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Abstract

Both human-driven global climate change and the widespread energy poverty in low-
and middle-income countries are among the most pressing challenges of our times. This
paper analyzes an intervention that addresses both. Over 750 million people globally
still lack access to electricity. Many of them use kerosene for lighting, a strong global
warming pollutant. In addition, kerosene lights generate indoor air pollution and steep
financial costs for the households. This paper presents experimental evidence from
Kenya on the impact and cost-effectiveness of solar lighting in addressing these issues.
We find that access to a solar light significantly reduces the use of kerosene-fueled
lamps and thus CO2 and black carbon emissions. In addition, we find substantial
private gains for households, of almost 59% lower total household energy expenditures,
and health improvements of about 0.26 standard deviations. While households gain
private returns to buying a solar light, subsidies have a strong impact on take-up. Given
the environmental externalities, distribution of free solar lights in areas with high use
for kerosene lamps may therefore be a cost-effective intervention for CO2 reduction,
while at the same time increasing the welfare of the poor.
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1 Introduction

The global community faces two critical challenges that may seem at odds with each other:

climate change and a lack of access to modern energy for the world’s poor. Over half a

billion people still have no access to electricity in their home. Many of them live in Sub–

Sahara Africa, where only 47% of the population had home electricity in 2019 (Ritchie

et al., 2020). An often-raised concern is that access to energy for these populations would

jeopardize the global goal of fighting climate change. However, this trade-off may not exist in

situations where those without access to electricity rely on energy biomass such as Kerosene

instead, which are particularly detrimental to the global climate. Besides the negative effects

on climate, these fuels are also very expensive for the users and harmful to their health

(Sustainable Energy for All, 2017; World Health Organization, 2016)).

In recent years, prices for solar panels and batteries have decreased dramatically, making

off-grid solar a potential cost-effective solution to provide low-income households with cheap

and clean energy. In particular, small solar lights to replace kerosene-fueled lighting sources

have the potential to reduce emissions, health risks, and household energy expenditures at

very low cost. While these new technologies are very promising, there remain many open

questions as to their effectiveness in practice. The paper sheds light on three issues 1)

The effect of subsidies and of reduced transaction and information costs on demand for

solar lights. 2) The environmental benefits of solar lights through reduced kerosene use and

emissions. 3) The private benefits of solar lights in terms of energy expenditure, health

outcomes, and school performance.

Experiences from other contexts show that engineering projections may overestimate

efficiency gains from novel technologies and that benefits in a real-world setting might be

much more limited (e.g. Allcott and Greenstone, 2012; Davis et al., 2014; Fowlie et al.,

2018).1

This study analyzes both the demand for and impacts of access to solar lights through

a randomized field experiment among over 1,400 households in rural Kenya, where kerosene

was the predominant energy source for lighting. Access to solar lights has large effects on

emissions, and that take-up responds strongly to the price of the lights with a demand curve

1Field experiments on the use of cookstoves in India, Uganda and Senegal have shown that lab tests may
overestimate their effects on health and environmental outcomes, with take-up depending on factors such as
ease of use and maintenance requirements (e.g. Hanna et al., 2016; Beltramo et al., 2019; Bensch and Peters,
2015, 2019).
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remarkably linear, making distribution of free solar lights in such areas a highly cost-effective

intervention for CO2 reductions. The school-based intervention that we evaluate consists of

five treatment arms in which solar lights are offered to randomly selected households at

different price points: market price (USD 9), low subsidy (USD 7), high subsidy (USD 4),

and free. A sub-treatment within the free group consisted of a different, more powerful type

of light. This design allows us to measure the determinants of take-up as well as subsequent

usage and impacts of the lights. We analyze these effects by combining survey evidence with

electronic sensor data on usage, and administrative data on educational outcomes.

We find that demand for solar lights responds strongly to prices. While every household

that was offered a light for free took one, take-up falls to 69% at a price of USD 4, and to

37% and 29% respectively at USD 7 and at the market price of USD 9. The fact that there

was take-up at market price shows that information and transactions costs play a role, as, on

the market, lights had to be bought at stores that were often further away from participants’

homes. This effect is persistent. Five months later, those offered a light at market price

were still 22 percentage points more likely to own a working solar light than households in

the control group participant’s home.

In terms of environmental impacts, access to a solar light reduces kerosene use and

associated emissions substantially. Owning a functioning solar light replaced the use of one

out of two kerosene fueled lamps per household on average. Owning a functioning solar light

reduces a household’s monthly emissions of black carbon (BC) 2 and CO2 by 82.4 grams and

3 kilograms. Taking into account both direct CO2 emissions and the warming effect of BC,

this reduction corresponds to 71.8 kg of CO2-equivalents3 averted per month. Furthermore,

devices that are fueled by kerosene can emit high amounts of fine particulate matter, owning

a solar light reduces particulate matter by 85.7 g of PM2.5 in a month. These are very

large reductions in percentage terms: 50.1% for BC, CO2 , and for PM2.5 emissions. If all

households in Kenya that use kerosene as their main source of lighting—35.0% according

2“Black carbon exists as particles in the atmosphere and is a major component of soot. BC is not
a greenhouse gas. Instead it warms the atmosphere by intercepting sunlight and absorbing it. [...] BC
particles have a strong warming effect in the atmosphere, darken snow when it is deposited, and influence
cloud formation. In addition to having an impact on climate, anthropogenic particles are also known to have
a negative impact on human health.” Zhongming et al. (2011)

3A carbon dioxide equivalent or CO2-equivalent, abbreviated as CO2-eq is a measure used to compare
the emissions from different greenhouse gases on the basis of their global-warming potential, by converting
amounts of other gases to the equivalent amount of carbon dioxide with the same global warming potential
(European Environment Agency, 2001).
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to KIHBS (2018)—received a solar light and experienced a similar reduction in kerosene

consumption, this would translate into a reduction of 2.7 mega tonnes of CO2-equivalent

per year. This corresponds to around 3.66% of Kenya’s total greenhouse gas emissions and

14.60% of Kenya’s energy emissions in 2014.

In terms of private benefits, the solar lights lead to a reduction in monthly household

energy expenditure by USD 2.44, or 59%. Solar lights significantly reduce households’ energy

expenditure, but subsidies may be needed for the net present value to be positive in the case

of the larger light. In addition to the financial savings, we find beneficial health effects, both

with regards to eyes-related and respiratory symptoms. Using standardized questions from

The European Community Respiratory Health Survey II, we observe a significant reduction

in eye-related symptoms of about 0.23 and 0.26 standard deviations for students and their

guardians respectively. Respiratory symptoms improve as well, but are only statistically

significant for students (0.28 standard deviations). With regards to schooling, access to

solar lights increases students’ self-reported homework completion and school attendance,

but also reduces their sleeping hours. We do not find an effect on test scores.

The results from this study add to the literature on several dimensions. First, we add by

systematically studying the impact of price discounts, information and reduced transaction

costs on demand and, particularly, differential usage of solar lights. Regarding the distribu-

tion mechanism, our study is similar to Aevarsdottir et al. (2017), who randomly allocate

subsidies for the purchase of solar lights through the school to a subset of 2,067 households

in rural Tanzania. Subsidies were given at 0%, 25%, 50% and 100% of the market price.

The impact of subsidies and reduced information and transaction costs is also investigated

in Grimm et al. (2020) and Mekonnen et al. (2021), who both find that although households

are willing to allocate a significant share of their budget to electricity, their willingness-

to-pay for a solar light remains below the market price. Our results contrast the findings

from other studies on preventive health products, which observe that take-up drops strongly

when moving from a free offer to even a small fee (Kremer and Miguel, 2007; Ashraf et al.,

2010; Cohen and Dupas, 2010; Kremer et al., 2011). Similarly, Berkouwer and Dean (2020)

and Fowlie and Meeks (2021) find steep drops in the demand for improved cookstoves and

energy-efficient light bulbs, respectively.

Second, to the best of our knowledge, we are the first to provide experimental evidence

evaluating the climate-related impact of solar lights in terms of emissions reduction and cost
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effectiveness of solar lights. Grimm et al. (2017) show that solar lights reduced consumption

of kerosene and dry-cell batteries. Additionally, Wagner et al. (2021) found that the replace-

ment of a kerosene lamp by a Solar Home System kit is associated with a reduction of about

36.8 kg CO2-eq annually. However, in our paper we go one step further and include black

carbon in our calculations to get a more accurate estimate for the climate-related impact of

solar lights.

Third, we developed sensor technology to confirm survey results with actual usage data.

Fourth, we add on several aspects to the literature on individual benefits of solar lights.

In terms on impact on educational outcomes, there is a widespread belief among practitioners

in the solar field that solar lights can help improve children’s school outcomes (Esper et al.,

2013). The idea is that better quality lighting and additional lighting time will allow children

to study more and under better conditions at home. However, the evidence so far is mixed.

Our results are consistent with previous studies which found no effects of access to solar

light on test scores at the individual level (Furukawa, 2014; Kudo et al., 2019a; Sharma et

al., 2019; Stojanovski et al., 2020)4. Hassan and Lucchino (2016), in contrast, observe an

increase in math grades for students randomly selected to receive a free solar light. They

argue that this is likely driven by an increase in co-studying of students at the school after

sunset.

The literature on health outcomes of owing and using solar lights provides mixed results.

Aevarsdottir et al. (2017), find an improvement in respiratory health among households that

did not own a solar light prior to their intervention. Kudo et al. (2019b) observe a reduction

of eye related problems of 10-14 percentage points, but no significant impact for respiratory

symptoms. Furukawa (2017) reports a reduction of 0.25 standard deviations for a broad

index of symptoms related to air quality. Both of the latter studies only consider children’s

health outcomes. Our study adds by showing that the eye-related symptoms improve not

only for children but also for their guardians. In contrast, Grimm et al. (2017) find no

statistically significant effect on health indicators for students or guardians. More broadly, in

the literature on improved cookstoves, many randomized studies find no significant or lasting

impact on health outcomes (Hanna et al., 2016; Calzada and Sanz, 2018). Two exceptions

identify comparatively large effects: Bensch and Peters (2015) estimate a reduction of 6–7

4Furukawa (2014) found that solar lamps lowered test scores but these estimates weren’t statistically
significant.
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percentage points in the prevalence of respiratory and eye diseases, compared to an incidence

rate of 10–12% in the control group. Berkouwer and Dean (2020) find an improvement of 0.53

standard deviations in a general health index. However, the estimates from both studies only

apply to the primary cookstove user and do not extend to other members of the household.

Additionally, there is consistent evidence that shows that exposure to PM2.5 increases the risk

of aggravating asthma episodes, and respiratory infections.5 In the long term, authors have

identified an increase in respiratory and cardiovascular mortality (including lung cancer). In

fact, Mehta et al. (2013) found that each 10 µg/m3 increase in long-term ambient PM2.5

concentrations is associated with a 12% increased risk of acute lower respiratory infections

incidence. Furthermore, Kumar and Foster (2007) found that one standard deviation increase

in current PM2.5 results in a 0.28 standard deviation reduction in lung function.

Lastly, we add to the literature that shows that using solar lights reduces household’s

energy expenditure in addition to reducing total household expenditure by a small amount

(Grimm et al., 2017; Aklin et al., 2017; Kudo et al., 2019a; Aevarsdottir et al., 2017; Mahajan

et al., 2020).

The remainder of the paper is organized as follows. Section 2 describes the context,

intervention, data, and estimation strategy of our study. Section 3 presents results. We

conclude with a discussion of our results in Section 4.

2 Background and Study Design

2.1 Context

Light Use in Kenya

In Kenya, at the time of the study about half of the rural population relied mostly on kerosene

for lighting (KIHBS, 2018). Only 17% powered their light mainly through the electric grid,

22% used solar lights, and 14% alternative sources such as fire, wood and batteries. Today,

still 14.95% of Kenyans uses mostly kerosene for lighting6. The rural population relies even

more on kerosene, since fewer households are connected to the electric grid.

Correspondingly, 93.3% of participants in our study used kerosene as the main source

5See Lam et al. (2012a); Miller and Xu (2018); Rajak and Chattopadhyay (2020); Ortega et al. (2021)
6This information was obtained from the Kenya Continuous Household Survey Programme (KCHSP).

The KCHSP was implemented in 2019 by the Kenyan National Bureau of Statistics (KNBS) and is a
representative sample of Kenya (Kenya National Bureau of Statistics, 2020)
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for lighting prior to the intervention. At the same time, solar lights were not always easily

available. 47.2% of respondents in the control group mentioned at baseline that they had

never seen a solar light being sold before. Of those who had seen a light being sold, only

8.6% had seen it in their own village, while 69.0% saw it at the closest market center and

23.8% only in a larger city.

There are different types of kerosene lamps, with different emissions. The most common

are tin lamps and kerosene lanterns (see Figure J.1 for pictures). In the control group at the

time of the endline survey, 76.3% of households used only tin lamps during the preceding

month, 19.4% used both tin lamps and kerosene lanterns, 0.8% used only kerosene lanterns.

This distinction is relevant because emissions per liter of kerosene used are much larger in

tin lamps compared to kerosene lanterns.

Environmental Impacts of Kerosene Emissions

Kerosene fueled lamps produce different types of emission: carbon dioxide (CO2), particulate

matter 2.5 (PM2.5) and black carbon (BC). PM2.5 are inhalable fine particles with a diameter

of 2.5 micrometers or less and BC is a type of PM2.5. Up to 95% of the PM2.5 that kerosene

lanterns emit is BC (Lam et al., 2012b). PM2.5 is particularly detrimental to health while

both CO2 and BC contribute to global warming.

Measuring the impact of kerosene fueled lamps on climate change requires two steps:

first, calculating emissions per liter of kerosene burned by type of light; second, converting

the emission components into CO2-equivalents. For the first step, we draw on information

from a study conducted in Kenya’s neighboring country Uganda, which measured emissions

of CO2, PM2.5, and BC per kilogram of kerosene burnt in tin lamps and kerosene lanterns

(Lam et al., 2012b). The authors find that emissions amount to 2,770g of CO2, 93g of PM2.5,

and 90g of BC per kilogram of kerosene for tin lamps, and 3,080g of CO2, 13g of PM2.5, and

9g of BC per kilogram of kerosene for kerosene lanterns. About 0.8 kilograms of kerosene

correspond to one liter.7

The second step requires converting BC into CO2-equivalents. There are several differ-

ences in the impact of CO2 and BC on climate change. BC acts both fast and locally. It

has much stronger effects even though it remains in the atmosphere only for about one week

7Kerosene sold in Kenya must have a density in kg/dm3 of between 0.771 and 0.830 (TotalEnergies, 2022),
so we take the mid-point.
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whereas CO2 remains in the atmosphere for up to a century (Nichols et al., 2009). Never-

theless, the effects of BC can continue for years, due to the thermal inertia in the climate

system (IPCC et al., 2021).

The impact of BC emissions on climate varies substantially across world regions (Bond

et al., 2011). This is in part because BC can affect the climate through multiple channels.

One of these channels is the albedo effect. Through this channel, BC emissions can reduce

warming by darkening snow and ice surfaces and therefore reducing the surfaces’ ability to

reflect sunlight (and therefore heat) back into the atmosphere. However, this albedo effect

dramatically increases in regions close to the poles of the planet. Reducing BC in areas with

little ice and snow, such as Eastern Africa, is therefore particularly positive for reducing

global warming. Although BC is the fourth-most important driver of climate change after

carbon dioxide, ozone and methane, it has often been neglected in the literature on energy-

efficient appliances (Nichols et al., 2009; Lam et al., 2012b).

Taking all potential impacts of BC emissions into account, Bond et al. (2011) estimate

that BC generated through fuel-burning activities in Eastern Africa contributes 836 times

more to global warming than CO2 per kg of emissions does during 100 years. We thus

multiply the BC emissions by this factor before adding them to the direct CO2 emissions to

get total CO2-eq emissions. However, these estimates are subject to a substantial degree of

uncertainty, and we will therefore report a range of estimates in our results section.

Other Impacts of Kerosene Emissions

Kerosene-fueled lighting also has adverse health effects through indoor air pollution, espe-

cially of PM2.5. There is a broad consensus that indoor air pollution is the most important

environmental health risk factor worldwide (World Health Organization, 2016). While much

of the indoor air pollution stems from cooking the role of lighting is less clear.8

Different studies have explored the role of solar lights in the educational performance.

Several authors emphasize that study time after school improve the understanding of the

content taught at school. In this sense, the lack of a proper light reduces the opportunities

to study at nighttime, which could potentially make the learning process more challenging,

and which in turn would affect the student’s performance (Kudo et al., 2019a; Dufur et al.,

8According to World Health Organization (2021) “each year, 3.2 million people die prematurely from
illness attributable to the household air pollution caused by the inefficient use of solid fuels and kerosene for
cooking”.
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2013; Alstone, 2010; Dang, 2007; Cooper et al., 2006)

Studies that explore these hypothesis report similar results to our findings: Furukawa

(2014), Kudo et al. (2019a) and Hassan and Lucchino (2016) found an increase on study

hours but only the latter found an impact in math score while Stojanovski et al. (2020)

found no impact at all9.

Alternatives to Solar Lights and the Energy Transition in Kenya

Increasing electricity access constitutes globally one of the main goals of this century, and

accordingly much effort has been dedicated to achieving this. The expected benefits go be-

yond the obvious; a recent study from Uganda found positive causal impacts of increased

village-level electricity access on livelihood, specifically increasing asset wealth (Ratledge et

al., 2022). However, despite substantial efforts electrification rates in rural Kenya remain

low (Lee et al., 2016). Moreover, in rural and remote areas where low electricity access is still

prevalent, expanding the access to the electric grid tends to be much more costly, especially

so in Africa (Bos et al., 2018; Golumbeanu and Barnes, 2016). Furthermore, experimen-

tal evidence indicates that there is a negative relationship between price and demand for

electric grid connections (Lee et al., 2020). Thus, off-grid energy systems have been increas-

ingly examined as possible alternatives, largely with much success. Renewable-based off-grid

alternatives have been proven to be a viable option for rural electrification (Barnes, 2011;

Rahman et al., 2013a; Hansen and Xydis, 2020) and have additionally been shown to be

rather cost-effective (Come Zebra et al., 2021; Rahman et al., 2013b). Similar evaluations

in Kenya provide further evidence to the benefits of renewable off-grid technologies like so-

lar, wind, hydro, or hybrid in providing access to electricity cost-effectively in rural areas

(Moner-Girona et al., 2019; Zeyringer et al., 2015).

Several constraints to achieving universal electrification in Kenya have been identified, one

of which is high system costs (Osiolo et al., 2017). Furthermore, factors that partly determine

the adoption of grid-electricity include proximity to installed transformers in public facilities,

9Furthermore, the design of our study allows us to rule out potential explanations that other authors
have posed as potential reasons that explain the lack of effect. Furukawa (2014) mentioned that the lack of
proper charging and flickering light may explain the null statistical significance impact on test scores despite
finding an increase in the study time. In our study, at endline, over 19% of the guardians that own a solar
light reported having trouble charging the device, or having a flickering light and/or find the light to be
too weak. These authors also mention the possibility of the decrease in sleep time may affect rather than
enhance children’s learning process. We report the latter outcome in Table 9 Column 5)
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electricity prices, income, high poverty rates, and energy technology (Dominguez et al., 2021;

Osiolo et al., 2017; Tesfamichael et al., 2020).

Between 2000 and 2020 several initiatives and agencies have been established by the

Kenyan government with support from international development partners, with the aim of

increasing electrification, such as the 2006 Energy Act along with the Rural Electrification

Authority (REA) in 2006, or the Kenya National Electrification Strategy (KNES) in 2018

(Alupo, GA, 2018; Dominguez et al., 2021; Osiolo et al., 2017; Tesfamichael et al., 2020).

These programmes included among other initiatives subsidies for both capital cost of grid

extension and connection fees for rural households as well as restructuring of the energy

sector (Osiolo et al., 2017). In combination, these programmes were very successful, the

electricity access rate from both grid and off-grid options reaching 75% in 2018, compared

to only 32% in 2014 (Alupo, GA, 2018). Though there is still a vast gap between urban and

rural electricity access and consumption, the access to electricity in rural regions of Kenya

has also risen from 29% in 2015 to 62.7% in 2020 (World Bank Data, 2021; Alupo, GA,

2018). The public subsidies played a key role in working towards achieving universal access

in Kenya (Osiolo et al., 2017).

In the meantime, off-grid solutions increased in use significantly (IRENA, 2022). Inter-

estingly, grid-access does not seem to be negatively correlated to solar home system (SHS)

use (Lay et al., 2013). Furthermore, an analysis of East-Asia has shown that compared

to grid-connected households, households with microgrids or SHSs consume moderately to

significantly less kerosene (World Resources Institute, 2016). This might be due to the un-

reliability of the grid. Despite the extension of grid-access in Kenya, the Kenyan electric

grid is plagued by frequent issues, including black-outs, breakdowns, voltage drops and ac-

companying long restoration times (Moner-Girona et al., 2019). To cope with these issues

caused by the unreliability of the grid and electricity supply, Kerosene consumption tends

to substantially increase again over the years by 22.3% on average despite grid-connection,

though still only to about half as much as those without any electricity access (Dominguez et

al., 2021). Meanwhile, a study of solar systems in sub-Saharan Africa indicates that as solar

and battery costs decline, there’s potential for decentralized solar systems to be a realistic

alternative to grid access regarding the provision of high reliability electricity at competitive

cost across many regions of sub-Saharan Africa (Lee and Callaway, 2018).
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Policy Environment

Our intervention took place during a large increase in the use of solar lights. The Inter-

national Renewable Energy Agency estimates that between 2010 and 2018, the number of

people worldwide who used basic solar lights grew from around one to 130 million (IRENA,

2020). Off-grid renewables have attracted both public and private funding during this time,

with approximately USD 200 million focused on solar lights (IEA et al., 2021). Though the

off-grid solar market faced substantial challenges from the COVID-19 pandemic, in the sec-

ond half of 2020 the global sales of off-grid solar lighting increased again by 19% compared

to the first half of the year (IEA et al., 2022). In 2021 investments in the global off-grid solar

sector grew by 44% reaching a record USD 450 million (GOGLA, 2022a).

