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Motivation ETHzirich

Inverse problem:

m m model parameters
m d data

m F forward model (e.g. elastic wave equation)
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Motivation ETHzirich

Inverse problem:

m m model parameters
m d data

m F forward model (e.g. elastic wave equation)

Reformulation as optimization problem:

min||F(m) —d||> + regularization
m
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Motivation ETHzirich

Why additional constraints can be useful:
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Motivation ETHzirich

Why additional constraints can be useful:

m Non-convexity of the problem leads to many local minimizers.

m lll-posedness of the problem requires as much prior information as
possible.

m Automation of inversion processes.
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Examples ETH:zurich

Constraints on the material can model:

m lower and upper bounds on P- and/or S-wave velocity,
m bounds on the Poisson’s ratio,
m restrictions on the total mass,

m positive definiteness of the elastic tensor,
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Outline ETHzirich

1 Optimality Conditions

2 Optimization Methods and Algorithms

3 Software for Nonlinear Optimization
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Problem Formulation and Terminology ETH:zurich

min f(x) st xeX,

m x optimization variable
m cost function (objective) f:R" — R and
m admissible set X C R".

m If x € X it is called feasible, otherwise infeasible.
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Local vs. Global Minima
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Task ETHzirich

We want to find conditions
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Task ETHzirich

We want to find conditions

m which are necessary (sufficient?) for local minimizers,
m which can be verified numerically,

m and which are suited for an iterative algorithm.
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Optimality Conditions - Unconstrained Problem ETHzurich

Characterizing local solutions X:

f(x) > f(x) for all x in neighborhood of x.
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Optimality Conditions - Unconstrained Problem ETHzurich

Characterizing local solutions X:
f(x) > f(x) for all x in neighborhood of x.
First-order expansion:

f(x +5) = f(x) + VF(x)"s+ O(|s]?).
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Optimality Conditions - Unconstrained Problem ETHzurich

Characterizing local solutions X:
f(x) > f(x) for all x in neighborhood of x.
First-order expansion:
f(x+5s)=f(X)+ VF(X)"s+ O(|s|?).

Hence,
Vi(x)=0.
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Optimality Conditions - Unconstrained Problem ETHzurich

Characterizing local solutions X:
f(x) > f(x) for all x in neighborhood of x.
First-order expansion:

f(x +5) = f(x) + VF(x)"s+ O(|s]?).

Hence,
Vi(x)=0.
gradient = direction of steepest ascent, i.e.,
negative gradient = direction of steepest descent.

If V£(x) # 0 the objective will decrease in direction —Vf(x).
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Necessary Optimality Conditions, cont'd. ETHzurich

o )

m st order necessary condition:

X is local solution of f(x) = Vf(x)=0

At X there is no descent direction (up to first order).
X is called stationary point.
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o )

m st order necessary condition:

X is local solution of f(x) = Vf(x)=0

At X there is no descent direction (up to first order).

X is called stationary point.

m 2nd order necessary condition: V2f()_<) =0
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Necessary Optimality Conditions, cont'd. ETHzurich

o )

m st order necessary condition:

X is local solution of f(x) = Vf(x)=0

At X there is no descent direction (up to first order).

X is called stationary point.
m 2nd order necessary condition:  V2f(x) = 0
m 2nd order sufficient condition:

VF(x) =0

_ = X is a local solution.
V2f(x) =0
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Remarks ETHzirich

m If f(x) is convex:
m Every stationary point is a global solution,
m i.e., there are no maxima or saddle points and
m 1st order optimality conditions are sufficient for x being a global

solution
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m Every stationary point is a global solution,
m i.e., there are no maxima or saddle points and
m 1st order optimality conditions are sufficient for x being a global
solution
m If f(x) is non-convex:

m Stationary points may also be maxima or saddle points

= Many local solutions X with different f(x) might exist
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Remarks ETHzirich

m If f(x) is convex:

m Every stationary point is a global solution,
m i.e., there are no maxima or saddle points and
m 1st order optimality conditions are sufficient for x being a global

solution
m If f(x) is non-convex:

m Stationary points may also be maxima or saddle points

= Many local solutions X with different f(x) might exist

Usually, numerical methods for finding a local minimum
m seek point X with V£ (x) =0,
m try to avoid convergence to local maxima,

m neglect second order conditions.
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Necessary Optimality Conditions ETHzurich

min f(x) st xeX
x€ERn
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Necessary Optimality Conditions ETHzurich

min f(x) st xeX
x€Rn

Additional assumption: X is a convex set.

