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Foreword

SES3Dis a programme package for the simulation of elastic wave propagation and waveform inversion in a
spherical section. The package is based on a spectral-element discretisation of the seismic wave equation com-
bined with adjoint techniques.

SES3Dsupports 3D heterogeneous visco-elastic rheologies with radial anisotropy. Anisotropic perfectly matched
layers are implemented to avoid reflections from the unphysical boundaries of the spherical section.

SES3Doperates in the natural spherical coordinates, which is untypical for spectral-element approaches. The
advantages are a compact programme code, fast computations for spherical sections that are sufficiently far
from the poles and the core, and the easy implementation of 3D models.

SES3Dis fully parallelised, meaning that the computational domain is partitioned into subdomains, each of
which is assigned to one compute core. Communication between subdomains is based on MPI.

SES3Dhas been developed for continental-scale full seismic waveform inversion. It is, however, applicable to
a wide range of local- to continental-scale wave propagation problems.

SES3Dis deliberately puristic. This is intended to (1) make the code easily adaptable to particular problems, (2)
facilitate the implementation of 3D models, (3) reduce the likelihood of programming errors, and (4) allow for
an easy adaptation to new hardware architectures. The last point becomes particularly relevant in times when
hardware architecture changes rapidly.

This tutorial is split into a description of the programme code and an introduction to the mathematical back-
ground of SES3D. Reading the mathematical part is not required to successfully run SES3D. It is, however,
strongly recommended. The chance of using SES3Dincorrectly or inefficiently is high when its mathematical
background is not known. This is true for any numerical method.

The description of the programme package is centred around realistic examples that a new user may want to
reproduce in order to become familiar with SES3D.

SES3Dis hosted on Github and can be obtained from https://github.com/echolite/ses3d.

Zurich, February 2014 Andreas Fichtner
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Code description






Chapter 1
Code structure

1.1 Directory structure

Figure 1.1 illustrates the directory structure of SES3D. The contents of the different directories are as follows:
ADJOINT: Adjoint source time functions and a list of adjoint source locations.
DATA/COORDINATES: ASCII files containing the grid point coordinates for each model subdomain.

DATA/LOGFILES: Logfiles for each model subdomain. Logfiles document the geometrical setup of each
subdomain and the iteration progress. They are mostly used for debugging.

DATA/OUTPUT : Directory reserved for output such as seismograms, 3D wavefield snapshots and 3D sensi-
tivity kernels.

INPUT: Input files: setup (model geometry and parallelisation), event_1, event_2, ... (event files,
one for each earthquake to be modelled, source parameters, output directory, time stepping variables), event _1ist
(list of events to be modelled), recfile (list of receiver locations), st £ (source time function)

MAIN: Executables for SES3D wave propagation.
SOURCE : Fortran source files for SES3D wave propagation.
MODELS/MAIN: Executables for the generation of Earth models.

MODELS/MODELS : Physical model parameters. One file for each compute core. Read by the wave propaga-
tion executables.

MODELS/MODELS_1D: Fortran codes for the implementation of a selection of 1D Earth models.
MODELS/MODELS_3D: 3D Earth models or Earth model perturbations.
MODELS/SOURCE : Source code for Earth model generation.

TOOLS : Collection of Fortran and Python tools for visualisation, model manipulation and the computation of
adjoint sources.

SCENARIOS: Input files for the SES3D scenarios described in this tutorial.

1.2 Source files for wave propagation

The principal source files for the wave propagation simulation and the computation of Fréchet kernels can be
found in the directory SOURCE. These are:

ses3d.main.£90: Initialisation of MPI, open logfiles, call subroutines for initialisation, call subroutines to
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ADIJOINT DATA INPUT MAIN SOURCE MODELS TOOLS SCENARIOS
Adjoint sources Simulation Executables for Fortran source Little helper Files needed to
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of Fréchet source-time propagation propagation visualisation and scenarios
kernels functions, slicers described in the
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coordinates of the subdomain kind model for wave 1D model perturbations files for model
computational generation propagation generation generation
subdomains

Fig. 1.1 SES3Ddirectory structure. See the text for detailed descriptions.

iteratively advance the wavefield, monitor PML stability, write intermediate wave field in adjoint runs, clean
up MPI and close files at the end of the iteration.

ses3d-modules. f90: Definition of variables and parameters.

ses3d_input.f£90: Read parameter files Par_x, read boxfile (contains information concerning the
parallelisation), read 3D model parameters, read source time functions (stf_x), read receiver locations
(recfile_x), read adjoint source locations (ad_srcfile).

ses3d_init.f£90: Set up grid point geometry, make mass matrix, compute receiver locations in unit cube
coordinates, compute point source location in unit cube coordinates, read adjoint source time functions, ini-
tialise PML damping profiles.

ses3d_evolution.f90: Propagate dynamic fields one time step forward.
ses3d._grad.£90: Compute Fréchet kernels.

ses3d-output.£90: Collection of subroutines to write seismograms, store intermediate wave fields, write
wave field snapshots and write Fréchet kernels.

ses3dmiscellaneous.f£90: Subroutines to add external forces (single force, moment tensor source, ad-
joint sources) and for the communication between compute cores.

The above source files must be compiled together, e.g. by running the script s_make located in the SOURCE
directory. A recompilation is necessary after a change of the parallelisation scheme, i.e. a change of the
division of the spherical section into subsections.

The script s_-make compiles all source files and combines them into the executables ses3d. exe located in
the directory MAIN. Executing ses3d. exe starts the forward or adjoint wave propagation.

1.3 Variable style and nomenclature of 3D fields

In SES3D, dynamics fields (velocity, stress, strain, material parameters, etc.) are implemented in the form of
six-dimensional arrays. This is illustrated in figure 1.2 with the example of the 6-component velocity field. The
first three dimensions of the array correspond to the element indices within a spherical subsection in 8-, ¢- and
radial directions. Note that the radial index increases from the surface, where it is equal to 0, towards greater
depth. The last three indices are used to address the nodes within one element.

Throughout SES3D, 6-components (colatitude) are labelled with x, ¢-components (longitude) with v and
radial components with z. This is intended to keep the variable names short.
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theta-component velocity field
index of elements within the subsection in theta-direction from N to S
index of elements within the subsection in phi-direction from W to E
index of elements within the subsection in radial
direction from top to bottom (0=surface)

vx(0:nx_max, 0:ny_max, 0:nz_mayx, O:lpd, O:lpd, O:lpd)

node index within one element in theta-direction
node index within one element in phi-direction
node index within one element in radial direction

x=theta=colatitude, y=phi=longitude, z=r=radius

Fig. 1.2 Structure and nomenclature of the dynamic fields in SES3D. The example is for the velocity field in colatitudinal (0)
direction.

1.4 Calls to caution

Each numerical method needs to be handled with care, and SES3Dis no exception. The following paragraphs
are concerned with some of the difficulties that a user may encounter when working with SES3D. It is generally
recommended to assess the accuracy of numerical solutions by comparing them to semi-analytical solutions that
exist for simplified models, e.g. radially symmetric Earth models.

1.4.1 Absorbing boundaries

SES3Davoids unphysical reflections from the lateral and lower boundaries of the spherical section using a
variant of the perfectly matched layers technique, called the method of anisotropic perfectly matched layers
(APML, e.g. Teixeira & Chew, 1997). It consists in the modification of the elastic wave equation within a
narrow region along the unrealistic boundaries of the spherical section. The mathematical details of this method
are explained in section 6.

The width of the absorbing boundary region, in terms of the number of elements, is specified by the parameter
pml in the ses3d.-modules. £90 source file. A good choice is pm1=3, i.e. an absorbing boundary layer that
is three elements wide.

Within the absorbing layer, incoming waves are attenuated. This means that one should place neither receivers
nor sources within the boundary layer. It is recommended to have at least two elements between the absorbing
layer and receivers and sources.