The government of Kenya has stated its intent to eliminate kerosene for household energy

consumption (Government of Kenya, 2012, 2015b). In response to the Paris Agreement, the

government announced plans to reduce CO2 emissions by 30% compared to a “business as

usual” scenario by 2030 (Government of Kenya, 2015a). While some attempts have been

made in this direction, efforts so far have been generally deemed lacking, especially in 2022

after removal of the petrol subsidy while merely reducing the diesel and kerosene subsidies

(rfi, 2022; Clean Cooking Alliance, 2022). This policy change by the Kenyan government

isn’t only economically criticized, but also because of its environmental consequences, incen-

tivizing adulteration, and the use of dirty fuels (Institute of Economic Affairs Kenya, 2022;

University of Liverpool News, 2022; Shupler et al., 2022).

Pre-pandemic, prices of solar lanterns had been declining substantially, as costs declined

thanks to increased competition, innovation, and efficiency (GOGLA, 2016, 2018, 2020).

However, the decreasing price trend has been reversed and affordability of solar lights gener-

ally impeded by the COVID-19 pandemic as well as Russia’s invasion of the Ukraine, causing

supply chain disruptions and product component shortages (GOGLA, 2022b,c).

2.2 Intervention

We conducted a randomized field experiment in rural Kenya to investigate both the demand

for solar lights and their potential environmental, financial, educational and health benefits.

The intervention took place in primary schools (grades 5-8) in Western Kenya, in partnership

with SolarAid, a large distributor of portable solar lights in Kenya.

Baseline surveys were conducted separately with students and with one of their parents
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or other guardian. The lights were distributed at the end of the guardians’ baseline survey.10

The process was as follows: first, baseline surveys were conducted among students at the

school.11 As part of the survey, students were asked to provide the name and phone number

of the guardian primarily responsible for them (i.e. a parent or other primary caregiver).

They then received a paper slip inviting the guardian to come to the school for their baseline

interview, which took place several days later. Travel costs for guardians to the school were

reimbursed.

The intervention was randomized along two dimensions: price and type of light. The

former allows us the estimate the price elasticity of demand. The latter allows us to undertake

a cost-benefit analysis of a basic light vs. a larger light. The different treatment arms are as

follows (see Figure E.1 for a graphical outline of the study design).

Treatment Groups

1. Free basic light (N=200): Guardians in this group received a free solar light directly

at the end of the guardian baseline survey. This light (1)–(4) provides up to 27 lumens

and has a battery life of 8.1 hours at maximum brightness (Lighting Global, 2012).

For comparison, a simple kerosene tin lamp provides around 8 lumens and a kerosene

lantern around 45 lumens (Mills, 2003). Participants were informed about the warranty

of the basic solar light.

2. Voucher with high subsidy (N=209): Participants in this group received a voucher to

purchase a solar light for USD 4 (compared to the market price of USD 9). Surveyors

showed participants the light and read a script containing basic information about the

light,12 before informing them that they could redeem the voucher at the school within

4–6 weeks. The voucher contained the respondent’s name and was not transferable.

We conducted audits to ensure that respondents did not sell or trade their vouchers.

3. Voucher with low subsidy (N=201): This treatment was identical to that of group 2,

10Prior to start of the intervention, the research team obtained a research permit as well as IRB approval
from both Maseno University in Kenya and ETH Zurich. Finally we presented the study to the ministry of
education and received their permission and a letter of support to work with schools in the selected regions.
Participation in the study was voluntary for the selected schools as well as the selected households. All
schools that we approached wanted to participate in the study.

11Prior to the quantitative part of the study, we conducted semi-structured interviews and focus groups
with parents (and or caretakers), and teachers from schools on regions different from the ones in the study.

12See Appendix Section I.
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except that the voucher was to purchase a light at the school for USD 7, i.e. with a

USD 2 subsidy.

4. Voucher at market price (N=200): This treatment was identical to that of groups 2 and

3, except that the voucher was to purchase a light for USD 9, i.e. there was no subsidy.

In addition to helping us estimating the price elasticity of demand, this treatment

also helps estimating the effect of the reduction in information and transaction costs

provided by the intervention, in comparison to the control group who could purchase

a similar light at the same price in the market.

5. Free larger light (N=200): This treatment was identical to that of group 1, but the

participants received a different type of light. This larger light provided up to 98

lumens, with a battery life of 5.4 hours at maximum brightness and was enabled for

mobile phone charging (Lighting Global, 2014). The market price of this light was

USD 24.13

6. Control group (N=400): This group participated in the surveys in the same way as the

other groups, but received no opportunity to receive a light through the school. As in

the group 1, at the end of the baseline survey, the participants were informed about

the warranty of the basic solar light.

Guardians received their treatment at the end of the baseline survey. The process to

communicate the treatment offers to participants was as follows. Surveyors gave respondents

a “lucky number” to participate in a lottery, which was similar to other lottery games

common in Kenya.14 Respondents then sent a text message with the lucky number to

participate in the lottery and immediately received a text message back, announcing whether

they won a free solar light, had the opportunity to purchase a light at a given price during the

following weeks, or did not win anything. As similar types of text-message games are common

in Kenya, this process was easy to understand for participants and made it intuitively clear

that the allocation was random.15

13The brand name of the basic light was “Sun King Econ”, the one of the larger light “Sun King Mobile”.
Both lights are quality assured by Lighting Global, a World Bank Group initiative. See Appendix Figure
J.2 for images.

14This lucky number and the corresponding treatment assignment were determined in advance, but it
appeared to participants that they were generated on the spot.

15We tested this process in several pilots, discussed it with participants, and made sure the lottery was
well understood.
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Study Sample

1,410 students were randomly selected from grades 5–7 in 20 randomly selected public schools

in the subcounties Nambale and Teso-South in Western Kenya.16 For households with more

than one student in grades 5–7, we randomly selected one student per household to be in

the sample.17 The final sampling frame includes 3,360 students, out of which 1,410 were

randomly selected into either one of the five treatment arms or the control group. The final

estimation sample is bounded by the availability of information regarding the ownership a

functioning solar light reported by the guardian, that is, by the participation of the guardian

at the endline survey.

Randomization

Randomization of treatments was done prior to the baseline surveys, stratified at the school

level. We randomly selected up to 80 students from each school to participate in the study,

depending on the size of the school. For every school, 20 students were randomly assigned

to the control group, 10 to a free basic light and 10 to a free larger light. Up to 40 of the

remaining students were assigned to the voucher treatments.18 For the 13.4% of cases in

which students initially selected for the study did not attend school on the day of survey,

we randomly selected replacement students.19 Since assignment was stratified at the school

levels and not all schools have the same proportion of participants across treatments, we

include school fixed effects in all estimations.

Attrition

Despite our efforts to mitigate attrition by following up with participants at their home,

some students and guardians were lost to the study at some stage.

1. Student endline attrition: A student whose guardian took part in the endline survey

but who did not participate in the endline survey.

2. Guardian endline attrition: A guardian who did not take part in the endline survey.

16Children in grades 1–4 were not included since it would have been hard for them to answer survey
questions and students in grade 8 would leave school before the study ended.

17To identify siblings, we visited the schools prior to the intervention.
18Less if the school had less than 80 students in grades 5th to 7th.
19The share of replacement students is balanced across treatment arms.
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Endline attrition is slightly larger in students than in the guardians, with 9.8% for stu-

dents and 6.9% for guardians. Endline attrition of the guardian is particularly important,

because it is during that survey that we assess whether the household owns a functioning

solar light at the time. Since this variable is key for the evaluation of the impacts of the

lights, the sample for all TOT impact evaluation estimates therefore excludes households

with guardian attrition.

In terms of characteristics of attritors, there is no statistically significant differential

attrition between control group and all treatment groups combined for either student or

guardian attrition. In most of the outcomes, the sign of the point estimate of the difference

is the opposite for students and guardians. There are some subtreatments for which the

difference is statistically significant.

Attritors have somewhat different characteristics. When the guardian is not one of the

student’s parents, they are more likely to be missing in the endline survey. This makes

intuitively sense, as in such cases it is more likely that the primary caregiver of the student

will have changed since the baseline survey. Among students, attritors are more likely to be

female or students with lower grades at baseline (potentially due to higher school dropout

rates among girls and lower-performing students).

We address potential bias from attrition in two ways. First, we use the approach devel-

oped by Lee (2009), which provides lower and upper bounds for treatment effects by making

extreme assumptions about the outcomes of attritors. Second, we apply inverse probability

weighting to rebalance the observable sample characteristics between treatment and control

groups (Wooldridge, 2002, 2007). This approach gives more weight to participants with

characteristics that are underrepresented in the endline survey. See Section 3.5 for details.

2.3 Data

We combine information from student and guardian surveys at baseline and endline with ad-

ministrative test score records. Baseline surveys were conducted in June–July 2015, endline

surveys in February–March 201620.

Baseline surveys. The baseline surveys were implemented at the school. Over 90% of

guardians came to the school for their baseline survey. In the remaining cases, surveyors

20See Appendix Figure E.2 which shows the timeline of the survey, school calendar, and exam dates.
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followed up at home to conduct the survey there.21 Most commonly, the guardian was the

mother (50.6%) or father (28.9%). In other cases, it was a grandmother (7.8%), aunt (3.8%),

grandfather (2.8%), or uncle (2.5%).22

Endline surveys. The endline surveys were administered at the school for students and

at home for guardians.23 The endline survey for students included questions on time use,

on lighting as well as on education and health-related outcomes. The endline survey for

guardians also included questions on time use, lighting and health, and asked in addition

about energy sources, household expenditures, as well as psychological outcomes.24

Piloting and qualitative data collection. Prior to commencing the full study, we conducted

a number of in-depth interviews with solar light users and non-users, with teachers as well

as field staff and executives from our study partner SolarAid. We also held five focus group

discussions with users and non-users of solar lights. The information from the in-depth

interviews and focus groups was used to design the survey instruments. In addition, we

piloted the process of randomized distribution of free lights, as well as the survey questions

and the acceptability of the sensor technology before running the full baseline survey.

Administrative test data. We collected school-level test scores from term-end tests for

all tested subjects (English, math, science, social studies and Swahili) before and after the

intervention (March 2015 and March 2016, respectively). We also collected results from

the Kenyan standardized primary school graduation exam Kenya Certificate of Primary

Education (KCPE) which students take at the end of 8th grade. The KCPE average score is

the simple average of the 5 standardized test scores included in the KCPE.

Balance Tests and Summary Statistics

Table 1 shows the balance of randomization and summary statistics at baseline. Column (1)

displays mean and standard deviations of the control group. For each row, Columns (2) to (6)

21The share of guardian surveys that took place at the school vs. at home is balanced across treatment
arms.

22To be included in the survey, guardians had to live at least four nights a week at the same place as the
student. If it turned out at the interview that a guardian did not meet this requirement, we asked another
guardian of the student to participate.

23If the student was not present on the interview day, surveyors tried to reach them at the school another
day or interview them at their house.

24As with all survey-based studies, social desirability bias is a latent concern. To minimise the potential
impact of this bias, the questions related to the outcomes of interest were formulated before making any
reference to questions related to solar lights. Perceived safety at night, health and psychological outcomes
were asked afterwards but we reject the statistical significance of these results.
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show coefficients and standard errors from a separate regression of the respective variable

on treatment arm dummies, and Column (7) shows the results from a similar regression

comparing all treatments combined to the control group. All regressions include school fixed

effects. The F-test for joint significance is estimated using stacked regressions, to allow

testing across all regressions.

Balance of randomization. The F-test of joint significance of all baseline outcomes com-

pared to the control group has a p-value of 0.51 when pooling all treatments and 0.62 when

analyzing each treatment group separately.25 For individual treatment arms, the p-values

vary from 0.23 to 0.90. Only 5 out of 90 coefficients are statistically significant different in

the comparison to the control group. All five of these differences refer to the gender of either

the student or the guardian. Even though these differences are not statistically significant

when pooling all treatment arms together, we include respondent gender fixed effects in all

of the following impact estimates.26

Descriptive statistics. Only 1.3% have a connection to the electric grid, and the share

of households who already own a solar lamp at baseline is 5.3%. 37% of students were in

grade 5, 36% in grade 6 and 26% in grade 7. Around 57% of students and 64% of guardians

are female. Students are on average 13 years old, and about 14% from the final sample

of students are from the replacement list27. Most of the guardian’s interviews (95%) took

place at the school. In 78% of cases the guardian is the student’s parent, for 11% it is a

grandparent. Participants live in households with close to seven people on average. Over

99% of households conduct agricultural activities.

2.4 Identification Strategy

Our empirical strategy proceeds in three steps. First, we analyze take-up by treatment

arm. Then, we compare light usage across treatments conditional on take-up. Lastly, we

estimate the treatment-on-the-treated (TOT) effect of owning a working solar light on various

environmental and household outcomes.

25Following Lee and Lemieux (2010) and Pei et al. (2019), we use stacked regressions, which allow for joint
hypothesis testing across regressions.

26For robustness, we also show estimates without gender fixed effects in the appendix.
27If a student was not present for the interview, the next available student from the replacement list was

interviewed instead.
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Take-Up

We analyze two measures of take-up: the share of participants who received or bought a

solar light through our program, and the share that owned a working solar light at the time

of the endline survey. We estimate take-up with a simple linear probability model, regressing

a dummy variable equal to 1 for those who took or own a light on treatment dummies. The

two take-up measures can differ because some households owned solar lights prior to the

intervention, some purchased other solar lights on the market during the study period, and

some lights from our program (10.6%) broke before the follow-up survey.

Usage

Conditional on take-up, usage of solar lights might differ across treatment groups. Usage

might vary with price of the light because of selection effects (e.g., households who purchase

the light at a higher price may be different) or treatment effects (e.g., households might use

the light differently as a result of having paid for it). In addition, usage might be different

in households that receive the larger light compared to those who receive the basic light.

To analyze whether this is the case, we investigate the local average treatment effect

(LATE) on solar light use for each treatment arm separately in five separate regressions.

The sample for each regression consists of households in the control group and the respective

treatment group k. For each k, we then estimate the following IV regressions

solar worksi = πkTik + ζi + γj + ui (1)

yi = βk ̂solar worksi + ξi + µj + ei (2)

where Tik is a dummy for assignment of household i to treatment group k and solar worksi

is a dummy indicating whether household i owns a working solar light at the time of the

follow-up survey, ζi and ξi represent respondent gender, γj and µj school fixed effects, and ui

and ei are error terms. Under standard IV assumptions, βk represents the LATE of owning a

working solar light on outcome y for compliers in treatment group k, i.e., on households who

own a working solar light at the time of the follow-up survey as a result of the treatment k.

We then test for heterogeneity in usage across treatment arms (i.e., we test H0: β1 =

β2 = β3 = β4 = β5). Since these β-coefficients are obtained from separate regressions, we

estimate these simultaneously in a stacked regression. This yields a joint variance-covariance
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matrix across the five TSLS estimations which enables us to conduct the desired hypothesis

test.28

To preview the corresponding findings, usage does not vary across treatment groups. For

this reason, we estimate the pooled effects of owning a functioning solar light for most of the

impact analysis, as follows.

Impacts of Solar Lights

We estimate the TOT effects of owning a functioning solar light on environmental impacts

and household outcomes as follows: Since take-up varies by treatment, the first stage will be

different for each treatment group, so each treatment will be included as a separate instru-

ment for owning a functioning solar light. In the second stage, we combine all treatments,

which gives us an estimate of the pooled LATE of having a working solar light. Specifically,

we estimate the following equations using TSLS:

solar worksi = π1Ti1 + π2Ti2 + π3Ti3 + π4Ti4 + π5Ti5 + ζi + γj + ui (3)

yi = β ̂solar worksi + ξi + µj + ei (4)

For some of the analysis, we are interested in the differential treatment effects by type of

light. In these cases, we estimate Equations (3) and (4) separately for each type of light

(in samples including participants in the control group and in the treatment arms for the

respective type of light) and again use stacked regressions to test for heterogeneity.

Comparison Mean

To benchmark the magnitude of the estimates, we calculate the “control complier mean”

(CCM). The CCM is the average outcome of those households in the control group who

would have taken up the treatment had it been offered to them. It is calculated as the mean

outcome among compliers in the treated group minus the TOT estimate. This approach

was originally proposed by (Katz et al., 2001). Since some participants in the control group

also owned a solar light, we estimate the CCM using the correction proposed by Heller et

al. (2013).

28The βk-coefficients and their standard errors are the same as when estimating Equations (1) and (2) for
each k separately.
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Robustness Checks

We present a number of robustness checks in Sections 3.5, including accounting for attrition,

testing for spillovers and type II errors, and controlling for additional baseline characteristics.

3 Results

This section first presents take-up and usage to investigate how price and reduced transaction

and information costs affect demand for and usage of solar lights. We then investigate the

environmental impacts in terms of kerosene consumption and emissions. Finally, we analyze

the private benefits to the households in terms of energy expenditure, health, and educational

outcomes. Section 3.5 provides robustness checks.

3.1 Price Elasticity of Demand

Demand for solar lights responds strongly to price. Table 2 Column (1) shows the share of

households in each treatment group who took a light through the study. By construction,

this share is zero for the control group who was not offered a light. All participants who were

offered a free light took it. For vouchers with a co-pay of USD 4, take-up drops to 68.9%.

At USD 7 it drops to 37.4% and at the market price of USD 9 to 29.1%. Based on this

exogenous price variation we can calculate the price semi-elasticity of demand. It is 0.5, that

is, for a 1% increases in price, take-up drops by 0.5 percentage points. The corresponding

demand curve is remarkably linear (see Figure 1).

Column (2) shows the share of households that owned a working solar light at the time

of the endline survey (i.e. seven months after our intervention). This includes both lights

obtained through our intervention and those purchased in some other way. By this time,

18.3% of participants in the control group also have a working solar light. Nevertheless, there

is still a strong impact on ownership. The strong gradient with respect to price shows that

subsidies can be effective in stimulating the use of solar lights. Even those offered a light at

the market price of USD 9 still have a %22 percentage point higher ownership share than

the control group, indicating that providing information about the solar light and reducing

transaction costs compared to purchasing a light in the market can substantially increase

take-up.
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3.2 Usage

Do Subsidies Affect Usage?

Conditional on owning a working solar light, usage might be different for different treatment

groups, because of both potential selection and treatment effects. Households that decide to

purchase a light may differ from those who only take one when it is offered for free (e.g. in

terms of higher need for lighting) and the act of paying for a light could make households

more likely to use it. Similarly, recipients of a large solar light might potentially use the

light more. Whether this is the case will inform our empirical strategy when estimating the

impact of the solar light on household outcomes.

Table 3 shows usage of the solar light on the day and the week preceding the endline

survey. For guardians, the corresponding F-test shows no significant heterogeneity and no

correlation between the price of the light and usage, both when including and excluding the

larger light in the test. For students we do find evidence of different use, and we reject at the

10% confidence level that students use light from all treatment arms the same amount, both

in terms of hours per day and days per week. When estimating the impact of solar lights in

what follows, we will therefore pool the different treatment arms in the second stage of the

TOT analysis, as discussed in the empirical strategy section.

Thanks to sensors installed on the solar lights we know that solar light usage remains

constant over time, at least during the study period, as first reported by Rom et al. (2020).

Figure 2 depicts this finding: conditional on usage (i.e. the sensor activating for at least 1

minute in a given week) the average number of days per week as well as average hours per

day remain remarkably constant throughout the study period (August 17th, 2015 − March

20th, 2016). This allows us to compute the impact of the solar lights on emissions for the

entire time period of the study and beyond in a straightforward way, as we do later on,

by assuming that usage does not drop off over time. It is important to note the difference

between the conditional and unconditional curves. The reason for such discrepancy lies in

multiple factors. First of all, when looking at sensor data we cannot differentiate between

voluntary and involuntary (i.e. due to breakage) non-usage of the lamp. Apart from people

stopping using the light, the unconditional line also takes into consideration the natural

breakage rate of the lights (which we had estimated based on the survey at almost 1%

monthly) as well as the breakage rate of the senors themselves. In particular, it appears to
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be the case that lights on which sensors were installed tend to break more often than the

others. This is reasonable given that sensors were added post-production specifically for the

study. One additional insight given by the sensors is that there seems to be no differences

between impartial sensor data and self-reported survey data on average, which reassures us

about potential issues concerning survey answers such as social desirability bias and others

(Rom et al., 2020). For instance, the average hours per day of usage based on the survey29

is 3.35 hours for guardians and 2.47 hours for students, whereas based on the sensor is 4.27

hours. From these numbers we can infer that guardians and students might be sharing and

thus double-reporting the light for roughly 1.55 hours per day, the difference between their

reported usage combined and the sensor-logged usage. Double-counting is not an issue when

looking at days of usage per week, by construction. Based on the survey answers guardians

used the lamp on average 6.76 days per week, while students 6.57 days per week. This seems

to be roughly in line with what sensors tell us: 6.87 days per week. More details on the

handling of the sensor data can be found in Appendix G.

Impact on Lighting Use

Table 4 shows the effects of owning a working solar light overall on total light use in the

month preceding the endline survey. This is important to assess whether the new solar light

fully replaces other lighting sources, or whether there is stacking i.e. whether some of the

light from the solar light is used additionally to the pre-existing light sources. While there is

no significant effect on lighting use by the guardian, students in households with a working

solar light use an average of 24 more minutes of any lighting per day, up from 3 hours and

15 minutes in the control complier mean (a 12% increase). The fact that the additional light

use is concentrated on the students could potentially be a result of the distribution of the

light through the school.

