
Short Course on Constrained Nonlinear Optimization

Part I

Christian Boehm



Full-Waveform Inversion
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Motivation

Inverse problem:
F (m) = d

m model parameters

d data

F forward model (e.g. elastic wave equation)

Reformulation as optimization problem:

min
m
‖F (m)− d‖2 + regularization
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Motivation

Why additional constraints can be useful:

Non-convexity of the problem leads to many local minimizers.

Ill-posedness of the problem requires as much prior information as
possible.

Automation of inversion processes.
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Examples

Constraints on the material can model:

lower and upper bounds on P- and/or S-wave velocity,

bounds on the Poisson’s ratio,

restrictions on the total mass,

positive definiteness of the elastic tensor,

...

22.09.2014 Constrained Nonlinear Optimization 5



Outline

1 Optimality Conditions

2 Optimization Methods and Algorithms

3 Software for Nonlinear Optimization
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Problem Formulation and Terminology

min
x∈Rn

f (x) s.t. x ∈ X ,

x optimization variable

cost function (objective) f : Rn → R and

admissible set X ⊆ Rn.

If x ∈ X it is called feasible, otherwise infeasible.
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Local vs. Global Minima

f (x)

x

global
minimum

local
minimum
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Task

We want to find conditions

which are necessary (sufficient?) for local minimizers,

which can be verified numerically,

and which are suited for an iterative algorithm.
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Optimality Conditions - Unconstrained Problem

Characterizing local solutions x̄ :

f (x) ≥ f (x̄) for all x in neighborhood of x̄ .

First-order expansion:

f (x̄ + s) = f (x̄) +∇f (x̄)T s + O(‖s‖2).

Hence,
∇f (x̄) = 0.

gradient = direction of steepest ascent, i.e.,
negative gradient = direction of steepest descent.

If ∇f (x) 6= 0 the objective will decrease in direction −∇f (x).

22.09.2014 Constrained Nonlinear Optimization 12



Optimality Conditions - Unconstrained Problem

Characterizing local solutions x̄ :

f (x) ≥ f (x̄) for all x in neighborhood of x̄ .

First-order expansion:

f (x̄ + s) = f (x̄) +∇f (x̄)T s + O(‖s‖2).

Hence,
∇f (x̄) = 0.

gradient = direction of steepest ascent, i.e.,
negative gradient = direction of steepest descent.

If ∇f (x) 6= 0 the objective will decrease in direction −∇f (x).

22.09.2014 Constrained Nonlinear Optimization 12



Optimality Conditions - Unconstrained Problem

Characterizing local solutions x̄ :

f (x) ≥ f (x̄) for all x in neighborhood of x̄ .

First-order expansion:

f (x̄ + s) = f (x̄) +∇f (x̄)T s + O(‖s‖2).

Hence,
∇f (x̄) = 0.

gradient = direction of steepest ascent, i.e.,
negative gradient = direction of steepest descent.

If ∇f (x) 6= 0 the objective will decrease in direction −∇f (x).

22.09.2014 Constrained Nonlinear Optimization 12



Optimality Conditions - Unconstrained Problem

Characterizing local solutions x̄ :

f (x) ≥ f (x̄) for all x in neighborhood of x̄ .

First-order expansion:

f (x̄ + s) = f (x̄) +∇f (x̄)T s + O(‖s‖2).

Hence,
∇f (x̄) = 0.

gradient = direction of steepest ascent, i.e.,
negative gradient = direction of steepest descent.

If ∇f (x) 6= 0 the objective will decrease in direction −∇f (x).

22.09.2014 Constrained Nonlinear Optimization 12



Optimality Conditions - Unconstrained Problem

Characterizing local solutions x̄ :

f (x) ≥ f (x̄) for all x in neighborhood of x̄ .

First-order expansion:

f (x̄ + s) = f (x̄) +∇f (x̄)T s + O(‖s‖2).

Hence,
∇f (x̄) = 0.

gradient = direction of steepest ascent, i.e.,
negative gradient = direction of steepest descent.

If ∇f (x) 6= 0 the objective will decrease in direction −∇f (x).

22.09.2014 Constrained Nonlinear Optimization 12



Necessary Optimality Conditions, cont’d.

min
x∈Rn

f (x)

1st order necessary condition:

x̄ is local solution of f (x) ⇒ ∇f (x̄) = 0

At x̄ there is no descent direction (up to first order).
x̄ is called stationary point.

2nd order necessary condition: ∇2f (x̄) � 0

2nd order sufficient condition:

∇f (x̄) = 0
∇2f (x̄) � 0

}
⇒ x̄ is a local solution.
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Remarks

If f (x) is convex:
Every stationary point is a global solution,
i.e., there are no maxima or saddle points and
1st order optimality conditions are sufficient for x̄ being a global
solution

If f (x) is non-convex:
Stationary points may also be maxima or saddle points
Many local solutions x̄ with different f (x̄) might exist

Usually, numerical methods for finding a local minimum

seek point x̄ with ∇f (x̄) = 0,

try to avoid convergence to local maxima,

neglect second order conditions.
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Necessary Optimality Conditions

min
x∈Rn

f (x) s.t. x ∈ X

Additional assumption: X is a convex set.

x̄ ∈ X and ∇f (x̄)T (s − x̄) ≥ 0 for all s ∈ X .

