Lecture 3

Adjoint methods and sensitivity kernels

Andreas Fichtner and Christian Boehm

and the ETH Seismology and Wave Physics Group

KIT Summer School on Full-Waveform Inversion

OUTLINE

PART I: The full-waveform inversion concept

- Summary of a dream
- Formulation as an optimisation problem
- Gradient-based descent methods

PART II: The adjoint method

- Problem statement
- Discrete adjoint method
- Continuous adjoint method
- Sensitivity kernels
- > Break. Time for questions and short discussion.

PART III: Advanced Topics

- Local minima and the multiscale approach
- Compressed wavefield storage
- Second derivatives

PART I

The full-waveform inversion concept

1. Summary of a dream

FROM TRAVELTIMES TO 'FULL' WAVEFORMS

'traditional' traveltime tomography traveltime measurements

S velocity at 150 km beneath Australia *Fishwick et al.,* 2005

Extremely successful!

Can assimilate enormous quantities of data.

Still THE most widely used tomographic method.

'traditional' traveltime tomography

traveltime measurements

GOALS

- Explain broadband seismograms wiggle by wiggle ...
- ... with hardly any human intervention [Tarantolian black box]
- Better resolved tomographic images
 - thermochemical structure of the Earth
 - evolution and dynamics of the Earth
 - improved ground motion predictions
 - improved earthquake source inversion
 - emergency response, tsunami warning
 - tectonic interpretation
 - improved reservoir characterisation
 - ...

FROM TRAVELTIMES TO 'FULL' WAVEFORMS

CHALLENGES

...

- Seismic wave propagation through complex media.
- Computational power.
- Nonlinear relation between waveforms and 3D Earth structure.
- Meaningful measurement of waveform differences.
- Algorithms to search for useful models [all of them, ideally].

GOALS

- Explain broadband seismograms wiggle by wiggle ...
- ... with hardly any human intervention [Tarantolian black box]
- Better resolved tomographic images
 - thermochemical structure of the Earth
 - evolution and dynamics of the Earth
 - improved ground motion predictions
 - improved earthquake source inversion
 - emergency response, tsunami warning
 - tectonic interpretation
 - improved reservoir characterisation
 - •

2. Formulation as an optimisation problem

- Find an Earth model **m** such that a suitably defined misfit χ is minimal.
- The number of model parameters and the numerical cost of the forward problem prevent the application of probabilistic methods.
- The minimisation proceeds iteratively:

OPTIMISATION PROBLEM

- Find an Earth model **m** such that a suitably defined misfit χ is minimal.
- The number of model parameters and the numerical cost of the forward problem prevent the application of probabilistic methods.
- The minimisation proceeds iteratively:

1. Start from initial Earth model \mathbf{m}_0

Comment:

Minimal does not mean the smallest misfit possible!

The misfit should become about as small as the observational and forward modelling errors.

2. Update according to $m_{i+1} = m_i + \gamma_i h_i$ with $\chi(m_{i+1}) < \chi(m_i)$ step length descent direction

$$h_{i} \propto -\frac{\partial \chi}{\partial m_{i}}$$

The family of gradient methods:

- method of steepst descent: $h_i = -\partial \chi / \partial m$
- conjugate-gradient methods
- Newton and Newton-like methods
- BFGS and L-BFGS

. . .

2. Update according to $m_{i+1} = m_i + \gamma_i h_i$ with $\chi(m_{i+1}) < \chi(m_i)$ step length descent direction

2. Update according to $m_{i+1} = m_i + \gamma_i h_i$ with $\chi(m_{i+1}) < \chi(m_i)$ step length descent direction

PART II

The adjoint method

1. Problem statement

SO, WHERE IS THE PROBLEM?

- The full gradient with all its components is needed in each iteration.
- The most straightforward approach: approximate the gradient by finite-differences:

$$\frac{\partial \chi(m)}{\partial m_k} \approx \frac{\chi(..., m_k + \delta m, ...) - \chi(..., m_k, ...)}{\delta m}$$

• Example with 500,000 model parameters:

500,001 forward simulations

- × 0.5 h per simulation
- × 126 compute cores
- × 50 sources (earthquakes)
- × 50 conjugate gradient iterations