However, this aggregate impact on light use may mask certain shifts in the light use patterns

of the guardians and at the same time supports the stacking hypothesis. When we analyze

the light use by types of light the guardians use, we can observe that guardians that own

a functioning solar light reduce the number of hours using a tin lamp in approximately 2

hours (down from about 2 hours and a half in the control complier mean), as well as a

29The survey-based averages are Treatment-on-the-treated LATE estimates of having a working solar light
on solar light use, i.e., the equivalent of Table 3 but pooling all treatment arms.
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reduction in the time using a kerosene lantern, and electric power as sources of lighting in

the guardian’s daily activities (about 92.5%, and 88.4%, respectively, in comparison to the

control complier mean). See Appendix Table A.130. Furthermore, the students are more

likely to report solar lights as the main source of lighting when they need to do homework,

and less likely to rely on tin lamps or kerosene lanterns for this activity. The solar light also

leads to more consistent lighting. Households with a solar light are 38.8 percentage points

less likely to have to sit in the dark because they ran out of fuels, battery or other energy

sources for lighting devices (down from 47%).31

Combined with the information from Table 3 that the solar lights used for multiple hours

a day on average, these results indicate that while most of the time the solar light replaces

another light, it does not completely crowd out usage of other lights, i.e., there is some degree

of “stacking” of light sources. This is also consistent with what we find below in terms of

the number of kerosene lights used.

3.3 Environmental Impacts

Kerosene Consumption and Related Emissions

Table 5 shows that solar lights reduce kerosene use substantially. A functioning solar light

reduces the number of kerosene lamps used in the preceding month by 0.90, down from a

control complier mean of 2.4. Looking at kerosene-fueled lights by type of light, we find a

reduction of 0.9 tin lamps and 0.1 kerosene lanterns used, consistent with the widespread use

of tin lamps among households in our sample.32 This is highly relevant for emissions, since

a tin lamp emits about 10 times more black carbon and about 7 times more PM2.5 than a

kerosene lantern per liter of kerosene used. Households are 29.6 percentage points less likely

to have used a kerosene-fueled lamp the previous evening, from a baseline of 95.9% in the

complier control group.

As a result of the reduced use of kerosene-fueled lights, households purchased 1.29 fewer

liters of kerosene in the month preceding the endline survey, a 50% reduction. Annualized,

this corresponds to roughly 15.0 fewer liters of kerosene purchased per household. We can

30We do not have such information on types of lights used for the students
31In addition to more lighting hours, solar lights also increase the quality of light, in particular in com-

parison with tin lamps see Section 3.3.
32As mentioned in section 2.1, over 76% of households used only tin lamps during the preceding month,

about 19% used both types, and less than 1% used only kerosene lanterns

23



convert the reduction in kerosene use to emissions based on the information discussed in the

background section on how kerosene use translates into emissions by type of kerosene-fueled

light. To estimate the impacts on emissions, we multiply each household’s kerosene purchase

at endline by emissions per liter corresponding to the type of light the household uses. (For

the 19.4% of households that use both types, we assume that they use half of the kerosene

for each type.)

Comparing these emissions across treatment arms allows us to estimate the impact of

access to a working solar light, as presented in Table 6. A working solar light reduces

households’ monthly emissions by 82.4g of BC and 3kg of CO2. In terms of CO2-equivalents,

this corresponds to a reduction of 71.8 kg per month.

Given the uncertainty surrounding the global warming potential equivalence of BC, we

calculate lower and upper bounds for the CO2-eq emissions reduction based on the uncer-

tainty bounds given by Bond et al. (2011). The resulting range goes from of 33.5kg in

CO2-eq up 110.1kg per month per household. We will take this range into account for the

cost-benefit analysis below as well.

CO2 Abatement Costs and Cost Effectiveness

Based on these results, we can estimate the abatement cost of reducing CO2 and BC emissions

through the use of solar lights. We calculate that they amount to USD 8.34 per ton of CO2-

equivalents averted (Appendix, Table B.1). This is based on the following assumptions:

Solar lights have a cost of USD 9, a breakage rate of 0.99% per month33 , and 47.2 kg of

CO2 embedded in the light from the production.34 We use a 2% yearly discount rate for

CO2 emissions following Rennert et al. (2022).

In terms of external validity, the cost is likely to be lower in other settings. The actual

production costs of the lamp were lower than USD 9 even in 2015.

Another factor is the type of light used in the absence of the solar light. Compared to

33To calculate the breakage rate, we used the information from the guardian’s survey on whether any of
the solar lights the guardians own still function at the time of the endline. The criteria for inclusion in the
breakage rate sample are i. Households that received a free light ii. Households whose solar light doesn’t
have a sensor.

34This amount is based on estimates from Alstone et al. (2014). While they do not assess the exact
same lights as the ones in this study, we use the estimates of the primary energy requirements that are
most comparable, which translate to 27.78 kWh. Based on Dones et al. (2004), we use the estimate that
approximately 1700g CO2-equivalents are emitted per kWh of energy used to produce the solar lights. This
is a conservative estimate as it assumes that all parts of the lights are produced with coal energy in inefficient
power plants in China.
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the entire country of Kenya, households in our sample are more likely to use kerosene as

the main source for lighting (90% at baseline vs. 35% in the country as a whole in 2015

(KIHBS, 2018)) and households that rely on kerosene are more likely to use tin lamps as the

main source of lighting opposed to kerosene lanterns (94% compared to 55% for Kenya as a

whole). When using national averages instead of the study sample, the cost per ton of CO2-

equivalents is USD 9.78, even when assuming that solar lights could be targeted perfectly to

households who would otherwise use kerosene-fueled lights (Appendix, Table B.1).

One limitation of these calculations is that they do not include CO2 emissions and other

environmental damages from disposing of the solar light. To our knowledge, no such assess-

ments are currently available.

The abatement cost estimates from our study compare favorably with the social cost

of carbon (SCC). The U.S. Interagency Working Group calculated that the Social Cost of

Greenhouse Gases was USD 50 per ton of CO2 for 2010 at a yearly discount rate of 2.5%

(Interagency Working Group on Social Cost of Carbon, 2015), later estimates from the

same agency have estimated that the price has gone up to USD 76 in 2020 (Interagency

Working Group on Social Cost of Carbon, 2021). However, Rennert et al. (2022) suggest

using USD 185 per ton of CO2 at a yearly discount rate of 2%, according to newest estimates

using improved probabilistic socioeconomic projections, climate models, damage functions,

and discounting methods. However, the SCC does not take the warming effect of BC into

consideration; it is thus only an illustrative comparison.

The abatement cost estimates also compare favorably to many other programs to reduce

CO2 emissions. There are, however, other interventions that are more cost effective, such as

a program which offered households in Uganda money to conserve trees, for which Jayachan-

dran et al. (2017) estimates that the net present cost per ton of abated CO2 is less than

USD 3 assuming that the effects persist with a permanent program. In a recent study in

Kenya, Berkouwer and Dean (2020) reported that investing in a more energy-efficient cook

stove reduces greenhouse gas emissions at a cost of USD 5.82 per ton of CO2-equivalents.

Extrapolating the results of our study, a back-of-the-envelope calculation suggests that if

all households in Kenya that use kerosene as the main source of lighting —35.0% according

to KIHBS (2018)—had access to one solar light and experienced a reduction in kerosene

consumption equal to the one found in our study, this would correspond to a reduction of 2.7

mega tonnes of CO2 per year. This amounts to around 3.66% of Kenya’s total greenhouse
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gas emissions and 14.60% of Kenya’s energy emissions in 2014; again, this comparison is

indicative, since national greenhouse gas emissions do not consider the warming effect of BC

(Appendix, Table B.1).35

3.4 Private Benefits

Energy Expenditures

Table 7 shows total impacts on energy expenditure and its components. The larger light

leads to more than twice the reduction in energy expenditures than the basic light (USD

1.14 vs. 2.44 per month, corresponding to a reduction of 28% for the basic light and 59% for

the larger light). This difference is not mainly driven by kerosene use.36 Column (3) shows

a large reduction in mobile charging expenses for the larger light: 87 cent per month, down

from USD 1.11 for the control complier mean. The feature that enabled the larger light for

mobile phone charging therefore seems to make a big difference.

To analyze the private benefits of owning a working solar light, we express the expenditure

savings in terms of net present value (NPV). We undertake the analysis separately by type

of solar light, given the significant differences in both prices and expenditure reductions

between the different types. For the NPV calculations, we assume a monthly interest rate of

7.5% which is based on the cheapest commonly available loan at the time.37 Additionally,

we assume a monthly breakage rate derived from survey responses (i.e. the share of lights

that broke between distribution and the follow-up survey). To obtain the NPV we subtract

the respective market price from the present value of the estimated expenditure savings.

The NPV for the basic light is $5.43 while the large light has a NPV of $6.96. The

calculations based on the survey-derived breakage rate imply that buying a basic or large

light at full price pays off after 11 and 18 months, respectively.

35The assumptions for these calculations are listed in Appendix Table F.1. We are using estimations from
World Resources Institute (2017), as well as the latest Kenya Integrated Household Budget Survey from
2015/2016.

36The variable presented in Table 5 Column (3) Kerosene purchased (l/month) is based on a different
question than the one reported in Table 7 Column (2) Kerosene. In the former, the respondent is asked
to report the amount of liters purchased in a month, and in the latter, the respondent is asked to report
the amount spent in kerosene, in KES. Thus, any differential effect between these two outcomes could be
associated to potential reporting errors.

37This was the rate offered by M-Shwari, a widely used mobile banking product for digital loans. According
to the Kenyan FinAccess Household Survey 2016, over 95% of rural households that were mobile bank users
owned an M-Shwari account (Central Bank of Kenya et al., 2016).

26



Health

We use standardized questions from the European Community Respiratory Health Survey II

and Bates et al. (2013) to understand possible effects on respiratory symptoms, and questions

from Lee et al. (2002) to study eye health.38 Following Bates et al. (2013), we summarize

these outcomes in two indexes, ranging from 0–5 for respiratory symptoms and from 1–6

for eyes-related symptoms, expressed in standard deviations (based the distribution of the

control group).

Table 8 shows the impact on these two health indexes for students and guardians, re-

spectively. There is a significant reduction in eyes-related symptoms of about 0.23 standard

deviations for guardians and 0.26 standard deviations for students. The reduction in res-

piratory symptoms is similar in magnitude for students, and smaller and statistically not

significant for guardians. Children experience about one third of a standard deviation reduc-

tion in respiratory symptoms. The point estimate for guardians shows a reduction of 0.28

standard deviations, but this point estimate is not statistically significant. These improve-

ments in health outcomes are consistent with the estimated reduction in PM2.5 emissions by

50.1% which we observe in the last column of Table 6.

Education

Access to better lighting may help increase students’ learning as it may allow them to spend

more time doing homework after dark. We find that indeed, access to a functioning solar

light increases homework as well as time spent in school. Nevertheless, there is no effect

on test scores. Table 9 shows those results. The probability that, in the week prior to the

endline survey, students were able to complete homework each day on which it was assigned

is 15.7 percentage points higher for those with a solar light compared to the control complier

mean of 64.9%. The share of homework done after dark is 11.5 percentage points higher

than the control complier mean of 72.2%.39 The time dedicated to homework and personal

studies increases by 19 minutes, up from 2.4 hours. On the other hand, sleep hours fall by

0.7 hours compared to 8.4 hours in the control complier group, which could adversely affect

school performance.

38Appendix H lists the specific questions used.
39The variables in Columns 1 and 2 are only asked at the 87.4% of the students who reported receiving

homework at least once in the week before the endline survey. The probability of this to be the case is
balanced across treatment and control group (see Columns (6) and (7) Appendix Table A.9)
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To assess school performance, we use administrative test score data on both in-school exams

at the end of the term and (for those in grade 8) the results of the national standardized

Kenya Certificate of Primary Education (KCPE). We find no impacts on either of these

types of test scores.40 There is also no significant effect on dropout: Column (8) shows the

probability that students take the end-of-term exams a year after the intervention (in March

2016),41 which is not significantly different for those with access to a light.

There are several potential explanations for the lack of impact on test scores results. Access to

the light and related increase of homework and time spent in school may not have translated

into additional learning; the reduced sleep hours may have counteracted the learning effect;

or the test scores might be a poor measure of underlying student learning.

Additional Outcomes

Owning a solar light could have an impact on the guardian’s time allocation, shift their

activities they used to make during the daylight to nighttime, and potentially been able to

have additional time to spend in other productive activities. However, we are not able to

find such shifts when analyzing the guardian’s time aggregately (see Appendix Table A.3).

Guardians that own a working solar light increase the amount of time sleeping in about 18

minutes, but we don’t observe any additional shifts across different activities 42.

Another potential impact of owning a solar light is in the guardian’s perception of safety in

three different aspects: perception of feeling safe inside home, and outside home at night,

as well as whether the guardian experienced burn injuries in the 3 months preceding the

endline. We can’t find a statistically significant impact on neither of these 3 outcomes

(see Table A.6). In Appendix Table A.7, we report results for psychological outcomes that

are summary indexes, aggregating information across related outcomes (e.g. happiness,

satisfaction, optimism, etc.). We found that owning a solar light improves the guardians’

perception about their economic situation (Column 5), and increases their level of optimism

40Appendix Table A.2 shows results separately by subject
41Appendix Table A.9 shows additional measures of exam participation and school attendance. None

of them have significant differences between the pooled treatment group, and the control, and there is no
consistent direction of the point estimate

42In Appendix tables A.4, and A.5, we analyze the guardians’ activities by their sub-components. We
find a decrease in the amount of time that the guardians spend taking care of their children, sick or elderly,
and also attend less to funerals or weddings. However, we found that guardians pray on average 22 more
minutes, and spend 13 more minutes visiting and/or entertaining friends. Since the information about
time use regarding this activity was collected as an aggregated question, we can’t distinguish whether the
guardians are going out more or inviting more people over to their houses.
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regarding their future (Column 7). Finally, we also found an impact on the guardians’

knowledge regarding solar lamps. Guardians that own a solar light are more likely to know

the charging time of them, as well as have more knowledge about solar light brands in the

market. However, they are also less likely to know the price of the lamps in the market (see

Table A.8).

3.5 Robustness Checks

This section discusses separate treatment effects, controlling for baseline characteristics,

attrition, accounting for multiple hypothesis testing, and spillover effects.

Separate Treatment Effects

As shown in appendix section D, we reject the null hypothesis of differential impact by type

of free light and across treatment arms on most outcomes. One exception is the kerosene

light usage, free larger light owners are less likely to use a kerosene light the day before the

survey. Likewise, when comparing across all the treatment arms, guardians that redeemed

their solar lamp at the market price are the ones who are less likely to use it the day prior

to the survey.

Controlling for Baseline Characteristics

As an additional robustness check, in Appendix Tables C.6 to C.11, we control for baseline

characteristics such as class of the student, connection to the grid, household size, and own-

ership of a solar lamp. All the results maintain robust with the exception of “Number of

hours doing homework and personal studies” (see Appendix Table C.11 Column 3). When

we add baseline characteristics to the main specification, the point estimate loses statistical

significance.

Attrition

One potential threat to identification is differential attrition across treatment arms, if stu-

dents and guardians have different rates of selection into our final sample, our results could be

biased. Table C.1 shows whether attrition was differential across treatment groups; guardians
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that received a higher subsidy voucher and a larger light for free are more likely to partici-

pate at endline. Table C.2 correlates guardian baseline to endline attrition with observable

household characteristics at baseline. The share of female students among attritors is 16.5

percentage points higher than the share of female students among non-attritors. Students

with higher test scores are less likely to drop out of the sample. Likewise, guardians who are

the student’s parents drop out of the sample less often.

We address the differential guardian attrition using two approaches. First, we use Lee

bounds, applying the approach by Lee (2009) to our study involving multiple treatment

groups. That is, the share of available observations in each treatment group is equalized to

the group with the highest attrition by trimming observations in the top of the distribution

(lower bound estimate) and, respectively, in the bottom of the distribution (upper bound

estimate). This approach provides upper and lower bounds of the estimates under extreme

assumptions about the outcomes of attritors in the respective treatment groups. The lower

and upper bounds are reported in Columns (2) and (3) of Table C.3. Both upper and lower

bounds remain statistically significant and qualitatively similar to the original estimates

shown in Column (1), with the exception of “Eye dry symptoms for the guardian” whose

upper Lee bound becomes not significant, and the “Number of hours that the student spends

doing homework and personal studies” whose lower Lee bound becomes not significant.

Second, we use inverse probability weighting following Wooldridge (2002) and Wooldridge

(2007). This approach recalculates results by reweighting the sample to compensate for the

differential attrition between treatment and control groups. The weights are calculated by

running a probit regression to predict the probability that based on observable characteristics,

a participant is in the non-attritor sample.43 Thereafter, each individual is weighted with

the inverse of this probability. As a result, a larger weight is given to individuals who are less

likely to be in the sample, leading participants with characteristics that are underrepresented

among non-attritors to weigh more. Our main results are very robust to such reweighting

and remain statistically significant and qualitatively similar (Column 4).

43In this probit regression, we include the same explanatory variables as in the balance of randomization
table (Table 1).
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Multiple Hypothesis Testing

To further examine the robustness of our results, we adjust for the fact that we test for

multiple hypothesis using the false discovery rate adjusted q-values (analogue to the standard

p-value). This approach limits the expected proportion of rejections that are false discoveries,

that is, type I errors (Benjamini et al., 2006; Anderson, 2008). In Table C.5, Column (2)

reports intention to treat (ITT) estimates of our main results alongside with adjusted q-

values. We report ITT estimates since this is what we pre-specified in our pre-analysis

plan. As expected, the ITT coefficients are smaller than the Local Average Treatment

Effect (LATE) estimates. The false discovery rate adjusted q-values are robust to multiple

hypothesis testing (Table C.5, Column 5).

4 Conclusion

In light of the challenge to expand access to modern electricity while ensuring environmen-

tal sustainability, solar lights could be an economical step towards achieving several goals

at once. On the one hand, they could provide a reliable lighting source to the 759 million

without connection to an electric grid. This could be particularly important where grid

expansion may not be cost-effective in rural areas in developing countries (Lee et al., 2020).

On the other hand, solar lights could contribute to reducing energy expenditures and emis-

sions and improving health outcomes by replacing kerosene-fueled lights. However, existing

research suggests that the potential benefits of novel technologies are often overstated (Davis

et al., 2014; Fowlie et al., 2018; Allcott and Greenstone, 2012), and that technologies such

as cookstoves may remain unused in developing countries in practice depending on factors

such as ease of use, maintenance requirements, or suitability to the local context (Hanna et

al., 2016; Bensch and Peters, 2015, 2019). We contribute to these questions by providing

experimental evidence on the demand for solar lights in developing countries, and the impact

of owning a functioning solar light on various outcome dimensions.

We show that demand for solar lights responds strongly to price changes and that reducing

transaction and information costs increases demand substantially. Households in our study

sample use their solar lights frequently, and usage does not differ systematically across the

level of price discounts offered. We find that a working solar light replaces one out of two

kerosene lamps in the household on average, contributing to lower kerosene use and reduced

31



emissions. While households spend less on energy if they own a functioning solar light, a

small subsidy may be needed for a solar light investment to pay off from a purely private

monetary perspective, given the high interest rates in our study context. Compared to what

is typically considered the social cost of carbon (Revesz et al., 2017; Interagency Working

Group on Social Cost of Carbon, 2015) and clean energy investments in Europe and the US

(Abrell et al., 2017), we find that solar lights appear as a cost-effective intervention with

estimated abatement costs per ton of CO2 at less than USD 10. Concerning individual-level

benefits, we find moderately improved health outcomes, particularly for eye health. Our

results on students’ educational performance are mixed, that is, we find increases in self-

reported homework completion and study time but cannot detect a statistically significant

effect on test scores.

With regards to the previous literature on solar lights in developing countries, a consensus

emerges on the following. Solar lights appear to alleviate eyes-related symptoms across stud-

ies, but impacts on respiratory health are detected less often (Kudo et al., 2019b; Furukawa,

2017; Grimm et al., 2017; Aevarsdottir et al., 2017). Students who received solar lights

self-report having spent more time on homework and more time doing homework after dark.

Yet, most studies could not find that this translates into better school performance as mea-

sured by test scores (Furukawa, 2014; Kudo et al., 2019a). Our study further provides novel

contributions such as estimating the impact on emissions and assessing the cost-effectiveness

of solar lights.

However, solar lights are not a panacea for energy poverty and climate change. While

they provide some improvement over kerosene-fueled lamps, energy access is limited to light-

ing and, depending on the specific solar kit, mobile phone charging. In turn, solar lights

will not suffice as living standards rise; for example, they do not allow households to power

appliances like fans or irons. Moreover, cookstoves, not kerosene lamps, are the most im-

portant contributor to indoor air pollution, and better cooking solutions must be found to

achieve substantial health gains (World Health Organization, 2016). A number of other

reasons limit the role of solar lights. While every reduction in warming emissions counts,

the contribution of kerosene lamps remains limited. The positive externalities discussed in

this paper rely on the fact that solar lights replace kerosene. However, there is evidence that

kerosene is increasingly being displaced by battery powered torches, at least in places where

it is not subsidized (Bensch et al., 2017). As such, the counterfactual might look different in
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the future. Finally, maintenance and recycling of old solar lights, especially their batteries,

could create new environmental challenges.

Beyond solar lights, future research can test and evaluate other approaches that aim

to improve energy access and energy efficiency in developing countries, including the use

of renewable energies. This will allow policy makers to compare the cost-effectiveness of

different policy options in low-income settings. Studying policy options in developing coun-

tries is particularly important given that energy demand and CO2 emissions are projected

to grow most significantly in these countries in the coming years (United Nations, 2020).