xe€X and VF(R)'(s—%)>0 forallsecX.

m This condition is called variational inequality.
m Geometric interpretation:

(i) f must not decrease in all feasible directions
(ii) the angle between the gradient f(x) and every feasible directions is
less than or equal to 90°.
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Necessary Optimality Conditions ETHzurich

min f(x) st xeX
x€Rn

Additional assumption: X is a convex set.

xe€X and VF(R)'(s—%)>0 forallsecX.

m This condition is called variational inequality.
m Geometric interpretation:

(i) f must not decrease in all feasible directions
(ii) the angle between the gradient f(x) and every feasible directions is
less than or equal to 90°.

m If X is in the strict interior of X the condition is equivalent to

VF()Ts>0 forallscR" < Vf(x)=0.
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Necessary Optimality Conditions ETHzurich

min f(x) st. xeX
x€R"

x€X and VF(x)"(s—%)>0 forallsecX.

We want to find conditions

= which are necessary (sufficient?) for local minimizers,

m which can be verified numerically,

m and which are suited for an iterative algorithm.
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Necessary Optimality Conditions ETHzurich

min f(x) st. xeX
x€R"

x€X and VF(x)"(s—%)>0 forallsecX.
We want to find conditions
= which are necessary (sufficient?) for local minimizers,

m which can be verified numerically,

m and which are suited for an iterative algorithm.

Vv X% S
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Different Representation ETH:zurich

min f(x) st. xe X
x€R"

m Typically, X can be described as the intersection of hyper-curves
and/or half-spaces, i.e.,

X:={xeR": g(x)<

22.09.2014 Constrained Nonlinear Optimization 17



Different Representation ETH:zurich

min f(x) st. xe X
x€R"

m Typically, X can be described as the intersection of hyper-curves
and/or half-spaces, i.e.,
X ={xeR": g(x)<0, i=1,...
0, i=1,...,p}
m With g : R” — R™ and h: R” — RP we can rewrite the problem as

m%y f(x) st. g(x)<0, h(x)=0.
xEeRM
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Different Representation ETH:zurich

min f(x) st. xe X
x€R"

m Typically, X can be described as the intersection of hyper-curves
and/or half-spaces, i.e.,

X:={xeR": g(x)<0
0

m With g : R” — R™ and h: R” — RP we can rewrite the problem as

m}R? f(x) st. g(x)<0, h(x)=0.
xEeRM

m Assumption throughout this talk: f, g, h are smooth.
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Examples ETH:zurich

m Constraint on the total mass:

/ p(g) df — Miotal = 0.
Q
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Examples ETH:zurich

m Constraint on the total mass:

/ p(g) df — Miotal = 0.
Q

m Lower and upper bounds on v, vs:

v (€) < vp(€) < vpr™(€),  viM(€) < wel€) < v (9).
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Remarks ETHzirich

The problem is called convex,
m if f is a convex function and X is a convex set or

m if f and g are convex functions and h is affine linear.
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Remarks ETHzirich

The problem is called convex,
m if f is a convex function and X is a convex set or

m if f and g are convex functions and h is affine linear.

