Volunteering under population uncertainty

Fabian Winter, Adrian Hillenbrand

Max Planck Institute for Research on Collective Goods, Bonn
MPRG “Mechanisms of Normative Change”

Tuesday 31st May, 2016
Diffusion of Responsibility in the Volunteer’s Dilemma Game (Diekmann, 1985)

- 38 observers (N=38)
- Everyone wants to see Kitty being rescued (benefit b)
- Calling the police is costly, but the costs are small (cost c)

<table>
<thead>
<tr>
<th>other cooperators:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperate</td>
<td>b-c</td>
<td>b-c</td>
<td>b-c</td>
<td>b-c</td>
</tr>
<tr>
<td>Defect</td>
<td>0</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

- 39 equilibria, 38 pure and 1 mixed
- mixed equilibrium: call police with probability p^*
A model of Diffusion of Responsibility

\[\hat{p} = 1 - \left(\frac{c}{b} \right) \frac{N}{N-1} \]

\[p^* = 1 - \left(\frac{c}{b} \right) \frac{1}{N-1} \]
In many cases decision makers are not aware of the number of other players

- Barbecue at the park
- writing a Wikipedia article
- private call for stem cell donation
- ...
The theoretical literature on population uncertainty

Bertrand Halevy, Milchtaich (2005), Ritzberger (2009)

Contest Myerson & Wärneryd (2006), Lim, Matros (2009)

Coordination Makris (2007, 2009)

Cooperation no theory
Population uncertainty and cooperation – Experimental evidence

- sequential CPR and PPG, results mixed

DG Kim (wp, 2015)
- Population uncertainty \rightarrow lower cooperation (linear PGG)
- Higher $N_{min} \rightarrow$ lower cooperation
- more uncertainty \rightarrow more cooperation

Ioannou, Makris (wp, 2015)
- Lower coordination rate under population uncertainty
Does population uncertainty influence behavior in the cooperation problems?

- Theory (it does)
- Experiment (it does)

Potential mechanisms:

- Perceived pivotality (no)
- Risk aversion (no)
Volunteer’s Dilemma Game (Diekmann, 1985)

<table>
<thead>
<tr>
<th>other cooperators:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperate</td>
<td>b-c</td>
<td>b-c</td>
<td>b-c</td>
<td>b-c</td>
</tr>
<tr>
<td>Defect</td>
<td>0</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

\[\Gamma = \langle N, (A_i)_{i \in N}, (v_i)_{i \in N} \rangle \]

Population uncertainty can be manipulated via spread \(s \):

\[N \sim \mathcal{U}(N_e - s, N_e, N_e + s), s \in \mathbb{N} : 0 \leq s < N_e \]
Volunteering under certainty

\[N \sim \mathcal{U}(N_e - s, N_e, N_e + s), s \in \mathbb{N} : 0 \leq s < N_e \]

Case 1: The standard VoD, N is certain and common knowledge

- \(s = 0 \)
- \(N \sim \mathcal{U}(N_e) \)
- N asymmetric pure-strategy equilibria
- one symmetric mixed strategy equilibrium

\[p_c^* = 1 - \left(\frac{c}{b} \right)^{\frac{1}{N-1}} \]
Volunteering under uncertainty

\[N \sim \mathcal{U}(N_e - s, N_e, N_e + s), s \in \mathbb{N} : 0 \leq s < N_e \]

Case 2 (low uncertainty): \(s = 1, N_e = 3 \)