With regard to solar lighting in particular, future studies can further analyze what drives

and constrains different types of consumer demand for such products and whether there

are important market failures in contexts that are different from ours. Further, future re-

search could study measures addressing electronic waste in developing countries, which is

an important but neglected dimension in the cost-benefit analysis of solar lights. Finally,

concerning our findings on indoor air pollution, it would be important to better understand

how kerosene use interacts with cooking conditions and what combination of policies are

best suited to improving indoor air quality.
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Main Results

Figure 1: Demand for the Basic Solar Light

Notes: This figure plots take-up of the basic solar light at different prices. Points
represent the share of individuals who took or bought the light through our intervention
at each price (free, and vouchers to purchase a light for USD 4, 7, or 9). The curve is
fitted based on regressing price on the share of individuals.



Figure 2: Solar Light Usage as Measured by Sensors

Notes: This figure plots solar light usage over time as measured by sensors. On the left
vertical axis we have usage in terms of average number of days per week (red lines) or
average number of hours per day (blue lines), respectively. For both metrics we provide
a conditional on usage in the given week version (i.e. only considering sensors which
were used for a least 1 minute in that week) and an unconditional version (i.e. using a
constant number of sensors to calculate week-by-week averages). On the right vertical
axis we see the number of unique sensors used for the computation of the conditional
averages, while the number of unique sensors used for the unconditional statistics is
always 228. The temporal window depicted here covers the 31-week long period from
August 17th 2015 to March 20th 2016, where all weeks are Monday to Sunday.
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Table 1: Balance of Randomization

Difference to the control mean

Treatment arms Pooled

(1) (2) (3) (4) (5) (6) (7)
Control Free High Low Market Free All
mean basic subsidy subsidy price larger treatments

Connection to the grid 0.013 0.003 0.015 0.002 -0.003 -0.008 0.002
[0.112] (0.010) (0.013) (0.011) (0.009) (0.008) (0.007)

Household owns a solar light 0.053 0.018 0.006 0.006 -0.001 0.007 0.007
[0.224] (0.021) (0.020) (0.021) (0.020) (0.020) (0.014)

Average test scores 0.000 0.034 -0.017 -0.038 0.074 0.099 0.031
[1.000] (0.082) (0.072) (0.078) (0.086) (0.085) (0.056)

Student is in grade 5 0.370 0.015 -0.062 -0.045 -0.034 -0.010 -0.027
[0.483] (0.042) (0.040) (0.041) (0.041) (0.041) (0.028)

Student is in grade 6 0.360 -0.030 0.053 0.016 0.044 0.010 0.018
[0.481] (0.041) (0.041) (0.042) (0.042) (0.042) (0.028)

Student is in grade 7 0.255 0.020 0.025 0.044 0.006 0.015 0.022
[0.436] (0.037) (0.038) (0.039) (0.039) (0.037) (0.026)

Student is female 0.568 −0.088∗∗ -0.011 -0.008 -0.001 −0.087∗∗ -0.040
[0.496] (0.043) (0.043) (0.043) (0.043) (0.043) (0.029)

Student’s age 13.12 -0.090 0.073 0.122 0.191 0.021 0.060
[1.73] (0.154) (0.152) (0.152) (0.161) (0.155) (0.106)

Guardian respondent is student’s parent 0.775 -0.000 -0.000 -0.035 0.004 0.025 -0.001
[0.418] (0.036) (0.035) (0.037) (0.036) (0.035) (0.025)

Guardian respondent is student’s grandparent 0.107 0.017 0.021 -0.009 -0.028 -0.022 -0.004
[0.310] (0.028) (0.028) (0.026) (0.024) (0.025) (0.018)

Guardian respondent is female 0.639 0.003 0.076∗ 0.051 0.037 0.076∗ 0.048∗

[0.481] (0.041) (0.040) (0.042) (0.042) (0.040) (0.028)
Student from replacement list 0.135 0.005 -0.004 0.006 -0.022 0.000 -0.003

[0.342] (0.029) (0.029) (0.030) (0.028) (0.029) (0.020)
Baseline guardian survey at school 0.950 -0.010 -0.022 -0.013 -0.012 0.010 -0.009

[0.219] (0.020) (0.021) (0.020) (0.020) (0.018) (0.013)
Household size 6.76 -0.178 0.088 0.253 0.265 -0.045 0.071

[2.18] (0.181) (0.192) (0.199) (0.185) (0.185) (0.129)
Household performs agricultural activities 0.992 0.002 -0.002 -0.008 -0.018 -0.007 -0.006

[0.087] (0.007) (0.008) (0.010) (0.012) (0.010) (0.006)

School FE Yes Yes Yes Yes Yes Yes

Number of observations 400 200 209 201 200 200 1,010
F-test for same effect 0.616 0.904 0.290 0.358 0.164 0.227 0.506

Notes: This table presents a balance test of baseline variables across treatment groups. Column (1) shows sample means and
standard deviations for the control group. Each row shows estimates from two regressions: Columns (2) to (6) from regressing the
baseline variable on dummies for each treatment group; Column (7) on a dummy of all treatment groups pooled. To conduct the
F-test, we use stacked regressions. In Column (1), the F-test is for whether all coefficients displayed in Columns (2) to (6) are jointly
different from zero; in Columns (2) to (7), for whether coefficients in the respective column are jointly different from zero. Test
scores include English, math, science, social studies and Swahili from March 2015. Student from a replacement list indicates whether
the student was not in the original list of students and was a replacement student. Standard errors clustered at the household level
presented in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2: Take–up and Ownership of Solar Lights

(1) (2)
Take-up of Ownership of
solar light any working

through our solar light
intervention at endline

Control group 0.000 0.183∗∗∗

(.) (0.020)
Free basic light 1.000 0.818∗∗∗

(.) (0.028)
High subsidy (USD 4) 0.689∗∗∗ 0.695∗∗∗

(0.032) (0.033)
Low subsidy (USD 7) 0.374∗∗∗ 0.410∗∗∗

(0.035) (0.036)
Market price (USD 9) 0.291∗∗∗ 0.404∗∗∗

(0.033) (0.036)
Free larger light 1.000∗∗∗ 0.902∗∗∗

(0.000) (0.021)

School FE No No
Respondent gender No No

Number of observations 1,396 1,313
R-squared 0.81 0.66

Notes: Linear probability model estimates of take-up and solar
light ownership by treatment arm. Column (1) shows the share
of households whose guardian participated in the baseline survey
and who took or bought a solar light through our study. Column
(2) shows the share of households that owned a working solar light
at the time of the endline survey among the households whose
guardian participated in the endline survey. Robust standard er-
rors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3: Usage of Solar Lights

Number of hours Days past week

Guardians Students Guardians Students
(1) (2) (3) (4)

Free basic light 3.21∗∗∗ 2.47∗∗∗ 6.61∗∗∗ 6.86∗∗∗

(0.22) (0.17) (0.19) (0.31)
High subsidy (USD 4) 3.36∗∗∗ 2.65∗∗∗ 6.73∗∗∗ 6.79∗∗∗

(0.26) (0.20) (0.16) (0.38)
Low subsidy (USD 7) 3.53∗∗∗ 2.49∗∗∗ 6.64∗∗∗ 5.79∗∗∗

(0.56) (0.34) (0.34) (0.62)
Market price (USD 9) 2.54∗∗∗ 1.74∗∗∗ 6.26∗∗∗ 5.29∗∗∗

(0.53) (0.41) (0.48) (0.83)
Free larger light 3.39∗∗∗ 2.32∗∗∗ 6.83∗∗∗ 6.15∗∗∗

(0.22) (0.15) (0.10) (0.26)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Number of observations 1,232 904 1,241 905
R-squared 0.63 0.50 0.94 0.62
F-test for same effect 0.456 0.222 0.662 0.087

Notes: Treatment-on-the-treated estimates of having a working solar light on solar light
use by the guardian. Each row shows results from a separate TSLS regression following
Equations (1) and (2). Column 1 shows the number of hours that the guardian used the
solar light the day previous to the endline survey. Column 2 shows the number of hours
that the student used the solar light the last time he/she used it. Column 3 shows the
number of days that the guardian used the solar light during the past 7 days previous
to the endline survey. Column 4 shows the number of days that the student used the
solar light during the past week (last Monday to last Sunday previous to the endline
survey). The sample of each regression includes households in the control group and
the respective treatment group. To conduct the F-test of whether the effect is the same
across treatment arms, we use stacked regressions with robust standard errors clustered
at the household level. The number of observations for the students (Columns 2 and
4) is lower because we do not have the response to this question from n=206 students.
These missing values occurred because there are cases where the guardian indicated that
the household owns a solar light but the the student reported not knowing someone
who owns a solar light or not having a relative who owns a solar light and hence the
question about the hours of usage was not asked to them. *** p < 0.01, ** p < 0.05,
* p < 0.1.
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Table 4: Impact on Light Use - Pooled

(1) (2) (3) (4) (5) (6)
Lighting use Lighting use Probability of Used solar Used tin Used kerosene

yesterday yesterday lighting light for lamp for lantern for
guardians (hours) students (hours) interruption homework homework homework

Solar light −0.209 0.397∗∗∗ −0.388∗∗∗ 1.059∗∗∗ −0.892∗∗∗ −0.111∗∗∗

(0.141) (0.134) (0.042) (0.050) (0.051) (0.024)

School FE Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes

Control complier mean 3.136 3.242 0.472 0.000 0.866 0.129
Number of observations 1,313 1,202 1,286 1,050 1,050 1,050
R-squared -0.02 -0.00 0.16 0.19 0.16 0.00

Notes: Treatment-on-the-treated estimates of having a working solar light on light use following Equations (3) and (4). Columns (1) and (2)
show the number of hours during which guardians and students, respectively, used any source of lighting. To measure time use in these variables,
the respondents were asked about each time slot of the day. Column (3) shows lighting interruption due to running out of fuel or battery for any
of their lighting devices in the past month, reported by the guardian. Columns (4) to (6) show whether the student relied as a main source of
light to do homework a solar light, a tin lamp, and a kerosene lantern, respectively. Robust standard errors in parentheses. *** p < 0.01, ** p
< 0.05, * p < 0.1.
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Table 5: Impact on Kerosene Use - Pooled

(1) (2) (3) (4) (5)
Number of Number of Number of Kerosene Kerosene

kerosene-fueled tin lamps kerosene lanterns light used purchased last
lights used used last used last yesterday month (liters)
last month month month

Solar light −0.900∗∗∗ −0.914∗∗∗ −0.101∗∗ −0.296∗∗∗ −1.288∗∗∗

(0.153) (0.097) (0.047) (0.037) (0.210)

School FE Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes

Control complier mean 2.404 2.186 0.268 0.959 2.600
Number of observations 1,313 1,312 1,313 1,307 1,299
R-squared 0.08 0.14 -0.01 0.17 0.04

Notes: Treatment-on-the-treated estimates of having a working solar light on kerosene use following Equations (3) and (4).
Column (1) shows the number of kerosene-fueled lights the guardian used in the household in the past month. Columns
(2) and (3) show the number of tin lamps and kerosene lantern that the guardian used in the household in the past month.
Column (1) is the sum of tin lamps, kerosene lanterns, and pressurized lamps. Column (4) refers to whether any household
member used a kerosene-fueled light in the previous evening. Column (5) shows the change in liters of kerosene purchased
in the past month at the household level. All variables are from the guardian survey. Robust standard errors in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6: Impact on Emissions - Pooled

(1) (2) (3) (4)
BC CO2 CO2-eq PM2.5

emissions emissions emissions emissions
(g/month) (g/month) (g/month) (g/month)

Solar light −82.44∗∗∗ −2, 904∗∗∗ −71, 827∗∗∗ −85.68∗∗∗

(14.11) (468) (12,242) (14.60)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Control complier mean 164.51 5,748 143,276 170.89
Number of observations 1,291 1,291 1,291 1,291
R-squared 0.04 0.04 0.04 0.04

Notes: Treatment-on-the-treated estimates of having a working solar light on household
emissions following Equations (3) and (4). The impact on emissions is calculated based on
households’ kerosene consumption, as reported in Column (5) of Table 5, and the type of
kerosene lamp households use, as detailed in Subsection 2.1. The number of observations
differ from those from Column (5) of Table 5 because we don’t have information about the
type of light used of 8 households. As a result, these four columns are linearly dependent
among each other. Column (1) shows black carbon, Column (2) CO2 emissions, Column (3)
CO2-equivalents of the previous two columns combined, and Column (4) particulate matter
(PM2.5). Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 7: Impact on Energy Expenditures - Basic vs. Larger Light

(1) (2) (3) (4) (5) (6) (7) (8)
Total Kerosene Phone Firewood Batteries Charcoal Electricity Other

expenditure charging bill

Basic light −1.139∗ −0.659∗∗∗ 0.278 −0.383∗∗ 0.016 −0.008 −0.278 −0.105
(0.587) (0.148) (0.170) (0.183) (0.074) (0.285) (0.326) (0.117)

Larger light −2.444∗∗∗ −0.919∗∗∗ −0.873∗∗∗ −0.095 0.133∗ −0.115 −0.432 −0.143∗

(0.510) (0.117) (0.109) (0.214) (0.073) (0.193) (0.285) (0.086)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 4.120 1.685 1.110 0.425 0.276 0.226 0.366 0.034
Number of observations 1,313 1,312 1,313 1,313 1,313 1,313 1,313 1,313
R-squared -0.01 0.05 -0.01 -0.01 0.00 -0.00 0.00 -0.01
F-test for same effect 0.009 0.070 0.000 0.116 0.180 0.683 0.497 0.625

Notes: Treatment-on-the-treated estimates of having a working solar light on households’ monthly energy expenditures (in USD) by type of
light. Each row results from a separate TSLS regression following Equations (3) and (4). The sample of each regression includes households
in the control group and the respective treatment groups. Column (1) shows total energy expenditure, Columns (2) to (8) its components.
Column (8) includes expenditures on candles, generator fuel, LPG, sawdust, dung/charcoal mixture, and other types of fuel. To conduct the
F-test of whether the effect is the same across types of light, we use stacked regressions with robust standard errors clustered at the household
level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 8: Impact on Health - Pooled

Eyes Respiratory

Guardians Students Guardians Students
(1) (2) (3) (4)

Solar light −0.230∗∗ −0.257∗∗ −0.154 −0.277∗∗∗

(0.102) (0.104) (0.102) (0.104)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Number of observations 1,313 1,202 1,313 1,202
R-squared 0.00 -0.00 0.00 -0.01

Notes: Treatment-on-the-treated estimates of having a working solar light on health
following Equations (3) and (4). Columns (1) and (2) show an index of eye-related
symptoms such as dryness, grittiness, redness, etc. based on Lee et al. (2002). Columns
(3) and (4) show an index of respiratory symptoms such as shortness of breath, asthma,
cough, etc. based on Bates et al. (2013) and The European Community Respiratory
Health Survey II Steering Committee (2002). Effects are expressed in standard devia-
tions. Higher values indicate more symptoms. Robust standard errors in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 9: Impact on Education - Pooled

(1) (2) (3) (4) (5) (6) (7) (8)
Homework Share homework Homework and School Sleep Average score Average score Participation
completion after dark personal studies (hours) (hours) of 5 subjects KCPE in school exams

(hours) in March 2016

Solar light 0.157∗∗∗ 0.115∗∗∗ 0.310∗ 0.557∗∗ −0.743∗∗∗ −0.079 −0.075 0.029
(0.047) (0.036) (0.184) (0.228) (0.224) (0.074) (0.207) (0.041)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 0.649 0.722 2.434 3.976 8.353 0.030 0.025 0.776
Number of observations 1,050 1,050 1,202 1,202 1,202 1,267 236 1,313
R-squared -0.01 -0.01 -0.01 0.00 -0.00 -0.00 0.00 0.00

Notes: Treatment-on-the-treated estimates of having a working solar light on educational outcomes following Equations (3) and (4). Column (1) shows whether the student
was able to complete the homework in the past week. Column (2) shows the share of times the student did homework after dark in the past week. Columns (3) to (5) show
results for time use on the day before the endline interview (homework and personal studies, time spent in class, time spent sleeping). Column (6) shows the average final
exam scores of the first term in 2016. When the score for a subject is missing, we use the corresponding score from the last term of 2015, when available. The probability of
scores missing is balanced across treatment arms (see Appendix Table A.9). Column (7) contains the average score of graduating students who took the national KCPE exam.
Column (8) indicates whether the student took at least one of the 5 compulsory exams Variables in Columns (1) to (5) are from the student survey; variables in Columns (6)
to (8) from administrative test score records. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.1: Impact on Light Use by Lighting Source (hours)

(1) (2) (3) (4) (5) (6) (7) (8)
Total Solar Tin Kerosene Electricity Battery Cellphone Other sources

light use light lamp lantern powered powered lantern light of lighting

Solar light -0.209 2.12*** -1.83*** -0.271*** -0.099** -0.055 -0.014 -0.061
(0.140) (0.113) (0.122) (0.062) (0.050) (0.074) (0.036) (0.055)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 3.136 0.010 2.495 0.293 0.112 0.080 0.077 0.068
Number of observations 1,313 1,313 1,313 1,313 1,313 1,313 1,313 1,313
R-squared 0.02 0.46 0.37 0.03 0.02 0.03 0.01 0.01

Notes: Treatment-on-the-treated estimates of having a working solar light on the number of hours during which guardians, used any source of lighting
the day before the endline survey. Each row results from a separate TSLS regression following Equations (3) and (4). The sample of each regression
includes households in the control group and the treatment arms offered the respective type of light. Column (1) shows total number of hours using
different sources of lighting, Columns (2) to (8) its different sources of lighting. Column (8) includes sources such as firewood, candles, pressurized
lantern, and other sources of lighting. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.2: Impact on Students Test Scores

(1) (2) (3) (4) (5) (6)
Swahili Math English Science Social Average

studies score

Panel A: First Term 2016 Exam

Solar light -0.076 0.028 -0.045 -0.112 0.007 -0.039
(0.073) (0.096) (0.093) (0.099) (0.093) (0.093)

Number of observations 1,260 1,264 1,259 1,263 1,264 1,267
R-squared 0.01 0.18 0.21 0.15 0.16 0.21

Panel B: First Term 2016 Exam Without Replacement

Solar light -0.083 0.012 -0.087 -0.161 -0.030 -0.125
(0.077) (0.102) (0.102) (0.106) -0.030 -0.125

Number of observations 1,010 1,004 1,009 1,004 1,003 1,012
R-squared 0.02 0.21 0.22 0.18 0.20 0.25

Panel C: KCPE Exam

Solar light -0.174 -0.003 0.238 -0.187 -0.252 -0.096
(0.249) (0.259) (0.235) (0.224) (0.224) (0.237)

Number of observations 236 236 236 236 236 236
R-squared 0.24 0.26 0.21 0.34 0.34 236

School FE Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes

Notes: Treatment-on-the-treated estimates of having a working solar light on standardized scores of the 5 compulsory subjects
following Equations (3) and (4). Panel A shows the students’ scores of the first term in 2016. When the score for a subject
is missing, we use the corresponding score from the last term of 2015, where available. The probability of scores missing
is balanced across treatment arms (see Appendix Table A.9). Panel B shows the students’ scores of the first term in 2016
without replacing the missing values. Panel C shows the KCPE score of graduating students who where in grade 7 at baseline
who took the national KCPE exam. This variable includes those students who where in grade 7 at baseline and therefore
potentially eligible for KCPE. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.3: Impact on Time Use of Guardians

(1) (2) (3) (4) (5) (6)
Sleep Social and Household and Work Work at night Travel

recreational care work (7pm to 7am)
activities

Solar light 0.301* 0.401 -0.363 -0.360 -0.142 0.126
(0.162) (0.329) (0.262) (0.352) (0.108) (0.133)

School FE Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes

Control complier mean 8.593 5.806 4.619 4.245 0.622 0.628
Number of observations 1,313 1,313 1,313 1,313 1,313 1,313
R-squared 0.02 0.15 0.46 0.12 0.06 0.03

Notes: Treatment-on-the-treated estimates of having a working solar light on hours of time use by the guardian
the day before the endline interview following Equations (3) and (4). Respondents were asked aboyt each time
slot of the day. Outcomes in Columns (2) to (6) aggregate different activities. Appendix Tables A.4, and A.5
show the sub-components of these aggregates. Column (5) refers to the work hours (as in Column (4)) done
after dark. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.4: Impact on Time Use of Guardians - Household and Care Work, Work and Travel

(1) (2) (3) (4) (5) (6) (7) (8)
Cook Clean, dust Fetch water Shop Help Prepare Care for Other

prepare sweep and other and/or firewood for homework children children household and
food household work family for school sick or elderly care work

Solar light -0.020 -0.017 -0.072 -0.052 0.020 -0.014 -0.176*** -0.030
(0.129) (0.136) (0.091) (0.072) (0.047) (0.034) (0.065) (0.051)

Control complier mean 1.841 1.311 0.754 0.305 0.116 0.105 0.091 0.097
R-squared 0.44 0.21 0.17 0.05 0.03 0.04 0.00 0.04

(9) (10) (11) (12) (13) (14) (15) (16)
Farm Non-agricultural Herd animals Brew Fish Travel Travel by Travel
work work and/or work with alcohol or by motorized by

livestock hunt foot means bicycle

Solar light -0.191 0.009 -0.164 -0.059 0.044 0.045 0.032 0.049
(0.212) (0.317) (0.150) (0.061) (0.029) (0.094) (0.089) (0.046)

Control complier mean 2.077 1.218 0.911 0.054 0.000 0.357 0.220 0.051
R-squared 0.05 0.05 0.12 0.01 0.01 0.03 0.02 0.05

Number of observations 1,313 1,313 1,313 1,313 1,313 1,313 1,313 1,313
School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Treatment-on-the-treated estimates of having a working solar light on hours of time use by the guardian the day before the endline
interview following Equations (3) and (4). To measure time use in this table, the respondents were asked about each time slot of the day.
Columns (1) to (8) show the sub-components of Column (3) in Appendix Table A.3, Columns (9) to (13) of Column (4) and Columns (14) to
(16) of Column (6). Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.5: Impact on Time Use of Guardians - Social and Recreational Activities