Similar properties as in the unconstrained case:
m Every stationary point is a global solution.
m There are no maxima or saddle points.

m 1st order optimality conditions are sufficient for x being a global

solution.
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Equality Constraints ETHzurich

Xn;}llgn f(x) st h(x)=0. (P)
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Equality Constraints ETHzurich

in f t. h =0. P
min f(x) st h(x) =0 (P)
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Equality Constraints ETHzurich

Xn;}llgn f(x) st h(x)=0. (P)
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Equality Constraints ETHzurich

min f(x) s.t. h(x)=0. (P)
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Equality Constraints ETHzurich

min f(x) s.t. h(x)=0. (P)
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Equality Constraints ETHzurich

(P)

m For feasible x, Vh(x) is orthogonal to {x € R" : h(x) = 0}.

m First order optimality conditions:
There exists [i € RP such that

Z iiVhi(x) = —VF(X)

h(x) = 0.
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Equality Constraints ETHzurich

X'Q]ié‘n f(x) st h(x)=0. (P)

m Assumptions:

= X is a local solution of (P)
m constraint qualification: Vhy(X),..., Vhp(X) are linearly independent

m Then there exists i € RP such that
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Equality Constraints ETHzurich

g]i]@ f(x) st h(x)=0. (P)

m Assumptions:
= X is a local solution of (P)
m constraint qualification: Vhy(X),..., Vhp(X) are linearly independent

m Then there exists i € RP such that

VF(X) + Vh(R)i

— [1 is called (optimal) Lagrangian multiplier
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Counterexample: Constraint Qualification ETHzurich

We have to assume the constraint qualification, otherwise:

m}i}g f(x) =01 —12+(0e+1)* st h(x):=x2=0.
x€ER?
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Counterexample: Constraint Qualification ETHzurich

We have to assume the constraint qualification, otherwise:
min f(x) := (x1 — 1)2 + (0 + 1)2 sit. h(x) = x12 = 0.
x€R?

Then:

Obviously, Lagrangian multiplier i does not exist.

22.09.2014 Constrained Nonlinear Optimization 23



Task ETHzirich

We want to find conditions

m which are necessary (sufficient?) for local minimizers,
m which can be verified numerically,

m and which are suited for an iterative algorithm.

Find (X, /1) € R" x RP such that

This is a system of nonlinear equations.
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Task

We want to find conditions

m which are necessary (sufficient?) for local minimizers,
m which can be verified numerically,

m and which are suited for an iterative algorithm.

Find (x, /1) € R" x RP such that

This is a system of nonlinear equations.

ETH:zlrich
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Task ETHzirich

We want to find conditions

m which are necessary (sufficient?) for local minimizers,

K

m which can be verified numerically,

m and which are suited for an iterative algorithm.

Find (x, /1) € R" x RP such that

This is a system of nonlinear equations.
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Task

We want to find conditions

m which are necessary (sufficient?) for local minimizers,
m which can be verified numerically,

m and which are suited for an iterative algorithm.

Find (x, /1) € R" x RP such that

This is a system of nonlinear equations.

ETH:zlrich

SN
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Adjoints ETH:zurich

Seismic Tomography:

min x(v) st L(u,m)=F
u,m S N———
misfit elastic wave equation
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Adjoints
Seismic Tomography:

min x(v) st L(u,m)=F
m N N— —

misfit elastic wave equation

For every m there is a unique solution u(m) to L(u,m) = f.

Equivalent unconstrained problem

min j(m) := x(u(m))

ETH:zlrich
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Adjoints ETH:zurich
Seismic Tomography:

min x(v) st L(u,m)=F
m N N— —

misfit elastic wave equation

For every m there is a unique solution u(m) to L(u,m) = f.
Equivalent unconstrained problem

min j(m) = x(u(m))
Optimality conditions:
0= Vj(m) = VnL(u(m),m)-u'
with adjoint field ' determined by

V.L(u(m), m)u’ = —=Vx(u(m)).
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Adjoints
Seismic Tomography:

min x(v) st L(u,m)=F
m N N— —

misfit elastic wave equation

Define x := (u,m)",  f(x) = x(u), h(x):= L(u,m)— F.