Contrary to what their name suggests, perfectly matched layers are not perfect. The imperfection comes in the
form of two undesirable phenomena: (1) Incident waves are not completely absorbed by the absorbing layers.
This means that small unphysical reflections will always be present. These can be minimised by placing sources
and receivers further away from the boundaries. (2) All variants of the perfectly matched layers technique are
long-term unstable. This means that the wavefield amplitudes may grow indefinitely for very long simulations,
where the term very long is not very well defined.
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1.4.2 Seismic discontinuities and the crust

Realistic Earth models typically contain discontinuities. Spectral-element solutions are correct only when dis-
continuities coincide with the edges of elements, such that the shared boundary nodes take the different values
from each side of the discontinuity. The inflexible grid of SES3Dis not always capable of accounting for dis-
continuities in the exact way. This means that discontinuities of the material properties may be located in the
interior of elements. As a result, the numerical solutions may not be as exact as they would be in the case of
perfectly honoured discontinuities. This effect is difficult to quantify, and it mostly concerns surface waves.

A related problem is the implementation of thin crustal layers that may be thinner than a layer of elements.
This can also produce inaccurate numerical solutions.

Difficulties with thin crustal layers and discontinuities can most easily be avoided by the implementation of
long wavelength equivalent models (e.g. Capdeville & Marigo, 2007, 2008; Fichtner & Igel, 2008).

1.4.3 The poles and the core

Since SES3D operates in the natural spherical coordinate system, one must exclude the poles and the core from
the computational domain. A the centre of the Earth, spatial derivatives in spherical coordinates are singular.
Also, the elements become very small near the poles and near the core, so that the time step dt must be chosen
very small. To run SES 3D efficiently, the spherical sections should not be deeper than ~ 3000 km and not closer
than ~ 20° to one of the poles.


http://www.geo.uu.nl/~fichtner/papers/2008_fichtner_DCM.pdf

Chapter 2
Scenarios

The practical part of this tutorial is built around realistic scenarios that introduce various aspects of SES3D,
ranging from basic the input to the implementation of 3D models, the compuation of sensitivity kernels, and ro-
tations of the computational domain. For each of the scenarios, various source and input files must be changed.
Those files can be found in the SCENARIOS folder.

2.1 Regional-scale wave propagation: Anatolia

In our first scenario, we work with an earthquake that occurred on August 25, 2007 in eastern Turkey. The
hypocentre location is: latitude: 39.26°, longitude: 41.04°, depth: 5.0 km. Our goal is to introduce the input
files of SES3D, implement a 3D heterogeneous model, and compute sensitivity kernels.

The default setup of SES3Dis made to fully reproduce this example. All input and source files that are specific
to this scenario can also be found in the SCENARIOS/ANATOLIA/ folder.

2.1.1 Input

2.1.1.1 Model setup

The geometrical setup of the model is described in the file setup in the directory INPUT. In our specific
example, the computational domain ranges from 47.1° — 55.9° colatitude (colatitude= 90°—Ilatitude), from
23.1° — 42.9° longitude, and from a radius of 5,900,000.0 — 6,371,000.0 m, i.e. from 471 km depth to the
surface of the Earth. For the moment, we ignore visco-elastic dissipation (is_-diss=0), and we construct a
homogeneous model where all velocities and density are set to zero (model_t ype=1). More on the generation
of specific Earth models can be found in section 2.1.2.

We parallelise the computations by dividing the computational domain into 3 subdomains in colatitudinal di-
rection (px=3), 4 subdomains in longitudinal direction (py=4) and 4 subdomains in depth direction (pz=4).
Thus, we have a total of 48 subdomains, each of which is assigned to one compute core. The parallelisation in
SES3Dis shown schematically in figure 2.1.

Within each of the subdomains, the finite elements are numbered from 0 to 66/px= 22 in colatitudinal direc-
tion (nx_global=66), from 0 to 108/py= 27 in longitudinal direction (ny_global=108), and from O to
28/pz= "7 in radial direction (nz_global=28). The total number of elements in the complete computational
domain is (nx_global+px)(ny_global+py)(nz_global+pz)= 247,296. Note that the ratios

nx max=nx_global/px, ny_-max=ny_global/py and nz_max=nz_global/pz
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must all be integers. The values of nx_max, ny_max and nz_max must be set in the first lines of the source file

ses3d.modules. f90 in the directory SOURCE, and the code must be recompiled after changing these
numbers.

Within each element, the dynamic fields (e.g. stress tensor, displacement field, ...) are represented by Lagrange
polynomials of degree 4 (1pd=4). One element therefore comprises (4 + 1) = 125 grid points, meaning that
the complete computational domain contains 247,296 - 125 = 30,912,000 grid points.

For the moment, we perform a pure forward simulation, and therefore set the parameter adjoint_flag to

0. The remaining parameters in the setup file, as well as the actual meaning of the adjoint_flag will be
discussed in section 2.1.4.
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Fig. 2.1 Schematic representation of the parallelisation of SES3D. The spherical section is subdivided into subsections, and each
subsection is assigned to one compute core. A triple index and a single index (in parenthesis) is assigned to a subsection.

2.1.1.2 Event information

SES3Dcan model a sequence of earthquakes (events), each labelled by an integer number. The event informa-
tion for the event numbered x is contained in the file event _x. A list of all events to be modelled must be
provided in the file event_11ist (number of events followed by their label).

In this example, we label our event with 1. The event information in the file event_1 are the colatitude
(xxs= 50.740°), longitude (yys= 41.040°) and depth (zzs= 5,000 m) of the source. The source type
(srctype) is set to 3, which indicates a moment tensor source. (The options srctype=1,2,3 correspond

to vector forces in the colatitudinal, longitudinal and radial directions, respectively.) The moment tensor in our
simulation corresponds to an explosion:

Moo Moy Mo, 1.0 0.0 0.0
M = | Mgy Myp My, | = [0.01.00.0 | -10'"°Nm. 2.1)
Mo, My, M,, 0.00.0 1.0

In our simulation we perform nt= 4,000 time steps, each of which is dt=0.13 s long. As output directory for
the synthetic seismograms we set . . /DATA/OUTPUT/1.8s/.
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2.1.1.3 Receiver locations

A list of receivers must be provided in the file recfile_x located in the INPUT directory. The * is to be
replaced by the event number, i.e. we have recfile_1 in our case. Following the number of receivers in the
list, each receiver is listed with its name and, in the line below, colatitude (°), longitude (°) and depth (m). The
depth must be larger or equal to zero, i.e., no receivers are allowed above the surface. Each receiver name is
exactly 12 characters long. These characters are typically occupied by the actual station name, the network and
any type of additional information.

2.1.1.4 Source time function

The source time function st £ is given in the INPUT directory in the form of an ASCII list. Each entry is a
sample of the source time function, and the time spacing must equal the one in the event _x files. (This time
spacing is not given explicity in st £. In our case itis dt=0.13s.)

The source time function should ideally be a bandpass filtered Heaviside function. Periods that are too long
cannot be modelled because the computational domain is finite, and periods that are too short cannot be mod-
elled accurately because of discretisation errors. (Furthermore, short periods tend to produce artefacts when
they interact with the absorbing boundaries.) As a rule of thumb, the shortest period in the source time function
should be such that the corresponding wavelength is not shorter than 1.5 to 2 elements. In our case, one element
is around 14 km wide (e.g. 69 elements over a distance of 55.9° —47.1° = 8.8°), meaning that the minimum
wavelength should be 21 to 28 km. Assuming a minimum propagation velocity of around 3 km/s, this translates
to a minimum period of 7 to 9 s. For our example we use a Heaviside function filtered between 8 s and 100 s
(see figure 2.2).

1.0 T
0 -
04 1 L | | |
100 200 300 400 500 600
time [s]

Fig. 2.2 Source time function. We use a Heaviside function bandpass filtered between 8 s and 100 s. The number of samples in
the source time function file st £ must be at least the number of time steps nt given in the event files event _x.