This condition is called variational inequality.
Geometric interpretation:
(i) f must not decrease in all feasible directions
(ii) the angle between the gradient f (x̄) and every feasible directions is

less than or equal to 90◦.

If x̄ is in the strict interior of X the condition is equivalent to

∇f (x̄)T s ≥ 0 for all s ∈ Rn ⇔ ∇f (x̄) = 0.
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Necessary Optimality Conditions

min
x∈Rn

f (x) s.t. x ∈ X

x̄ ∈ X and ∇f (x̄)T (s − x̄) ≥ 0 for all s ∈ X .

We want to find conditions

which are necessary (sufficient?) for local minimizers,

which can be verified numerically,

and which are suited for an iterative algorithm.
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Different Representation

min
x∈Rn

f (x) s.t. x ∈ X

Typically, X can be described as the intersection of hyper-curves
and/or half-spaces, i.e.,

X := {x ∈ Rn : gi (x) ≤ 0, i = 1, . . . ,m,

hi (x) = 0, i = 1, . . . , p}.

With g : Rn → Rm and h : Rn → Rp we can rewrite the problem as

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0.

Assumption throughout this talk: f , g , h are smooth.
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Examples

Constraint on the total mass:∫
Ω
ρ(ξ) dξ −mtotal = 0.

Lower and upper bounds on vp, vs :

vmin
p (ξ) ≤ vp(ξ) ≤ vmax

p (ξ), vmin
s (ξ) ≤ vs(ξ) ≤ vmax

s (ξ).
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Remarks

The problem is called convex,

if f is a convex function and X is a convex set or

if f and g are convex functions and h is affine linear.

Similar properties as in the unconstrained case:

Every stationary point is a global solution.

There are no maxima or saddle points.

1st order optimality conditions are sufficient for x̄ being a global
solution.
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Equality Constraints

min
x∈Rn

f (x) s.t. h(x) = 0. (P)

x 1

x
2

 

 

X
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Equality Constraints

min
x∈Rn

f (x) s.t. h(x) = 0. (P)

−∇f (x)

X

For feasible x , ∇h(x) is orthogonal to {x ∈ Rn : h(x) = 0}.

First order optimality conditions:
There exists µ̄ ∈ Rp such that

p∑
i=1

µ̄i∇hi (x̄) = −∇f (x̄)

h(x̄) = 0.
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Equality Constraints

min
x∈Rn

f (x) s.t. h(x) = 0. (P)

Assumptions:
x̄ is a local solution of (P)
constraint qualification: ∇h1(x̄), . . . , ∇hp(x̄) are linearly independent

Then there exists µ̄ ∈ Rp such that

∇f (x̄) +∇h(x̄)µ̄ = 0,

h(x̄) = 0.

Lagrangian function: L(x , µ) := f (x) + h(x)Tµ

∇x L(x̄ , µ̄) = 0,

∇µL(x̄ , µ̄) = 0.

→ µ̄ is called (optimal) Lagrangian multiplier
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Counterexample: Constraint Qualification

We have to assume the constraint qualification, otherwise:

min
x∈R2

f (x) := (x1 − 1)2 + (x2 + 1)2 s.t. h(x) := x2
1 = 0.

Then:

x̄ =
(

0
−1

)
, ∇f (x̄) =

(
−2
0

)
, ∇h(x̄) =

(
0
0

)
.

Obviously, Lagrangian multiplier µ̄ does not exist.

22.09.2014 Constrained Nonlinear Optimization 23



Counterexample: Constraint Qualification

We have to assume the constraint qualification, otherwise:

min
x∈R2

f (x) := (x1 − 1)2 + (x2 + 1)2 s.t. h(x) := x2
1 = 0.

Then:

x̄ =
(

0
−1

)
, ∇f (x̄) =

(
−2
0

)
, ∇h(x̄) =

(
0
0

)
.

Obviously, Lagrangian multiplier µ̄ does not exist.

22.09.2014 Constrained Nonlinear Optimization 23



Task

We want to find conditions

which are necessary (sufficient?) for local minimizers,

which can be verified numerically,

and which are suited for an iterative algorithm.

Find (x̄ , µ̄) ∈ Rn × Rp such that

∇f (x̄) +∇h(x̄)µ̄ = 0,

h(x̄) = 0.

This is a system of nonlinear equations.
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Adjoints

Seismic Tomography:

min
u,m

χ(u)︸︷︷︸
misfit

s.t. L(u,m) = F︸ ︷︷ ︸
elastic wave equation

For every m there is a unique solution u(m) to L(u,m) = f .
Equivalent unconstrained problem

min
m

j(m) := χ(u(m))

Optimality conditions:

0 = ∇j(m) = ∇mL(u(m),m) · u†

with adjoint field u† determined by

∇uL(u(m),m)u† = −∇χ(u(m)).
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Adjoints

Seismic Tomography:

min
u,m

χ(u)︸︷︷︸
misfit

s.t. L(u,m) = F︸ ︷︷ ︸
elastic wave equation

Define x := (u,m)T , f (x) := χ(u), h(x) := L(u,m)− F .