<u>78e⁹ cpu hours ≈ 8,900,000 cpu years</u>

2. The discrete adjoint method

Adjoint wave equation

Gradient equation

$\underline{L}\underline{u} = \underline{f}$
--

 $\underline{\underline{L}}^{\mathrm{T}} \underline{\underline{v}} = -\nabla \chi$

$$\frac{\partial \chi}{\partial m_{i}} = \underline{v}^{\mathrm{T}} \frac{\partial \underline{\underline{L}}}{\partial m_{i}} \underline{\underline{u}}$$

Adjoint wave equation

Gradient equation

 $\underline{\underline{L}}\underline{\underline{u}} = \underline{\underline{f}}$

Adjoint recipe

- 1. Solve forward problem [regular wave equation] to obtain <u>u</u>.
- **2**. Evaluate misfit χ.
- 3. Compute adjoint source, $-\nabla \chi$.
- 4. Solve adjoint equation to obtain adjoint field \underline{v} .
- 5. Plug \underline{u} and \underline{v} into the gradient equation.

Adjoint wave equation

Gradient equation

 $\underline{\underline{L}}^{\mathrm{T}} \underline{\underline{v}} = -\nabla \chi$

Adjoint recipe

- 1. Solve forward problem [regular wave equation] to obtain <u>u</u>.
- 2. Evaluate misfit χ.
- 3. Compute adjoint source, $-\nabla \chi$.
- 4. Solve adjoint equation to obtain adjoint field \underline{v} .
- 5. Plug \underline{u} and \underline{v} into the gradient equation.

Comments

- 1. No need to explicitly compute the derivative of the wavefield <u>u</u> [by construction].
- 2. Gradient is entirely determined by the definition of the misfit [adjoint source is the only thing that explicitly depends on the misfit].
- 3. Computation of gradient requires storage of forward wavefield <u>u</u>.

3. The continuous adjoint method

Discrete case [frequency domain]

Continuous case [time domain]

 $\underline{\underline{L}}\underline{\underline{u}} = (-\omega^2 \underline{\underline{M}} + \underline{\underline{K}})\underline{\underline{u}}$

 $L(\underline{u}) = \rho \underline{\ddot{u}} - \nabla \cdot (C : \nabla \underline{u}) = \underline{f}$

$$\nabla \chi = \underline{v}^{\mathrm{T}} \nabla \underline{L} \underline{u} \qquad \nabla \chi' = \int \underline{v}^{\mathrm{T}} \nabla L(\underline{u}) \, \mathrm{dt}$$

• The same formal derivation from the discrete case can be used in the continuous case.

- Matrix <u>L</u> becomes operator L.
- Scalar product <u>a^Tb</u> becomes integral ∫ a(x)b(x) dx .
- In somewhat loose terms, $\nabla \chi$ is called a **sensitivity** or **Fréchet kernel** and symbolised by K.
- The only question: What is L^T in the continuous case? ... See Russel Hewett's lecture!

momentum balance

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x},t) - \nabla \cdot \boldsymbol{\sigma}(\mathbf{x},t) = \mathbf{f}(\mathbf{x},t)$$

stress-strain relation

$$\sigma(\mathbf{x},t) = \int_{\tau=t_0}^{\infty} \dot{\mathbf{C}}(\mathbf{x},t-\tau) : \nabla \mathbf{u}(\mathbf{x},\tau) \, d\tau$$

initial conditions

 $\mathbf{u}|_{t\leq t_0}=\dot{\mathbf{u}}|_{t\leq t_0}=\mathbf{0}$

boundary conditions

 $\mathbf{n} \cdot \boldsymbol{\sigma}|_{\mathbf{x} \in \partial G} = \mathbf{0}$

momentum balance

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x},t) - \nabla \cdot \boldsymbol{\sigma}(\mathbf{x},t) = \mathbf{f}(\mathbf{x},t)$$

stress-strain relation

$$\boldsymbol{\sigma}(\mathbf{x},t) = \int_{\tau=t_0}^{\infty} \dot{\mathbf{C}}(\mathbf{x},t-\tau) : \nabla \mathbf{u}(\mathbf{x},\tau) \, d\tau$$

initial conditions

 $\mathbf{u}|_{t\leq t_0}=\dot{\mathbf{u}}|_{t\leq t_0}=\mathbf{0}$

boundary conditions

 $\mathbf{n} \cdot \boldsymbol{\sigma}|_{\mathbf{x} \in \partial G} = \mathbf{0}$

Adjoint wave equation

adjoint momentum balance $ho \ddot{\mathbf{u}}^\dagger -
abla \cdot \sigma^\dagger = -
abla_u \chi$