2.1.2 Model construction

The construction of 3D Earth models in SES3Dis proceeds in two steps: (1) The construction of a 1D, i.e.
radially symmetric, Earth model, and (2) the addition of 3D perturbations to the 1D model. To facilitate the
solution of tomographic inverse problems, model construction in SES3Dis completely decoupled from the
actual wave propagation. The necessary executables can be generated by compiling the source code located in
MODELS/SOURCE, e.g. by running the script s_make. The executables are located in MODELS /MAIN.
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2.1.2.1 Step 1: Constructing 1D Earth models

We construct 1D Earth models by running generate_models.exe, located in MODELS/MAIN. This pro-
gramme reads the geometrical setup provided in the setup file. The type of 1D Earth model is specified by the
parameter model_type in the setup file. In our case, model_type= 1, which generates a homogeneous
model with all velocities and density set to zero.

The following alternative Earth models are currently implemented:

1. model_type=2: Isotropic version of PREM (Dziewonski and Anderson, 1981).

2. model_type=3: All-zero elastic model with a smoothed version of the Q model QL6 (Durek & Ekstrom).

3. model_type=4: Modified version of the isotropic PREM with the 220 km discontinuity replaced by a
linear gradient.

4. model_type=7: AKI135 (Kennett et al., 1995).

The detailed setups of these 1D model can be found in MODELS/MODELS_1D.

Running generate models.exe produces files containing the physical model parameters (A,u,A,B,C
and 1/p) for each of the computational subdomains (48 in our case). These are located in MODELS /MODELS.
Furthermore, generate_models.exe writes the boxfile which summarises the geometrical setup and
the parallelisation of the computational domain. All these files serve as input for the actual wave propagation.

For debugging purposes, generate_models . exe also writes human-readable vertical profiles through each
of the subdomains. These are named prof_x, where * denotes the index of the subdomain.

2.1.2.2 Step 2: Adding 3D heterogeneity
Description of 3D heterogeneous models

Following the construction of a 1D model, we add 3D perturbations, located in MODELS/MODELS_3D. The
term 3D perturbations is loosely defined. In our specific case where the 1D model is the homogeneous model
with all parameters set to zero, the perturbations are in fact the absolute 3D model itself.

The 3D perturbations of P velocity (in km/s, file dvp), SH velocity (in km/s, file dvsh), SV velocity (in
km/s, file dvsv) and density (in g/cm?, file drho) are parametrised in discrete regular blocks. The geometry
of the blocks, i.e. the locations of their bounding grid points, is descibed in the files block_x (colatitudinal
direction), block_y (longitudinal direction) and block_z (radial direction).

In our specific example, the horizontal grid spacing is 0.25° from 5871 km to 6266 km radius, and 0.1° from
6266 km to 6371 km radius. The radial grid spacing is 5 km throughout the model. This variable grid spacing
roughly reflects the tomographic resolution that we expect in different depth ranges. Figure 2.3 illustrates
how the variable grid spacing within the two subdomains is represented in the block_x files. A schematic
representation of the grid spacing is shown in figure 2.4.

Note that the grid on which the 3D model is described, is completely independent of the numerical grid used
in the wave propagation machinery or for the generation of the 1D model. This independence allows us to add
3D model perturbations to any previously constructed 1D model - regardless of its specific setup.

The files containing the actual model perturbations (dvp, dvsh, dvsv, drho) are organised as shown
in figure 2.5. Note that the velocity and density values are given for the volumetric blocks bounded by the grid
points. The number of blocks is therefore smaller than the number of grid points.
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block _x (colatitudinal grid spacing)

2 subdomains

37 grid points in 1. subdomain
47.00 1. grid point location (°)
47.25 2. grid point location (°)

56.00 37. grid point location (°)
91 grid points in 2. subdomain
47.00 1. grid point location (°)
47.10 2. grid point location (°)

56.00 91. grid point location (°)

block y (longitudinal grid spacing)

2 subdomains

81 grid points in 1. subdomain
23.00 1. grid point location (°)
23.25 2. grid point location (°)

43.00 81. grid point location (°)
201 grid points in 2. subdomain
23.00 1. grid point location (°)
23.10 2. grid point location (°)

43.00 201. grid point location (°)

block z (radial grid spacing)

2 subdomains

80 grid points in 1. subdomain
5871 1. grid point location (km)
5876 2. grid point location (km)

6266 80. grid point location (km)
22 grid points in 2. subdomain
6266 1. grid point location (km)
6271 2. grid point location (km)

6371 22. grid point location (km)

Fig. 2.3 Organisation of the block_x files that describe the geometric parametrisation of the 3D heterogeneities.

0.1°
—>

yd

0.25°

radius 6266 km
-

Fig. 2.4 Schematic representation of the variable grid spacing of the 3D heterogeneities. Above a radius of 6266 km, the horizontal

grid spacing is 0.1°. Below, it is 0.25°.

2

dvp (colatitudinal grid spacing)

subdomains
227520 grid points in 1. subdomain (227,520=36-80-79)
9.57198 P velocity (km/s) within 1. block
9.55128 P velocity (km/s) within 2. block

378000 grid points in 2. subdomain (378,000=90-200-21)

Fig. 2.5 Organisation of the P velocity perturbations in the file dvp. The number of subdomains (2) is followed by the number of
blocks in the first subdomain (227, 520). The actual values of P velocity (perturbations) are given as a list that results from looping
over the 3D volume. The outer loop if over colatitude, the intermediate loop over longitude, and the inner loop over radius. This
list is then followed by a similar list for the second subvolume. The files dvsh, dvsv and drho are organised analogously.



12 2 Scenarios

Adding 3D heterogeneity to the 1D model

We can add 3D perturbations in vy, Vg, Vg and p by running the executable add_perturbation.exe,
located in MODELS/MAIN. Using geometric information from the setup file and the boxfile, the pro-
gramme add_perturbation.exe reads dvp, dvsv, dvsh and drho and add these 3D perturbations to
the pre-existing model files in MODELS/MODELS. For our example we use a 3D model of the Anatolian re-
gion, described in Fichtner et al., 2013a and Fichtner et al., 2013b. The v, distribution in this model is shown
in figure 2.6.

10 km

70 km

Fig. 2.6 Distribution of vy in the Anatolian model at 20 km, 50 km and 100 km depth. The depth slices in this figure were
generated using the Python tool models. py in the TOOLS directory.

2.1.3 Simulation of wave propagation and output

The actual wave propagation executable is ses3d. exe, located in MAIN. Upon running ses3d.exe, the
geometrical information in setup, the event information in event _x and event _1ist, as well as the phys-
ical model parameters in MODELS /MODELS are read. The seismic wavefield is the propagated forward in time,
for nt time steps. After the last time step, synthetic seismograms are written to the output directory, in our case
DATA/OUTPUT/1.8s/. The three-component synthetic seismograms for station BALB are shown in figure
2.7.


http://www.geo.uu.nl/~fichtner/papers/2013_Fichtner_EPSL.pdf
http://www.geo.uu.nl/~fichtner/papers/2013_Fichtner_GJI.pdf
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Fig. 2.7 Three-component synthetic seismograms for station BALB.

2.1.4 Computing sensitivity kernels

The computation of sensitivity kernels proceeds in several steps. First of all, a forward simulation must be
run with the adjoint_flag in the setup file set to 1. This ensures that the forward field is stored in the
directory which appears in the last line of the setup file. Make sure enough storage is actually available.
One the forward field is computed, adjoint sources for a variety of measurements can be computed using Python
tools in the TOOLS directory. An example of this procedure is given below:

run seismograms.py: Compile Python tool for reading and plotting seismograms.

run adjoint_source.py: Compile Python tool for the computation of adjoint sources.
s=ses3d_seismogram (): Make empty seismogram structure.
s.read(’../DATA/OUTPUT/1.8s/’,'BALB_.KO.___"): Read seismograms for station BALB.
s.plot (1e6): Plot seismograms, scaled by a factor of 1 - 100.

a=adjoint_source (): Make empty adjoint source structure.

a.fetch_seismogram (s): Load seismograms into the adjoint source structure.

a.make_adsrcmttime (’z’,391.0,412.0,0.1, True): Compute adjoint source for a multitaper
measurement of a time delay on the vertical component for the window from 391.0 s to 412.0 s at the fre-
quency of 0.1 Hz.

a.plot () : Plot adjoint source.
a.write(’../ADJOINT/1/’,’ad_src_1’): Write adjoint source to file.