(1) (2) (3) (4) (5) (6) (7) (8)
Rest Socialize Eat Participate Socialize with Funeral and/or Other Bathe and/or

with household in community non-household wedding religious dress
members activities members activities activities

Solar light -0.331 -0.010 0.020 0.004 0.075 -0.186* 0.097 0.020
(0.210) (0.112) (0.060) (0.144) (0.129) (0.104) (0.116) (0.044)

Control complier mean 2.546 0.715 0.704 0.389 0.351 0.297 0.274 0.211
R-squared 0.04 0.05 0.08 0.02 0.06 0.02 0.03 0.07

(9) (10) (11) (12) (13) (14) (15) (16)
Pray Visit and/or Spend time Watch Discuss day Listen Read Other

entertain with TV activities to radio book
friends spouse with partner

Solar light 0.364*** 0.222*** -0.013 0.023 0.008 0.125 0.042 -0.057
(0.137) (0.083) (0.013) (0.037) (0.011) (0.094) (0.029) (0.037)

Control complier mean 0.203 0.034 0.013 0.011 0.000 0.000 0.000 0.069
R-squared 0.03 0.03 0.02 0.02 0.02 0.06 0.03 0.01

Number of observations 1,313 1,313 1,313 1,313 1,313 1,313 1,313 1,313
School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Treatment-on-the-treated estimates of having a working solar light on hours of time use by the guardian the day before the endline interview
following Equations (3) and (4). To measure time use in this table, the respondents were asked about each time slot of the day. Columns (1) to (16)
show the sub-components of Column (2) in Appendix Table A.3. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.6: Impact on Safety

(1) (2) (3)
Feeling safe Feeling safe Burn injuries
inside the outside the in the past

home at night home at night three months

Solar light -0.040 -0.005 -0.007
(0.094) (0.105) (0.012)

School FE Yes Yes Yes
Respondent gender Yes Yes Yes

Control complier mean 3.219 2.986 0.021
Number of observations 1,312 1,250 1,313
R-squared 0.04 0.05 0.01

Notes: Treatment-on-the-treated estimates of having a working solar light on
perceived safety at night following Equations (3) and (4). The dependent vari-
ables in Columns (1) and (2) take the value of 1 if the guardian answered ”always”
and 0 otherwise (i.e. usually, sometimes, or never). Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.7: Impact on Psychological Outcomes

(1) (2) (3) (4) (5) (6) (7) (8)
Locus of Trust Happiness Life Economic Future holds Future better Risk of
control satisfaction situation good things than parents depression

improved

Solar light 0.034 −0.084 0.103 −0.061 0.287∗∗∗ −0.026 0.192∗∗ −0.133
(0.104) (0.093) (0.100) (0.100) (0.105) (0.100) (0.094) (0.099)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 2.459 0.351 3.789 2.092 1.108 3.839 2.545 1.287
Number of observations 1,313 1,313 1,313 1,313 1,313 1,313 1,313 1,313
R-squared 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Notes: Treatment-on-the-treated estimates of having a working solar light on psychological outcomes expressed in standard deviations
following Equations (3) and (4). Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.8: Impact on Knowledge About Solar Lights

(1) (2) (3) (4) (5)
Know Know Know Know Number of
market charging battery expected brands
price time run time durability known

Solar light -0.138** 0.261*** -0.031 -0.057 0.456***
(0.060) (0.073) (0.053) (0.066) (0.081)

School FE Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes

Control complier mean 0.659 0.428 0.852 0.474 0.461
Number of observations 916 916 916 864 1,313
R-squared 0.11 0.05 0.08 0.03 0.13

Notes: Treatment-on-the-treated estimates of having a working solar light on guardians’
knowledge about solar lights Equations (3) and (4). Robust standard errors in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.9: Impact on Sample Screening in Education

(1) (2) (3) (4) (5) (6) (7)
Probability of taking Participation Participation in Replaced at least Number of grades Attended school Assigned homework

the KCPE exam in all 5 exams none of the 5 exams one grade replaced last week last week

Free basic light −0.092 0.076 −0.097∗ −0.089∗ −0.409 −0.012 0.054
(0.156) (0.057) (0.056) (0.053) (0.257) (0.013) (0.046)

High subsidy (USD 4) −0.182 −0.036 0.031 −0.031 −0.120 −0.004 0.010
(0.180) (0.074) (0.072) (0.068) (0.327) (0.012) (0.056)

Low subsidy (USD 7) −0.946 0.004 0.014 −0.065 −0.086 −0.014 −0.030
(0.795) (0.175) (0.173) (0.166) (0.809) (0.029) (0.137)

Market price (USD 9) −0.385 0.212 −0.220 −0.188 −0.905 0.015 −0.022
(0.544) (0.167) (0.164) (0.163) (0.779) (0.015) (0.145)

Free larger light −0.120 −0.002 −0.014 −0.060 −0.273 0.004 0.047
(0.129) (0.052) (0.051) (0.048) (0.231) (0.004) (0.039)

School FE Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes

Control complier mean 0.689 0.777 0.224 0.218 1.020 0.998 0.854
Number of observations 367 1,313 1,313 1,313 1,313 1,202 1,197
R-squared -0.18 -0.01 -0.01 -0.01 -0.01 -0.01 -0.00
F-test for same effect (p-value) 0.850 0.336 0.240 0.811 0.763 0.333 0.909
F-test of all treatments vs control 0.234 0.773 0.479 0.121 0.135 0.616 0.143

Notes: Treatment-on-the-treated estimates of having a working solar light on variables that are used for sample screening of education outcomes presented in Table 9 and Appendix Table C1. Column (1)
shows the probability of attending to the KCPE exam and participate in all of the 5 compulsory subjects tested, this variable includes those students who where in grade 7 at baseline and therefore potentially
eligible for KCPE. Column (2) shows the probability that the student took all of the 5 in-class-end-of-term-exams in March 2016. Column (3) shows the probability that the student didn’t attend to any of the
5 in-class-end-of-term-exams. Column (4) refers to the probability that the student’s score is replaced for at least once when one or more of the 5 subjects that compose the average score are missing. Column
(5) refers to the number of times that the student’s subject scores were replaced. Column (6) shows the probability that the student attended school at least once during the week preceding the endline survey.
Column (7) shows the probability that the student was assigned homework at least once in the week before the endline survey. Column (1) is used as a screening question for KCPE average score and KCPE
test scores (see Table 9 and Appendix Table A.2), Columns (2) to (5) are screening questions for average test scores, and test scores by subject (see Table A.2). Columns (6) and (7) serve as screening questions
for outcomes related to homework completion in Table 9, columns (1) and (2). Each row shows results from a separate TSLS regression following Equations (1) and (2). The sample of each regression includes
households in the control group and the respective treatment group. F-test at the bottom of the table to asses whether the effect is the same when all the treatments are pooled when compared to the control
group. To conduct the F-test of whether the effect is the same across treatment arms, we use stacked regressions with robust standard errors clustered at the household level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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B National Emissions

Table B.1: Cost per Ton of CO2-eq and Impact on National Emissions

Panel A: Our Study
Reduction in CO2 per household in 2 years (kg) 1,435.7
Cost per household for 2 years (USD) 11.97
Cost per ton of CO2-eq (USD) 8.34

Panel B: Projections if Scaled Nationally
Reduction in CO2 per household in 2 years (kg) 1,223.5
Cost per household for 2 years (USD) 11.97
Cost per ton of CO2-eq (USD) 9.78

Panel C: Projections as % of Kenya’s Total Emissions in 2014
Total CO2 reduced in 1 year (Mt) 2.71
Share of total emissions in 2014 (%) 3.66
Share of energy emissions in 2014 (%) 14.6

Notes: Calculations are based on a monthly breakage rate of 0.986%. We
assume that failure rates remain the same for 24 months, after which none
of the solar lights work anymore. All other assumptions are listed in Table
F.1. Additional robustness checks for different specifications are shown in
Appendix Tables B.3 and B.4. In Appendix F we provide further details
about the methodology to estimate the national emissions and cost abatement
calculations presented in this table.
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Table B.2: Cost per Ton of CO2-eq and Impact on National Emissions - Factor Emissions

(1) (2) (3) (4) (5) (6) (7) (8)
CO2 CO2-eq CO2-eq CO2-eq CO2-eq CO2-eq CO2-eq CO2-eq

lower upper GWP 20 GWP 100 GTP 20 GTP 100
bound bound

Panel A: Our Study
Reduction in CO2 per household in 2 years (kg) 12.8 1,435.7 644.2 2,225.5 4,133.5 1,134.4 1,209.3 167.6
Cost per household for 2 years (USD) 11.97 11.97 11.97 11.97 11.97 11.97 11.97 11.97
Cost per ton of CO2-eq (USD) 938.4 8.34 18.6 5.38 2.90 10.6 9.90 71.4

Panel B: Projections if Scaled Nationally
Reduction in CO2 per household in 2 years (kg) 31.6 1,223.5 559.7 1,885.8 3,486.0 970.8 1,033.7 160.1
Cost per household for 2 years (USD) 11.97 11.97 11.97 11.97 11.97 11.97 11.97 11.97
Cost per ton of CO2-eq (USD) 378.8 9.78 21.4 6.35 3.43 12.3 11.6 74.8

Panel C: Projections as % of Kenya’s Total Emissions in 2014
Total CO2 reduced in 1 year (Mt) 0.168 2.71 1.30 4.13 7.55 2.17 2.31 0.443
Share of total emissions in 2014 (%) 0.227 3.66 1.75 5.56 10.2 2.93 3.11 0.596
Share of energy emissions in 2014 (%) 0.905 14.6 6.97 22.2 40.6 11.7 12.4 2.38

Notes: Calculations are based on a monthly breakage rate of 0.986%. We assume that failure rates remain the same for 24 months, after which none of the
solar lights work anymore. All other assumptions are listed in Table F.1. Additional robustness checks for different specifications are shown in Appendix
Tables B.3 and B.4. In Appendix F we provide further details about the methodology to estimate the national emissions and cost abatement calculations
presented in this table.
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CO2 Abatement Cost and CO2 Reductions at the National Level - Different
Specifications

Table B.3: Impact on National Emissions for 2-Year Life Span

Lamp life span of 2 years Discount rate = 2% Discount rate = 3%

Basic Mobile Pool Basic Mobile Pool

Panel A: Our Study
Reduction in CO2 per household in 2 years (kg) 1,351.2 1,380.9 1,435.7 1,331.4 1,360.6 1,414.7
Cost per household for 2 years (USD) 9 24 11.97 9 24 11.97
Cost per ton of CO2-eq (USD) 6.66 17.4 8.34 6.76 17.6 8.46

Panel B: Projections if Scaled Nationally
Reduction in CO2 per household in 2 years (kg) 1,188.6 1,156.2 1,223.5 1,171.1 1,139.1 1,205.5
Cost per household for 2 years (USD) 9 24 11.97 9 24 11.97
Cost per ton of CO2-eq (USD) 7.57 20.8 9.78 7.69 21.1 9.93

Panel C: Projections as % of Kenya’s Total Emissions in 2014
Total CO2 reduced in 1 year (Mt) 2.64 2.57 2.71 2.61 2.55 2.69
Share of total emissions in 2014 (%) 3.56 3.46 3.66 3.52 3.43 3.62
Share of energy emissions in 2014 (%) 14.2 13.8 14.6 14.1 13.7 14.5

Notes: This table shows the calculations of national emissions for different scenarios. We assume a failure rate of 0.99% and
that failure rates remain the same for 24 months, after which none of the solar lights work anymore (i.e. we are assuming the
solar lamp’s life span is 2 years). The first three columns of this table assume a 2% social discount rate, while the last 3 columns
assume a 3% social discount rate. All other assumptions are listed in Table F.1. In Appendix F we provide further details about
the methodology to estimate the national emissions and cost abatement calculations presented in this table.
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Table B.4: Impact on National Emissions for 3-Year Life Span

Lamp life span of 3 years Discount rate = 2% Discount rate = 3%

Basic Mobile Pool Basic Mobile Pool

Panel A: Our Study
Reduction in CO2 per household in 3 years (kg) 1,917.8 1,959.4 2,036.5 1,881.6 1,922.4 1,998.1
Cost per household for 3 years (USD) 9 24 11.97 9 24 11.97
Cost per ton of CO2-eq (USD) 4.69 12.2 5.88 4.78 12.5 5.99

Panel B: Projections if Scaled Nationally
Reduction in CO2 per household in 3 years (kg) 1,733.7 1,687.0 1,784.0 1,700.5 1,654.7 1,749.8
Cost per household for 3 years (USD) 9 24 11.97 9 24 11.97
Cost per ton of CO2-eq (USD) 5.19 14.2 6.71 5.29 14.5 6.84

Panel C: Projections as % of Kenya’s Total Emissions in 2014
Total CO2 reduced in 1 year (Mt) 2.64 2.57 2.71 2.61 2.55 2.69
Share of total emissions in 2014 (%) 3.56 3.46 3.66 3.52 3.43 3.62
Share of energy emissions in 2014 (%) 14.2 13.8 14.6 14.1 13.7 14.5

Notes: This table shows the calculations of national emissions for different scenarios. We assume a failure rate of 0.99% and
that failure rates remain the same for 36 months, after which none of the solar lights work anymore (i.e. we are assuming the
solar lamp’s life span is 3 years). The first three columns of this table assume a 2% social discount rate, while the last 3 columns
assume a 3% social discount rate. All other assumptions are listed in Table F.1. In Appendix F we provide further details about
the methodology to estimate the national emissions and cost abatement calculations presented in this table.
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C Robustness Checks

Attrition

Table C.1: Attrition - Regression on Treatment Group Dummies

(1) (2)
Endline attrition Endline attrition

guardians students

Basic light −0.018 −0.013
(0.021) (0.024)

High subsidy −0.033∗ 0.011
(0.020) (0.026)

Low subsidy −0.014 0.031
(0.022) (0.028)

Market price −0.010 0.044
(0.022) (0.028)

Larger light −0.039∗∗ −0.008
(0.018) (0.025)

School FE Yes Yes
Respondent gender Yes Yes

Control mean 0.091 0.083
Number of observations 1,332 1,410
F-test of all treatments vs control 0.483 0.125

Notes: Column (1) shows endline attrition for students, that is, students that didn’t
participated at the endline survey but whose guardians participated at their respective
endline survey. Column (2) shows endline attrition for the guardians,that is, guardians
that didn’t participate at the endline survey. Coefficients in Columns (1) and (2) are
estimated using stacked regression and are equivalent to running each column as a sep-
arate regression. The raw shares of endline attrition for the full sample (without school
fixed effects) are 9.8% for students and 6.9% for guardians. F-test at the bottom of the
table tests whether the coefficient of all treatments dummy against control is different
from zero. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.2: Attrition - Baseline Characteristics of Non-Attritors versus Attritors

Guardian attrition Student attrition

(1) (2) (3) (4)
Non - Difference Non - Difference

attritors attritors attritors attritors

Connection to the grid 0.014 -0.003 0.015 -0.009
[0.119] (0.012) [0.122] (0.009)

Household owns a solar light 0.058 0.027 0.060 -0.018
[0.234] (0.031) [0.237] (0.019)

Average test scores (baseline) 0.025 0.010 0.052 -0.332***
[0.988] (0.103) [0.989] (0.087)

Student is in grade 5 0.344 -0.010 0.344 -0.046
[0.475] (0.049) [0.475] (0.042)

Student is in grade 6 0.375 -0.067 0.378 -0.043
[0.484] (0.048) [0.485] (0.044)

Student is in grade 7 0.280 -0.007 0.278 0.027
[0.449] (0.047) [0.448] (0.041)

Student is female 0.542 -0.034 0.530 0.165***
[0.498] (0.053) [0.499] (0.044)

Student’s age 14.17 0.00 14.07 1.19***
[1.75] (0.00) [1.70] (0.190)

Guardian respondent is student’s parent 0.792 -0.225*** 0.807 -0.183***
[0.406] (0.052) [0.395] (0.044)

Guardian respondent is student’s grandparent 0.104 -0.019 0.098 0.051
[0.306] (0.030) [0.298] (0.032)

Guardian respondent is female 0.672 0.009 0.673 -0.016
[0.470] (0.053) [0.469] (0.045)

Student from replacement list 0.132 0.043 0.133 0.009
[0.338] (0.038) [0.340] (0.032)

Baseline guardian survey at school 0.947 -0.052 0.949 -0.033
[0.225] (0.035) [0.220] (0.025)

Household size 6.82 -0.042 6.83 -0.076
[2.15] (0.276) [2.14] (0.222)

Household performs agricultural activities 0.988 0.003 0.989 -0.021
[0.110] (0.013) [0.103] (0.016)

School FE Yes Yes

Notes: Columns (1) and (3) show the means of baseline characteristics for non-attritors with the standard deviation
in square brackets. Columns (2) and (4) show the difference in these characteristics between non-attritors and
attritors for guardians’ attrition and students’ attrition, respectively. Robust standard errors in parentheses. ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.3: Attrition - Lee Bounds and IPW

(1) (2) (3) (4)
Lee Bounds Inverse

Non-adjusted Lower Upper Probability
estimates bound bound Weighted

Lighting use students (hours) 0.397∗∗∗ 0.375∗∗∗ 0.407∗∗∗ 0.337∗∗

(0.134) (0.128) (0.130) (0.146)
Eye dryness - student −0.257∗∗ −0.279∗∗∗ −0.253∗∗ −0.318∗∗∗

(0.104) (0.101) (0.104) (0.112)
Respiratory symptoms - student −0.277∗∗∗ −0.296∗∗∗ −0.287∗∗∗ −0.286∗∗

(0.104) (0.097) (0.106) (0.112)
Homework completion 0.157∗∗∗ 0.163∗∗∗ 0.170∗∗∗ 0.178∗∗∗

(0.047) (0.049) (0.047) (0.052)
Hours in school 0.557∗∗ 0.504∗∗ 0.647∗∗∗ 0.472∗

(0.228) (0.220) (0.231) (0.250)
Hours doing homework and personal studies 0.310∗ 0.200 0.346∗ 0.279

(0.184) (0.165) (0.185) (0.198)
Solar use yesterday (hours) - guardian 3.352∗∗∗ 3.036∗∗∗ 3.471∗∗∗ 3.288∗∗∗

(0.156) (0.128) (0.152) (0.168)
Lighting use guardian (hours) −0.209 −0.407∗∗∗ −0.076 −0.239

(0.141) (0.134) (0.137) (0.153)
Number of kerosene lights used last month −0.900∗∗∗ −0.983∗∗∗ −0.811∗∗∗ −1.094∗∗∗

(0.153) (0.156) (0.157) (0.119)
Kerosene purchased (l/month) −1.288∗∗∗ −1.446∗∗∗ −1.225∗∗∗ −1.445∗∗∗

(0.210) (0.197) (0.214) (0.237)
Energy expenditure last month −1.759∗∗∗ −2.332∗∗∗ −1.624∗∗∗ −1.765∗∗∗

(0.458) (0.345) (0.468) (0.467)
CO2-eq emissions (kg/month) −71.827∗∗∗ −82.422∗∗∗ −68.541∗∗∗ −82.011∗∗∗

(12.242) (11.352) (12.535) (13.792)
Eye dryness - guardian −0.230∗∗ −0.339∗∗∗ −0.150 −0.257∗∗

(0.102) (0.101) (0.102) (0.112)
Respiratory symptoms - guardian −0.154 −0.286∗∗∗ −0.097 −0.125

(0.102) (0.099) (0.104) (0.112)

Notes: Column (1) to (4) show coefficients and standard errors from a two-stage least square regression of the respective
outcome variable on the solar works indicator using treatment assignments as an instrument. Specification includes school
fixed effects and respondent gender. Column (1) shows results restricting the sample to individuals in households in which
guardian participated at endline (Lee bounds) or reweight (IPW) observations as is done in Column (2) to (4). Column
(2) and (3) apply the idea of Lee bounds to multiple treatment groups. That is, the share of available observations in each
treatment group is equalized to the group with the highest attrition by trimming observations in the top of the distribution
(lower bound estimate) and, respectively, in the bottom of the distribution (upper bound estimate). We distinguish
between student and guardian surveys. Column (4) shows estimates calculated with Inverse Probability Weights (IPWs).
The weights are calculated from the variables used in the balance table via a probit regression. We don’t include the pupil’s
age because we don’t have that information for the student attritors. IPWs based on the guardian population are used
to calculate the estimates for Ligthing Use, Monthly Kerosene Purchase, Monthly Energy Expenditures, CO2eq Emissions
and Eye-Related and Respiratory Symptoms (Guardians), whereas IPWs based on the student population are used for the
remaining estimates.
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Table C.4: Attrition - Lee Bounds and IPW - Winsorizing Outcomes at top 5%

(1) (2) (3) (4)
Lee Bounds Inverse

Non-adjusted Lower Upper Probability
estimates bound bound Weighted

Lighting use students (hours) winsorized 0.384∗∗∗ 0.373∗∗∗ 0.386∗∗∗ 0.324∗∗

(0.130) (0.126) (0.126) (0.142)
Eye dryness - student −0.257∗∗ −0.274∗∗∗ −0.258∗∗ −0.318∗∗∗

(0.104) (0.101) (0.105) (0.112)
Respiratory symptoms - student −0.277∗∗∗ −0.306∗∗∗ −0.285∗∗∗ −0.287∗∗

(0.104) (0.096) (0.106) (0.112)
Homework completion 0.157∗∗∗ 0.161∗∗∗ 0.167∗∗∗ 0.178∗∗∗

(0.047) (0.050) (0.047) (0.052)
Hours in school winsorized 0.556∗∗ 0.543∗∗ 0.586∗∗∗ 0.464∗

