Groundwater usage: Game theory and empirics

Caleb Kocha & Heinrich H. Naxa

aCOSS, ETH Zürich

Human Dimensions of Environmental Risks
Monte Verità, Ascona, Switzerland

May 25th 2017
Structure of groundwater usage: Common-pool resource dilemma

Shared

Individual decisions

Key points:
- Individual primarily values what he can *extract*
- Private cost does not reflect *‘public cost/ externalities’*
Groundwater situation in the High Plains Aquifer

- One of the largest aquifer systems in the world.
- 8% of the aquifer depleted. [Scanlon et al., 2012]
- 35% of the southern HPA exhausted in the next 30 years. [Scanlon et al., 2012]
One research question for today

Q: How does (micro) farmers’ ‘strategic’ interactions relate with patterns of (macro) common-pool exploitation?

Structure of talk:
1. Literature review: Game theory vs. case studies
2. Empirical analysis of micro-behavior
3. Counterfactuals
One research question for today

Q: How does (micro) farmers’ ‘strategic’ interactions relate with patterns of (macro) common-pool exploitation?

Structure of talk:
1. Literature review: Game theory vs. case studies
2. Empirical analysis of micro-behavior
3. Counterfactuals
One research question for today

Q: How does (micro) farmers’ ‘strategic’ interactions relate with patterns of (macro) common-pool exploitation?

Structure of talk:
1. Literature review: Game theory vs. case studies
2. Empirical analysis of micro-behavior
3. Counterfactuals
Tragedy of the commons — early literature

- Hotelling [1931, p. 138]: products/supplies from shared resource “...are [sold] too cheap and are begin sold too rapidly”

- Levhari and Mirman [1980]: first game-theoretic model capturing how resource users behave as they anticipate their participation in depletion
 - Repeated game [Shapley, 1953]
 - Usage ‘today’ decreases stock levels ‘tomorrow’
Tragedy of the commons — early literature

- Hotelling [1931, p. 138]: products/supplies from shared resource “…are [sold] too cheap and are begin sold too rapidly”
 - *
 - **
- Levhari and Mirman [1980]: first game-theoretic model capturing how resource users behave as they anticipate their participation in depletion
 - Repeated game [Shapley, 1953]
 - Usage ‘today’ decreases stock levels ‘tomorrow’
Tragedy of the commons — early literature

- Hotelling [1931, p. 138]: products/supplies from shared resource “... are [sold] too cheap and are begin sold too rapidly”

- Levhari and Mirman [1980]: first game-theoretic model capturing how resource users behave as they anticipate their participation in depletion
 - Repeated game [Shapley, 1953]
 - Usage ‘today’ decreases stock levels ‘tomorrow’
Tragedy of the commons — early literature

- Hotelling [1931, p. 138]: products/supplies from shared resource “... are [sold] too cheap and are begin sold too rapidly”

- Levhari and Mirman [1980]: first game-theoretic model capturing how resource users behave as they anticipate their participation in depletion
 - Repeated game [Shapley, 1953]
 - Usage ‘today’ decreases stock levels ‘tomorrow’
Tragedy of the commons — early literature

- Hotelling [1931, p. 138]: products/supplies from shared resource “…are [sold] too cheap and are begin sold too rapidly”

- Levhari and Mirman [1980]: first game-theoretic model capturing how resource users behave as they anticipate their participation in depletion
 - Repeated game [Shapley, 1953]
 - Usage ‘today’ decreases stock levels ‘tomorrow’
Tragedy of the commons — early literature

- Hotelling [1931, p. 138]: products/supplies from shared resource “… are [sold] too cheap and are begin sold too rapidly”

- Levhari and Mirman [1980]: first game-theoretic model capturing how resource users behave as they anticipate their participation in depletion
 - Repeated game [Shapley, 1953]
 - Usage ‘today’ decreases stock levels ‘tomorrow’

![Diagram](image)
Tragedy of the commons — early literature

- Hotelling [1931, p. 138]: products/supplies from shared resource “... are [sold] too cheap and are begin sold too rapidly”

- Levhari and Mirman [1980]: first game-theoretic model capturing how resource users behave as they anticipate their participation in depletion
 - Repeated game [Shapley, 1953]
 - Usage ‘today’ decreases stock levels ‘tomorrow’
Tragedy of the commons — early literature

- Hotelling [1931, p. 138]: products/supplies from shared resource “... are [sold] too cheap and are begin sold too rapidly”

- Levhari and Mirman [1980]: first game-theoretic model capturing how resource users behave as they anticipate their participation in depletion
 - Repeated game [Shapley, 1953]
 - Usage ‘today’ decreases stock levels ‘tomorrow’
Tragedy of the commons — early literature

- Hotelling [1931, p. 138]: products/supplies from shared resource “... are [sold] too cheap and are begin sold too rapidly”

- Levhari and Mirman [1980]: first game-theoretic model capturing how resource users behave as they anticipate their participation in depletion
 - Repeated game [Shapley, 1953]
 - Usage ‘today’ decreases stock levels ‘tomorrow’

 Prediction: over-usage — the more a user conserves, the more others will over-exploit

\[
g^0 \quad \quad \quad g^1 \quad \quad \quad g^2
\]

\[
a = (a_1, \ldots, a_n)
\]
Prediction: Game theory vs. case studies

Observation: the game-theoretic literature predicts strategic substitutes / free-riding / negative interaction effects

\[\frac{\partial (\text{my optimal action})}{\partial (\text{others' actions})} < 0 \]

Same observation made in several extensions, including Dutta and Sundaram [1993], Negri [1989], Mirman and To [2005], Mirman and Santugini [2014], among others.
Predictions: Game theory vs. case studies

Observation: the game-theoretic literature predicts strategic substitutes / free-riding / negative interaction effects

\[
\frac{\partial (\text{my optimal action})}{\partial (\text{others’ actions})} < 0
\]

- Same observation made in several extensions, including Dutta and Sundaram [1993], Negri [1989], Mirman and To [2005], Mirman and Santugini [2014], among others
Predictions: Game theory vs. case studies

Observation: the game-theoretic literature predicts strategic substitutes / free-riding / negative interaction effects

\[
\frac{\partial (\text{my optimal action})}{\partial (\text{others' actions})} < 0
\]

Same observation made in several extensions, including Dutta and Sundaram [1993], Negri [1989], Mirman and To [2005], Mirman and Santugini [2014], among others
Yet, case studies suggest the contrary...

