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PART	I:	The	full-waveform	inversion	concept	
	

•  Summary	of	a	dream	
•  Formula=on	as	an	op=misa=on	problem	
•  Gradient-based	descent	methods	
	
PART	II:	The	adjoint	method	
	

•  Problem	statement	
•  Discrete	adjoint	method	
•  Con=nuous	adjoint	method	
•  Sensi=vity	kernels	
	
Ø  Break.	Time	for	ques=ons	and	short	discussion.	
	
	
PART	III:	Advanced	Topics	
	

•  Local	minima	and	the	mul=scale	approach	
•  Compressed	wavefield	storage	
•  Second	deriva=ves	
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PART	I		
	

The	full-waveform	inversion	concept	



1.	Summary	of	a	dream	
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FROM	TRAVELTIMES	TO	‘FULL’	WAVEFORMS	

S	velocity	at	150	km	beneath	Australia	
Fishwick	et	al.,	2005	

‘tradi=onal’	travel=me	tomography	
travel=me	measurements	

Extremely	successful!	
	

Can	assimilate	enormous	quan==es	of	data.	
	

S=ll	THE	most	widely	used	tomographic	method.	
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FROM	TRAVELTIMES	TO	‘FULL’	WAVEFORMS	

GOALS	
	

§  Explain	broadband	seismograms	wiggle	by	wiggle	...	
§  ...	with	hardly	any	human	interven.on	[Tarantolian	black	box]	
§  Be`er	resolved	tomographic	images	

•  thermochemical	structure	of	the	Earth	
•  evolu=on	and	dynamics	of	the	Earth	
•  improved	ground	mo=on	predic=ons	
•  improved	earthquake	source	inversion	

•  emergency	response,	tsunami	warning	
•  tectonic	interpreta=on	

•  improved	reservoir	characterisa=on	
•  ...	

‘tradi=onal’	travel=me	tomography	
travel=me	measurements	

full-waveform	inversion	
complete	seismic	recordings	



FROM	TRAVELTIMES	TO	‘FULL’	WAVEFORMS	

full-waveform	inversion	
complete	seismic	recordings	

GOALS	
	

§  Explain	broadband	seismograms	wiggle	by	wiggle	...	
§  ...	with	hardly	any	human	interven.on	[Tarantolian	black	box]	
§  Be`er	resolved	tomographic	images	

•  thermochemical	structure	of	the	Earth	
•  evolu=on	and	dynamics	of	the	Earth	
•  improved	ground	mo=on	predic=ons	
•  improved	earthquake	source	inversion	

•  emergency	response,	tsunami	warning	
•  tectonic	interpreta=on	

•  improved	reservoir	characterisa=on	
•  ...	
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CHALLENGES	
	

§  Seismic	wave	propaga=on	through	complex	media.	
§  Computa=onal	power.	
§  Nonlinear	rela=on	between	waveforms	and	3D	Earth	structure.	
§  Meaningful	measurement	of	waveform	differences.	
§  Algorithms	to	search	for	useful	models	[all	of	them,	ideally].	
§  ...	



2.	Formula=on	as	an	op=misa=on	problem	



OPTIMISATION	PROBLEM	
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1. Start from initial Earth model  

2. Update according to                                       with 

step length descent direction 

iiii hmm 1 γ+=+ )()( 1 ii mm χχ <+

§  Find	an	Earth	model	m	such	that	a	suitably	defined	misfit	χ	is	minimal.	

§  The	number	of	model	parameters	and	the	numerical	cost	of	the	forward	
problem	prevent	the	applica=on	of	probabilis=c	methods.	

§  The	minimisa=on	proceeds	itera=vely:	
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1. Start from initial Earth model  

2. Update according to                                       with 

step length descent direction 

iiii hmm 1 γ+=+ )()( 1 ii mm χχ <+

§  Find	an	Earth	model	m	such	that	a	suitably	defined	misfit	χ	is	minimal.	

§  The	number	of	model	parameters	and	the	numerical	cost	of	the	forward	
problem	prevent	the	applica=on	of	probabilis=c	methods.	

§  The	minimisa=on	proceeds	itera=vely:	

Comment:	
	

Minimal	does	not	mean	the	smallest	
misfit	possible!	
	

The	 misfit	 should	 become	 about	 as	
small	 as	 the	 observa=onal	 and	
forward	modelling	errors.	

!!!	



GRADIENT-BASED	OPTIMISATION	
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The family of gradient methods: 

§   method of steepst descent: 

§   conjugate-gradient methods 

§   Newton and Newton-like methods 

§   BFGS and L-BFGS 

§   … 

m/hi ∂−∂= χ

1. Start from initial Earth model  

2. Update according to                                       with 

step length descent direction 

iiii hmm 1 γ+=+ )()( 1 ii mm χχ <+

	
hi ∝− ∂χ
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GRADIENT-BASED	OPTIMISATION	

	Seismology	&	
Wave	Physics	

1. Start from initial Earth model  

2. Update according to                                       with 

step length descent direction 

iiii hmm 1 γ+=+ )()( 1 ii mm χχ <+

m0 m1 m2 m3 m4 … 

Iteratively approach the minimum misfit 
by following the local descent directions. 