(0.224) (0.220) (0.226) (0.246)
Hours doing homework and personal studies winsorized 0.198 0.184 0.220 0.187

(0.162) (0.160) (0.161) (0.176)
Solar use yesterday (hours) - guardian winsorized 3.201∗∗∗ 3.078∗∗∗ 3.242∗∗∗ 3.175∗∗∗

(0.102) (0.102) (0.099) (0.110)
Lighting use guardian (hours) winsorized −0.150 −0.305∗∗ −0.024 −0.162

(0.124) (0.123) (0.119) (0.135)
Number of kerosene lights used last month winsorized −0.946∗∗∗ −1.045∗∗∗ −0.861∗∗∗ −1.039∗∗∗

(0.098) (0.097) (0.098) (0.108)
Kerosene purchased (l/month) winsorized −0.960∗∗∗ −1.169∗∗∗ −0.898∗∗∗ −1.085∗∗∗

(0.142) (0.138) (0.144) (0.156)
Energy expenditure last month winsorized −1.287∗∗∗ −1.668∗∗∗ −1.150∗∗∗ −1.324∗∗∗

(0.233) (0.218) (0.236) (0.246)
CO2-eq emissions (kg/month) winsorized −53.732∗∗∗ −67.087∗∗∗ −50.029∗∗∗ −62.355∗∗∗

(8.267) (7.861) (8.452) (9.084)
Eye dryness - guardian −0.230∗∗ −0.340∗∗∗ −0.150 −0.257∗∗

(0.102) (0.101) (0.102) (0.112)
Respiratory symptoms - guardian −0.154 −0.292∗∗∗ −0.100 −0.125

(0.102) (0.099) (0.103) (0.112)

Notes: This table reports the robustness checks conducted in Table C.3 winsorizing at the top 5% the following outcomes: number of
hours using solar light, number of hours using any lighting source, number of kerosene lights used, liters of kerosene purchased, energy
expenditure, CO2 emissions, number of school hours, number of homework and personal studies hours, and number of sleep hours.
Column (1) to (4) show coefficients and standard errors from a two-stage least square regression of the respective outcome variable
on the solar works indicator using treatment assignments as an instrument. Specification includes school fixed effects and respondent
gender. Column (1) shows results restricting the sample to individuals in households in which guardian participated at endline (Lee
bounds) or reweight (IPW) observations as is done in Column (2) to (4). Column (2) and (3) apply the idea of Lee bounds to multiple
treatment groups. That is, the share of available observations in each treatment group is equalized to the group with the highest attrition
by trimming observations in the top of the distribution (lower bound estimate) and, respectively, in the bottom of the distribution (upper
bound estimate). We distinguish between student and guardian surveys. Column (4) shows estimates calculated with Inverse Probability
Weights (IPWs). The weights are calculated from the variables used in the balance table via a probit regression. We don’t include
the pupil’s age because we don’t have that information for the student attritors. IPWs based on the guardian population are used to
calculate the estimates for Ligthing Use, Monthly Kerosene Purchase, Monthly Energy Expenditures, CO2eq Emissions and Eye-Related
and Respiratory Symptoms (Guardians), whereas IPWs based on the student population are used for the remaining estimates.
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ITT & False Discovery Rates

Table C.5: Intention to Treat and Adjustments for Multiple Hypothesis Testing

(1) (2) (3) (4) (5)
Control ITT LATE P-value Q-value
[S.D.] (S.E.) (S.E.) LATE LATE

(1) Lighting use students (hours) 3.33 0.192** 0.397*** 0.0028 0.0040
[1.33] (0.081) (0.133)

(2) Eye dryness - student 0.000 -0.153** -0.257** 0.0127 0.0100
[1.000] (0.061) (0.103)

(3) Respiratory symptoms - student 0.000 -0.096 -0.277*** 0.0071 0.0070
[1.000] (0.061) (0.103)

(4) Home completion 0.692 0.069** 0.157*** 0.0008 0.0020
[0.462] (0.030) (0.047)

(5) Hours in school 4.51 0.230* 0.557** 0.0135 0.0100
[2.98] (0.139) (0.225)

(6) Hours doing homework and personal studies 2.46 0.121 0.310* 0.0893 0.0310
[1.68] (0.105) (0.182)

(7) Solar use yesterday (hours) - guardian 0.631 1.54*** 3.35*** 0.0000 0.0010
[1.79] (0.124) (0.155)

(8) Lighting use guardian (hours) 3.22 -0.178** -0.209 0.1334 0.0310
[1.48] (0.087) (0.140)

(9) Number of kerosene lights used last month 2.24 -0.445*** -0.900*** 0.0000 0.0010
[1.14] (0.074) (0.152)

(10) Kerosene purchased (l/month) 2.08 -0.520*** -1.29*** 0.0000 0.0010
[2.49] (0.145) (0.209)

(11) Energy expenditure last month 3.75 -0.743** -1.76*** 0.0001 0.0010
[5.53] (0.305) (0.454)

(12) CO2-eq emissions (kg/month) 116 -28.11*** -71.83*** 0.0000 0.0010
[145] (8.58) (12.14)

(13) Eye dryness - guardian -0.000 -0.144** -0.230** 0.0231 0.0130
[1.000] (0.062) (0.101)

(14) Respiratory symptoms - guardian 0.000 -0.059 -0.154 0.1298 0.0310
[1.000] (0.062) (0.101)

Notes: Table includes main outcomes from the study. We control for school fixed effects and respondent gender. No other
control variables are used. Column (1) reports the mean from the control group with SD in squared brackets. Column
(2) reports intention to treat (ITT) regression estimates with robust standard errors. Column (3) reports Local Average
Treatment Effect (LATE) estimates with robust standard errors in parentheses. These are the point estimates reported in
the main specification. Column (4) shows standard p-values for LATE estimates. Column (5) reports the false discovery
rate (FDR)-adjusted Q-values following Anderson (2008) associated with the p-values in Column (4). *** p < 0.01, ** p
< 0.05, * p < 0.1.
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Impacts with Controls
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Table C.6: Impact on Light Use with Controls

(1) (2) (3) (4) (5) (6)
Lighting use Lighting use Probability of Used solar Used tin Used kerosene

yesterday yesterday lighting light for lamp for lantern for
guardians (hours) students (hours) interruption homework homework homework

Solar light −0.215 0.379∗∗∗ −0.387∗∗∗ 1.066∗∗∗ −0.901∗∗∗ −0.112∗∗∗

(0.141) (0.132) (0.042) (0.050) (0.051) (0.024)

School FE Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Control complier mean 3.142 3.260 0.471 0.000 0.874 0.129
Number of observations 1,313 1,202 1,286 1,050 1,050 1,050
R-squared 0.00 0.05 0.16 0.21 0.17 0.01

Notes: Treatment-on-the-treated estimates of having a working solar light on light use following Equations (3) and (4). Columns (1) and (2)
show the number of hours during which guardians and students, respectively, used any source of lighting. To measure time use in these variables,
the respondents were asked about each time slot of the day. Column (3) shows lighting interruption due to running out of fuel or battery for any
of their lighting devices in the past month, reported by the guardian. Columns (4) to (6) show whether the student relied as a main source of
light to do homework a solar light, a tin lamp, and a kerosene lantern, respectively. In all the specifications we control for baseline characteristics
such as class of the student, connection to the grid, household size and ownership of a solar light. Robust standard errors in parentheses. *** p
< 0.01, ** p < 0.05, * p < 0.1.
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Table C.7: Impact on Kerosene Use with Controls

(1) (2) (3) (4) (5)
Number of Number of Number of Kerosene Kerosene

kerosene-fueled tin lamps kerosene lanterns light used purchased last
lights used used last used last yesterday month (liters)
last month month month

Solar light −0.886∗∗∗ −0.901∗∗∗ −0.104∗∗ −0.292∗∗∗ −1.270∗∗∗

(0.155) (0.094) (0.047) (0.037) (0.211)

School FE Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes

Control complier mean 2.389 2.173 0.271 0.955 2.582
Number of observations 1,313 1,312 1,313 1,307 1,299
R-squared 0.10 0.18 -0.00 0.20 0.05

Notes: Treatment-on-the-treated estimates of having a working solar light on kerosene use and energy
expenditure with controls following Equations (3) and (4). Column (1) shows the number of kerosene-
fueled lights the guardian used in the household in the past month. Columns (2) and (3) show the number
of tin lamps and kerosene lantern that the guardian used in the household in the past month. Column
(1) is the sum of tin lamps, kerosene lanterns, and pressurized lamps. Column (4) refers to whether any
household member used a kerosene-fueled light in the previous evening. Column (5) shows the change in
liters of kerosene purchased in the past month at the household level. In all the specifications we control for
baseline characteristics such as class of the student, connection to the grid, household size and ownership
of a solar lamp. All variables are from the guardian survey. Robust standard errors in parentheses. *** p
< 0.01, ** p < 0.05, * p < 0.1.

74



Table C.8: Impact on Emissions with Controls

(1) (2) (3) (4)
BC CO2 CO2-eq PM2.5

emissions emissions emissions emissions
(g/month) (g/month) (g/month) (g/month)

Solar light −81.22∗∗∗ −2, 863∗∗∗ −70, 763∗∗∗ −84.41∗∗∗

(14.18) (469) (12,303) (14.67)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Control complier mean 163.28 5,707 142,211 169.63
Number of observations 1,291 1,291 1,291 1,291
R-squared 0.05 0.05 0.05 0.05

Notes: Treatment-on-the-treated estimates of having a working solar light on household
emissions with controls following Equations (3) and (4). The impact on emissions is
calculated based on households’ kerosene consumption, as reported in Column (3) of
Table 5, and the type of kerosene lamp households use, as detailed in Subsection 2.1.
As a result, these four columns are linearly dependent among each other. Column (1)
shows black carbon, Column (2) CO2 emissions, Column (3) CO2-equivalents of the
previous two columns combined, and Column (4) particulate matter (PM2.5). In all
the specifications we control for baseline characteristics such as class of the student,
connection to the grid, household size and ownership of a solar light. All variables are
from the guardian survey. Robust standard errors in parentheses. *** p < 0.01, ** p
< 0.05, * p < 0.1.
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Table C.9: Impact on Expenditures with Controls

(1) (2) (3) (4) (5) (6) (7) (8)
Total Kerosene Phone Firewood Batteries Charcoal Electricity Other

expenditure charging bill

Basic light −1.269∗∗ −0.655∗∗∗ 0.294∗ −0.396∗∗ 0.013 −0.012 −0.392 −0.123
(0.581) (0.148) (0.168) (0.187) (0.074) (0.284) (0.319) (0.116)

Larger light −2.356∗∗∗ −0.931∗∗∗ −0.884∗∗∗ −0.092 0.131∗ −0.108 −0.338 −0.135
(0.472) (0.116) (0.110) (0.214) (0.074) (0.195) (0.221) (0.087)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 4.127 1.686 1.105 0.429 0.278 0.225 0.369 0.038
Number of observations 1,313 1,312 1,313 1,313 1,313 1,313 1,313 1,313
R-squared 0.05 0.06 0.01 -0.01 0.00 -0.00 0.17 0.01
F-test for same effect 0.025 0.054 0.000 0.101 0.183 0.713 0.787 0.853

Notes: Treatment-on-the-treated estimates of having a working solar light on households’ monthly energy expenditures (in USD) by
type of light. Each row results from a separate TSLS regression following Equations (3) and (4). The sample of each regression includes
households in the control group and the respective treatment groups. Column (1) shows total energy expenditure, Columns (2) to (8)
its components. Column (8) includes expenditures on candles, generator fuel, LPG, sawdust, dung/charcoal mixture, and other types
of fuel. In all the specifications we control for baseline characteristics such as class of the student, connection to the grid, household
size and ownership of a solar light. All variables are from the guardian survey. To conduct the F-test of whether the effect is the same
across types of light, we use stacked regressions with robust standard errors clustered at the household level. *** p < 0.01, ** p <
0.05, * p < 0.1.
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Table C.10: Impact on Health with Controls

Eyes Respiratory

Guardians Students Guardians Students
(1) (2) (3) (4)

Solar light −0.230∗∗ −0.255∗∗ −0.158 −0.282∗∗∗

(0.103) (0.105) (0.103) (0.105)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Number of observations 1,313 1,202 1,313 1,202
R-squared 0.01 0.00 0.01 -0.00

Notes: Treatment-on-the-treated estimates of having a working solar light on
health with controls following Equations (3) and (4). Columns (1) and (2) show
an index of eye-related symptoms such as dryness, grittiness, redness, etc. based
on Lee et al. (2002). Columns (3) and (4) show an index of respiratory symptoms
such as shortness of breath, asthma, cough, etc. based on Bates et al. (2013) and
The European Community Respiratory Health Survey II Steering Committee
(2002). Effects are expressed in standard deviations. Higher values indicate
more symptoms. In all the specifications we control for baseline characteristics
such as class of the student, connection to the grid, household size and ownership
of a solar lamp. Robust standard errors in parentheses. *** p < 0.01, ** p <
0.05, * p < 0.1.
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Table C.11: Impact on Education with Controls

(1) (2) (3) (4) (5) (6) (7) (8)
Homework Share homework Homework and School Sleep Average score Average score Participation
completion after dark personal studies (hours) (hours) of 5 subjects KCPE in school exams

(hours) in March 2016

Solar light 0.156∗∗∗ 0.113∗∗∗ 0.292 0.528∗∗ −0.718∗∗∗ −0.082 −0.061 0.028
(0.048) (0.036) (0.181) (0.226) (0.224) (0.073) (0.203) (0.042)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 0.650 0.723 2.452 4.004 8.328 0.033 0.011 0.777
Number of observations 1,050 1,050 1,202 1,202 1,202 1,267 236 1,313
R-squared 0.00 -0.00 0.04 0.03 0.02 0.00 0.01 0.00

Notes: Treatment-on-the-treated estimates of having a working solar light on educational outcomes with controls following Equations (3) and (4). Column (1)
shows whether the student was able to complete the homework in the past week. Column (2) shows the share of times the student did homework after dark in
the past week. Columns (3) to (5) show results for time use on the day before the endline interview (homework and personal studies, time spent in class, time
spent sleeping). Column (6) shows the average final exam scores of the first term in 2016. When the score for a subject is missing, we use the corresponding
score from the last term of 2015, when available. The probability of scores missing is balanced across treatment arms (see Appendix Table A.9). Column (7)
contains the average score of graduating students who took the national KCPE exam. Column (8) indicates whether the student took at least one of the 5
compulsory exams. Variables in Columns (1) to (5) are from the student survey; variables in Columns (6) to (8) from administrative test score records. In
all the specifications we control for baseline characteristics such as class of the student, connection to the grid, household size and ownership of a solar lamp.
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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D Separate Treatment Effect Estimates

Impacts with pooled basic lights vs. larger light
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Table D.1: Impact on Light Use - Basic vs. Larger Light

(1) (2) (3) (4) (5) (6)
Lighting use Lighting use Probability of Used solar Used tin Used kerosene

yesterday yesterday lighting light for lamp for lantern for
guardians (hours) students (hours) interruption homework homework homework

Basic light −0.221 0.392∗∗ −0.379∗∗∗ 1.096∗∗∗ −0.916∗∗∗ −0.099∗∗∗

(0.171) (0.167) (0.052) (0.065) (0.065) (0.031)
Larger light −0.288∗ 0.417∗∗∗ −0.413∗∗∗ 1.004∗∗∗ −0.853∗∗∗ −0.116∗∗∗

(0.171) (0.159) (0.048) (0.058) (0.058) (0.025)

School FE Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes

Control complier mean 3.136 3.242 0.472 0.000 0.866 0.129
Number of observations 1,313 1,202 1,286 1,050 1,050 1,050
R-squared -0.02 -0.00 0.15 0.15 0.11 0.01
F-test for same effect 0.718 0.886 0.488 0.201 0.312 0.447

Notes: Treatment-on-the-treated estimates of having a working solar light on light use following Equations (3) and (4). The sample of each
regression includes households in the control group and the treatment arms offered the respective type of light. Columns (1) and (2) show the
number of hours during which guardians and students, respectively, used any source of lighting. To measure time use in these variables, the
respondents were asked about each time slot of the day. Column (3) shows lighting interruption due to running out of fuel or battery for any
of their lighting devices in the past month, reported by the guardian. Columns (4) to (6) show whether the student relied as a main source of
light to do homework a solar light, a tin lamp, and a kerosene lantern, respectively. Robust standard errors in parentheses. *** p < 0.01, ** p
< 0.05, * p < 0.1.
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Table D.2: Impact on Kerosene Use - Basic vs. Larger Light

(1) (2) (3) (4) (5)
Number of Number of Number of Kerosene Kerosene

kerosene-fueled tin lamps kerosene lanterns light used purchased last
lights used used last used last yesterday month (liters)
last month month month

Basic light −1.036∗∗∗ −0.932∗∗∗ −0.111∗ −0.250∗∗∗ −1.253∗∗∗

(0.131) (0.117) (0.060) (0.044) (0.272)
Larger light −0.782∗∗∗ −0.879∗∗∗ −0.106∗ −0.358∗∗∗ −1.220∗∗∗

(0.236) (0.119) (0.054) (0.050) (0.230)

School FE Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes

Control complier mean 2.404 2.186 0.268 0.959 2.600
Number of observations 1,313 1,312 1,313 1,307 1,299
R-squared 0.08 0.14 -0.01 0.19 0.04
F-test for same effect 0.299 0.690 0.933 0.079 0.896

Notes: Treatment-on-the-treated estimates of having a working solar light on kerosene use following Equations (3) and (4).
The sample of each regression includes households in the control group and the treatment arms offered the respective type
of light. Column (1) shows the number of kerosene-fueled lights the guardian used in the household in the past month.
Columns (2) and (3) show the number of tin lamps and kerosene lantern that the guardian used in the household in the past
month. Column (1) is the sum of tin lamps, kerosene lanterns, and pressurized lamps. Column (4) refers to whether any
household member used a kerosene-fueled light in the previous evening. Column (5) shows the change in liters of kerosene
purchased in the past month at the household level. All variables are from the guardian survey. Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table D.3: Impact on Emissions - Basic vs. Larger Light

(1) (2) (3) (4)
BC CO2 CO2-eq PM2.5

emissions emissions emissions emissions
(g/month) (g/month) (g/month) (g/month)

Basic light −77.67∗∗∗ −2, 799∗∗∗ −67, 735∗∗∗ −80.80∗∗∗

(18.42) (606) (15,983) (19.06)
Larger light −79.38∗∗∗ −2, 811∗∗∗ −69, 170∗∗∗ −82.51∗∗∗

(15.06) (510) (13,075) (15.59)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Control complier mean 164.51 5,748 143,276 170.89
Number of observations 1,291 1,291 1,291 1,291
R-squared 0.04 0.04 0.04 0.04
F-test for same effect 0.919 0.984 0.921 0.922

Notes: Treatment-on-the-treated estimates of having a working solar light on household
emissions following Equations (3) and (4). The sample of each regression includes households
in the control group and the treatment arms offered the respective type of light. The impact
on emissions is calculated based on households’ kerosene consumption, as reported in Column
(3) of Table 5, and the type of kerosene lamp households use, as detailed in Subsection 2.1.
As a result, these four columns are linearly dependent among each other. Column (1) shows
black carbon, Column (2) CO2 emissions, Column (3) CO2-equivalents of the previous two
columns combined, and Column (4) particulate matter (PM2.5). Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table D.4: Impact on Energy Expenditures - Pooled

(1) (2) (3) (4) (5) (6) (7) (8)
Total Kerosene Phone Firewood Batteries Charcoal Electricity Other

expenditure charging bill

Solar light −1.759∗∗∗ −0.829∗∗∗ −0.328∗∗∗ −0.259 0.064 −0.016 −0.276 −0.117
(0.458) (0.111) (0.117) (0.169) (0.060) (0.193) (0.257) (0.088)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 4.120 1.685 1.110 0.425 0.276 0.226 0.366 0.034
Number of observations 1,313 1,312 1,313 1,313 1,313 1,313 1,313 1,313
R-squared -0.01 0.06 -0.01 -0.01 0.00 -0.00 0.00 -0.01

Notes: Treatment-on-the-treated estimates of having a working solar light on households’ monthly energy expenditures (in USD) following
Equations (3) and (4). Column (1) shows total energy expenditure, Columns (2) to (8) its components. Column (8) includes expenditures on
candles, generator fuel, LPG, sawdust, dung/charcoal mixture, and other types of fuel. Robust standard errors in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1.
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Table D.5: Impact on Health - Basic vs. Larger Light

Eyes Respiratory

Guardians Students Guardians Students
(1) (2) (3) (4)

Basic light −0.260∗∗ −0.249∗ −0.163 −0.264∗∗

(0.126) (0.129) (0.128) (0.128)
Larger light −0.225∗ −0.294∗∗ −0.126 −0.248∗∗

(0.125) (0.125) (0.122) (0.126)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Number of observations 1,313 1,202 1,313 1,202
R-squared 0.00 0.00 0.00 -0.00
F-test for same effect 0.803 0.750 0.794 0.913

Notes: Treatment-on-the-treated estimates of having a working solar light on health
following Equations (3) and (4). The sample of each regression includes households in
the control group and the treatment arms offered the respective type of light. Columns
(1) and (2) show an index of eye-related symptoms such as dryness, grittiness, redness,
etc. based on Lee et al. (2002). Columns (3) and (4) show an index of respiratory symp-
toms such as shortness of breath, asthma, cough, etc. based on Bates et al. (2013) and
The European Community Respiratory Health Survey II Steering Committee (2002).
Effects are expressed in standard deviations. Higher values indicate more symptoms.
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table D.6: Impact on Education - Basic vs. Larger Light

(1) (2) (3) (4) (5) (6) (7) (8)
Homework Share homework Homework and School Sleep Average score Average score Participation
completion after dark personal studies (hours) (hours) of 5 subjects KCPE in school exams