... positive interaction effects

- Kerr [1991, Shared geothermal reservoir]: cited that firms observing rivals over-use incites further over-usage

- Alexander [1982, Sri Lankan fishery]: fisherman react to others’ over-capture by also over-capturing

- Empirical evidence for *race to fish*: over-fish in anticipation of rival fisherman also over-fishing

- Possible 20% increase in annual industry revenue if policies are designed around strategic interactions
Yet, case studies suggest the contrary...

... **positive interaction effects**

- Kerr [1991, Shared geothermal reservoir]: cited that firms observing rivals *over-use incites further over-usage*

- Alexander [1982, Sri Lankan fishery]: fisherman react to others’ over-capture by also over-capturing

- Empirical evidence for *race to fish*: *over-fish in anticipation of rival fisherman also over-fishing*

- Possible 20% increase in annual industry revenue if policies are designed around strategic interactions
Yet, case studies suggest the contrary...

... **positive interaction effects**

- Kerr [1991, Shared geothermal reservoir]: cited that firms observing rivals *over-use incites further over-usage*

- Alexander [1982, Sri Lankan fishery]: fisherman react to others’ over-capture by also over-capturing

- Empirical evidence for *race to fish*: *over-fish* in anticipation of rival fisherman also *over-fishing*

- Possible 20% increase in annual industry revenue if policies are designed around strategic interactions
Yet, case studies suggest the contrary...

... positive interaction effects

- Kerr [1991, Shared geothermal reservoir]: cited that firms observing rivals over-use incites further over-usage

- Alexander [1982, Sri Lankan fishery]: fisherman react to others’ over-capture by also over-capturing

- Empirical evidence for race to fish: over-fish in anticipation of rival fisherman also over-fishing

- Possible 20% increase in annual industry revenue if policies are designed around strategic interactions
Difference with our study:

- We can directly estimate interaction effects
- We do not rely on latent variable estimator for stock, but include groundwater levels directly
- No ‘race to fish’ effect: irrigation farming is a more consistent decision

\[\frac{\partial \text{(my optimal action)}}{\partial \text{(others’ actions)}} < 0 \]
Negative vs. Positive interaction effects?

Difference with our study:

- We can directly estimate interaction effects
- We do not rely on latent variable estimator for stock, but include groundwater levels directly
- No ‘race to fish’ effect: irrigation farming is a more consistent decision

\[
\frac{\partial (\text{my optimal action})}{\partial (\text{others’ actions})} < 0
\]
Negative vs. Positive interaction effects?

Difference with our study:

- We can directly estimate interaction effects
- We do not rely on latent variable estimator for stock, but include groundwater levels directly
- *No ‘race to fish’ effect: irrigation farming is a more consistent decision*

\[
\frac{\partial (\text{my optimal action})}{\partial (\text{others’ actions})} < 0
\]
Negative vs. Positive interaction effects?

Difference with our study:

- We can directly estimate interaction effects
- We do not rely on latent variable estimator for stock, but include groundwater levels directly
- No ‘race to fish’ effect: irrigation farming is a more consistent decision

\[
\frac{\partial \text{(my optimal action)}}{\partial \text{(others’ actions)}} < 0
\]
Empirical analysis

Game theoretical predictions \leftrightarrow Data
Our large-scale dataset

Individual usage data
- Upper Big Blue (UBB) District, NE:
 - 15% of NE agriculture
 - 2% of US agriculture
- Well-per-well extraction information for 2008 – 2014
 - ~100,000 data points

Geological data
- Groundwater tables across UBB for 2008 – 2014
- Individual characteristics: soil type, specific yield, evapotranspiration, precipitation, yearly rainfall, and transmissivity
Empirical analysis

Structure of empirical data

- **Individual attributes**, X_i: land-size (l_i), well-depth (d_i), transmissivity (α_i), soil-type (s_i)
- **Seasonal attributes**, Y^t: rainfall (R^t) & temp. (T^t)
- **Individual & seasonal attributes**, G^t_i: groundwater (G^t_i) and changes in levels ($\Delta G^t_i = G^t_i - G^{t-1}_i$)
- **Interaction effects**: i’s water-usage influenced by neighbors’ (N_i) water-usage

\[
\bar{w}^t_{N_i} = \frac{1}{|N_i|} \sum_{j \in N_i} w_j^t
\]

Regression equation:

\[
w_i^t = \gamma_i + \beta^x \cdot X_i + \beta^y \cdot Y_i + \beta^g \cdot G^t_i + J \cdot \bar{w}^t_{N_i} + \epsilon_{it}
\]

\[
\epsilon \sim \mathcal{N}(0, \sigma^2)
\]
Structure of empirical data

- **Individual attributes,** \mathbf{X}_i: land-size (l_i), well-depth (d_i), transmissivity (α_i), soil-type (s_i)

- **Seasonal attributes,** \mathbf{Y}_t: rainfall (R^t) & temp. (T^t)

- **Individual & seasonal attributes,** \mathbf{G}_t: groundwater (G^t_i) and changes in levels ($\Delta G^t_i = G^t_i - G^{t-1}_i$)

- **Interaction effects:** i’s water-usage influenced by neighbors’ (N_i) water-usage

\[
\bar{w}^t_{N_i} = \frac{1}{|N_i|} \sum_{j \in N_i} w^t_j
\]

