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Summary of Part I

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0. (P)

Two types of optimality conditions:

Projection formula
x̄ = PX

(
x̄ − γ∇f (x̄)

)
.

KKT conditions

∇f (x̄) +∇g(x̄)λ̄+∇h(x̄)µ̄ = 0,

h(x̄) = 0,

g(x̄) ≤ 0, λ̄ ≥ 0, λ̄T g(x̄) = 0.

Today: Algorithms to find points satisfying these conditions.
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Overview Optimization Methods

Projected Gradient Method

Penalty Method

well suited if constraints are cheap to evaluate and projection is possible

Sequential Quadratic Programming

Interior Point Methods

well suited for general nonlinear problems with many active constraints

Problem classification:

Decision Tree of Optimization Software:
http://plato.la.asu.edu/guide.html

NEOS Guide:
http://www.neos-guide.org/Optimization-Guide
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Limitations

Eduard Imhof, Auf dem Säntis, Blick gegen Abend.
http://www.library.ethz.ch/
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Limitations

Algorithms search only for necessary not sufficient conditions.

For non-convex problem: convergence to local not global minima.

f (xk+1) < f (xk) does not imply ‖xk+1 − x̄‖ < ‖xk − x̄‖.

Remedies:

Exploit “local convexity” around the global minimum with good initial
value x0.

“Convexify the problem” with the choice of objective function and
constraints.
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Projected Gradient Method

Idea: Apply steepest descent method but project the path onto X .

Algorithm

Choose x0 ∈ X .

For k = 1, 2, 3, . . .

If ‖xk − PX (xk −∇f (xk))‖ < ε STOP.

Set sk = −∇f (x).

Choose step-size σk by a projected Armijo-rule such that

f (PX (xk + σksk)) < f (xk).

Update xk+1 = PX (xk + σksk).

29.09.2014 Constrained Nonlinear Optimization 6



Projected Gradient Method

Idea: Apply steepest descent method but project the path onto X .

Algorithm

Choose x0 ∈ X .

For k = 1, 2, 3, . . .

If ‖xk − PX (xk −∇f (xk))‖ < ε STOP.

Set sk = −∇f (x).

Choose step-size σk by a projected Armijo-rule such that

f (PX (xk + σksk)) < f (xk).

Update xk+1 = PX (xk + σksk).

29.09.2014 Constrained Nonlinear Optimization 6



Projected Gradient Method - Example
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Projection as Optimization Problem

How to compute yp = PX (y)?

In fact,
yp = argmin

x∈Rn
‖x − y‖2 s.t. x ∈ X . (?)

Idea: Derive KKT-conditions for (?) and solve auxiliary problem.

Example:
X = {x ∈ Rn : Ax = b} with A ∈ Rp×n, b ∈ Rp.

Here, the KKT conditions yield

yp =
(
I − AT (AAT )−1︸ ︷︷ ︸

∈Rp×p

A
)
y + AT (AAT )−1b.

This requires only matrix-vector operations involving n!
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Projected Gradient Method for Full-Waveform Inversion

Seismic Tomography with additional constraints:

min
m

χ(u(m))︸ ︷︷ ︸
misfit

s.t. g(m) ≤ 0, h(m) = 0,

where u(m) solves the elastic wave equation L(u,m) = F .

Auxiliary projection problem:

min
m
‖m − m̂‖2 s.t. g(m) ≤ 0, h(m) = 0.

Constraints only act on m and not an u.
Hence, no simulation is required to solve the auxiliary problem.
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Projected Descent Methods

Can we replace the gradient by a different descent method?
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Penalty Method

Idea: Add a penalty term to the objective that penalizes infeasibility.

Penalized Problem
For a fixed γ ∈ (0,∞) define

min
x∈Rn

fγ(x) := f (x) + γφ(x), (Pγ)

with

φ(x) := 1
2

m∑
i=1

(max{gi (x), 0})2 + 1
2

p∑
i=1

(hi (x))2.