χ	

m	
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PART	II		
	

The	adjoint	method	



1.	Problem	statement	
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SO,	WHERE	IS	THE	PROBLEM?	
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§  The	full	gradient	–	with	all	its	components	-	is	needed	in	each	itera=on.	

§  The	most	straigheorward	approach:	approximate	the	gradient	by	finite-differences:	

§  Example	with	500,000	model	parameters:	

	500,001	forward	simula=ons		

										× 	0.5	h	per	simula=on	

										× 	126	compute	cores	

										× 	50	sources	(earthquakes)	

										× 	50	conjugate	gradient	itera=ons	

	78e9	cpu	hours	≈	8,900,000	cpu	years	
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2.	The	discrete	adjoint	method	
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DISCRETE	ADJOINT	METHOD	SUMMARY	

	Seismology	&	
Wave	Physics	

	Lu = f 	L
Tv = −∇χ

	
∂χ
∂mi

= vT ∂L
∂mi

u

Regular	wave	equa=on	 Adjoint	wave	equa=on	 Gradient	equa=on	



DISCRETE	ADJOINT	METHOD	SUMMARY	
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Regular	wave	equa=on	 Adjoint	wave	equa=on	 Gradient	equa=on	

Adjoint	recipe	
1.  Solve	forward	problem	[regular	wave	equa=on]	to	obtain	u.	
2.  Evaluate	misfit	χ.	
3.  Compute	adjoint	source,	-∨χ.	
4.  Solve	adjoint	equa=on	to	obtain	adjoint	field	v.	
5.  Plug	u	and	v	into	the	gradient	equa=on.	

	Lu = f 	L
Tv = −∇χ

	
∂χ
∂mi

= vT ∂L
∂mi

u



DISCRETE	ADJOINT	METHOD	SUMMARY	

	Seismology	&	
Wave	Physics	

Regular	wave	equa=on	 Adjoint	wave	equa=on	 Gradient	equa=on	

Adjoint	recipe	
1.  Solve	forward	problem	[regular	wave	equa=on]	to	obtain	u.	
2.  Evaluate	misfit	χ.	
3.  Compute	adjoint	source,	-∨χ.	
4.  Solve	adjoint	equa=on	to	obtain	adjoint	field	v.	
5.  Plug	u	and	v	into	the	gradient	equa=on.	

Comments	
1.  No	need	to	explicitly	compute	the	deriva=ve	of	the	wavefield	u	[by	construc=on].	
2.  Gradient	is	en=rely	determined	by	the	defini=on	of	the	misfit	[adjoint	source	is	the	only	thing	that	explicitly	depends	on	the	misfit].	
3.  Computa=on	of	gradient	requires	storage	of	forward	wavefield	u.	

	Lu = f 	L
Tv = −∇χ

	
∂χ
∂mi

= vT ∂L
∂mi

u



3.	The	con=nuous	adjoint	method	
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A	MATTER	OF	NOTATION	
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	Lu = (−ω
2M+K)u 	 L(u)=ρ!!u−∇⋅(C:∇u)= f

Discrete	case	[frequency	domain]	 Con=nuous	case	[=me	domain]	

	∇χ = v
T
∇Lu 	∇χ

' = vT∇L(u)dt∫

§  The	same	formal	deriva=on	from	the	discrete	case	can	be	used	in	the	con=nuous	case.	
•  Matrix	L	becomes	operator	L.	
•  Scalar	product	aTb	becomes	integral	∫	a(x)b(x)	dx	.	

	
§  In	somewhat	loose	terms,	∨χis	called	a	sensi.vity	or	Fréchet	kernel	and	symbolised	by	K.	
	
§  The	only	ques=on:	What	is	LT	in	the	con=nuous	case?		...	See	Russel	HeweQ’s	lecture!		



EXAMPLES	

	Seismology	&	
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Regular	wave	equa.on	

momentum	balance	

stress-strain	rela=on	

ini=al	condi=ons	

boundary	condi=ons	



EXAMPLES	

	Seismology	&	
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Regular	wave	equa.on	 Adjoint	wave	equa.on	

momentum	balance	 adjoint	momentum	balance	

stress-strain	rela=on	 adjoint	stress-strain	rela=on	

ini=al	condi=ons	 terminal	condi=ons	

boundary	condi=ons	 boundary	condi=ons	

	v = u†
nota=on	



EXAMPLES	
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Regular	wave	equa.on	 Adjoint	wave	equa.on	

momentum	balance	 adjoint	momentum	balance	

stress-strain	rela=on	 adjoint	stress-strain	rela=on	

ini=al	condi=ons	 terminal	condi=ons	

boundary	condi=ons	 boundary	condi=ons	

Comments	
§  Adjoint	equa=on	is	a	wave	equa=on	[same	code	can	be	used	for	its	solu=on].	