Regression equation:

\[
w^t_i = \gamma_i + \beta^x \cdot \mathbf{X}_i + \beta^y \cdot \mathbf{Y}_i + \beta^g \cdot \mathbf{G}_t + J \cdot \bar{w}^t_{N_i} + \varepsilon_{it}
\]

\[
\varepsilon \sim \mathcal{N}(0, \sigma^2)
\]
Structure of empirical data

- **Individual attributes**, X_i: land-size (l_i), well-depth (d_i), transmissivity (α_i), soil-type (s_i)
- **Seasonal attributes**, Y^t: rainfall (R^t) & temp. (T^t)
- Individual & seasonal attributes, G^t_i: groundwater (G^t_i) and changes in levels ($\Delta G^t_i = G^t_i - G^{t-1}_i$)
- Interaction effects: i’s water-usage influenced by neighbors’ (N_i) water-usage

$$\bar{w}^t_{N_i} = \frac{1}{|N_i|} \sum_{j \in N_i} w^t_j$$

Regression equation:

$$w^t_i = \gamma_i + \beta^x \cdot X_i + \beta^y \cdot Y_i + \beta^g \cdot G^t_i + J \cdot \bar{w}^t_{N_i} + \varepsilon_{it}$$

$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$
Empirical analysis

Structure of empirical data

- **Individual attributes**, X_i: land-size (l_i), well-depth (d_i), transmissivity (α_i), soil-type (s_i)
- **Seasonal attributes**, Y_i: rainfall (R_i) & temp. (T_i)
- **Individual & seasonal attributes**, G_i: groundwater (G_i) and changes in levels ($\Delta G_i = G_i - G_i^{-1}$)
- **Interaction effects**: i’s water-usage influenced by neighbors’ (N_i) water-usage

\[
\frac{w_{\bar{N}_i}^t}{|N_i|} = \sum_{j \in N_i} w_j^t
\]

Regression equation:

\[
w_i^t = \gamma_i + \beta^x \cdot X_i + \beta^y \cdot Y_i + \beta^g \cdot G_i + J \cdot \overline{w}_{\bar{N}_i}^t + \varepsilon_{it}
\]

\[
\varepsilon \sim \mathcal{N}(0, \sigma^2)
\]
Structure of empirical data

- **Individual attributes**, X_i: land-size (l_i), well-depth (d_i), transmissivity (α_i), soil-type (s_i)
- **Seasonal attributes**, Y^t: rainfall (R^t) & temp. (T^t)
- **Individual & seasonal attributes**, G^t_i: groundwater (G^t_i) and changes in levels ($\Delta G^t_i = G^t_i - G^{t-1}_i$)
- **Interaction effects**: i’s water-usage influenced by neighbors’ (N_i) water-usage

$$w^t_{N_i} = \frac{1}{|N_i|} \sum_{j \in N_i} w^t_j$$

Regression equation:

$$w^t_i = \gamma_i + \beta^x \cdot X_i + \beta^y \cdot Y_i + \beta^g \cdot G^t_i + J \cdot w^t_{N_i} + \varepsilon_{it}$$

$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$
Empirical analysis

Regression design

Structure of empirical data

- **Individual attributes**, X_i: land-size (l_i), well-depth (d_i), transmissivity (α_i), soil-type (s_i)
- **Seasonal attributes**, Y^t: rainfall (R^t) & temp. (T^t)
- **Individual & seasonal attributes**, G^t_i: groundwater (G^t_i) and changes in levels ($\Delta G^t_i = G^t_i - G^{t-1}_i$)
- **Interaction effects**: i’s water-usage influenced by neighbors’ (N_i) water-usage

\[
\bar{w}^t_{N_i} = \frac{1}{|N_i|} \sum_{j \in N_i} w^t_j
\]

Regression equation:

\[
w^t_i = \gamma_i + \beta^x \cdot X_i + \beta^y \cdot Y_i + \beta^g \cdot G^t_i + J \cdot \bar{w}^t_{N_i} + \varepsilon_{it}
\]

\[
\varepsilon \sim N(0, \sigma^2)
\]
(1/2) Strategy to handle endogeneity

- a.k.a. reflection problem [Manski, 1993]: neighbors affect neighbors
 \[w_i^t = \cdots + J_i \cdot w_{N_i}^t \quad \Rightarrow \quad J_i \text{ is biased} \]

We use Bramoullé et al. [2009, Proposition 1] to identify \(J_i \):

- Network of farmers is **irreducible**
 - (any node reachable in finite \# steps)
- Network is **transitive**, i.e., \(j \in N_i \) does not imply \(i \in N_j \)
 \[\Rightarrow \quad J_i \text{ is identifiable} \]
(1/2) Strategy to handle endogeneity

- a.k.a. reflection problem [Manski, 1993]: neighbors affect neighbors
 \[w_i^t = \cdots + J_i \cdot \bar{w}_{N_i}^t \] \[\rightarrow J_i \text{ is biased} \]

We use Bramoullé et al. [2009, Proposition 1] to identify \(J_i \):

- Network of farmers is **irreducible**
 - (any node reachable in finite \# steps)
- Network is **transitive**, i.e., \(j \in N_i \) does not imply \(i \in N_j \)

\[\rightarrow J_i \text{ is identifiable} \]
(1/2) Strategy to handle endogeneity

- a.k.a. reflection problem [Manski, 1993]: neighbors affect neighbors
 - $w_i^t = \cdots + J_i \cdot \overline{w}_{N_i}^t \quad \rightarrow \quad J_i$ is biased

We use Bramoullé et al. [2009, Proposition 1] to identify J_i:

- Network of farmers is **irreducible**
 - (any node reachable in finite number of steps)
- Network is **transitive**, i.e., $j \in N_i$ does not imply $i \in N_j$
 $\rightarrow \quad J_i$ is identifiable
Two-stage regression, as suggested by Bramoullé et al. [2009]

(1) Regression to identify (exogenous) \bar{w}_t^i:
 - Define A be the $N \times N$ network of farmers
 - Let $Z_t^i = (X_t^i, Y_t^i, G_t^i)$ be collection of attributes
 - Then $(A^2Z_t^i, A^3Z_t^i, \ldots)$ are valid instruments for identification

 ... i’s neighbors-neighbors’ (and so forth) attributes do not directly affect i’s water-usage