adjoint stress-strain relation

$$\sigma^{\dagger}(t) = \int_{\tau=t}^{t_1} \dot{\mathbf{C}}(\tau - t) : \nabla \mathbf{u}^{\dagger}(\tau) d\tau$$

terminal conditions $\mathbf{u}^{\dagger}|_{t \ge t_1} = \dot{\mathbf{u}}^{\dagger}|_{t \ge t_1} = \mathbf{0}$

boundary conditions

$$\mathbf{n} \cdot \boldsymbol{\sigma}^{\dagger}|_{\mathbf{x} \in \partial G} = \mathbf{0}$$

 $v = u^{\dagger}$

momentum balance

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x},t) - \nabla \cdot \boldsymbol{\sigma}(\mathbf{x},t) = \mathbf{f}(\mathbf{x},t)$$

stress-strain relation

$$\boldsymbol{\sigma}(\mathbf{x},t) = \int_{\tau=t_0}^{\infty} \dot{\mathbf{C}}(\mathbf{x},t-\tau) : \nabla \mathbf{u}(\mathbf{x},\tau) \, d\tau$$

initial conditions

 $\mathbf{u}|_{t\leq t_0}=\dot{\mathbf{u}}|_{t\leq t_0}=\mathbf{0}$

boundary conditions

 $\mathbf{n} \cdot \boldsymbol{\sigma}|_{\mathbf{x} \in \partial G} = \mathbf{0}$

Adjoint wave equation

adjoint momentum balance $ho \ddot{f u}^\dagger -
abla \cdot m \sigma^\dagger = -
abla_u \chi$

adjoint stress-strain relation

$$\sigma^{\dagger}(t) = \int_{\tau=t}^{t_1} \dot{\mathbf{C}}(\tau - t) : \nabla \mathbf{u}^{\dagger}(\tau) d\tau$$

terminal conditions $\mathbf{u}^{\dagger}|_{t \ge t_1} = \dot{\mathbf{u}}^{\dagger}|_{t \ge t_1} = \mathbf{0}$

boundary conditions

$$\mathbf{n} \cdot \boldsymbol{\sigma}^{\dagger}|_{\mathbf{x} \in \partial G} = \mathbf{0}$$

Comments

- Adjoint equation is a wave equation [same code can be used for its solution].
- Solving terminal conditions can be done by running code in reversed time.

4. Sensitivity kernels

Sensitivity kernel for P wave velocity

Sensitivity kernel for S wave velocity

Sensitivity kernel for S wave velocity

- Time- and frequency-dependent phase differences
- Based on selection of time windows where data and synthetics are similar
- Independent of absolute amplitudes

MEASURING TIME-FREQUENCY PHASE DIFFERENCES

Sensitivity kernels

PART III

Advanced Topics

1. Local minima and the multiscale approach

The acoustic *Camembert Model*

- 20 % velocity perturbation
- 8 sources and receivers around the model

Odile Gauthier, Jean Virieux, Albert Tarantola, Geophysics 1986.

THE CAMEMBERT EXPERIMENT

The acoustic *Camembert Model*

- 20 % velocity perturbation
- 8 sources and receivers around the model

Inversion result after 5 iterations

- *Camembert* not recovered
- Stuck in a local minimum

- Identifies cycle skipping as main reason for nonlinearity.
- Misfit surface more complex the higher the frequency.
- Start with low frequencies.
- Work your way up to high frequencies.
- **Problem still**: Low frequencies may not always be available

2. Compressed wavefield storage

Sensitivity kernel examples

$$\begin{split} K_{\rho} &= -\int_{T} \dot{\mathbf{u}}^{\dagger} \cdot \dot{\mathbf{u}} dt ,\\ K_{\lambda} &= \int_{T} (\nabla \cdot \mathbf{u}) (\nabla \cdot \mathbf{u}^{\dagger}) dt ,\\ K_{\mu} &= \int_{T} [(\nabla \mathbf{u}^{\dagger}) : (\nabla \mathbf{u}) + (\nabla \mathbf{u}^{\dagger}) : (\nabla \mathbf{u})^{T}] dt \end{split}$$

Sensitivity kernel examples

$$\begin{split} K_{\rho} &= -\int_{T} \dot{\mathbf{u}}^{\dagger} \cdot \dot{\mathbf{u}} \, dt \,, \\ K_{\lambda} &= \int_{T} (\nabla \cdot \mathbf{u}) (\nabla \cdot \mathbf{u}^{\dagger}) \, dt \,, \\ K_{\mu} &= \int_{T} [(\nabla \mathbf{u}^{\dagger}) : (\nabla \mathbf{u}) + (\nabla \mathbf{u}^{\dagger}) : (\nabla \mathbf{u})^{T}] \, dt \end{split}$$

- Forward and adjoint fields must be **known at the same time**.
- This is not naturally the case.
- Forward wavefield needs to be **stored**.
- This is extremely expensive!