(hours) in March 2016

Basic light 0.172∗∗∗ 0.133∗∗∗ 0.303 0.792∗∗∗ −0.848∗∗∗ −0.093 −0.066 0.047
(0.059) (0.044) (0.232) (0.279) (0.250) (0.089) (0.235) (0.050)

Larger light 0.140∗∗ 0.097∗∗ 0.308 0.336 −0.645∗∗ −0.087 0.007 0.014
(0.055) (0.043) (0.223) (0.277) (0.295) (0.086) (0.271) (0.051)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 0.649 0.722 2.434 3.976 8.353 0.030 0.025 0.776
Number of observations 1,050 1,050 1,202 1,202 1,202 1,267 236 1,313
R-squared -0.01 -0.01 -0.01 0.00 -0.00 -0.00 -0.00 0.00
F-test for same effect 0.603 0.433 0.986 0.142 0.517 0.880 0.814 0.553

Notes: Treatment-on-the-treated estimates of having a working solar light on educational outcomes following Equations (3) and (4). The sample of each regression includes
households in the control group and the treatment arms offered the respective type of light. Column (1) shows whether the student was able to complete the homework in the
past week. Column (2) shows the share of times the student did homework after dark in the past week. Columns (3) to (5) show results for time use on the day before the
endline interview (homework and personal studies, time spent in class, time spent sleeping). Column (6) shows the average final exam scores of the first term in 2016. When the
score for a subject is missing, we use the corresponding score from the last term of 2015, when available. The probability of scores missing is balanced across treatment arms
(see Appendix Table A.9). Column (7) contains the average score of graduating students who took the national KCPE exam. Column (8) indicates whether the student took
at least one of the 5 compulsory exams. Variables in Columns (1) to (5) are from the student survey; variables in Columns (6) to (8) from administrative test score records.
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Impacts with no pooling at all
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Table D.7: Impact on Light Use - All Treatment Arms

(1) (2) (3) (4) (5) (6)
Lighting use Lighting use Probability of Used solar Used tin Used kerosene

yesterday yesterday lighting light for lamp for lantern for
guardians (hours) students (hours) interruption homework homework homework

Free basic light −0.156 0.454∗∗ −0.372∗∗∗ 1.124∗∗∗ −0.968∗∗∗ −0.099∗∗∗

(0.190) (0.190) (0.059) (0.080) (0.075) (0.033)
High subsidy (USD 4) −0.423∗ 0.334 −0.398∗∗∗ 1.023∗∗∗ −0.807∗∗∗ −0.093∗∗

(0.239) (0.231) (0.071) (0.079) (0.082) (0.044)
Low subsidy (USD 7) −0.545 0.599 −0.666∗∗∗ 1.002∗∗∗ −0.601∗∗∗ −0.146

(0.628) (0.554) (0.202) (0.179) (0.197) (0.125)
Market price (USD 9) −1.106∗ 0.542 −0.468∗∗ 0.782∗∗∗ −0.778∗∗∗ −0.002

(0.615) (0.604) (0.189) (0.170) (0.219) (0.129)
Free larger light −0.288∗ 0.417∗∗∗ −0.413∗∗∗ 1.004∗∗∗ −0.853∗∗∗ −0.116∗∗∗

(0.172) (0.160) (0.048) (0.058) (0.059) (0.025)

School FE Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes

Control complier mean 3.136 3.242 0.472 0.000 0.866 0.129
Number of observations 1,313 1,202 1,286 1,050 1,050 1,050
R-squared -0.07 -0.01 0.10 0.06 0.03 0.01
F-test for same effect 0.516 0.977 0.595 0.306 0.174 0.761

Notes: Treatment-on-the-treated estimates of having a working solar light on light use following Equations (3) and (4). The sample of each
regression includes households in the control group and the treatment arms offered the respective type of light. Columns (1) and (2) show the
number of hours during which guardians and students, respectively, used any source of lighting. To measure time use in these variables, the
respondents were asked about each time slot of the day. Column (3) shows lighting interruption due to running out of fuel or battery for any
of their lighting devices in the past month, reported by the guardian. Columns (4) to (6) show whether the student relied as a main source of
light to do homework a solar light, a tin lamp, and a kerosene lantern, respectively. Robust standard errors in parentheses. *** p < 0.01, ** p
< 0.05, * p < 0.1.

87



Table D.8: Impact on Kerosene Use - All Treatment Arms

(1) (2) (3) (4) (5)
Number of Number of Number of Kerosene Kerosene

kerosene-fueled tin lamps kerosene lanterns light used purchased last
lights used used last used last yesterday month (liters)
last month month month

Free basic light −1.063∗∗∗ −0.943∗∗∗ −0.120∗ −0.295∗∗∗ −1.287∗∗∗

(0.149) (0.133) (0.067) (0.053) (0.295)
High subsidy (USD 4) −1.019∗∗∗ −0.911∗∗∗ −0.126 −0.217∗∗∗ −1.112∗∗∗

(0.175) (0.162) (0.082) (0.059) (0.395)
Low subsidy (USD 7) −1.075∗∗ −0.931∗∗ −0.144 −0.564∗∗∗ −0.157

(0.459) (0.428) (0.205) (0.132) (1.046)
Market price (USD 9) −0.858∗∗ −0.557 −0.301 −0.423∗∗∗ −0.663

(0.420) (0.389) (0.202) (0.127) (0.959)
Free larger light −0.782∗∗∗ −0.879∗∗∗ −0.106∗ −0.358∗∗∗ −1.220∗∗∗

(0.237) (0.120) (0.055) (0.050) (0.231)

School FE Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes

Control complier mean 2.404 2.186 0.268 0.959 2.600
Number of observations 1,313 1,312 1,313 1,307 1,299
R-squared 0.08 0.11 -0.02 0.22 0.03
F-test for same effect 0.835 0.871 0.899 0.061 0.813

Notes: Treatment-on-the-treated estimates of having a working solar light on kerosene use following Equations (3) and (4).
The sample of each regression includes households in the control group and the treatment arms offered the respective type
of light. Column (1) shows the number of kerosene lights the guardian used in the household in the past month. Column
(2) refers to whether any household member used a kerosene lamp in the previous evening. Column (3) shows the change in
liters of kerosene purchased in the past month at the household level. All variables are from the guardian survey. Robust
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table D.9: Impact on Emissions - All Treatment Arms

(1) (2) (3) (4)
BC CO2 CO2-eq PM2.5

emissions emissions emissions emissions
(g/month) (g/month) (g/month) (g/month)

Free basic light −78.22∗∗∗ −2, 895∗∗∗ −68, 288∗∗∗ −81.47∗∗∗

(20.06) (657) (17,401) (20.75)
High subsidy (USD 4) −69.41∗∗ −2, 499∗∗∗ −60, 523∗∗∗ −72.20∗∗∗

(26.94) (889) (23,363) (27.85)
Low subsidy (USD 7) −4.76 −383 −4, 360 −5.23

(72.49) (2,381) (62,880) (74.97)
Market price (USD 9) −27.78 −2, 076 −25, 301 −30.32

(68.07) (2,153) (58,995) (70.33)
Free larger light −79.38∗∗∗ −2, 811∗∗∗ −69, 170∗∗∗ −82.51∗∗∗

(15.17) (513) (13,168) (15.70)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Control complier mean 164.51 5,748 143,276 170.89
Number of observations 1,291 1,291 1,291 1,291
R-squared 0.03 0.03 0.03 0.03
F-test for same effect 0.807 0.849 0.809 0.809

Notes: Treatment-on-the-treated estimates of having a working solar light on household
emissions following Equations (3) and (4). The sample of each regression includes households
in the control group and the treatment arms offered the respective type of light. The impact
on emissions is calculated based on households’ kerosene consumption, as reported in Column
(3) of Table 5, and the type of kerosene lamp households use, as detailed in Subsection 2.1.
As a result, these four columns are linearly dependent among each other. Column (1) shows
black carbon, Column (2) CO2 emissions, Column (3) CO2-equivalents of the previous two
columns combined, and Column (4) particulate matter (PM2.5). Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table D.10: Impact on Expenditures - All Treatment Arms

(1) (2) (3) (4) (5) (6) (7) (8)
Total Kerosene Phone Firewood Batteries Charcoal Electricity Other

expenditure charging bill

Free basic light −1.233∗∗ −0.722∗∗∗ 0.419∗ −0.277 0.016 −0.190 −0.412 −0.067
(0.583) (0.162) (0.220) (0.188) (0.087) (0.227) (0.324) (0.143)

High subsidy (USD 4) −1.240 −0.504∗∗ 0.015 −0.508∗∗ 0.060 0.163 −0.273 −0.193∗

(0.935) (0.219) (0.186) (0.250) (0.098) (0.576) (0.494) (0.116)
Low subsidy (USD 7) −1.992 −0.087 −0.050 0.394 0.065 −0.017 −2.096∗∗ −0.201

(2.029) (0.542) (0.379) (0.920) (0.225) (0.838) (1.011) (0.310)
Market price (USD 9) −3.431∗ −0.358 0.397 −0.503 0.349 −1.570∗∗ −1.523 −0.196

(1.808) (0.541) (0.431) (0.674) (0.266) (0.632) (1.036) (0.420)
Free larger light −2.444∗∗∗ −0.919∗∗∗ −0.873∗∗∗ −0.095 0.133∗ −0.115 −0.432 −0.143∗

(0.514) (0.118) (0.110) (0.215) (0.074) (0.195) (0.287) (0.087)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 4.120 1.685 1.110 0.425 0.276 0.226 0.366 0.034
Number of observations 1,313 1,312 1,313 1,313 1,313 1,313 1,313 1,313
R-squared -0.03 0.04 -0.00 -0.01 -0.00 -0.03 -0.02 -0.02
F-test for same effect 0.069 0.156 0.000 0.200 0.598 0.031 0.227 0.755

Notes: Treatment-on-the-treated estimates of having a working solar light on households’ monthly energy expenditures (in USD) following
Equations (3) and (4). The sample of each regression includes households in the control group and the treatment arms offered the respective
type of light. Column (1) shows total energy expenditure, Columns (2) to (8) its components. Column (8) includes expenditures on candles,
generator fuel, LPG, sawdust, dung/charcoal mixture, and other types of fuel. Robust standard errors in parentheses. *** p < 0.01, ** p <
0.05, * p < 0.1.
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Table D.11: Impact on Health - All Treatment Arms

Eyes Respiratory

Guardians Students Guardians Students
(1) (2) (3) (4)

Free basic light −0.247∗ −0.257∗ −0.152 −0.225
(0.148) (0.150) (0.148) (0.146)

High subsidy (USD 4) −0.313∗ −0.257 −0.138 −0.275
(0.163) (0.176) (0.169) (0.181)

Low subsidy (USD 7) −0.142 −0.820∗ 0.205 0.034
(0.425) (0.425) (0.442) (0.416)

Market price (USD 9) −0.950∗∗ −0.016 −0.270 0.183
(0.440) (0.429) (0.403) (0.437)

Free larger light −0.225∗ −0.294∗∗ −0.126 −0.248∗

(0.125) (0.126) (0.123) (0.127)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Number of observations 1,313 1,202 1,313 1,202
R-squared -0.01 -0.01 -0.01 -0.00
F-test for same effect 0.480 0.562 0.905 0.818

Notes: Treatment-on-the-treated estimates of having a working solar light on health
following Equations (3) and (4). The sample of each regression includes households in
the control group and the treatment arms offered the respective type of light. Columns
(1) and (2) show an index of eye-related symptoms such as dryness, grittiness, redness,
etc. based on Lee et al. (2002). Columns (3) and (4) show an index of respiratory symp-
toms such as shortness of breath, asthma, cough, etc. based on Bates et al. (2013) and
The European Community Respiratory Health Survey II Steering Committee (2002).
Effects are expressed in standard deviations. Higher values indicate more symptoms.
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table D.12: Impact on Education - All Treatment Arms

(1) (2) (3) (4) (5) (6) (7) (8)
Homework Share homework Homework and School Sleep Average score Average score Participation
completion after dark personal studies (hours) (hours) of 5 subjects KCPE in school exams

(hours) in March 2016

Free basic light 0.150∗∗ 0.110∗∗ 0.342 0.732∗∗ −0.816∗∗∗ −0.110 −0.040 0.097∗

(0.066) (0.050) (0.276) (0.312) (0.288) (0.096) (0.281) (0.056)
High subsidy (USD 4) 0.190∗∗ 0.166∗∗∗ 0.223 0.987∗∗ −0.936∗∗∗ −0.087 0.317 −0.031

(0.081) (0.057) (0.307) (0.396) (0.339) (0.106) (0.291) (0.072)
Low subsidy (USD 7) 0.152 0.240 −0.200 −0.287 −0.304 −0.345 −1.574 −0.014

(0.215) (0.154) (0.708) (0.920) (0.891) (0.267) (2.465) (0.173)
Market price (USD 9) 0.078 −0.146 0.760 1.764 −1.438 −0.197 2.060 0.220

(0.208) (0.160) (0.765) (1.075) (0.945) (0.253) (2.304) (0.164)
Free larger light 0.140∗∗ 0.097∗∗ 0.308 0.336 −0.645∗∗ −0.087 0.007 0.014

(0.056) (0.043) (0.225) (0.279) (0.297) (0.086) (0.282) (0.051)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 0.649 0.722 2.434 3.976 8.353 0.030 0.025 0.776
Number of observations 1,050 1,050 1,202 1,202 1,202 1,267 235 1,313
R-squared -0.01 -0.02 -0.02 -0.01 -0.01 -0.01 -0.48 -0.01
F-test for same effect 0.959 0.174 0.853 0.210 0.791 0.670 0.686 0.240

Notes: Treatment-on-the-treated estimates of having a working solar light on educational outcomes following Equations (3) and (4). The sample of each regression includes
households in the control group and the treatment arms offered the respective type of light. Column (1) shows whether the student was able to complete the homework in the
past week. Column (2) shows the share of times the homework was completed after dark in the past week. Columns (3) to (5) show results for time use on the day before the
endline interview (homework and personal studies, time spent in class, time spent sleeping). Column (6) shows the average final exam scores of the first term in 2016. When
the score for a subject is missing, we use the corresponding score from the last term of 2015, when available. The probability of scores missing is balanced across treatment
arms (see Appendix Table A.9). Column (7) contains the average score of graduating students who took the national KCPE exam. Column (8) indicates whether the student
took at least one of the 5 compulsory exams. Variables in Columns (1) to (5) are from the student survey; variables in Columns (6) to (8) from administrative test score
records. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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E Research Design
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Figure E.1: Research Design and Survey Implementation

Notes: We received a list of 127 primary schools in the two subcounties of Teso South and Nambale Busua in
Western Kenya. Based on this list, we identified 97 schools that met our eligibility criteria (rural areas, school
size, public and mixed-gender schools, excluding special needs and boarding schools). From these schools,
we randomly chose 20 schools and created a list of all students in the class ranges 5-7. For households
with siblings, we randomly selected one student per household. We then randomly ordered the student list,
creating a list of initially assigned students and of replacement students. The treatment assignment would
follow a specific pattern of the ordering of the student list. Randomization into treatments was conducted
at the household level and stratified at the school level. We first interviewed the students at the school and
missing students were replaced with students form the replacement list. We then invited their guardians for
a baseline interview that took place several days after the interview. Households were informed about their
treatment assignment at the end of the guardian baseline interview.
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Figure E.2: Timeline of the Experiment

Notes: Baseline surveys were conducted in June–July 2015, which was during the second term of the year
(Capital News, 2014). The term Exams took place in March and November of both 2015 and 2016 (Ministry
of Education of Kenya, 2015). The KCPE Exams took place from 10th to 12th November 2015 (Kenya
National Examinations Council, 2015) and from 8th to 10th November 2016 (Kenya National Examinations
Council, 2016). The endline surveys were conducted February–March 2016, during the first term of the year
(The Standard, 2015).
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Table E.1: Sampled Households by School and Treatment Arm

Frequency by treatment arm

(1) (2) (3) (4) (5) (6) (7)
Control Free High Low Market Free All

Sub county School name basic subsidy subsidy price larger treatments

Nambale Malanga 20 10 10 10 10 10 70
Nambale Lwanyange 20 10 10 10 10 10 70
Nambale Emukhuyu 20 10 10 10 10 10 70
Nambale Esidende 20 10 10 10 10 10 70
Nambale Maolo 20 10 10 10 10 10 70
Nambale Sianda 20 10 14 13 13 10 80
Nambale Khayo 20 10 13 14 13 10 80
Nambale Sango 20 10 0 0 0 10 40
Nambale Opeduru 20 10 12 12 11 10 75
Nambale Mwangaza 20 10 10 10 10 10 70
Teso South Olepito 20 10 12 11 12 10 75
Teso South Obekai 20 10 12 11 12 10 75
Teso South Kaliwa 20 10 12 12 11 10 75
Teso South Kamarinyang’ 20 10 13 11 11 10 75
Teso South Ong’aroi 20 10 12 11 12 10 75
Teso South Asing’e 20 10 12 12 11 10 75
Teso South Ng’elechom 20 10 13 11 11 10 75
Teso South Akites 20 10 10 10 10 10 70
Teso South Aburi 20 10 4 3 3 10 50
Teso South Odiyoi 20 10 10 10 10 10 70

Total 400 200 209 201 200 200 1410
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E.1 Pre-Baseline

Household list: Before starting the baseline, the household list was prepared based on
a list of students in classes 5-7 from the selected schools. Schools were selected based on
a list of 127 schools received from the Ministry of Education. We removed urban schools
as these areas often have better access to electricity. From the rural schools, four did not
contain information on the number of students and were thus excluded. Based on the pool
of remaining schools, we randomly selected 30 schools in each sub county. Consequently, we
removed boarding schools, unisex schools, schools for children with special needs, those with
less than 200 students, those too far away to be reached within one day from the field office,
and five schools that were already part of other projects. Head teachers were invited to a
meeting that explained the solar lights used in the study. Prior to the meeting, we randomly
ordered the schools and the first ten schools in each subcounty were asked to participate in
the study at the end of the meeting. Four head teachers were not present at the meeting and
the respective schools were replaced with the subsequent schools on the randomly ordered
list. The schools were visited to identify siblings.44 In case of students coming from the same
household, one student of that household was randomly selected. This gave a final list of
one student per household in classes 5-7 for each school.

Randomization: Based on the final household list, the treatment was randomly assigned.
This was done by randomly ordering the households within each school. The treatment was
then assigned based on a specific pattern. In particular, the first 40 students were assigned to
the control and free solar light group in alternating order (starting with the control group).
Among those receiving a free solar light, treatment alternated between the basic solar light
and the mobile-charging (larger solar light) option (starting with the basic option). Voucher
treatments were given to those households ranked 41 or higher with an alternating pattern
between voucher-400, voucher-700 and voucher-900. More students than required were ran-
domly ordered to create a list of back-up students. Hence, the order of the back-up student
list was also random. Note that the treatments were assigned in advance of the baseline
interviews.
There are 2 schools in which the randomization posed additional challenges.

• Nambale Sub-County
In Sango school, the number of households whose children were in class 5, 6 and 7 was
small; Thus, we only allocated households to the free group and/or the control group
(i.e. we only sampled 40 students total in that school as shown in Appendix Table
E.1). At that point we decided to increase the number of vouchers distributed in the
remaining schools in Nambale: we increased the number of treatment households to
80 in two of the largest remaining schools (Sianda, and Khayo) and increased to 75
treatment households Opeduru (relatively medium size school). For Mwangaza, the
relatively smaller school, we didn’t make any changes, allocating only 70 treatment
households.

44During implementation, the surveyors still identified cases of siblings among the randomized student
list. In these cases, only one of the siblings was removed and the other siblings replaced with a student from
the back-up list.
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• Teso South Sub County
In Aburi school, there were only 50 students that complied with the selection criteria,
thus, only 10 vouchers were given away (4 of high subsidy, 3 of low subsidy, and 3 at
the market price). Given this change, we increased the sample size in all other schools
of this sub county to 75.

Student invitation to baseline: The baseline student survey was conducted at school.
Thus, students were encouraged to be present on the day of the survey. The students who
were supposed to be interviewed (i.e., those not on the back-up list) were specifically asked
to be present. Students on the back-up list were not asked specifically to be present that
day. While head teachers may have seen the list of randomized students before the baseline
interviews were conducted, this list did not include the treatment assigned. Similarly, the
assignment rule based on random student ID was unknown to the head teachers.

E.2 Baseline Student Survey

General organisation: Interviews were scheduled on a specific day for each school. There
were three surveyor teams who were assigned to different schools respectively. Hence, stu-
dents at three different schools were interviewed each day. A team interviewed students from
all treatment groups, that is, the team was not split up between the survey versions.

Student selection: For each school, there were two randomly generated lists: (i) as-
signed students and (ii) replacement students. Students present from the assigned list were
interviewed and, generally, the order of the randomized list was followed. In this case, the
order is free and control groups first, followed by the voucher group. If a student was not
present for the interview, the next available student from the replacement list was interviewed
instead. This replacement student then took over the five-digit ID of the initial student.

Student interview: Students were interviewed in the school. Depending on their pre-
assigned treatment, they were interviewed using the long or the short (voucher) interview
version. Students were not told about the treatment assignment at any point of the baseline
interview. The student was also asked about their guardian (e.g., their name and phone
number).

Final student sample: Since missing students from the assignment list were replaced
with other students, the final student sample should include 1,410 students by design.

E.3 Baseline Guardian Survey

Guardian invitation: Guardians were only involved and invited after the student inter-
view. Thus, the final student sample also determines the guardian sample. Students who
participated in the baseline interview were asked to invite their guardian to the interview
on a specific day and time. The students received paper slips with the invitation, including
a note that they would receive a participation gift and would be reimbursed for travel costs
(up to a certain ceiling). The survey team reminded the guardian of the interview if the
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phone number was available, but often the phone number provided by the student was wrong.