(2) Include the identified \tilde{w}_t^i to explain w_t^i
(2/2) Strategy to handle endogeneity

Two-stage regression, as suggested by Bramoullé et al. [2009]

1. Regression to identify (exogenous) \bar{w}_i^t:
 - Define A be the $N \times N$ network of farmers
 - Let $Z_i^t = (X_i, Y_i^t, G_i^t)$ be collection of attributes
 - Then $(A^2Z_i^t, A^3Z_i^t, \ldots)$ are valid instruments for identification

 ... i’s neighbors-neighbors’ (and so forth) attributes do not directly affect i’s water-usage

2. Include the identified \tilde{w}_i^t to explain w_i^t
(2/2) Strategy to handle endogeneity

Two-stage regression, as suggested by Bramoullé et al. [2009]

1. **Regression to identify (exogenous) \(\bar{w}_i^t \):**
 - Define \(A \) be the \(N \times N \) network of farmers
 - Let \(Z_i^t = (X_i, Y_i, G_i^t) \) be collection of attributes
 - Then \((A^2Z_i^t, A^3Z_i^t, \ldots) \) are valid instruments for identification

 ... \(i \)'s neighbors-neighbors' (and so forth) attributes do not directly affect \(i \)'s water-usage

2. **Include the identified \(\bar{w}_i^t \) to explain \(w_i^t \)
(2/2) Strategy to handle endogeneity

Two-stage regression, as suggested by Bramoullé et al. [2009]

(1) Regression to identify (exogenous) \overline{w}_i^t:
- Define A be the $N \times N$ network of farmers
- Let $Z_i^t = (X_i, Y_t, G_i^t)$ be collection of attributes
- Then $(A^2Z_i^t, A^3Z_i^t, \ldots)$ are valid instruments for identification

... i’s neighbors-neighbors’ (and so forth) attributes do not directly affect i’s water-usage

(2) Include the identified \tilde{w}_i^t to explain w_i^t
Empirical analysis

Regression design

(2/2) **Strategy to handle endogeneity**

Two-stage regression, as suggested by Bramoullé et al. [2009]

(1) Regression to identify (exogenous) \bar{w}_i^t:
- Define A be the $N \times N$ network of farmers
- Let $Z_i^t = (X_i, Y^t, G_i^t)$ be collection of attributes
- Then $(A^2Z_i^t, A^3Z_i^t, \ldots)$ are valid instruments for identification

... i’s neighbors-neighbors’ (and so forth) attributes do not directly affect i’s water-usage

(2) Include the identified \tilde{w}_i^t to explain w_i^t
(2/2) Strategy to handle endogeneity

Two-stage regression, as suggested by Bramoullé et al. [2009]

1. Regression to identify (exogenous) \overline{w}_i^t:
 - Define A be the $N \times N$ network of farmers
 - Let $Z_i^t = (X_i, Y_t, G_i^t)$ be collection of attributes
 - Then $(A^2Z_i^t, A^3Z_i^t, \ldots)$ are valid instruments for identification

 ... i’s neighbors-neighbors’ (and so forth) attributes do not directly affect i’s water-usage

2. Include the identified \tilde{w}_i^t to explain w_i^t
Empirical results $(N = 95, 256)$

<table>
<thead>
<tr>
<th></th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water$_{N_i}^t$ (< 0)</td>
<td>0.6715***</td>
<td></td>
<td>0.6934***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.016)</td>
</tr>
<tr>
<td>Rain$_t$ (< 0)</td>
<td>-0.0178^{***}</td>
<td></td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>(0.0037)</td>
<td></td>
<td>(0.012)</td>
</tr>
<tr>
<td>Temperature$_t^t$ (> 0)</td>
<td></td>
<td>0.0169***</td>
<td>0.0082**</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Land-size$_i$ (< 0)</td>
<td>-0.0766^{***}</td>
<td></td>
<td>-0.1211^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.0040)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Well Depth$_i$ (< 0)</td>
<td>-0.0142^{**}</td>
<td></td>
<td>0.0195***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Transmissivity$_i$ (< 0)</td>
<td>-0.0124^{*}</td>
<td></td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Groundwater$_i^t$ (< 0)</td>
<td>-0.3446^{***}</td>
<td>-0.064^{***}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>ΔGroundwater$_i^t$ (< 0)</td>
<td>0.1350^{***}</td>
<td>0.0195^{***}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>Fixed-effect R^2</td>
<td>0.24</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>Conditional R^2</td>
<td>0.63</td>
<td>0.50</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Empirical results \((N = 95, 256) \)

<table>
<thead>
<tr>
<th></th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water(\text{t}_{N_i} (\leq 0))</td>
<td>0.6715***</td>
<td></td>
<td>0.6934***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.016)</td>
</tr>
<tr>
<td>Rain(\text{t} (\leq 0))</td>
<td>-0.0178***</td>
<td></td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>(0.0037)</td>
<td></td>
<td>(0.012)</td>
</tr>
<tr>
<td>Temperature(\text{t} (> 0))</td>
<td></td>
<td>0.0169***</td>
<td>0.0082***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Land-size(_i (\leq 0))</td>
<td>-0.0766***</td>
<td>-0.1211***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0040)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Well Depth(_i (\leq 0))</td>
<td></td>
<td>-0.0142**</td>
<td>0.0195***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.007)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Transmissivity(_i (\leq 0))</td>
<td>-0.0124*</td>
<td></td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Groundwater(_i (\leq 0))</td>
<td>-0.3446***</td>
<td>-0.064***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>(\Delta)Groundwater(_i (\leq 0))</td>
<td>0.1350***</td>
<td>0.0195***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>Fixed-effect (R^2)</td>
<td>0.24</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>Conditional (R^2)</td>
<td>0.63</td>
<td>0.50</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Empirical results \((N = 95, 256)\)

