the
L2-norm. The density model (not shown here) exhibits sharper contours but underestimates the magnitude of
the perturbations. For comparison, Fig. 4(f) depicts the inversion outcome using the conventional L2-norm misfit
on the same data selection. Because of the poor initial model, the iterations quickly stall in a local minimum.

Fig. 5 shows the data fit for the initial model and the reconstruction using an encoded source and the signals
at four different receiver locations. Even though the initial model is not capturing many arrivals and some parts
of the signals are subject to heavy cycle-skipping, the recovered model produces traces that match remarkably
well. Fig. 6 compares signal gathers for a single emitter generated with the ground truth, the initial model
and the reconstructed model shown in Fig. 4(d), respectively. Note that those data have not been used for the
inversion, which relied exclusively on randomly encoded sources. It thus serves as a validation check of the
inversion. The initial model exhibits cycle-skipping in the first arrivals and misses all reflections and secondary
arrivals. Although the fine-scale structure of the ground truth contains a variety of scattered and refracted waves,
the main features of the recorded data are captured by the reconstructed model.

4. DISCUSSION

Using optimal transport as misfit functional significantly improves the local convexity of the inverse problem and
therefore avoids cycle-skipping. The numerical results demonstrate convergence toward the ground truth even
from a homogeneous background, very weak prior knowledge, and significantly different waveforms.

The price for the gain in robustness is twofold. First, computing the misfit value requires the solution of
the auxiliary linear sum assignment problem, which is significantly more expensive compared to conventional
misfit measures such as the L2-norm. While this overhead is not necessarily relevant as the computational cost
are typically dominated by forward and adjoint simulations, it might be an issue when considering large point
clouds; either from long time series or when considering several receivers simultaneously. The algorithm proposed
by Guthe & Thuerck23 is an interesting alternative for future research. The second cost increase is due to the
observation that optimal transport requires more iterations than the L2 misfit to converge in our numerical tests.
Fig. 2 demonstrates that the maximum expected time shift between synthetic and observed waveforms can be
used to balance amplitude and time shifts. This parameter can be adjusted adaptively during the inversion to
speed up convergence. In particular, as time-of-flight differences between synthetic and observed data decrease
during the inversion, the parameter can be decreased to allow for a smooth transition into the L2-norm misfit.
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Figure 4. 2D FWI of a breast phantom using optimal transport. All plots show the speed of sound. (a) Synthetic
aperture used for the inversion. As an example, the black triangles mark the emitters activated for a single encoded
source. (b) Homogeneous initial model. (c) Reconstruction using optimal transport and a fixed tuning parameter of
5µs and smoothing lengths of 2 mm. (d) Reconstruction using optimal transport and an adaptive tuning parameter
which is reduced to 0.5µs and smoothing lengths of 0.5 mm. (e) True phantom used for simulated measurements. (f)
Reconstruction using the L2-norm. The iterations got trapped in a local minimum because of cycle-skipping.
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Figure 5. Waveform fit for an encoded source with 32 emitting locations using either the initial model (left) or the final
model of the inversion (right). The four transducer shown here are 90 degrees apart from each other.

Figure 6. A comparison between the shot gathers for a single emitter and a ring of transducers in a plane with the
emitter. The plots show A-scan data simulated for the initial model (left), the ground truth (middle), as well as the final
model (right). The homogeneous initial model leads to cycle-skipped primary waves and is missing all secondary arrivals.
Synthetic data retrieved from the FWI reconstruction with optimal transport are free of cycle skips and contain the later
arrivals. The colorbar has been clipped to 10% of the maximum amplitude.
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The initial models used in the numerical example could easily be improved at low computational cost prior
to FWI, for instance, by applying a ray-based time-of-flight inversion or by obtaining the shape of the phantom
from reflection imaging. It is important to note, however, that the graph-spaced optimal transport misfit used
here is able to converge to the ground truth even from a very poor initial guess. This gain in robustness and
reduced risk of converging to a local minimum is the primary purpose of the proposed inversion strategy.

The reconstruction quality would potentially improve by including an explicit regularization term in the
objective. To this end, an adaptive tuning strategy using total variation regularization is currently under inves-
tigation.

5. CONCLUSIONS

We present an inversion method for acoustic full-waveform inversion using a graph-space formulation of optimal
transport to quantify waveform mismatches. The numerical results indicate that this misfit functional mitigates
cycle-skipping introduced by the superposition of several wavefields when using encoded sources, or in the absence
of low frequencies in the measured ultrasound data. This helps to make FWI significantly more robust with
respect to the choice of the initial model and alleviates the need for a good prior. The proposed strategy seems
very promising and could expand the applicability of FWI to challenging datasets in USCT and photoacoustic
imaging.
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