It is important that the adjoint sources for event_1 are written to the directory ADJOINT/1/. For an event
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with event file event 102, the adjoint sources would be expected to be located in ADJOINT/102/.

For each event, multiple adjoint sources may be computed. In our example, we use only one. The second ad-
joint source time function would be named ad_src_2, and it would be located in the same directory. The
file ad_srcfile contains a list of all adjoint source time functions used for this specific event. In our case,
ad_srcfile contains only 2 lines:

1 (indicates that one adjoint source is used)
50.36 27.88 1000.0 (colatitude, longitude and depth of the adjoint source)

Once the adjoint sources are computed, simply set the adjoint_flag to 2 and re-run the wave propagation
code. Sensitivity kernels will then be computed automatically, and stored in the output directory specified in
the event file. Then, using project_kernels.exe in the TOOLS directory, the kernels can be projected
onto the grid used to represent 3D models. This is particularly helpful in the context of tomographic inverse
problems, but also for plotting purposes. Since the projected kernels have the same format as a 3D model, we
can use the Python tool models. py to read and plot the projected kernels. The result is shown in figure 2.8.

20.0 km le_13

-8

st [52 m'4]

Fig. 2.8 Sensitivity kernel with respect to the SV velocity at 20 km depth. The measurement is a multitaper measurement of a time
delay on the vertical component of station BALB for the window from 391.0 s to 412.0 s at the frequency of 0.1 Hz.

2.2 Continental-scale wave propagation: North America

Seismic wave propagation in SES3D may become inefficient when the computational domain is too close to
the poles where the elements become very small, thus enforcing a small time step. This problem is particularly
relevant for large domains that approach or even include the poles. To avoid excessively small time steps, the
computational domain can be rotated away from the poles towards the equator.

This rotation procedure will play a central role in the following scenario where we consider seismic wave
propagation across North America and the North Atlantic. The scenario-specific input and source files are
located in the directory SCENARIOS/NORTH_AMERICA.



2.2 Continental-scale wave propagation: North America 15

2.2.1 Rotating the computational domain

We are interested in the computational domain shown in figure 2.9 that covers the North American continent
and the North Atlantic. Since the domain closely approaches the North pole, where elements become very
small, it should ideally be rotated southwards to avoid excessively small time steps. In this example, we rotate
the complete domain southwards by 30° around an axis given in terms of the unit vector

cos(40°)
n= | sin(40°) (2.2)
0.0

The rotated domain is shown in figure 2.10. In rotated coordinates, the computational domain falls be-
tween the following colatitudes and longitudes that are specified in the setup file: theta.min=45.2,
thetamax=114.8,phimin=-119.8, phi max=-0.2.

Since the actual computations are not performed in the true physical but in the rotated domain, various input
parameters must be adapted. The input parameters include the station and event coordinates, as well as the
moment tensor. Python tools for the rotation of source/receiver locations and moment tensors can be found in
TOOLS/rotation.py. These tools are also described in section 3. While the original epicentral coordinates
of our event are 0 = 34.08°, ¢ = —17.80°, the rotated cooridnates are 8’ = 61.30°, ¢’ = —30.10°. Similarly
the moment tensor is rotated as follows:

My My, M, —3.794 1.978 —1.145

M= (M, M, M, | = 1977 4004 —0.514
M, M, M, —1.145 —0.514 —0.211

_>
M, M, M, —4.220 —0.644 —0.935

M = | M, M), M, | =| —0.644 4.430 —0.838 (2.3)
M, M, M., —0.935 —0.838 —0.211

The rotated event parameters are specified in event_1.

Most plotting routines for models and seismograms that are located in the TOOLS directory, correctly ac-
count for the rotation. All that needs to be done is to set the rotation vector and the rotation angle in the file
TOOLS/rotation_parameters.txt.

2.2.2 Source time function

While the computational domain in this scenario is comparatively large, its discretisation with ~ 1.8 elements
per degree (specified in the setup file) is rather coarse. We are thus limited to the modelling of long-period
wave propagation. To construct a suitable source time function, we can make use of the make_st . py scripts
in the TOOLS directory. The function call

make_stf(0.2,12000,1.0/200.0,1.0/100.0,"../INPUT/stf’)

Produces a source time function that is a bandpass-filtered Heaviside function with cutoffs at 1/200 Hz and
1/100 Hz. The time step is equal to 0.2 s, identical to the time step dt specified in the setup file. The number
of time steps is 12000, and the output file is written to . . /INPUT/ st £. The source time function in the time
and frequency domain is displayed in figure 2.11.
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Fig. 2.9 Horizontal slice through the SV velocity in model S40RTS (Ritsema et al., 2011) at 70 km depth beneath North America
and the North Atlantic. The computational domain approaches the North pole, and therefore needs to be rotated southwards. This

plot was made with the tools provided in TOOLS/models.py.

Fig. 2.10 Rotated North America model. All computations are performed in this rotated domain. This plot was made with the

tools provided in TOOLS /models.py.
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Fig. 2.11 Time- and frequency-domain representation of the source time function produced by
make_stf(0.2,12000,1.0/200.0,1.0/100.0,"../INPUT/stf’)

2.2.3 Constructing the 3D model

The construction of a 3D Earth model for this scenario is similar to the previous one described in section 2.1.
The only difference is that the coordinates in the block_x, block_y and block_z files must of course be
rotated towards the equator.

In the first step, we again generate a 1D model using generate_models. As 1D model we choose one where
all elastic parameters are set to zero, and where a smoothed version of the Q model QL6 (Durek & Ekstrom,
1996) is implemented. To use this model, set model_type to 3 in the setup file. More details on visco-
elastic dissipation for this specific scenario and from a more mathematical perspective can be found in sections
2.2.4 and 5.1, respectively.

Following this initial step, we add 3D heterogeneities, again using add_perturbation. To ensure that the
heterogeneities are properly implemented, we can visualise the material parameters on the spectral-element
grid using thy Python tool ses3d_fields.py inthe TOOLS directory (see also section 3). The resulting plot
is shown in figure 2.12.

2.2.4 Visco-elastic dissipation

To enable visco-elastic dissipation in SES3D, the is_diss flag in the setup file must be set to 1. The
mathematical description and numerical implementation of visco-elastic dissipation is described in chapter
5. The visco-elastic properties of the Earth model are encoded in a set of relaxation parameters that can be
computed using the Python code Q_discrete.py located in the TOOLS directory. Requesting a constant Q
for periods between 80 s and 250 s, Q_discrete.py produces the relaxation weights 1.684,0.838,1.357,
and the corresponding relaxation times 3.200,17.692,74.504. These values must be written into the relax
file in the INPUT directory. An illustration of the constant target Q and the numerical approximation, as well
as of the corresponding phase velocity dispersion, is provided in figure 2.13.



18 2 Scenarios

Depth slice of vsh at 6171 km

4600

4550

4500

4450

|8

4400

4350

4300

4250

Fig. 2.12 Rotated North America model (vsy) as implemented on the spectral-element grid. A zoom into the western part of
USArray is shown to the right. This plot was made using ses3d_-fields.py from the TOOLS directory.
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Fig. 2.13 Left: Comparison of the constant target shear Q with value 100 and the corresponding numerical approximation, as
computed by Q_discrete.py. Right: Phase velocity dispersion.

2.2.5 Wiggly lines

To plot seismograms, we can use the Python class ses3d_seismogram in the TOOLS directory. Simply run
seismograms.py and then initiate a class member, e.g. by typing

s=ses3d_seismogram().
Using the read function, we can read a seismogram by giving the directory and station name:
s.read(’../DATA/OUTPUT/1/’,"' TA.L16A_.___").

Typing
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[s.plot()]
will produce the plot shown in figure 2.14.
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Fig. 2.14 Three-component velocity seismograms at station TA.L16A.