§  Solving	terminal	condi=ons	can	be	done	by	running	code	in	reversed	=me.	



4.	Sensi=vity	kernels	
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TRAVELTIME	MEASUREMENT	ON	SPECIFIC	PHASES	
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TRAVELTIME	MEASUREMENT	ON	SPECIFIC	PHASES	

Source-receiver	geometry	 Seismograms	
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Source-receiver	geometry	 Seismograms	

Sensi.vity	kernel	for	P	wave	velocity	
receiver	

source	

-	 +	

TRAVELTIME	MEASUREMENT	ON	SPECIFIC	PHASES	
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Source-receiver	geometry	 Seismograms	

Sensi.vity	kernel	for	S	wave	velocity	

-	 +	

TRAVELTIME	MEASUREMENT	ON	SPECIFIC	PHASES	
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Source-receiver	geometry	 Seismograms	

Sensi.vity	kernels	for		
P	wave	velocity					 	 	and	 	 	S	wave	velocity	

-	 +	

TRAVELTIME	MEASUREMENT	ON	SPECIFIC	PHASES	
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Source-receiver	geometry	 Seismograms	

Sensi.vity	kernel	for	S	wave	velocity	

-	 +	

TRAVELTIME	MEASUREMENT	ON	SPECIFIC	PHASES	
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MEASURING	TIME-FREQUENCY	PHASE	DIFFERENCES	
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MEASURING	TIME-FREQUENCY	PHASE	DIFFERENCES	

*			Mb	5.1,	25	August	2007														

ver=cal-component	displacement,	period=10	s	
32.8	million	grid	points	



	Seismology	&	
Wave	Physics	

MEASURING	TIME-FREQUENCY	PHASE	DIFFERENCES	

§  Time-	and	frequency-dependent	phase	differences	

§  Based	on	selec=on	of	=me	windows	where	data	and	synthe=cs	are	similar	

§  Independent	of	absolute	amplitudes	
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MEASURING	TIME-FREQUENCY	PHASE	DIFFERENCES	

Sensi=vity	kernels	
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PART	III		
	

Advanced	Topics	



1.	Local	minima	and	the	mul=scale	approach	
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THE	CAMEMBERT	EXPERIMENT	

Odile	Gauthier,	Jean	Virieux,	Albert	Tarantola,	Geophysics	1986.	

The	acous.c	Camembert	Model	
§  20	%	velocity	perturba=on	
§  8	sources	and	receivers	around	the	model	
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THE	CAMEMBERT	EXPERIMENT	

Odile	Gauthier,	Jean	Virieux,	Albert	Tarantola,	Geophysics	1986.	

The	acous.c	Camembert	Model	
§  20	%	velocity	perturba=on	
§  8	sources	and	receivers	around	the	model	

Inversion	result	aXer	5	itera.ons	
§  Camembert	not	recovered	
§  Stuck	in	a	local	minimum	



THE	MULTISCALE	APPROACH	

§  Iden=fies	cycle	skipping	as	main	reason	for	nonlinearity.	
§  Misfit	surface	more	complex	the	higher	the	frequency.	
§  Start	with	low	frequencies.	
§  Work	your	way	up	to	high	frequencies.	
	
§  Problem	s.ll:	Low	frequencies	may	not	always	be	available	
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2.	Compressed	wavefield	storage	
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	Seismology	&	
Wave	Physics	

PROBLEM	STATEMENT	

Sensi.vity	kernel	examples	
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PROBLEM	STATEMENT	

§  Forward	and	adjoint	fields	must	be	known	at	the	same	.me.	
§  This	is	not	naturally	the	case.	
§  Forward	wavefield	needs	to	be	stored.	
§  This	is	extremely	expensive!	

Sensi.vity	kernel	examples	
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PROBLEM	STATEMENT	

§  Forward	and	adjoint	fields	must	be	known	at	the	same	.me.	
§  This	is	not	naturally	the	case.	
§  Forward	wavefield	needs	to	be	stored.	
§  This	is	extremely	expensive!	

Can	we	somehow	compress	the	wavefield	u	such	that	the	kernel	integrals	are	s.ll	sufficiently	accurate?	