- \(N \sim \mathcal{U}(2, 3, 4) \)
- symmetric pure-strategy equilibria for very low \(c \) and \(s = N_e - 1 \)
- one symmetric mixed strategy equilibrium

\[p^* = p \quad \text{s.t.} \quad \frac{1}{3}(1 - p)^{n-s-1} + \frac{1}{3}(1 - p)^{n-1} + \frac{1}{3}(1 - p)^{n+s-1} = \frac{c}{b} \]
Predictions

high costs (c/b = .9)

predicted volunteering rate for different Ne

spread s around Ne

low costs (c/b = .1)

predicted volunteering rate for different Ne

spread s around Ne
Treatments

certainty: $N_e = 3, c/b = .5, s = 0$

low uncertainty: $N_e = 3, c/b = .5, s = 1 \rightarrow N \sim U(2, 3, 4)$

high certainty: $N_e = 3, c/b = .5, s = 2 \rightarrow N \sim U(1, 3, 5)$
Predictions

intermediate costs \((c/b = .5)\)

<table>
<thead>
<tr>
<th>Spread of (N_c) around (N_c)</th>
<th>Predicted Volunteering Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>certain ((N=3))</td>
<td>.29</td>
</tr>
<tr>
<td>low uncertainty (2,3,4)</td>
<td>.31</td>
</tr>
<tr>
<td>high uncertainty (1,3,5)</td>
<td>.39</td>
</tr>
</tbody>
</table>
Volunteer’s Dilemma game (working on a project)

- one-shot
- between-subjects
- subjects know expected N_e and spread s

<table>
<thead>
<tr>
<th>certain</th>
<th>$N = 3$ revealed</th>
<th>Choice</th>
<th>Beliefs</th>
<th>Payoff</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncertain</td>
<td>Choice</td>
<td>Beliefs</td>
<td>$N \in {3 - s, 3, 3 + s}$ revealed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results
Are you pivotal?

“How many of the other cooperated in your group?”
Is it important that *YOU* are pivotal?

“We replace your choice with someone else’s choice. How many subjects are cooperating in your group now?”

![Graph showing the number of volunteers if I am replaced under certain, low uncertainty, and high uncertainty conditions.](image_url)
my pivotality= (\# volunteers + me) – (\# volunteers if I am replaced)

\[
\tilde{x} = -0.15 \\
ci(-0.39/0.09)
\]

\[
\tilde{x} = -0.31 \\
ci(-0.64/0.02)
\]

\[
\tilde{x} = -0.38 \\
ci(-0.58/0.17)
\]
Behavioral Mechanism: Risk-Aversion

(Crosetto, Fillippin, 2013)
Summary

• Volunteer’s Dilemma with population uncertainty
• Cooperation rate (weakly) higher under population uncertainty
• Higher expected number of other volunteers in uncertain
 → Subjects overestimate their importance under uncertainty
• a higher feeling of influence plays a role
• risk aversion does not
benefit b, cost c, p is probability to cooperate of others, x is number of other cooperators. s is the spread, n is the mean, we assume mean-preserving-spread

FOC: $b - c = b(Prob(x \geq 1)) = bf(n, s, p)$

$$f(n, s, p) = q_1(1-(1-p)^{n-s-1}) + q_2(1-(1-p)^{n-1}) + q_3(1-(1-p)^{n+s-1})$$

(The right hand side of the above equation becomes sth like $b*1-b*...$).

Simplified:

$$q_1(1-p)^{n-s-1} + q_2(1-p)^{n-1} + q_3(1-p)^{n+s-1} = \frac{c}{b}$$

For $s = 0$ and $q_1, q_3=0$ this collapses to the standard formula.

In the experiment we have $q_1 = \frac{1}{3}$
In the experiment we have $q_1 = q_2 = q_3 = \frac{1}{3}$

$$\frac{1}{3}(1 - p)^{n-s-1} + \frac{1}{3}(1 - p)^{n-1} + \frac{1}{3}(1 - p)^{n+s-1} = \frac{c}{b} \quad (1)$$

Looking at this:

- $(1 - p)^z$ is convex in z

→ the above equation 1 is a convex combination and therefore always higher than $(1 - p)^{n-1}$.

→ The lhs of equation 1 is higher in the uncertain case compared to the certain case for each! p.

→ The lhs is decreasing in p for a given n.

→ The equilibrium level p is always higher under uncertainty (siehe Graphik auf deiner Tafel unten rechts ;))