Chapter 3
Python tools

SES3Dcomes with a collection of Python tools for visualisation, computing source time functions and ad-
joint sources, and various other purposes. All of these tools are located in the TOOLS directory. Being within
python or ipython, a instructions for the use of these tools can be obtained by simply typing help (name
of the tool). Required Python packages include Numpy, Scipy, Matplotlib, Basemap and Obspy.The
following is a commented list of currently available tools:

3.1 Visualising and editing Earth models, snapshots and kernels

3.1.1 Visualising 3-D fields defined in terms of constant-property blocks

Three-dimensional fields, including Earth models, velocity snapshots and sensitivity kernels, can be visualised
with the help of models. py, provided that they are parametrised in the form described in section 2.1.2.2. An
instance of the class ses3d._model can use the function read to read a 3-D field from a file given in terms
of the path and filename. For this, the appropriate block_« files must be in that path as well. A vertical slice
can be plotted using the function plot_slice.

3.1.2 Writing 3-D fields defined in terms of constant-property blocks

After reading a 3-D field as described in the previous paragraph, the field may be manipulated and then written
again using the write function of the ses3d_model class.

3.1.3 Converting 3-D fields defined in terms of constant-property blocks into vtk format

For more elaborate visualisation, for instance in Paraview or Vislt, the 3-D fields need to be converted into the
vtk format. The function convert_to_vtk of the ses3d._model class performs this conversion task.
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3.1.4 Visualising Earth models and velocity snapshots on the spectral-element grid

The Python class ses3d_fields contains tools for the visualisation of Earth models and velocity field snap-
shots defined on the spectral-element grid of SES3D. To plot, for instance, vy, at 20 km depth with a colourbar
ranging from 2698.0 m/s to 3972.0 m/s with a high-resolution coastline, just type

run ses3d_-fields.py
field=ses3d_fields(’../MODELS/MODELS/’,’earth.model’)
field.plot_depth_slice(’vsh’,20.0,2698.0,3872.0,res="h")

Similarly, for plotting velocity field snapshots for v, at 100 km depth and at iteration 1000, type

run ses3d._fields.py
field=ses3d_fields (’../DATA/OUTPUT/’,’'velocity_snapshot’)
field.plot depth.slice ('vx’,100.0,-9e-8,9e-8,iteration=1000, res="h’)

3.2 Computing source time functions

Source time functions can be computed and stored using make_st £ . py. Source time functions are computed
as bandpass filtered Heaviside functions. make_st f . py is deliberately simplistic. For real-data applications
you must ensure that the bandpass applied in make_st f . py is exactly the bandpass applied to the data. Thus,
you may want to adjust make_stf.py to your specific needs. An example for the computation of a source
time function can be found in section 2.2.2.

3.3 Computing adjoint sources

Code for the computation of adjoint sources for some simple measurements can be found in adjoint_source.py.
This tools fetches an SES3D seismogram, makes a measurement in a pre-defined time window, and then com-
putes the corresponding adjoint source. In the absence of real data, only data-independent adjoint sources can

be computed. The currently implemented measurements are the cross-correlation traveltime shift, relative am-
plitude differences, multi-taper phase shifts and multi-taper amplitude differences. A concrete example for the
computation of adjoint sources is given in section 2.1.4.

3.4 Computing relaxation parameters of Q models

As described in chapter 5, visco-elastic dissipation in SES3Dis described by a superposition of a finite number
of relaxation mechanisms. The weights of these mechanisms and their respective relaxation times determine
the behavior of Q within a pre-defined frequency band. The Python code Q_discrete.py computes these
weights and relaxation times. The input parameters (frequency band, number of mechanisms, ...) must be given
directly in the input section of the code, i.e. they are not passed as parameters to a function (because there are
just too many parameters). A concrete example for the computation of relaxation weights and times can be
found in section 2.2.4.
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3.5 Rotating coordinates and moment tensors

When working with a rotated coordinate system, a little set of tools for rotating coordinates and moment tensors
is useful. These can be found in rotation.py. rotate_coordinates rotates coordinates (colatitude and
longitude) and rotate_moment_tensor rotates moment tensors. A detailed description is provided in the
Python code itself.

3.6 Reading and plotting seismograms

The code seismograms.py contains the definition of the ses3d_seismogram class that can be used to
read and visualise synthetic seismograms produced by SES3D. A detailed example can be found in section
2.2.5.
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Chapter 4
The seismic wave equation

This chapter is concerned with the mathematical description of seismic wave propagation in the Earth and the
derivation of equations that can be solved numerically in an efficient way. Following a brief review of the elastic
wave equation and its subsidiary conditions in section 4.1, we elaborate on the simulation of anisotropy (section
4.2) and attenuation (section 5.1). We also cover the implementation and analysis of absorbing boundaries
within this chapter on the analytical setup, because their properties are relatively independent from a particular
numerical scheme.

4.1 The elastic wave equation

The propagation of seismic waves in the Earth can be modelled with the elastic wave equation
p(Nii(x,1) ~ V- o(x,1) = (x,1), @.1)

that relates the displacement field u to the mass density p, the stress tensor ¢ and an external force density f
(e.g. Dahlen & Tromp, 1998; Kennett, 2001; Aki & Richards, 2002). The elastic wave equation as presented
above is a linearised version of the momentum balance equation, i.e., of Newton’s second law. It is valid under
the assumption that deviations from the reference configuration of the Earth are small. Furthermore, the rotation
of the Earth and its self-gravitation are omitted. These effects are negligible when oscillation periods are shorter
than ~ 200 s. At the surface 6 of the Earth @ the normal components of the stress tensor ¢ vanish:

e lyege = 0. 4.2)

Equation (4.2) is the free surface boundary condition. Both the displacement field u and the velocity field v=1u
are required to vanish prior to = fo when the external force f starts to act, i.e.,

u|l<to = V|l<to =0. 4.3)

For convenience we will mostly choose #p = 0. To obtain a complete set of equations, the stress tensor ¢ has to
be related to the displacement field u. It is usually assumed that the rheology is visco-elastic, meaning that the
current stress tensor ¢ depends linearly on the history of the strain tensor € = %(Vu +vu’):

=

o(x,1) = / Clx,t—1') : e(x.1')dr'. (4.4)

—oo

The fourth order tensor C is the elastic tensor. In the case of a perfectly elastic medium the elastic tensor is
of the form C(x,7) = C(x) H(r), where H is the Heaviside function. We then have o = C(x) : &(x,¢). The
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symmetry of €, the conservation of angular momentum and the relation of C to the internal energy (e.g. Dahlen
& Tromp, 1998) require that the components of C satisfy the following symmetry relations:

Cijst = Criij = Cjiga - 4.5)

Moreover, the elastic tensor is causal:
C(t)|t<t0 :0 (46)

Equation (4.4) is — unlike the wave equation within its limits of validity — not a fundamental law of physics but
an empirical relation that has been found to describe a wide range of phenomena very well. It can be regarded
as a linearisation of a more general non-linear constitutive relation. Its validity is, in this sense, restricted to
scenarios where the strain tensor € is a small quantity. The particular choices of C and its time dependence will
be the subjects of the following sections on attenuation and anisotropy.

4.2 Anisotropy

Anisotropy is the dependence of the elastic tensor on the orientation of the coordinate system. Its most direct
seismological expression is the dependence of seismic velocities on the propagation and polarisation directions
of elastic waves. It is thought to play a major role in the Earth’s crust and upper mantle.

Besides the splitting of shear waves, the Love wave-Rayleigh wave discrepancy is one of the principal seismic
observations that is directly related to anisotropy: A Love wave and a Rayleigh wave travelling in the same
direction usually exhibit different wave speeds as a consequence of their different polarisations. This led to
the inclusion of anisotropy with radial symmetry axis in the global reference model PREM (Dziewonski &
Anderson, 1981). In this model the anisotropy is limited to the upper 220 km.