Sensi.vity	kernel	examples	
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LOSSY	COMPRESSION	STRATEGIES	

1.  Requan=sa=on	
•  adjust	number	of	bits	to	represent	field	values	
•  large	number	of	bits	in	regions	with	large	amplitude	varia=ons	and	vice	versa	
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LOSSY	COMPRESSION	STRATEGIES	

1.  Requan=sa=on	
•  adjust	number	of	bits	to	represent	field	values	
•  large	number	of	bits	in	regions	with	large	amplitude	varia=ons	and	vice	versa	

	
2.  p-coarsening	

•  store	wavefield	with	polynomial	degree	p	as	a	new	polynomial	of	degree	pnew<p	
•  re-interpolate	to	approximate	the	kernel	integral	
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LOSSY	COMPRESSION	STRATEGIES	

1.  Requan=sa=on	
•  adjust	number	of	bits	to	represent	field	values	
•  large	number	of	bits	in	regions	with	large	amplitude	varia=ons	and	vice	versa	

	
2.  p-coarsening	

•  store	wavefield	with	polynomial	degree	p	as	a	new	polynomial	of	degree	pnew<p	
•  re-interpolate	to	approximate	the	kernel	integral	

	
3.  Temporal	interpola=on	

•  Store	wavefield	only	every	nth	=me	step	
•  Spline	interpola=on	to	fill	missing	=me	steps	for	kernel	integral	
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LOSSY	COMPRESSION	STRATEGIES	

1.  Requan=sa=on	
•  adjust	number	of	bits	to	represent	field	values	
•  large	number	of	bits	in	regions	with	large	amplitude	varia=ons	and	vice	versa	

	
2.  p-coarsening	

•  store	wavefield	with	polynomial	degree	p	as	a	new	polynomial	of	degree	pnew<p	
•  re-interpolate	to	approximate	the	kernel	integral	

	
3.  Temporal	interpola=on	

•  Store	wavefield	only	every	nth	=me	step	
•  Spline	interpola=on	to	fill	missing	=me	steps	for	kernel	integral	

	
4.  Lazy	forward	and	adjoint	simula=ons	

•  Store	forward	and	adjoint	field	only	in	regions	where	they	overlap	
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EXAMPLE	[COMBINING	THESE	STRATEGIES]	

Boehm	&	Fichtner,	Geophysics	2016	
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EXAMPLE	[COMBINING	THESE	STRATEGIES]	
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cf	=	compression	factor	

EXAMPLE	[COMBINING	THESE	STRATEGIES]	
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cf	=	compression	factor	

EXAMPLE	[COMBINING	THESE	STRATEGIES]	

A	compression	factor	of	O(1000)	is	ozen	feasible.	



3.	Second	deriva=ves	
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WHY	ARE	WE	INTERESTED	IN	SECOND	DERIVATIVES?	

	
§  Quadra=c	approxima=on	of	the	misfit	func=onal	near	the	op=mal	model	[approximately	vanishing	first	deriva=ve].	

§  The	Hessian	H	[second-deriva=ve	matrix]:	
	

•  Local	geometry	of	the	misfit	surface	
•  resolu=on	and	trade-offs	
•  H	=	inverse	posterior	covariance	
	

Ø  H	contains	informa.on	on	uncertain.es!	

mHmmmm T
optopt δδχδχ +≈+ )()(

misfit functional optimal Earth model Hessian at mopt 
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SECOND	DERIVATIVES	

§  H	cannot	be	computed	explicity,	and	if	we	could,	we	would	not	be	able	to	store	it!	

§  But	we	can	compute	H dm	for	any	arbitrary	dm:		
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SECOND	DERIVATIVES	

§  H	cannot	be	computed	explicity,	and	if	we	could,	we	would	not	be	able	to	store	it!	

§  But	we	can	compute	H dm	for	any	arbitrary	dm:		

§  Second	deriva=ve	=	first	deriva=ve	(	first	deriva=ve	)	

§  Finite-difference	approxima=on	of	second	deriva=ve	=	difference	of	first	deriva=ves:	

§  H dm	can	trivially	be	approximated	by	subtrac=ng	two	sensi=vity	kernels.	

§  Also	possible	without	approxima=on	[beyond	scope	of	this	lecture,	details:	Fichtner	&	Trampert,	GJI	2011].	

	H(m)dm∝K(m+dm)−K(m)
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EXAMPLE	

Fréchet kernel 

§  25 s Love wave 

§  finite-frequency traveltime 
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EXAMPLE	

§  25 s Love wave 

§  finite-frequency traveltime 

Fréchet kernel 

dm = small vs perturbation in pixel k



	Seismology	&	
Wave	Physics	

EXAMPLE	

§  25 s Love wave 

§  finite-frequency traveltime 

H dm

dm = small vs perturbation in pixel k
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EXAMPLE	

§  25 s Love wave 

§  finite-frequency traveltime 

H dm

dm = small vs perturbation in pixel k

Two	contribu=ons:	
	

F:	First-order	sca`ering	
S:	Second-order	sca`ering	



Thanks	for	your	a`en=on!	