ETH:zlrich
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Adjoints ETH:zurich

Seismic Tomography:

min x(v) st L(u,m)=F
u,m S N———
misfit elastic wave equation

Define x := (u,m)",  f(x) = x(u), h(x):= L(u,m)— F.
Optimality conditions:

V() + Vh(R)ii =0

h(x) = 0
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Adjoints ETH:zurich

Seismic Tomography:

min x(v) st L(u,m)=F
u,m S N———
misfit elastic wave equation

Define x := (u,m)",  f(x) = x(u), h(x):= L(u,m)— F.
Optimality conditions:
VI(x)+ Vh(X)p =0

h(x)=0 & L(n,m) = F.
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Adjoints

ETHzurich
Seismic Tomography:
min x(v) st L(u,m)=F
um N———
misfit elastic wave equation
Define x := (u,m)",  f(x) :=x(u), h(x):=L(u,m)—F
Optimality conditions:
- - Vx(u) + V.L(o,m)i 0
Vf(x)+Vh =0 &
() + VAR 0  + Vul(@mi = 0
h(x)=0 & L(a,m) = F.
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Adjoints

ETHzurich
Seismic Tomography:
min x(v) st L(u,m)=F
um N———
misfit elastic wave equation
Define x := (u,m)",  f(x) = x(u), h(x):= L(u,m)— F.
Optimality conditions:
- - Vx(u) + V.L(o,m)i 0
Vf(x)+ Vh =0 &
(%) + VA7 0 + Val(@mmi = 0
h(x)=0 & L(a,m) = F.

Adjoint state and Lagrangian multiplier are the same!
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Second Order Optimality Conditions ETHzurich

min f(x) s.t. h(x)=0. (P)

xeR"
Lagrangian function: L(x, ) := f(x)+ h(x)" 11, same assumptions as

before.

m 2nd order necessary conditions:
If X is local minimum, then for all d € R” with Vh(%X)"d = 0:

d"V2 L(%,1)"d >0
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Second Order Optimality Conditions ETHzurich

min f(x) s.t. h(x)=0. (P)

xeR"
Lagrangian function: L(x, ) := f(x)+ h(x)" 11, same assumptions as
before.

m 2nd order necessary conditions:
If X is local minimum, then for all d € R” with Vh(%X)"d = 0:

d"V2 L(%,1)"d >0

m 2nd order sufficient conditions:
If X satisfies 1st order necessary conditions and for all d € R”\ {0}
with Vh(x)Td = 0:

dTvixL()?v ﬂ)Td > 07

then X is local a solution.
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Second Order Optimality Conditions ETHzurich

min f(x) s.t. h(x)=0. (P)

xeR"
Lagrangian function: L(x, ) := f(x)+ h(x)" 11, same assumptions as
before.

m 2nd order necessary conditions:
If X is local minimum, then for all d € R” with Vh(%X)"d = 0:

d"V2 L(%,1)"d >0
m 2nd order sufficient conditions:
If X satisfies 1st order necessary conditions and for all d € R”\ {0}
with Vh(x)Td = 0:
dTvixL()_(MEL)Td > 07
then X is local a solution.

— “Projection” of V2 L(x, i) onto X is positive (semi-)definite

22.09.2014 Constrained Nonlinear Optimization 27



General Nonlinear Problems ETHzirich

min f(x) st g(x) <0, h(x)=0. (P)
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General Nonlinear Problems ETHzirich

min f(x) st g(x) <0, h(x)=0. (P)

m g; is called active in x € X if gi(x) = 0 and inactive if gi(x) < 0.
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General Nonlinear Problems ETHzirich

min f(x) st g(x) <0, h(x)=0. (P)

m g; is called active in x € X if gi(x) = 0 and inactive if gi(x) < 0.

m Only active constraints influence the set of feasible regions.
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General Nonlinear Problems ETHzirich

min f(x) st g(x) <0, h(x)=0. (P)

m g; is called active in x € X if gi(x) = 0 and inactive if gi(x) < 0.

m Only active constraints influence the set of feasible regions.