Guided by these observations, we decided to implement anisotropy with radial symmetry axis. For such a
medium, there are only 5 independent elastic tensor components that are different from zero. They can be
summarised in a 6 x 6 matrix (e.g. Babuska & Cara, 1991):

Crrrr Crr¢¢ CrrGG Crrd)(-) Crrr@ Crrr¢
Coorr Co999 Copo00 Coooo Copro Copro
Coorr Coopp Coooo Conpo Coore Cooro
Coorr Coopp Coo00 Cpogpo Coore Cooro
Crorr Cro99 Cro00 Crope Croro Crorg
Crorr Cropp Crooe Cropo Crore Crorg

A+2u  A+c A+c 0 O 0
A+c A4+2u+a A+a 0 O 0
| A+c¢  A+a A4+2u+a0 0 O @7
0 0 0 u 0 0 :
0 0 0 Ou+b 0
0 0 0 0 0 u+b

Love (1892) proposed an alternative parametrisation
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Crrrr Crr(p(p Crr96 Crr¢9 Crrre Crrr(p
Coorr Co999 Co900 Coo00 Cooro Copro
Coorr Copp Conoe Conpo Cooro Cooro
Coorr Cpogp Copooe Copapo Coporo Coorg
Crorr Cro99 Crooo Crogo Crore Crorg
Crorr Croop Crooo Cropo Crore Crore
Cr Fr Fr 0 00

F Ar Ar—2N;, 0 0 O

| FL AL—-2N, AL 000

10 0 0 Ny 0 O (4.8)
0 0 0 0L, O
0 0 0 0 0L,

We chose to use the parametrisation from equation (4.7) because it easily allows us to model isotropy by simply
setting a = b = ¢ = 0. Remember, that all components of the elastic tensor are functions of time, ¢, and space,
x. Density, p and the elastic parameters A, t,a,b and ¢ can be related to the wave speeds of SH, SV, PH and

PV waves:
Vov = ‘u+ba Vsu = E7 Vpy = /1-5-2#7 Vey = z’+2‘u+a 4.9)
P Ve P p

The velocities of SH, SV, PH and PV waves specify only two of the three additional elastic parameters necessary
for anisotropy with radial symmetry axis, namely a and b. Also radially propagating S waves do not allow us
to find ¢, because they propagate with the velocity /(i +b)/p, just as SV waves. In fact, using plane waves,
¢ can be determined only from P waves that do not travel in exactly radial or horizontal directions. Following
Takeuchi & Saito (1972) and Dziewonski & Anderson (1981) we incorporate ¢ into a dimensionless parameter

n:=A+c)/(A+a). (4.10)






Chapter 5
Description and implementation of attenuation

5.1 The visco-elastic rheology and memory variables

The numerical implementation of attenuation is largely motivated by technical convenience and not so much
by the true physics of seismic wave attenuation in the interior of the Earth. In our analysis we closely follows
Robertsson et al. (1994), but introduce some modifications that facilitate the construction of constant-Q models.
Assume that 0,C and € are representative of some particular components of ¢, C and €, respectively. Then a
scalar version of the stress-strain relation is given by

5(1) = (Cx&)(r) = / Cle—t)e()dr'. 5.1)

The spatial dependence has been omitted for brevity. As already discussed, we choose the stress relaxation
function or elastic tensor component C to be that of a superposition of N standard linear solids, weighted by
coefficients D, (p =1,...,N), i.e.,

C(t):=C

N
1-Y D, (1 - ?”) e—’/fvp] H(t), (5.2)

p=1 op

where ¢, and 75, are the strain and stress relaxation times of the pth standard linear solid, respectively. The
symbol H denotes the Heaviside function and C, is the relaxed modulus. Equation (5.2) is very general so that
different sets of relaxation times can give almost the same relaxation function C(¢). To reduce this subjectively
undesirable non-uniqueness we limit the number of free parameters. Following the T-method introduced by
Blanch et al. (1995) we determine the relaxation times ¢, by defining a dimensionless variable 7 through

Tep
T:=—L 1. (5.3)
Tgp
This gives
N
C(t)=Cr|1+7 Y. Dpe/™r| H(r). (5.4)
p=1

Differentiating (5.4) with respect to ¢ and introducing the result into equation (5.1) yields

N N
6(t)=C(1+s1)€(1)+C, Y M,, s:=Y D, (5.5)
p=1 p=1

where the memory variables M), are defined by
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Dyt |
M, = ——£= /e*(’*’/)/"’ﬂ H(t—t)e()dr' . (5.6)
Top
The differentiation of (5.6) with respect to time yields a set of first-order differential equations for the memory
variables:
. D,7 . 1
My=———¢&——M,. (5.7)
T(;p TO']?
Anelasticity can thus be modelled by simultaneously sloving the momentum equation, a modified stress-strain
relation and a set of N ordinary differential equations for the memory variables M,. The memory variables
are formally independent of the elastic parameter C,. This formulation, proposed by Moczo & Kristek (2005),
gives more accurate results in the case of strong attenuation heterogeneities than the classical formulation by
Robertsson et al. (1994).
Generalising equations (5.5) and (5.7) to the case of a three-dimensional and anisotropic medium with radial
symmetry axis is straightforward. The component-wise stress-strain relation in the absence of dissipation is
given by the following set of equations:

O = (K —2/3) (& + €pp + €99) + 21L&+ c(€p + Egg) (5.8a)
Opp = (K —2/3) (& + €00 + €p9) + 219y + CErr +a(€go + Epp) (5.8b)
0o = (K —2u/3)(&+ €00 + €pp) +2UEgp +CEpr +a(egg + €¢¢) (5.8¢)
Grp =2(1+b)erg (5.8d)
o =2(U+D)erg (5.8¢)
Opg = 2UUEpg (5.8f)

We introduced the bulk modulus k = A + % U because it is — in contrast to the Lamé parameter A — physically
interpretable.! The transition to the dissipative medium is now made by analogy:

! There is, to the best of my knowledge, no physical interpretation of A. The unphysical nature of this parameter
becomes most apparent through the fact that the Q factor associated with A, denoted by Q,, can be negative for
positive 0, and Q. Thus, if there were a physical process, e.g. an elastic wave, that depended only on A and p, then
this process would go hand in hand with a continuously growing elastic energy.
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G, = {K‘r(l + 85k Tic) — %ur(l +surﬂ)] (& +E00 +Epg) + 20 (1 + 54 T ) + (€00 + €99)
N 2 N 4 N
i Y (K + KP4 K) =S Y (MEP+MY0) + S, Y My (5.92)
p=1 p=1 p=1
Gop = {K’r(l + 5k Ti) — %ur(l +surﬂ)] (& +E00+€pp) + 20 (1 +5uTu)Epg + cErr+al(og + Epp)
N 2 N 4 N
¥ K,p);l (K;’+K,?" +K;f¢) - 5ur,§’1 (M,’,’+M,‘fe) n gur;M,‘f‘P (5.9b)

Goo = {Kr(l +85kTk) — g“r(l +S,J’L'#)] (& + €00 +€pp) +2Ur (1 + 54Ty ) €go + cErr +a(€go +Epp)

N 2 N 4 N
r 60 r 660
Y (K + K+ K) = Su Y (M +M3%) +Su, Y M (5.9¢)
p=1 p=1 p=1
N
Grp = 20r (1 + 54Ty ) Erp + 2bErg + 201, Y, MY (5.9d)
p=1
N
Sro = 20 (1 + 5, Tu ) Erp + 2bErg + 201, Y MTP (5.9¢)
p=1
N
G50 = 20r (1 + 5. Tu) g0 + 211, Y, MY° (5.9

p=1

For equations (5.18) we assumed that the parameters a,b and ¢ are not involved in the dissipation of elastic
energy. The memory variables associated with y — denoted by M, — and the memory variables associated
with K — denoted by K,/ — are governed by the first-order differential equations

vii __ DPpuTu, 1

M;; &j— My (5.10)
Top,u Top,u
e D T, 1 ..
K[z}] _ P;K Kéijf K;J (511)
Top,k Top,k

The above description of anelasticity is computationally inexpensive compared to the spatial discretisation of
the equations of motion which account for the largest portion of the computational costs.