<table>
<thead>
<tr>
<th></th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water(_t^{N_i} (< 0))</td>
<td>0.6715***</td>
<td></td>
<td>0.6934***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.016)</td>
</tr>
<tr>
<td>Rain(_t (< 0))</td>
<td>−0.0178***</td>
<td></td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>(0.0037)</td>
<td></td>
<td>(0.012)</td>
</tr>
<tr>
<td>Temperature(_t^i (> 0))</td>
<td></td>
<td>0.0169***</td>
<td>0.0082**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Land-size(_i (< 0))</td>
<td>−0.0766***</td>
<td></td>
<td>−0.1211***</td>
</tr>
<tr>
<td></td>
<td>(0.0040)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Well Depth(_i (< 0))</td>
<td>−0.0142***</td>
<td></td>
<td>0.0195***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Transmissivity(_i (< 0))</td>
<td>−0.0124*</td>
<td></td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Groundwater(_t^i (< 0))</td>
<td>−0.3446***</td>
<td></td>
<td>−0.064***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>∆Groundwater(_t^i (< 0))</td>
<td>0.1350***</td>
<td></td>
<td>0.0195***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>Fixed-effect (R^2)</td>
<td>0.24</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>Conditional (R^2)</td>
<td>0.63</td>
<td>0.50</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Empirical results \((N = 95, 256)\)

<table>
<thead>
<tr>
<th></th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water{N{t}}^i ((< 0))</td>
<td>0.6715***</td>
<td></td>
<td>0.6934***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.016)</td>
</tr>
<tr>
<td>Rain^t ((< 0))</td>
<td>−0.0178***</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0037)</td>
<td></td>
<td>(0.012)</td>
</tr>
<tr>
<td>Temperature^t ((> 0))</td>
<td></td>
<td>0.0169***</td>
<td>0.0082**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Land-size_i ((< 0))</td>
<td>−0.0766***</td>
<td>−0.1211***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0040)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Well Depth_i ((< 0))</td>
<td>−0.0142**</td>
<td>0.0195***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Transmissivity_i ((< 0))</td>
<td>−0.0124*</td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Groundwater_i^t ((< 0))</td>
<td>−0.3446***</td>
<td>−0.064***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>ΔGroundwater_i^t ((< 0))</td>
<td>0.1350***</td>
<td>0.0195***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>Fixed-effect (R^2)</td>
<td>0.24</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>Conditional (R^2)</td>
<td>0.63</td>
<td>0.50</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Empirical results \((N = 95, 256)\)

<table>
<thead>
<tr>
<th></th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Water}_{N_i}^t) (< 0)</td>
<td>0.6715*** (0.006)</td>
<td></td>
<td>0.6934*** (0.016)</td>
</tr>
<tr>
<td>(\text{Rain}^t) (< 0)</td>
<td></td>
<td>−0.0178*** (0.0037)</td>
<td>0.0015 (0.012)</td>
</tr>
<tr>
<td>(\text{Temperature}^t) (> 0)</td>
<td></td>
<td>0.0169*** (0.003)</td>
<td>0.0082** (0.004)</td>
</tr>
<tr>
<td>(\text{Land-size}_i) (< 0)</td>
<td>−0.0766*** (0.0040)</td>
<td></td>
<td>−0.1211*** (0.005)</td>
</tr>
<tr>
<td>(\text{Well Depth}_i) (< 0)</td>
<td>−0.0142** (0.007)</td>
<td></td>
<td>0.0195*** (0.005)</td>
</tr>
<tr>
<td>(\text{Transmissivity}_i) (< 0)</td>
<td></td>
<td>−0.0124* (0.004)</td>
<td>0.0017 (0.004)</td>
</tr>
<tr>
<td>(\text{Groundwater}_i^t) (< 0)</td>
<td>−0.3446*** (0.008)</td>
<td>−0.064*** (0.004)</td>
<td></td>
</tr>
<tr>
<td>(\Delta\text{Groundwater}_i^t) (< 0)</td>
<td>0.1350*** (0.003)</td>
<td>0.0195*** (0.003)</td>
<td></td>
</tr>
</tbody>
</table>

Fixed-effect \(R^2\) \(0.24\) \(0.09\) \(0.26\)
Conditional \(R^2\) \(0.63\) \(0.50\) \(0.66\)
Empirical results \((N = 95,256)\)

<table>
<thead>
<tr>
<th></th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water(_{N_i}) (< 0)</td>
<td>0.6715*** (0.006)</td>
<td>0.6934*** (0.016)</td>
<td></td>
</tr>
<tr>
<td>Rain(_t) (< 0)</td>
<td>−0.0178*** (0.0037)</td>
<td>0.0015 (0.012)</td>
<td></td>
</tr>
<tr>
<td>Temperature(_t) (> 0)</td>
<td>0.0169*** (0.003)</td>
<td>0.0082** (0.004)</td>
<td></td>
</tr>
<tr>
<td>Land-size(_i) (< 0)</td>
<td>−0.0766*** (0.0040)</td>
<td>−0.1211*** (0.005)</td>
<td></td>
</tr>
<tr>
<td>Land-size(_i) (< 0)</td>
<td>−0.0142** (0.007)</td>
<td>0.0195*** (0.005)</td>
<td></td>
</tr>
<tr>
<td>Transmissivity(_i) (< 0)</td>
<td>−0.0124* (0.004)</td>
<td>0.0017 (0.004)</td>
<td></td>
</tr>
<tr>
<td>Groundwater(_i) (< 0)</td>
<td>−0.3446*** (0.008)</td>
<td>−0.064*** (0.004)</td>
<td></td>
</tr>
<tr>
<td>∆Groundwater(_i) (< 0)</td>
<td>0.1350*** (0.003)</td>
<td>0.0195*** (0.003)</td>
<td></td>
</tr>
</tbody>
</table>

Fixed-effect \(R^2\) 0.24 0.09 0.26
Conditional \(R^2\) 0.63 0.50 0.66
Empirical results \((N = 95, 256)\)

<table>
<thead>
<tr>
<th>Variable</th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Water}_{N_i}^{t} (< 0))</td>
<td>0.6715*** (0.006)</td>
<td>0.6934*** (0.016)</td>
<td>\n</td>
</tr>
</tbody>
</table>
Empirical analysis