Optimality conditions:

∇f (x̄) +∇h(x̄)µ̄ = 0

⇔ ∇χ(ū) + ∇uL(ū, m̄)µ̄
0 + ∇mL(ū, m̄)µ̄

= 0
= 0

h(x̄) = 0

⇔ L(ū, m̄) = F .

Adjoint state and Lagrangian multiplier are the same!
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0 + ∇mL(ū, m̄)µ̄

= 0
= 0

h(x̄) = 0
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Adjoint state and Lagrangian multiplier are the same!

22.09.2014 Constrained Nonlinear Optimization 26



Second Order Optimality Conditions

min
x∈Rn

f (x) s.t. h(x) = 0. (P)

Lagrangian function: L(x , µ) := f (x) + h(x)Tµ, same assumptions as
before.

2nd order necessary conditions:
If x̄ is local minimum, then for all d ∈ Rn with ∇h(x̄)T d = 0:

dT∇2
xx L(x̄ , µ̄)T d ≥ 0

2nd order sufficient conditions:
If x̄ satisfies 1st order necessary conditions and for all d ∈ Rn \ {0}
with ∇h(x̄)T d = 0:

dT∇2
xx L(x̄ , µ̄)T d > 0,

then x̄ is local a solution.

→ “Projection” of ∇2
xx L(x̄ , µ̄) onto X is positive (semi-)definite
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General Nonlinear Problems

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0. (P)

gi is called active in x ∈ X if gi (x) = 0 and inactive if gi (x) < 0.

Only active constraints influence the set of feasible regions.

Example:
X = {x ∈ R2 : ‖x‖ = 2, −x2 ≤ 0}
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General Nonlinear Problems

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0. (P)
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KKT Conditions

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0. (P)

Karush-Kuhn-Tucker conditions:
There exist (x̄ , λ̄, µ̄) such that

∇f (x̄) +∇g(x̄)λ̄+∇h(x̄)µ̄ = 0,

h(x̄) = 0,

g(x̄) ≤ 0, λ̄ ≥ 0, λ̄T g(x̄) = 0.

necessary optimality conditions if a constraint qualification holds, e.g.

∇h1(x̄), . . . ,∇hp(x),∇gi (x) for gi active, are linearly independent

sufficient(!) conditions for convex problems
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Task

We want to find conditions

which are necessary (sufficient?) for local minimizers,

which can be verified numerically,

and which are suited for an iterative algorithm.

Find (x̄ , λ̄, µ̄) ∈ Rn × Rm × Rp such that

∇f (x̄) +∇g(x̄)λ̄+∇h(x̄)µ̄ = 0,

h(x̄) = 0,

g(x̄) ≤ 0, λ̄ ≥ 0, λ̄T g(x̄) = 0.
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Variational Inequality (revisited)

min
x∈Rn

f (x) s.t. x ∈ X

x̄ ∈ X and ∇f (x̄)T (s − x̄) ≥ 0 for all s ∈ X .

For convex X this is equivalent to

x̄ = PX
(
x̄ − γ∇f (x̄)

)
where PX is the projection onto X and γ > 0.

x

PX (x)

X
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Pointwise Box Constraints

min
x∈Rn

f (x) s.t. x l ≤ x ≤ xu

Then

PX (x)i =


x l

i if xi ≤ x l
i ,

xi if x l
i < xi < xu

i ,

xu
i if xi ≥ xu

i .

Optimality conditions:

x̄ ∈ X , ∇f (x̄)i


≥ 0 if x̄i = x l

i ,

= 0 if x l
i < x̄i ≤ xu

i ,

≤ 0 if x̄i = xu
i .
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Summary

Two types of optimality conditions:

projection formula
→ involves projection onto the feasible set

and a system of nonlinear equations.

KKT conditions
→ necessary conditions if a constraint qualification is satisfied
→ involves Lagrangian multiplier

and a system of nonlinear equations (+ sign constraints)

Both are sufficient for convex problems.
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Extensions

Not covered here:

constraint qualifications

non-smooth functions, i.e., if derivatives are not available

optimization problems in function space

globalization strategies (i.e. line search or trust region methods)

22.09.2014 Constrained Nonlinear Optimization 35



Literature

Books on nonlinear optimization:
J. Nocedal and S. J. Wright: Numerical Optimization (2nd edition),
Springer 2006
C. T. Kelley: Iterative Methods for Optimization. SIAM 1999
M. Hinze, R. Pinnau, S. Ulbrich, and M. Ulbrich:
Optimization with PDE Constraints. Springer 2009

Websites with optimization codes
Decision Tree of Optimization Software:
http://plato.la.asu.edu/guide.html
NEOS Guide:
http://www.neos-guide.org/Optimization-Guide

22.09.2014 Constrained Nonlinear Optimization 36

http://plato.la.asu.edu/guide.html
http://www.neos-guide.org/Optimization-Guide

	Optimality Conditions