5.2 Q and phase velocity dispersion

In seismology there has traditionally been more emphasis on the quality factor Q than on particular stress or
strain relaxation functions. The definition of Q is based on the definition of the complex modulus

oo

(V) =iv / ct)e M dr, (5.12)
0
with v := o +iy and the damping factor ¥ < 0. Then

o) = R (©)

= M (5.13)

For our stress relaxation function defined in equation (5.4) we find
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D,
—P __—A i 14
€ (w) =C, +inC, Tle o () +iB(w), (5.14)

with the real and imaginary parts

N

N D 602 2 D ,OT;
Alw)=C, |1 ———P1 Blw)=CrtY) L. 5.15
(@)= +T21+w2 » B@)=G lelerzv:z ©-19)
Therefore, Q is explicitly given by
N Dpo’tl,T
(1 + X1 szz‘p>
O(w) = " (meapr) (5.16)
p=1\ 1+021Z,
Visco-elastic dissipation implies phase velocity dispersion, where the phase velocity v is defined by
0}
=—. 5.17
Rek (5.17)
The wave number is determined by the dispersion relation
2
w-p
2=— 5.18
Z (5.18)
which follows directly from the one-dimensional wave equation with a spatially invariable C. After some alge-
bra, we find
1 A+VA?+B?
kK?=-pw?——r— 5.19
(Rek)™ =5 po” — 55— (5.19)
and SR
2(A*+B
V= (A"+5) (5.20)

 p(A+VAT+ B

5.3 Q and the loss of elastic energy

The quality factor Q and its most common interpretation is closely related to the loss of elastic energy, that finds
its most prominent expression in the reduction of the displacement amplitude, as the wave progresses in time
and space. To see this, we first write the solution of the scalar wave equation in terms of the real and imaginary
parts of the complex wave number k = k, +ik;:

krx—or)

u(x,t) = uge'! e ki, (5.21)

Equation (5.21) reveals that k; describes the amplitde reduction with increasing propagation distance. Let us
now determine k; explicitly, first in terms of A and B. For k; we find

1 pw?
K= (VA B —A) 5.22
TR + (5.22)
Working under the assumption that Q is large, i.e. B is small, we find the first-order expression

2~ 1 pw?AQ~!

——. 5.23
! 4 A2—|—B2 ( )
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Furthermore, for large Q, we have v ~ A/p, and equation (5.23) simplifies to

(0]
ki=>—, 5.24
20 (5.24)

where we replaced ~ by = for clarity in the following expressions. Based on equation (5.24) we find that

the amplitude reduction is proportional to ex (— 2‘%), and that the elastic energy reduction is proportional to

exp (—%‘) Thus, by progressing from position x to position x4+ A, where A4 is the wavelength, the fractional
energy loss is, correct to first order, given by

E A)—E 2

E(x+A)—E(x) _ 27 , (5.25)

E(x) Q

Equation (5.25) can be interpreted as the definition of the spatial Q. Alternatively, we may substitute x = vz,
and then ask how the energy is reduced during one temporal osciallation cycle, i.e., as we progress from time ¢
to time ¢t + T, where T = Av~! is the period. Then we find, again correct to first order,

E(t+T)—E(t) 2r

— . 5.26
E(r) 0 (526)

This defines the temporal Q.

5.4 Constructing constant-Q models

5.4.1 Continuous case

We are interested in constructing Q models that are approximately independent of frequency for circular fre-
quencies m that are within the absorption band

n<0 ! <, (5.27)

where 71 and 7, are stress-relaxation times that define the boundaries of the absorption band. Constructing such
constant-Q models means to find a set of stress-relaxation times 75, and weights D,, such that Q(®) ~ const
for @ satisfying (5.27). This is a difficult undertaking, which requires a non-linear optimisation of equation
(5.2).

To facilitate our analysis, we make a detour via the case of a continuous distribution of standard-linear solids,
i.e. we generalise equation (5.2) to

C(t)=C, {1 +r/ D(t5)e /% dra] H(t). (5.28)
0
The complex modulus is then
¢ (0)=A(0)+iB(w), (5.29)
with
Alw) =C, 1+’c/mﬂD(r Ydts|, B(w)=C T/W&D(T )dr (5.30)
=0 0 1 + wzfcz)_ o o | — Lr o 1 + COZTCZY (e} ol - .

Choosing
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T, for 71<17%: <D

D(15) = ,
(%o) 0, otherwise
we obtain
1 1 + w*t?
Al@)=C, [1+-tIn | ———=2 5.31
((D) r|: +2T n<1+0)2112>:| 9 ( )
B(w) = C,7 [arctan(®T,) — arctan(7; )] . (5.32)

For m well within the absorption band, we obtain the useful approximations
1
[ORRS 3 T = const. (5.33)

and

; 1
VA % [1 + 70 ln((m'z)} . (5.34)

As desired, Q is approximately constant. Furthermore, the phase velocity increases with increasing frequency.
This result implies that the weights of the relaxation mechanisms in the discrete case, D), should be proportional
to T;;. The parameter 7 controls the numerical value of Q, and the relaxation times 75, control the width of
the absorption band. An example is shown in figure 5.1.

b ti 1 h locit
0.0010 b oiption (1/9) 0.0040 ¥ e BNESE VEOCTY,
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0.0005 |
00000 1 L L L 1 L 00000 I L 1 L L L
10 107 102 10 10° 10? 102 103 10 10° 107 101 10° 10? 102 103
frequency [Hz] frequency [Hz]

Fig. 5.1 Example of a continuous absorption-band model with Q = 1000, 7; = 1-1073 s and 7, = 1-10? s. The frequency-
dependence of 0! and the phase velocity v are shown. This plot was produced using the Python tool Q_cont inuous . py in the
TOOLS directory.

5.4.2 Discrete case

In the case of a discrete superposition of a finite number of relaxation mechanisms, the previous analysis is not
sufficiently accurate because the frequency range considered is usually rather narrow. Therefore, we only take a
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few relaxation mechanisms (typically 2 to 4) with relaxation times 75, and assign initial weights as D), = Tg).
Using a non-linear optimisation we then find optimal 75, and D), such that

N

D,w1s), T
—— == 5.35
p; 1+w’tl, 2’ (-3

within the desired frequency band. For large Q, the relation between Q and 7 is then the same as for the
continuous case:

_ 1
O '~ -1nm. (5.36)
2
Figure 5.2 shows an example.
absorption (1 hase velocit
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Fig. 5.2 Example of a discrete absorption-band model with a constant target Q = 100 in the frequency range 1-1073-1-102 Hz,
which is indicated by red vertical lines. The number of relaxation mechanisms is N = 3. This plot was produced using the Python
tool Q_discrete.py in the TOOLS directory.






Chapter 6
Absorbing boundaries

Restricting the considered spatial domain to only a part of the true physical domain in the interest of computa-
tional efficiency, introduces unrealistic boundaries. If not treated adequately, the reflections from the artificial
boundaries dominate the numerical error. The most widely used solutions for this problem fall into two cate-
gories: absorbing boundary conditions and absorbing boundary layers.

Absorbing boundary conditions are usually based on paraxial approximations of the wave equation. Early appli-
cations of this technique to finite-difference modelling can be found in Clayton & Engquist (1977) or in Stacey
(1988). Along the artificial boundary the wave equation is replaced by one of its paraxial approximations of
order n, typically not higher than one or two. The reflection coefficient then behaves as (sin ¢)", where ¢ is the
angle of incidence. Absorbing boundary conditions therefore become inefficient for large angles of incidence
in general and for surface waves in particular. Moreover, they suffer from numerical stability problems.
Absorbing boundary layers are regions near the unphysical boundaries where the wave field is artificially atten-
uated in order to prevent reflections. Cerjan et al. (1985) proposed to multiply the wave field in each time step
with a Gaussian damping function. While this technique proves to be efficient for finite-difference methods, it
leads to unacceptably large boundary layers when high-order methods such as the spectral-element method are
used. Robertsson et al. (1994) suggested that the absorption could be improved through physical dissipation,
i.e., a very low Q inside the boundary layers. This, however, leads to reflections from the boundary layer itself
because low Q values effectively change the elastic properties of the medium.