Results

Empirical results \((N = 95, 256)\)

<table>
<thead>
<tr>
<th></th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water(_{Ni}^t) (< 0)</td>
<td>0.6715***</td>
<td>0.6934***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>Rain(_t) (< 0)</td>
<td>−0.0178***</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0037)</td>
<td>(0.012)</td>
<td></td>
</tr>
<tr>
<td>Temperature(_t) (> 0)</td>
<td></td>
<td>0.0169***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>Land-size(_i) (< 0)</td>
<td>−0.0766***</td>
<td>−0.1211***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0040)</td>
<td>(0.005)</td>
<td></td>
</tr>
<tr>
<td>Well Depth(_i) (< 0)</td>
<td>−0.0142**</td>
<td>0.0195***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.005)</td>
<td></td>
</tr>
<tr>
<td>Transmissivity(_i) (< 0)</td>
<td>−0.0124*</td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>Groundwater(_i) (< 0)</td>
<td>−0.3446***</td>
<td>−0.064***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>ΔGroundwater(_i) (< 0)</td>
<td>0.1350***</td>
<td>0.0195***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td></td>
</tr>
<tr>
<td>Fixed-effect (R^2)</td>
<td>0.24</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>Conditional (R^2)</td>
<td>0.63</td>
<td>0.50</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Empirical results \((N = 95, 256)\)

<table>
<thead>
<tr>
<th></th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_i^t) ((< 0))</td>
<td>0.6715***</td>
<td></td>
<td>0.6934***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.016)</td>
</tr>
<tr>
<td>(R_{ain}^t) ((< 0))</td>
<td>−0.0178***</td>
<td></td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>(0.0037)</td>
<td></td>
<td>(0.012)</td>
</tr>
<tr>
<td>(Temperature^t) ((> 0))</td>
<td></td>
<td>0.0169***</td>
<td>0.0082**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>(Land-size_i) ((< 0))</td>
<td>−0.0766***</td>
<td></td>
<td>−0.1211***</td>
</tr>
<tr>
<td></td>
<td>(0.0040)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>(Well Depth_i) ((< 0))</td>
<td>−0.0142**</td>
<td></td>
<td>0.0195***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>(Transmissivity_i) ((< 0))</td>
<td></td>
<td>−0.0124*</td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>(Groundwater_i^t) ((< 0))</td>
<td>−0.3446***</td>
<td>−0.064***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>(\Delta Groundwater_i) ((< 0))</td>
<td></td>
<td>0.1350***</td>
<td>0.0195***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Fixed-effect (R^2)</td>
<td>0.24</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>Conditional (R^2)</td>
<td>0.63</td>
<td>0.50</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Empirical results

(*N* = 95, 256)

<table>
<thead>
<tr>
<th></th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water<sub>i</sub>t (< 0)</td>
<td>0.6715*** (0.006)</td>
<td>0.6934*** (0.016)</td>
<td></td>
</tr>
<tr>
<td>Rain<sub>t</sub> (< 0)</td>
<td>−0.0178*** (0.0037)</td>
<td>0.0015 (0.012)</td>
<td></td>
</tr>
<tr>
<td>Temperature<sub>t</sub> (> 0)</td>
<td>0.0169*** (0.003)</td>
<td>0.0082** (0.004)</td>
<td></td>
</tr>
<tr>
<td>Land-size<sub>i</sub> (< 0)</td>
<td>−0.0766*** (0.0040)</td>
<td>−0.1211*** (0.005)</td>
<td></td>
</tr>
<tr>
<td>Well Depth<sub>i</sub> (< 0)</td>
<td>−0.0142** (0.007)</td>
<td>0.0195*** (0.005)</td>
<td></td>
</tr>
<tr>
<td>Transmissivity<sub>i</sub> (< 0)</td>
<td>−0.0124* (0.004)</td>
<td>0.0017 (0.004)</td>
<td></td>
</tr>
<tr>
<td>Groundwater<sub>i</sub>t (< 0)</td>
<td>−0.3446*** (0.008)</td>
<td>−0.064*** (0.004)</td>
<td></td>
</tr>
<tr>
<td>ΔGroundwater<sub>i</sub>t (< 0)</td>
<td>0.1350*** (0.003)</td>
<td>0.0195*** (0.003)</td>
<td></td>
</tr>
<tr>
<td>Fixed-effect R2</td>
<td>0.24</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>Conditional R2</td>
<td>0.63</td>
<td>0.50</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Empirical results \((N = 95, 256) \)

<table>
<thead>
<tr>
<th></th>
<th>(Neighbor model)</th>
<th>(Controls model)</th>
<th>(Full model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water(_N_i)(< 0)</td>
<td>0.6715*** ((0.006))</td>
<td>0.6934*** ((0.016))</td>
<td></td>
</tr>
<tr>
<td>Rain(t)(< 0)</td>
<td>(-0.0178*** ((0.0037))</td>
<td>0.0015 ((0.012))</td>
<td></td>
</tr>
<tr>
<td>Temperature(t)(> 0)</td>
<td>0.0169*** ((0.003))</td>
<td>0.0082** ((0.004))</td>
<td></td>
</tr>
<tr>
<td>Land-size(_i)(< 0)</td>
<td>(-0.0766*** ((0.0040))</td>
<td>(-0.1211*** ((0.005))</td>
<td></td>
</tr>
<tr>
<td>Well Depth(_i)(< 0)</td>
<td>(-0.0142** ((0.007))</td>
<td>0.0195*** ((0.005))</td>
<td></td>
</tr>
<tr>
<td>Transmissivity(_i)(< 0)</td>
<td>(-0.0124* ((0.004))</td>
<td>0.0017 ((0.004))</td>
<td></td>
</tr>
<tr>
<td>Groundwater(_i)(t)(< 0)</td>
<td>(-0.3446*** ((0.008))</td>
<td>(-0.064*** ((0.004))</td>
<td></td>
</tr>
<tr>
<td>(\Delta)Groundwater(_i)(t)(< 0)</td>
<td>0.1350*** ((0.003))</td>
<td>0.0195*** ((0.003))</td>
<td></td>
</tr>
<tr>
<td>Fixed-effect (R^2)</td>
<td>0.24 ((0.09)</td>
<td>0.26 ((0.09)</td>
<td></td>
</tr>
<tr>
<td>Conditional (R^2)</td>
<td>0.63 ((0.50)</td>
<td>0.66 ((0.50)</td>
<td></td>
</tr>
</tbody>
</table>
Empirical results

