K-Nearest Neighbour Classifier

Izabela Moise, Evangelos Pournaras, Dirk Helbing
Reminder

Supervised data mining
✓ Classification
→ Decision Trees
K-Nearest Neighbour (kNN) Classifier
Classification steps

1. **Training** phase: a model is constructed from the training instances.
 → classification algorithm finds relationships between predictors and targets
 → relationships are summarised in a *model*

2. **Testing** phase: test the model on a test sample whose class labels are known but not used for training the model

3. **Usage** phase: use the model for classification on new data whose class labels are unknown
Instance-based Classification

Main idea:

Similar instances have similar classification

- no clear separation between the three phases of classification
- also called lazy classification, as opposed to eager classification
Eager vs Lazy Classification

Eager

- Model is computed **before** classification
- Model is **independent** of the test instance
- Test instance **is not** included in the training data
- Avoids too much work at classification time
- Model is not accurate for each instance

Lazy

- Model is computed **during** classification
- Model is **dependent** on the test instance
- Test instance **is** included in the training data
- High accuracy for models at each instance level
k-Nearest Neighbor (kNN)

Learning by analogy:

Tell me who your friends are and I’ll tell you who you are

→ an instance is assigned to the **most common** class among the instances **similar** to it

1. how to measure similarity between instances
2. how to choose the most common class
How does it work?

1. Initialization, define k
2. Compute distance (test instance, each training instance)
3. Sort the distances
4. Take k nearest neighbors
5. Apply simple majority

Class
How does it work?

1. Initialization, define k
2. Compute distance (test instance, each training instance)
3. Sort the distances
4. Take k nearest neighbors
5. Apply simple majority
6. Class
Comparing Objects

→ **Problem**: measure similarity between instances
- different types of data: numbers, colours, geolocation, booleans etc.

✓ **Solution**: convert all features of the instances into numerical values
- represent instances as vectors of features in an n-dimensional space
Comparing Objects

→ **Problem**: measure similarity between instances

vs. text similarity

- different types of data: numbers, colours, geolocation, booleans etc.

✓ **Solution**: convert all features of the instances into numerical values

- represent instances as vectors of features in an n-dimensional space
Comparing Objects

→ Problem: measure similarity between instances vs. text similarity

• different types of data: numbers, colours, geolocation, booleans etc.

✓ Solution: convert all features of the instances into numerical values

• represent instances as vectors of features in an n-dimensional space
Comparing Objects

→ **Problem**: measure similarity between instances vs. text similarity

- different types of data: numbers, colours, geolocation, booleans etc.

✓ **Solution**: convert all features of the instances into numerical values

- represent instances as vectors of features in an n-dimensional space
Comparing Objects

→ **Problem**: measure similarity between instances vs. text similarity

- different types of data: numbers, colours, geolocation, booleans etc.

 ✓ **Solution**: convert all features of the instances into numerical values

- represent instances as vectors of features in an n-dimensional space
An Example:

- **Closeness** is defined in terms of the *Euclidean* distance between two examples.
 - The Euclidean distance between $X = (x_1, x_2, x_3, \ldots, x_n)$ and $Y = (y_1, y_2, y_3, \ldots, y_n)$ is defined as:
 \[D(X, Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \]

- Distance (John, Rachel) = \[\sqrt{((35-41)^2 + (95-215K)^2 + (3-2)^2)}\]
Distance Metrics

1. Euclidean Distance

\[D(X, Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \]

2. Manhattan Distance

\[D = \sum_{i=1}^{n} |x_i - y_i| \]

3. Minkowski Distance

\[D = \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{1/p} \]
Choosing k

- Classification is sensitive to the correct selection of k
- If k is too small \Rightarrow overfitting
 - Algorithm performs too good on the training set, compared to its true performance on unseen test data

small k?
larger k?
Choosing k

- Classification is sensitive to the correct selection of k
- if k is too small \Rightarrow overfitting
 \Rightarrow algorithm performs too good on the training set, compared to its true performance on unseen test data

small k? \Rightarrow less stable, influenced by noise
larger k? \Rightarrow less precise, higher bias
Choosing k

- Classification is sensitive to the correct selection of k
- if k is too small \Rightarrow overfitting
 - algorithm performs too good on the training set, compared to its true performance on unseen test data

small k? \rightarrow less stable, influenced by noise
larger k? \rightarrow less precise, higher bias

$k = \sqrt[n]{n}$
Pros and Cons

Pros:

✓ simple to implement and use
✓ robust to noisy data by averaging k-nearest neighbours
✓ kNN classification is based solely on local information
✓ the decision boundaries can be of arbitrary shapes
Pros and Cons

Cons:

× curse of dimensionality: distance can be dominated by irrelevant attributes
× $O(n)$ for each instance to be classified
× more expensive to classify a new instance than with a model