Thus, we obtain an unconstrained optimization problem (Pγ).
Furthermore,

fγ(x) = f (x) if x ∈ X ,

∇fγ(x) = ∇f (x) if x ∈ X .
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Penalty Method

Algorithm

Choose γ0 > 0.

For k = 1, 2, 3, . . .

Solve (Pγk ) approximately and obtain xk .

If xk ∈ X STOP.

Choose γk+1 > γk .

Remarks:

xk can be used as initial point for (Pγk+1).

λk
i := γk max{gi (xk), 0}, µk

i := γkhi (xk)
converge to optimal Lagrangian multipliers.
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Penalty Method - Example
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Penalty Method - Example
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Challenges of the Penalty Method

Consider X = {x ∈ R : xl ≤ x ≤ xu}

x

γφ(x)

γ = 2

γ = 4

γ = 1

xl xu

ill-conditioning for increasing γ

Remedies:

Continuation strategy for γ

Augmented Lagrangian Method
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Solving Nonlinear Operator Equations

F (x) = 0 with F : Rn → Rn.

Newton’s Method for Equations

Choose starting point x0.

For k = 1, 2, 3, . . .

Local approximation model q(x)

q(x) = F (xk) + F ′(xk)(x − xk).

Find solution x̃ = xk + sk to q(x) = 0, i.e.

sk = −F ′(xk)−1F (xk).

Set xk+1 = xk + sk .

29.09.2014 Constrained Nonlinear Optimization 15



Solving Nonlinear Operator Equations

F (x) = 0 with F : Rn → Rn.

Newton’s Method for Equations

Choose starting point x0.

For k = 1, 2, 3, . . .

Local approximation model q(x)

q(x) = F (xk) + F ′(xk)(x − xk).

Find solution x̃ = xk + sk to q(x) = 0, i.e.

sk = −F ′(xk)−1F (xk).

Set xk+1 = xk + sk .

29.09.2014 Constrained Nonlinear Optimization 15



Solving Nonlinear Operator Equations

∇f (x) = 0 with f : Rn → R.

Newton’s Method for Optimization

Choose starting point x0.

For k = 1, 2, 3, . . .

Local approximation model q(x)

q(x) = ∇f (xk) +∇2f (xk)(x − xk)

Find solution x̃ = xk + sk to q(x) = 0, i.e.

sk = −∇2f (xk)−1∇f (xk).

Set xk+1 = xk + sk .
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Quasi-Newton Methods

sk = −∇2f (xk)−1∇f (xk).

Problems:

∇2f (xk) can be too expensive to compute,

∇2f (xk)−1 is even more expensive!

Idea:
Replace ∇2f (xk)−1 by some approximation Bk ≈ ∇2f (xk)−1.

Variants:

Bk = I : steepest descent method

BFGS, L-BFGS, L-BFGS-B

→ require only matrix-vector operations.
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Newton Method for Equality Constrained Problems

Idea: Apply Newton’s method to KKT conditions

∇f (x̄) +∇h(x̄)µ̄ = 0,

h(x̄) = 0.

This is a nonlinear system of equations in (x , µ).

Newton step:(
∇2

xx L(xk , µk) ∇h(xk)
∇h(xk)T 0

)(
sk
x

sk
µ

)
= −

(
∇x L(xk , µk)

h(xk)

)
.

“Infeasible” algorithm since h(xk) = 0 can be violated.

Fast local convergence if 2nd order sufficient conditions hold.
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Interpretation as QP

(
∇2

xx L(xk , µk) ∇h(xk)
∇h(xk)T 0

)(
sk
x

sk
µ

)
= −

(
∇x L(xk , µk)

h(xk)

)
.

These are the KKT conditions for quadratic program (QP)

min
s∈Rn

f (xk) +∇f (xk)T s + 1
2 sT∇2

xx L(xk , µk)s

s.t. h(xk) +∇h(xk)T s = 0.