\(N = 95, 256 \)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Neighbor model</th>
<th>Controls model</th>
<th>Full model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water(_t) (_N_1) (< 0)</td>
<td>0.6715(***) (0.006)</td>
<td></td>
<td>0.6934(***) (0.016)</td>
</tr>
<tr>
<td>Rain(_t) (< 0)</td>
<td>-0.0178(***) (0.0037)</td>
<td></td>
<td>0.0015</td>
</tr>
<tr>
<td>Temperature(_t) (> 0)</td>
<td></td>
<td>0.0169(***) (0.003)</td>
<td>0.0082(**) (0.004)</td>
</tr>
<tr>
<td>Land-size(_i) (< 0)</td>
<td>-0.0766(***) (0.0040)</td>
<td></td>
<td>-0.1211(***) (0.005)</td>
</tr>
<tr>
<td>Well Depth(_i) (< 0)</td>
<td>-0.0142(**) (0.007)</td>
<td></td>
<td>0.0195(***) (0.005)</td>
</tr>
<tr>
<td>Transmissivity(_i) (< 0)</td>
<td></td>
<td>-0.0124(*)) (0.004)</td>
<td>0.0017</td>
</tr>
<tr>
<td>Groundwater(_i) (_t) (< 0)</td>
<td>-0.3446(***) (0.008)</td>
<td>-0.064(***) (0.004)</td>
<td></td>
</tr>
<tr>
<td>ΔGroundwater(_i) (_t) (< 0)</td>
<td></td>
<td>0.1350(***) (0.003)</td>
<td>0.0195(***) (0.003)</td>
</tr>
</tbody>
</table>

Fixed-effect \(R^2\) | 0.24 | 0.09 | 0.26 |
Conditional \(R^2\) | 0.63 | 0.50 | 0.66 |
(1/2) Who is most prone to positive interaction effects?

- Regression estimated average effect, $\bar{J} = 0.6934^{***}$
 → finer-grained analysis?

Regression:

$$w_i = \gamma_i + \cdots + J_i + \cdots$$

- Allow γ_i and J_i to be drawn from a joint distribution:

\begin{align*}
\text{i’s usage} & \quad \gamma_i = \beta_{\gamma} + \eta_i^\gamma, \quad \begin{pmatrix} \eta_i^\gamma \\ \eta_i^J \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{\gamma}^2 & \sigma_{\gamma} \sigma_{J} \\ \sigma_{\gamma} \sigma_{J} & \sigma_{J}^2 \end{pmatrix}.
\end{align*}

- $\sigma_{\gamma} \sigma_{J}$ indicates correlation between the two parameters
(1/2) Who is most prone to positive interaction effects?

- Regression estimated *average* effect, $\bar{J} = 0.6934^{***}$

 \rightarrow finer-grained analysis?

Regression:

$$w_i^t = \gamma_i + \cdots + J_i + \cdots$$

- Allow γ_i and J_i to be drawn from a joint distribution:

$$\gamma_i = \beta_\gamma + \eta_i^\gamma, \quad \left(\eta_i^\gamma \right) \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_\gamma^2 & \sigma_\gamma \sigma_J \\ \sigma_\gamma \sigma_J & \sigma_J^2 \end{pmatrix} \right).$$

$$J_i = \beta_J + \eta_i^J,$$

i's usage

Neighborhood

- $\sigma_\gamma \sigma_J$ indicates correlation between the two parameters
(1/2) Who is most prone to positive interaction effects?

- Regression estimated *average* effect, $\bar{J} = 0.6934^{***}$
 → finer-grained analysis?

Regression: $w_i^t = \gamma_i + \cdots + J_i + \cdots$

- Allow γ_i and J_i to be drawn from a joint distribution:

 i’s usage $\gamma_i = \beta_\gamma + \eta_i^\gamma$, $J_i = \beta_J + \eta_i^J$, $(\eta_i^\gamma, \eta_i^J) \sim \mathcal{N} ((0, 0), (\sigma_\gamma^2, \sigma_\gamma \sigma_J, \sigma_J^2))$.

- $\sigma_\gamma \sigma_J$ indicates correlation between the two parameters
(1/2) Who is most prone to positive interaction effects?

- Regression estimated *average* effect, $\bar{J} = 0.6934^{***}$
 → finer-grained analysis?

Regression: \[w_i^t = \gamma_i + \cdots + J_i + \cdots \]

- Allow γ_i and J_i to be drawn from a joint distribution:

 \[\begin{align*}
 i's \ usage & \quad \gamma_i = \beta_\gamma + \eta_i^\gamma,
 \quad \left(\eta_i^\gamma \right) \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_\gamma^2 & \sigma_\gamma \sigma_J \\ \sigma_\gamma \sigma_J & \sigma_J^2 \end{pmatrix} \right). \\
 Neighborhood & \quad J_i = \beta_J + \eta_i^J,
 \quad \left(\eta_i^J \right) \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_\gamma^2 & \sigma_\gamma \sigma_J \\ \sigma_\gamma \sigma_J & \sigma_J^2 \end{pmatrix} \right).
 \end{align*} \]

- $\sigma_\gamma \sigma_J$ indicates correlation between the two parameters
Empirical analysis

Results

(1/2) Who is most prone to positive interaction effects?

- Regression estimated *average* effect, $\bar{J} = 0.6934^{***}$
 → finer-grained analysis?