Example:
X={xeR?:|x]|=2, —x <0}
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General Nonlinear Problems ETHzirich

m]ilg f(x) st g(x)<0, h(x)=0. (P)
xEeRM
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General Nonlinear Problems ETHzirich

min f(x) st. g(x) <0, h(x)=0. (P)
xeRn
3
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f 3
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KKT Conditions ETH:irich
)?é]i]gn f(x) st g(x)<0, h(x)=0. (P)

Karush-Kuhn-Tucker conditions:
There exist (X, \, /i) such that

V(X)) + Vg(X)A 4+ Vh(X)i = 0,
h(x) =0,
g(x)<0, A>0, A g(x)=0.
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KKT Conditions

min f(x) st. g(x) <0, h(x)=0.

xeRn

Karush-Kuhn-Tucker conditions:
There exist (X, \, i) such that

V(%) + Vg(X)A + Vh(x)ji =

ETH:zlrich

(P)

m necessary optimality conditions if a constraint qualification holds, e.g.

Vhi(X),...,Vhy(x),Vgi(x) for g; active, are linearly independent
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KKT Conditions

min f(x) st. g(x) <0, h(x)=0.

xeRn

Karush-Kuhn-Tucker conditions:
There exist (X, \, i) such that

V(%) + Vg(X)A + Vh(x)ji =

ETH:zlrich

(P)

m necessary optimality conditions if a constraint qualification holds, e.g.

Vhi(X),...,Vhy(x),Vgi(x) for g; active, are linearly independent

m sufficient(!) conditions for convex problems
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Task

We want to find conditions

m which are necessary (sufficient?) for local minimizers,

m which can be verified numerically,

m and which are suited for an iterative algorithm.

Find (X, \, i) € R” x R™ x RP such that

VF(x)+ Vg(

X1
=
+
<
>
i
=
I

h(x)
g(X) <0, A>0, Agkx) =

ETH:zlrich
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Task

We want to find conditions

m which are necessary (sufficient?) for local minimizers,

m which can be verified numerically,

m and which are suited for an iterative algorithm.

Find (X, \, i) € R” x R™ x RP such that
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Variational Inequality (revisited) ETH:urich

min f(x) st. xeX
xER"

x€X and VF(X)"(s—%)>0 forallscX.

For convex X this is equivalent to
X = Px(x —7Vf(x))

where Py is the projection onto X and v > 0.
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Pointwise Box Constraints ETHzirich

min f(x) s.t. x < x < x¢
x€Rn

Then

x!Iif x; < X/,
Px(X),': Xj ifX,-l<X;<X,-u,
xt o if x; > xF.

Optimality conditions:

>0 ifx=x],
x€eX, VFf(x)iq =0 ifx <x <x¥,
<0 if X = x".
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Summary ETHzurich

Two types of optimality conditions:
m projection formula
— involves projection onto the feasible set
and a system of nonlinear equations.
m KKT conditions
— necessary conditions if a constraint qualification is satisfied
— involves Lagrangian multiplier
and a system of nonlinear equations (+ sign constraints)

Both are for convex problems.

22.09.2014 Constrained Nonlinear Optimization 34



Extensions ETHzirich

Not covered here:

m constraint qualifications
= non-smooth functions, i.e., if derivatives are not available
m optimization problems in function space

m globalization strategies (i.e. line search or trust region methods)
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Literature ETHzirich

m Books on nonlinear optimization:
= J. Nocedal and S. J. Wright: Numerical Optimization (2nd edition),
Springer 2006
m C. T. Kelley: Iterative Methods for Optimization. SIAM 1999
m M. Hinze, R. Pinnau, S. Ulbrich, and M. Ulbrich:
Optimization with PDE Constraints. Springer 2009

m Websites with optimization codes
m Decision Tree of Optimization Software:
http://plato.la.asu.edu/guide.html
= NEOS Guide:
http://www.neos-guide.org/Optimization-Guide
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