Alternative: Solve (QP) to obtain update (s̄, µk + µ̄).

QP can be interpreted as “local model”.

∇2
xx L(xk , µk) can be replaced by an approximation Hk .
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General Nonlinear Problems

∇f (x̄) +∇g(x̄)λ̄+∇h(x̄)µ̄ = 0,

h(x̄) = 0,

g(x̄) ≤ 0, λ̄ ≥ 0, λ̄T g(x̄) = 0.

Cannot directly apply Newton’s method because of the inequalities.

Repeat QP idea:

min
x∈Rn

f (x) min
s∈Rn

f (xk) +∇f (xk)T s + 1
2 sT Hks

s.t. h(x) = 0, → s.t. h(xk) +∇h(xk)T s = 0,

g(x) ≤ 0. g(xk) +∇g(xk)T s ≤ 0.

→ quadratic objective function, linear constraints
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Sequential Quadratic Programming

Iteratively solve quadratic program to approach KKT-point

QP “identifies the correct active constraints” for large k, i.e.,

gi (x̄) = 0 ⇔ gi (xk) = 0.

if x̄ satisfies sufficient 2nd order conditions and xk → x̄ .

Crucial question: Can we solve (QP)?

Yes, but . . .

requires advanced techniques to handle non-convexity, globalization,
second-order correction steps, . . .

Some codes: DONLP2, FilterSQP, Gurobi, SNOPT, . . .
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Barrier Method

Reformulation of the problem:

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0.

Eliminate inequality constraints by slack variables:

gi (x) ≤ 0 ⇔ gi (x) + si = 0 ∧ si ≥ 0.

W.l.o.g. we consider

min
x∈Rn

f (x) s.t. h(x) = 0, x ≥ 0.
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Barrier Method

Idea:
Add a barrier to the objective that turns to ∞ towards the boundaries of X .

Barrier Problem
For a fixed γ ∈ (0,∞) define

min
x∈Rn

fγ(x) := f (x)− γ
m∑

i=1
ln(xi )

s.t. h(x) = 0.
(PB

γ )

Thus, we obtain an equality constrained optimization problem (PB
γ ).
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Barrier Method

Algorithm

Choose γ0 > 0.

For k = 1, 2, 3, . . .

Solve (PB
γk

) approximately and obtain xk .

Choose γk+1 ∈ (0, γk).

Remarks:

xk can be used as initial point for (PB
γk+1

).

Methods for equality constrained problems can be used.

Fast local convergence for fixed γ.

Stopping criterion?
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Barrier Method - Example
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Interior Point Method

Optimality conditions of (PB
γ ) can be rewritten as perturbed KKT system

∇f (x̄) +∇h(x̄)µ̄+ λ = 0,

h(x̄) = 0,

xiλi = γ, i = 1, . . . , n.

Rich theory on computational complexity, updating rules for γ and
required accuracy to solve (PB

γ ).

Interior Point Methods are among the most efficient methods for
linear and nonlinear optimization methods.
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Software: IPOPT

Interior Point Optimizer

Open source software for non-convex NLP

Available from https://projects.coin-or.org/Ipopt

Various interfaces (C++, Fortran, Python, Matlab)

Features:

Primal-dual interior point method based on barrier subproblems

Filter globalization

Infeasibility restoration
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IPOPT Interface

Minimal Requirements:

Specify problem dimensions and initial point.

function f_value = eval_f(x)

function grad_f = eval_grad_f(x)

function constraints_value = eval_c(x)

function grad_constraints = eval_grad_c(x)

Optional:

Second derivatives

Many parameters to tune performance
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Summary

We discussed:

First-order necessary optimality conditions for constrained problems

Iterative algorithms that converge to KKT-points.

Choice of optimization method depends on problem characteristics:

What is more expensive: objective function or constraints?

Are many constraints (expected to be) active at the minimum?

Can f be computed for infeasible x?

Can PX be computed efficiently?
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