A comparatively efficient boundary layer technique was introduced by Bérenger (1994), who proposed to mod-
ify the electrodynamic wave equation inside a perfectly matched layer (PML) such that the solutions decay
exponentially with distance, without producing reflections from the boundary between the regular medium and
the PML. Though originally designed for first-order systems of differential equations - such as the elastody-
namic equations in stress-velocity formulation (see e.g. Collino & Tsogka, 2001 or Festa & Vilotte, 2005) -
it has been shown that the method can be extended to second-order systems (Komatitsch & Tromp, 2003).
The classical PML approach leads to a new and generally larger system of differential equations. Therefore,
existing codes have to be substantially modified. This complication can be avoided by using anisotropic per-
fectly matched layers (APML), studied for example by Teixeira & Chew (1997) and Zheng & Huang (1997).
SES3Dimplements the APML, which are described in the following paragraphs.

The elastic wave equation in the frequency domain is given by

iopv(x,w) =V o(x,0)+f(x,0), (6.1a)
iwo(x,0) =E(x,0): Vv(x,0), (6.1b)
iou(x,0) =v(x,m). (6.1¢)

We introduced the symbol Z for the rate of relaxation tensor C in equations (6.1). In a homogeneous and
isotropic medium and when external forces are absent, it is known to have plane wave solutions of the form

u(x,0) = Ae k@)X 6.2)

39
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with either

2 2
2 _pO- 7 X
Allk(ow) and |k(o)||"= At 2 (P-wave) or (6.32)
2 2
ALlk(@) and [[k(@)|?= % - ‘:’—2 (S-wave). (6.3b)

Our goal is to modify (6.1) such that it allows for plane wave solutions that decay exponentially with distance,
say for example, in increasing z direction. For this, the cartesian coordinate z is replaced by a new variable
7 :=Z(x,7%,(x)), such that the resulting solutions are

u(x,0) = Ae k@)X~ fr)z (6.4)

for z > 0 and some function f that depends on the particular choice of ¥.. Choosing f(¥;)|.<o = 0 will leave
the solution in z < 0 unchanged. We use the coordinate transformation

Z
fi= / r(x,y,2)d7 . 6.5)
0

Outside the perfectly matched layer, that is in our case for z < 0, we require Z = z or equivalently ,(x) = 1.
To obtain exponentially decaying plane waves also in the remaining coordinate directions, the transformations
x — % and y — ¥ are defined analogously. Replacing the derivatives d,, d, and d; in (6.1a) by the derivatives dx,
dy and d;, gives the following set of equations,

iopve =7 100+ 00+ 7 0.0, (6.6a)
iopvy =7 000+ ' Oy0y + ¥ 0.0, (6.6b)
ivpv, =7, '00 47, ' 0y0y + 7 0.0 (6.6¢)

Note that the divergence in equation (6.1a) is interpreted as a left-divergence in equations (6.6). Multiplication
by % %Y yields

10VR YV = % Y2 0xOxx + Vi ¥eOy Opx + Y Y07 Ocx » (6.7a)
10%%%:Vy = 1% Y:0x0x + Y 1.0, 0py + Y %0:0xy (6.7b)
iw'yx')/y}/z"z = ')’ﬂ’zgxo-xz + %cyzaycyz + YXYyaszz . (6.7¢)

The products ¥;¥; on the left-hand sides of (6.7) can be placed under the differentiation if ¥, depends only on x,
7, only on y and ¥; only on z. We may then write the new version of (6.1a) as

i0yyyy=V-oMm, (6.8)
with the definition
' 0 0
oPml .= %l O y;l 0 |-o=%npKrA -o. (6.9)
0 0 y!

Since (6.1a) and (6.8) are very similar, the anisotropic perfectly matched layers can be implemented with
relative ease by slightly modifying pre-existing codes. It is noteworthy at this point that 6P™ is in general not
symmetric.

In the next step we consider the constitutive relation. Based on (6.1b) and (6.1c) we find

o™ =y oy = vy Y Eyudaur. (6.10)
k=1
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Again replacing d, d, and d; by ds, dy and o, yields
3
of™ = rpry “Z_‘,l B Y Ot (6.11)
For convenience we define a new strain tensor ™ as
elflml = mym,;laxku,, (6.12)

which finally leads to our modified version of the wave equation:

i0pY Y Yvi = Z 8xjoﬁml, (6.13a)
ml > ml
von =Y, Ejugy (6.13b)
k=1
™ = 1y (6.13¢c)

The source term in (6.13) is omitted because the PML region will usually be chosen such that the sources are
inside the regular medium and not inside the PML.

To demonstrate that exponentially decaying plane waves are indeed solutions of (6.13) we consider a homo-
geneous and isotropic medium. For simplicity, we restrict the analysis to the case ¥, = ¥, = 1, ¥, = const # 1.
Assuming a plane wave solution of the form

u(x, 0) = Ae iketka) (6.14)

the problem reduces to finding the dispersion relation k = k(). The Christoffel equation resulting from the
combination of (6.13) with (6.14) is

V22 + vy 2 0 (v2 =) (keky 7 1) Ay Ay
0 V(K2 + K2 0 Ay | =@ | A (6.15)
(V2 =) (keky 7o 1) 0 V22 Y2 vk A, A,
Non-trivial solutions exist only if either
Y = oy (6.162)
or
kY = otv? (6.16b)

are satisfied. Equations (6.16a) and (6.16b) are the dispersion relations inside the PML. The resulting plane
wave solutions are ) )
u,(x, 0) = Age 1@lsinoFrzcos0)/vs A (K, 0,k )T (6.17a)

for the S wave and ) '
U, (X, 0) = A, e 1OsIngFTrzcos)ve A (k0 k)T (6.17b)

for the P wave. The variable ¢ denotes the angle of incidence. One may now define the coordinate stretching
variable ;. There are in principle no restrictions other than ¥, = 1 outside the PML. We use

14 %
F(x) =14 (6.18)

Inserting (6.18) into (6.17) yields
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us/p(x’ (0) — As/p efia)(x sing+zcos@)/vsp e*(dzZCOSQ))/VS/p. (6.19)

The exponential decay is therefore frequency-independent in the case of incident body waves. A frequency-
dependent decay can be expected for dispersive waves such as surface waves. However, waves with an angle
of incidence, ¢, close to /2 will decay slower than waves with an angle of incidence close to 0. It should
be noted that the example of a homogeneous and isotropic medium with constant 7, is oversimplified. Since
analytical solutions for more complex models are usually unavailable, the efficiency of the APML technique
must be tested numerically.

With the exception of the corners of the model!, the damping regions at the x, y and z boundaries do not overlap.
We therefore find

ajaj = alz&j (620)
and 0+ a+ant
io+a,+ay,+a
BB = (6.21)

The resulting equations of motion in the frequency domain are now

3
iop (io+a,+ay+a;)u Z 0B (6.22a)
P 3
m
(io+a)ol" =) i Eiuel™, (6.22b)
k=1
io slflm] (io+ax+ay+a; —ag) Oy uy . (6.22¢)
Transforming into the time domain, finally yields
p 8 ui+p (ax+ay+a;)ou; = Z ij Gﬁml (6.23a)
1 1 > 1
g0l +aich = Y Eiuroey (6.23b)
k=1
el™ = 0,y + (ax + ay+a. —ay) dy 1y, (6.23¢)
or in tensor notation:
pdtu+ptr(a)du=V.cPm, (6.24a)
t
doP™ +a.cPm = / Z(t—1):deP(1)dr, (6.24b)
0,eP™ = 9, Vu+ (Itr(a) —a) - Vu, (6.24¢)
where a is defined as
a. 0 0
a:=|0a, 0 |. (6.25)
0 0 a,

The gradients in equation (6.24c) are left-gradients. The choice of ¥ as inversely proportional to w leads to
relatively simple differential equations that can be marched forward in time explicitly. Different definitions of

I There is, to the best of my knowledge, no PML variant where the corners are treated adequately. In the corners
two or more PMLs overlap, and it is not immediately clear what the consequences are. In fact, numerical experiments
show that the instability tends to start in the corners. This suggests that PML methods might be improved substantially
through the construction of absorbing corners where elastic waves do indeed decay.
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% generally result in temporal convolutions and therefore lead to integro-differential equations that are more
difficult to solve, at least in the time domain.
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