Sensitivity kernel examples

 $K_{\rho} = -\int_{T} \dot{\mathbf{u}}^{\dagger} \cdot \dot{\mathbf{u}} dt ,$ $K_{\lambda} = \int_{T} (\nabla \cdot \mathbf{u}) (\nabla \cdot \mathbf{u}^{\dagger}) dt ,$ $K_{\mu} = \int_{T} [(\nabla \mathbf{u}^{\dagger}) : (\nabla \mathbf{u}) + (\nabla \mathbf{u}^{\dagger}) : (\nabla \mathbf{u})^{T}] dt$

- Forward and adjoint fields must be **known at the same time**.
- This is not naturally the case.
- Forward wavefield needs to be **stored**.
- This is extremely **expensive**!

Can we somehow <u>compress the wavefield</u> *u* such that the kernel integrals are still sufficiently <u>accurate</u>?

- 1. Requantisation
 - adjust number of bits to represent field values
 - large number of bits in regions with large amplitude variations and vice versa

- 1. Requantisation
 - adjust number of bits to represent field values
 - large number of bits in regions with large amplitude variations and vice versa
- 2. p-coarsening
 - store wavefield with polynomial degree p as a new polynomial of degree p_{new}<p
 - re-interpolate to approximate the kernel integral

- 1. Requantisation
 - adjust number of bits to represent field values
 - large number of bits in regions with large amplitude variations and vice versa
- 2. p-coarsening
 - store wavefield with polynomial degree p as a new polynomial of degree p_{new}<p
 - re-interpolate to approximate the kernel integral
- 3. Temporal interpolation
 - Store wavefield only every nth time step
 - Spline interpolation to fill missing time steps for kernel integral

- 1. Requantisation
 - adjust number of bits to represent field values
 - large number of bits in regions with large amplitude variations and vice versa
- 2. p-coarsening
 - store wavefield with polynomial degree p as a new polynomial of degree p_{new}<p
 - re-interpolate to approximate the kernel integral
- 3. Temporal interpolation
 - Store wavefield only every nth time step
 - Spline interpolation to fill missing time steps for kernel integral
- 4. Lazy forward and adjoint simulations
 - Store forward and adjoint field only in regions where they overlap

Seismology & Wave Physics

Boehm & Fichtner, Geophysics 2016

Boehm & Fichtner, Geophysics 2016

27.5

50

Boehm & Fichtner, Geophysics 2016

A compression factor of O(1000) is often feasible.

Boehm & Fichtner, Geophysics 2016

3. Second derivatives

Quadratic approximation of the misfit functional near the optimal model [approximately vanishing first derivative].

- The Hessian H [second-derivative matrix]:
 - Local geometry of the misfit surface
 - resolution and trade-offs
 - H = inverse posterior covariance
 - H contains information on uncertainties!

SECOND DERIVATIVES

- H cannot be computed explicity, and if we could, we would not be able to store it!
- But we can compute **H** d**m** for any arbitrary d**m**:

SECOND DERIVATIVES

- H cannot be computed explicity, and if we could, we would not be able to store it!
- But we can compute **H** d**m** for any arbitrary d**m**:
- Second derivative = first derivative (first derivative)
- Finite-difference approximation of second derivative = difference of first derivatives:

 $H(m)dm \propto K(m+dm) - K(m)$

- H dm can trivially be approximated by subtracting two sensitivity kernels.
- Also possible without approximation [beyond scope of this lecture, details: Fichtner & Trampert, GJI 2011].

- 25 s Love wave
- finite-frequency traveltime

25 s Love wave

- 25 s Love wave
- finite-frequency traveltime

- 25 s Love wave
- finite-frequency traveltime

F: First-order scattering S: Second-order scattering

Thanks for your attention!