Regression:
$$w_i^t = \gamma_i + \cdots + J_i + \cdots$$

- Allow γ_i and J_i to be drawn from a joint distribution:

 - *i*’s usage
 $\gamma_i = \beta_\gamma + \eta_i^\gamma$
 - Neighborhood
 $J_i = \beta_J + \eta_i^J$

$$\begin{pmatrix} \eta_i^\gamma \\ \eta_i^J \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_\gamma^2 & \sigma_\gamma \sigma_J \\ \sigma_\gamma \sigma_J & \sigma_J^2 \end{pmatrix} \right)$$

- $\sigma_\gamma \sigma_J$ indicates correlation between the two parameters
(1/2) Who is most prone to positive interaction effects?

- Regression estimated *average* effect, $\bar{J} = 0.6934^{***}$
 - finer-grained analysis?

Regression: $w_i^t = \gamma_i + \cdots + J_i + \cdots$

- Allow γ_i and J_i to be drawn from a joint distribution:

 i’s usage $\gamma_i = \beta_{\gamma} + \eta_i^\gamma$,
 Neighborhood $J_i = \beta_{J} + \eta_i^J$, $\begin{pmatrix} \eta_i^\gamma \\ \eta_i^J \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{\gamma}^2 & \sigma_{\gamma J} \\ \sigma_{\gamma J} & \sigma_{J}^2 \end{pmatrix} \right)$.

- $\sigma_{\gamma J}$ indicates correlation between the two parameters

Koch & Nax
Groundwater
May 25th 2017
(2/2) Who is most prone to positive interaction effects?

- Results: higher water-users correlated with stronger reaction to neighbors
 \[\text{Correlation} \left(\gamma_i, J_i \right) = \sigma_\gamma \sigma_J = 0.71 \]
- General evidence that interaction effects work to the detriment of groundwater levels
(2/2) Who is most prone to positive interaction effects?

- **Results:** higher water-users correlated with stronger reaction to neighbors
 \[\text{Correlation} (\gamma_i, J_i) = \sigma \gamma \sigma J = 0.71 \]

- General evidence that interaction effects work to the detriment of groundwater levels
Who is most prone to positive interaction effects?

- **Results:** higher water-users correlated with stronger reaction to neighbors
 \[\text{Correlation}(\gamma_i, J_i) = \sigma_\gamma \sigma_J = 0.71 \]
- General evidence that interaction effects work to the detriment of groundwater levels

![Distribution of strategic effects](image-url)
Counterfactuals (briefly)

How important are neighborhood effects for policy design?
Counterfactual design

- Current discussion: farm-assistant technology
 → tech. influences a farmer’s decision, & not neighbors
- Implementation: prediction groundwater usage if neighborhood effect by p-percent

$$J_i^* = (1 - p) \cdot J_i$$

- $p = 0$ → to baseline, no-intervention
- $p = 1$ → farms operate solely on technology
Counterfactual design

- **Current discussion:** farm-assistant technology
 - tech. influences a farmer’s decision, & not neighbors
- **Implementation:** prediction groundwater usage if neighborhood effect by p-percent

\[J_i^* = (1 - p) \cdot J_i \]

- $p = 0 \rightarrow$ to baseline, no-intervention
- $p = 1 \rightarrow$ farms operate solely on technology
Counterfactual design

- Current discussion: **farm-assistant technology**
 - tech. influences a farmer’s decision, & not neighbors
- Implementation: prediction groundwater usage if neighborhood effect by \(p \)-percent

\[
J_i^* = (1 - p) \cdot J_i
\]

- \(p = 0 \) → to baseline, no-intervention
- \(p = 1 \) → farms operate solely on technology
Counterfactual design

- Current discussion: farm-assistant technology
 → tech. influences a farmer’s decision, & not neighbors

- Implementation: prediction groundwater usage if neighborhood effect by p-percent

\[J_i^* = (1 - p) \cdot J_i \]

- $p = 0$ → to baseline, no-intervention
- $p = 1$ → farms operate solely on technology
Counterfactual design

- Current discussion: **farm-assistant technology**
 → tech. influences a farmer’s decision, & not neighbors

- Implementation: prediction groundwater usage if neighborhood effect by p-percent

$$J_i^* = (1 - p) \cdot J_i$$

- $p = 0 \rightarrow$ **to baseline, no-intervention**
- $p = 1 \rightarrow$ **farms operate solely on technology**
Counterfactual results

\[w_i^t = \cdots + J_i^* \cdot \bar{w}_i^t - \]

Counterfactual results, 2011–2014
Counterfactual results

\[w_i^t = \cdots + J_i^* \cdot \overline{w}_i^t + \cdots \]

Counterfactual results, 2011–2014

- 2011, rain = 22.3in
- 2014, rain = 27.1in

% decrease in UBB groundwater usage
% decrease in neighborhood effects
Counterfactual results

\[w_i^t = \cdots + J_i^* \cdot \bar{w}_i^t - \]

Counterfactual results, 2011–2014

- 2011, rain = 22.3in
- 2012, rain = 6.5in
- 2013, rain = 12.6in
- 2014, rain = 27.1in

% decrease in neighborhood effects vs. % decrease in UBB groundwater usage
Future work

- Why do farmers exhibit positive interaction effects?
 - Which game-theoretic axioms do we critique? (Completeness)
 - ... best-reply convergence to equilibrium [Dindoš and Mezzetti, 2006, Jensen, 2010]
 - Reciprocity [Fehr and Schmidt, 2006], uncertainty heuristics [Tversky and Kahneman, 1974], imitation...

- Richer counterfactual designs
 - Quota policies, forecast groundwater depletion trends based on different policies, etc.

→ Thank you!
Future work

- Why do farmers exhibit positive interaction effects?
 - Which game-theoretic axioms do we critique? (Completeness)
 - ... best-reply convergence to equilibrium [Dindoš and Mezzetti, 2006, Jensen, 2010]
 - Reciprocity [Fehr and Schmidt, 2006], uncertainty heuristics [Tversky and Kahneman, 1974], imitation...

- Richer counterfactual designs
 - Quota policies, forecast groundwater depletion trends based on different policies, etc.

→ Thank you!
References