Guardian sample: In principle, students were asked about the guardian name, but this
list had to be updated when the guardian who showed up differed from the one the student
listed.45 Note that guardians of students on the initial assignment list who were then absent
at school (and thus dropped out of the sample) were not invited.

Guardian interview: The interviews were conducted at the school. In general, inter-
views followed an order similar to the checklist. That is, the free and control group were
interviewed first, followed by the voucher groups. Guardians in the free treatment groups,
received their solar light directly at the end of the interviews46. Participants in the voucher
group received the voucher instead, which could be redeemed at a later day. If the guardian
did not show up, the survey team tried to find the guardians.
Redemption and distribution of solar lights in the voucher group: For the guardians
whose households were allocated a voucher, they were given dates and times upon which they
could come back to the school to purchase the lamp (it was not available for purchase on
that day). Granting a certain amount of time for people to redeem the voucher is the usual
way SunnyMoney operates. Furthermore, this period of grace allows people to save enough
money to purchase the solar light.47

In some cases, the head teachers collected the orders from the guardians as well as their
money and vouchers, and purchased the solar lights from SunnyMoney on behalf of the
guardians. The collection of the money and vouchers took place in several rounds. In other
cases, some participants went to SunnyMoney directly.

Missing guardians: If the guardian did not participate in the endline, the guardian
did not receive their treatment. At least in the data, there are no cases where a missing
baseline-guardian was interviewed at endline. However, students were still interviewed even
if their guardian did not participate in the baseline.

E.4 Endline Student Survey

General organisation: Like for the baseline, the student interview was conducted at the
school directly. The head teacher was notified to inform the students to be present at school
that day. When the student was not present at school that day, the surveyors tried to track
the students.48

45For instance, the student may have mentioned one of her parents, but the other parent showed up at
the interview. All guardians were asked if they stay in the same house as the student for at least four nights
a week.

46In the case of the free light households, if it was an in-home interview, the lamp was brought along by
the field agent

47In fact, in an RCT of Dupas (2009) in Kenya, the author found that the demand for bednets fell less
sharply with price when the households were given more time to raise money to purchase this item.

48Some students were found at their house, others moved to another school by then. Depending on their
availability, an appointment was booked with them.
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E.5 Endline Guardian Survey

General organisation: The endline guardian interview was conducted at the guardian’s
home. Instead of organizing the interviews by school or treatment arm, the interviews
were planned according to geographic proximity. Hence, the checklist was reorganized by
school. There are usually a number of villages per school. The survey team tried to book
appointments with the guardians and notified them coming. For guardians without phone
number, the survey team went through the village elder.
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F Methodology for Cost Abatement and Impact on National Emis-
sions Calculations

Table F.1: Assumptions and Sources for CO2−eq Calculations

Unit Amount Source
Total GHG emissions Mt CO2-eq 74.24 Climate Watch (2022)
Energy GHG emissions Mt CO2-eq 18.59 Climate Watch (2022)
Using kerosene % 35.0 KIHBS (2018)

of which using tin lamps % 55.1 KIHBS (2018)
of which using kerosene lanterns % 44.9 KIHBS (2018)

Black carbon to CO2-eq conversion factor SFP 836 Bond et al. (2011)
Number of households in Kenya # 11,415,000 KIHBS (2018)
CO2-eq discount rate % 2 Rennert et al. (2022)
Embedded energy in solar light production MJ 100 Alstone et al. (2014)
Emissions from required energy for production g(CO2-eq)/kWh 1700 Dones et al. (2004)
Density of kerosene kg/l 0.8 TotalEnergies (2022)

Notes: Total GHG emissions refers to Kenya, total including land use change and forestry (LUCF) in 2015. Energy GHG
emissions refers to Kenya, total energy sector in 2015. Percentage using kerosene and number of households in Kenya are
based on survey data from Kenya from 2015/2016. SFP refers to specific forcing pulse (SFP), a concept introduced by Bond
et al. (2011) measuring the energy added to the Earth-Atmosphere by one gram of chemical species emitted in a particular
region. More information on calculations is to be found in Appendix subsubsections F.1 and F.2.

F.1 CO2 Abatement Cost

The following outlines the methodology to estimate the CO2 abatement cost for the solar
light intervention. That is, we attempt to estimate the cost in USD of averting one ton of
CO2 by distributing solar lights.

Parameters

The following parameters are used in our estimates.

Name Description

breakage Average monthly breakage rate of solar lamps
CO2Production CO2 emitted during production of a solar lamp
cost lamp Cost of a solar lamp
r Social discount rate for NPV calculations
lifespan Maximum number of years the solar light works

Effect of Solar Light Ownership on CO2 Emissions per Household

First, we estimate the average reduction in CO2 emissions per household using an instru-
mental variable regression and the two-stage least square estimator. We use each treatment
arm as a separate instrument for the first stage, and estimate the treatment-on-the-treated
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(TOT) effects in the second stage jointly across treatments. We do this for different samples
as outlined below.

The IV estimation is represented by the following regressions:

solar worksij =
∑
k∈K

akTik + ζi + λj + uij (5)

CO2 eq winsij = b ̂solar worksij + ζi + λj + εij (6)

where Tik is a dummy for assignment of household i to treatment group k, solar worksij a
dummy equal to 1 when household i owns a working solar light and ζ the respondent gender
dummy. λ represents school fixed effects, and ε is an error term. CO2 eq wins proxies the
amount of kg of CO2 equivalents emitted by a household per month (at endline, winsorized
at top 1%).49 The point estimate b in Equation (6) is the (local) average treatment effect
of owning a working solar lights on CO2 emissions for households whose light ownership is
induced by the treatment.

We implement this estimation for three samples respectively:

• Free basic light: free-basic, voucher400, voucher700, voucher900

• Free larger light (mobile): free-mobile

• Pooling both types of light (pool): free-basic, voucher400, voucher700, voucher900,
free-mobile

Present Value of Annual CO2 Reduction per Household

Next, we calculate the total CO2 reduction per household (in kg) for years 1 and 2 as follows:

CO2 Reduction Y ear 1 =
12∑

m=1

b̂ ∗ (1 − breakage)m (7)

CO2 Reduction Y ear 2 =
24∑

m=13

b̂ ∗ (1 − breakage)m (8)

For CO2Production we assume that there are 47.2 kg of CO2 embedded in the solar light
from production. This estimate is primarily based on two sources: The embedded energy
required is based on estimates from Alstone et al. (2014). According to their estimation,
the embodied energy for manufacturing solar LED lighting systems ranges from 25 to 500
MJ. While they do not assess the exact same lights as the ones in this study, we use the
estimates of the primary energy requirements over a 2-year period that are most comparable
at 100MJ, which translates to 27.78 kWh, as 1 MJ = 0.277778 kwh. Furthermore, we assume
that approximately 1700g CO2-equivalents are emitted per kWh of energy used to produce
the solar lights, based on Dones et al. (2004). Their estimates range from approximately

49CO2 eqi = (836×FBC,light type+FCO2,light type)×ker kgi = (836×FBC,light type+FCO2,light type)×0.8×
ker month li, where FX,light type are the conversion factors for black carbon and carbon dioxide presented
in Subsection 2.1.
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850 to approximately 1700 g(CO2-equivalents)/kWh in a comparison of five different studies.
The upper estimate of the range is from a coal chain in the Shandong Province in China which
Dones et al. (2004) obtained from Dones et al. (2003). We chose this rather conservative
estimate of approximately 1700g/kWh which assumes that all parts of the lights are produced
with coal energy in inefficient power plants in China.

Using these two values, we estimate 47.2 kg of CO2 embedded in the solar lights from
production: 27.78*1700=47’236g = 47.2kg CO2

CO2Production = embedded energy required (kWh) ∗ CO2 emitted (g/kWh) (9)

We then discount the total reduction (in kg of CO2) to the present value with the social
discount rate r and deduct the CO2 emission embedded in the production of the solar light
(CO2Production).

DiscountedCO2Reduction =
CO2 Reduction Y ear 1

(1 + r)
+
CO2 Reduction Y ear 2

(1 + r)2
−CO2Production

(10)

Cost per Ton of CO2 Averted

We divide the initial cost of a solar light (in USD) by the discounted CO2 reduction (in tons)
to arrive at the cost per ton of CO2:

Cost per ton of CO2 =
cost lamplight type

Discounted CO2 Reduction
1000

(11)

For the basic specification, we use the market price of USD 9 per lamp. For the mobile
specification, we use the market price of USD 24 per free larger light. For the pooled sample,
we use a weighted average of the two prices.

F.2 CO2 Reduction at the National Level

The objective is to estimate by how much national CO2 emissions would be reduced if every
household using a kerosene-fueled light in Kenya received a solar light − ceteris paribus.

Effect of Solar Light Ownership on Households’ Kerosene Usage

Analogous to the previous section and Equations (5) and (6), we regress ker month l wins,
the number of litres of kerosene purchased by a household per month (at endline, winsorized),

on the instrumented ̂solar works:

ker month l wins = b ̂solar works+ ζ + λ+ ε (12)

Originally, this analysis was performed for two disjoint subsets of the sample: First, we
restricted the sample to households who previously only used tin lamps (tin only == 1),
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yielding a point estimate b̂tin. Second, we restricted the sample to households who previously
only used large kerosene lanterns (large ker only == 1), producing a point estimate b̂large.
This was done to account for the fact that the different light types use up different amounts
of kerosene, and therefore generate different levels of carbon emissions. However, this speci-
fication proves too restrictive when implementing the estimations by type of light across all
the treatment groups (i.e., the free basic light vs. the free larger light subset). More precisely,
there are only 6 observations where large ker only == 1 in the free larger treatment group,
and only 19 in the free basic group. For this reason, the current implementation relaxes
the sample restrictions and performs the analysis for only one sample, including households
who use tin lamps, large kerosene lamps, or both. In consequence, estimation for each sub-
sample (free basic, free larger, pooled) yields b̂sample, which can be considered as an average
reduction in kerosene purchases for households using different kerosene-fueled lights.

Extrapolating Results to the National Level

We first calculate how much CO2 each lamp produces per kg of fuel. We assume that each
Kenyan household that currently uses a kerosene-fuelled lamp receives a solar light and can
thus realise the fuel savings b̂sample estimated in Equation (12). We finally calculate the effect
of a nation-wide scale-up as a weighted average.

In order to estimate how many kg of CO2 each lamp produces per kg of burnt fuel, we
take both the direct CO2 emission and the black carbon (BC) emission converted to CO2

equivalents into account. The emissions by fuel type (in g of emissions per kg of fuel) and
the conversion factor of 836 are taken from Lam et al. (2012b):

CO2lamp type =
836 ∗BC Emissions+Direct CO2 Emissions

1000
(13)

Using data from Kenya’s national statistics, we find the share of households who predomi-
nantly use tin lamps (%tin) or who predominantly use large kerosene lamps (%large) as their
main lighting source, expressed as percentages of all households who use kerosene lamps.50

The estimated reduction per household (in kg of CO2) is then calculated as follows:

CO2Reductionper household (National) = b̂sample ∗ (%tin ∗CO2tin +%large ∗CO2large) (14)

As in the previous section, we then account for lamp breakage per month and discount the

50That is, we define %tin = Households in Kenya that use tin lamps
Households in Kenya that use tin or large kerosene lamps .
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yearly reduction with a social discount rate:

Reduction in CO2 per household in 2 years (National)

=
1

(1 + r)
∗

12∑
m=1

CO2 Reduction per HH (National) ∗ (1 − breakage)m

+
1

(1 + r)2
∗

24∑
m=13

CO2 Reduction per HH (National) ∗ (1 − breakage)m

− co2 production (15)

Again, the average cost per ton of CO2 is calculated as follows:

Cost per ton of CO2 per household (National) =
cost lamplamp type

Reduction in CO2 per household in 2 years (National)
1000

(16)

Projections as a Percentage of Kenya’s 2014 National Emissions

In order to estimate the total yearly CO2 reduction if the programme were scaled up nation-
ally, we find the total number of households in Kenya (N) and the share of households who
use kerosene lamps as their main lighting source (%kerosene) in Kenya’s national statistics.
We assume that all households who mainly use kerosene lamps realize the yearly savings we
estimated in Equation (15). We apply the social discount rate and divide by 109 in order to
convert our result to megatons:

Total CO2 Reduced in 1 Y ear (in Mt)

=
N ∗ %kerosene ∗Reduction in CO2 per HH (National, Y ear 1)

(1 + r) ∗ 109
(17)

We divide this estimate by the total emissions for Kenya in 2014 (World Resources Institute,
2017) in order to arrive at the share of total emissions that could be reduced through a
nation-wide roll-out:

Share of total emissions in 2014 =
Total CO2 Reduced in 1 Y ear (in Mt)

Total emissions in 2014 (in Mt)
∗ 100% (18)

The share of energy emissions is calculated analogously.
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G Methodology for Sensor Data Analysis

Sensor technology was manually welded post-production to some of the lamps circuits by the
investigators with the intention of measuring solar light usage through a different channel
than only surveys. The installed sensors were very simple, essentially only detecting and
storing status changes of lamp, i.e. the time when it got turned on or off respectively. This
information was stored within the sensor and could be downloaded by the Field Officers (FOs)
through a tailor-made phone app. Over different sessions the FOs distributed the different
lamps (With or without welded sensor) and also over different sessions they collected the
sensor data from all sensor-equipped lamps. This implies that there is no natural observations
window for this data, and we will thus need to pick a 7-month window starting late enough
such that all households already have the lamp and, at the same time, closing early enough
such that all the data is collected. The use of sensors in this RCT is discussed in detail in
another paper (see Rom et al., 2020).

We start from the database of raw events downloaded from the FOs. We first fix a few
isolated problems for some of the sensors.51 At this point we have 315 unique sensors and
884,217 event logs. Now we drop all the observations that are not consistent with the on/off
natural pattern (an event should be off if the previous was on and the other way around,
as you can’t turn off a light that is already off). I.e., if there are two or more consecutive
on events we delete the first one(s) whereas if there are two or more consecutive off events
we delete the last one(s). This is intended to never split a consecutive on/off pattern. With
this operation we end up dropping 6,385 events. We then further drop all the events which
are the first for a given sensor and are not an on-event, or the last for a given sensor and are
not an off-event. There are 8 such events. At this point we have 877,824 event logs and still
315 unique sensors.

Now we convert timestamps to Kenyan time as original logs are recorded in UTC (corre-
sponding to the GMT+0 timezone) whereas Kenya is on GMT+3 all year round. We realise
that 43,452 events (just under 5% of the database at this point) have a timestamp dating to
the year 1970.52 After thoroughly exploring these erroneous observations we realise that the
best approach is to simply discard them all. Even if we wanted to fix these observations by
shifting them to the correct point in time we would not know what the correct point is. We
cannot know whether the 1970 observations of a given sensor should come before the first
non-1970 recorded log or after the last non-1970 recorded log. We tested both approaches
and realized that the correct solution is a mix of these two as both separate approaches yield
dates that are inconsistent with the time frame of the study for some of the sensors. Finding
the correct shift for each sensor is thus impossible without making baseless assumptions, in
particular considering that both situations could co-exist for any given sensor. Thus, after
getting rid of them, we now have 267 unique sensors and 834,372 event logs. Through this
operations we lost many sensors but the vast majority of them only had a couple logged

51There were 61 observations that had to be encoded from a numeric value to “on” (30 observations), and
“off” (31 observations), and there were 5 observations that seemed superfluous and erroneous logs which we
thus dropped.

52This is not a coincidence. Current time on UNIX systems is represented as the number of milliseconds
from January 1st, 1970 00:00:00. Most electronic applications will thus start counting time from that
timestamp onwards unless a custom date and time is set. Most importantly, they could also revert back to
that time if they get reset for some reason as, e.g., malfunctioning, battery death (Epoch Converter, 2023).
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events, all in 1970.
At this point we reshape the dataset to have each on event and its correspondent off

event on the same row, and thus easily calculate the duration of usage. The number of
observations halves to 417,186 and we will now talk about usages (i.e. time span between on
and off events) rather than events. We now drop all the usages with length of 0 minutes53

since they serve no purpose for us as when adding up minutes they will not count towards
the total. Now we have 260 unique sensors and 339,847 usages. Then, we drop some usage-
outliers (86 cases) by setting the cutoff at 24 hours of uninterrupted usage as we fear they
might unfaithfully skew our results as well as a few time-outliers that happen before May
25th 2015 (Monday) and after May 8th 2016 (Sunday), enabling us to have a clean 50-week-
long period of Monday-Sunday weeks where at least one sensor is active in each week. With
this operation we lose 1 sensor and 6 usages. Finally, we split usages that span over two
different days (i.e. go over midnight) such as to attribute the light usage to the correct day.
This happens in 7,695 cases.54. At the end of this whole process, we now count 259 unique
sensors and 347,336 usages.

Unfortunately, the current time frame is not appropriate due to the fact that lights were
distributed from the end of May 2015 until the beginning of August 2015, meaning that
considering a time before everybody has gotten their light would imply biased results. On
the other hand, the final data collection from the sensors did not happen for everybody on
the same date as it happened between the end of March 2016 and the beginning of May
2016. Thus, we need to set a 7-month window that is not affected by these issues. We
selected this window to be from August 17th (Monday) 2015 to March 20th 2016 (Sunday).
The reason for this is that by August 17th all the lamps were already distributed and we
know that the last sensor data collection happened after March 20th. This is a quite-perfect
7-month period that entails 31 full Monday-Sunday weeks encompassing 228 unique sensors
and 256,127 usages. This is the sample that we use to construct Figure 2.

At this point we construct datasets at the week level where we sum up the number of
hours the lights are on over the whole week as well as counting the number of days per week
where the light is used for at least 1 minute. To construct Figure 2 we need a few more steps.
First, we divide the number of hours by 7 to get the average number of hours per day. Then,
we aggregate across sensors in two different ways. The conditional on use that week variables
are constructed such that the weekly average across the sensors is only computed considering
the sensors that were active for at least 1 minute within that week. This is done to exclude
the effects of sensors or lights breaking down over time, or even just that some household
might not be using the lamp at all. Mostly, when a sensor does not record activity in a given
week it is also the case that it keeps not recording activity until the end of our observation
period. In the unconditional variables we instead consider all these effects by always taking
average across all 228 unique sensors that we have at this point. Technically, we do this

53Unfortunately the sensor only store timestamps up until minute precision, such that seconds were not
stored. For this reason, if a lamp was used between for example 8:27:00 and 8:27:59 it will results as if it
was used for 0 minutes even though it was used for almost an entire minute. On the other hand, a lamp
being used from 8:58:59 until 8:59:00 will be recorded as being used for one minute even though it was used
for 2 seconds at most.

54A small share of them go just up until midnight meaning that once we “split” them they do not end up
being two separate events because the one of the following day, being of zero minutes length, gets dropped.
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by enforcing a balanced panel at the sensor-week level thus introducing null observations
before averaging across sensors. It is natural to expect this variable to decrease over time
as lights and sensors definitely break (in particular it seems that lights where sensors were
installed tend to break more often). If we were to see a constant or even positive trend for
this variable it would automatically imply that the conditional usage of the lights increases
over time and thus (over)compensates the breakage rate of the lights/sensors.
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H Survey Questions Used for Indexes

Questions for Index of Respiratory Symptoms

Based on Bates et al. (2013) we asked the following 5 questions (yes/no answers). We
aggregated all the symptoms and created a score ranging from 0-5.

• In the last 3 months have you ever had wheezing or whistling in your chest?

• In the last 3 months have you ever woken up with a feeling of tightness in your chest?

• In the last 3 months have you ever experienced an attack of shortness of breath that
came on during the day when you were at rest?

• In the last 3 months have you ever been woken up at night by an attack of shortness
of breath?

• In the last 3 months have you ever been woken up at night by an attack of coughing?

Questions for Index of Eyes-Related Symptoms

As for the questions about eyes-related symptoms we asked the following 5 questions (Op-
tions: every day, most days, some days, rarely, never, coded as dummy, where 1 = all choices
except “never”). We aggregated all the symptoms and created a score ranging from 0-5.

Do you experience any of the following and if so, how frequently?

• a feeling of dryness in your eyes?

• a feeling of grittiness (having sand) in your eyes?

• a burning feeling in your eyes?

• redness in your eyes?

• crusting with yellow discharge in your eyes?

• sticking together of your eyelids when you wake up in the morning?

109



I Script with Information about Solar Light

Now I will show you a solar light called SUN KING ECO and we will give you the opportunity
to play a game where you can win this product or a similar one. Show the product:

• The lantern comes with a separate panel that you can put outside to charge in the sun.

• There are three different modes to use this lantern (SHOW THEM). In the first least
bright you can use it for 30 hours, in the middle one for 6 and in the brightest one for
4 hours.

• The product comes with a warranty of 2 years and a battery that can last up to 5
years.
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J Pictures of Lights

Figure J.1: Kerosene Lantern

Tin Lamp Kerosene Lantern

Figure J.2: Solar Lights

Free Basic Solar Light

Brand name: Sun King Eco

Free Larger Solar Light

Brand name: Sun King Mobile
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K Literature Review
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Table K.1: Health and Education Impacts - Literature Review

Study Country Intervention Type Outcome Type
Health Impacts Education Impacts

Eye Symptoms Respiratory Symptoms Homework Study time School
Test

Student Guardian Student Guardian (hours) (hours) (hours) score

Furukawa (2017) Uganda

Distribution of solar desk lamps with Binary outcome variables, equal 1

Eye irritation: -0.11*** -

Cough: -0.06

- - - - -
market price of 10 USD by 2017 to if symptoms exist at any level Diff Breath: -0.07

5th to 7th grade students. (mild, moderate, serious), and 0 if Chest pain: -0.11**
no symptoms. Sore throat: -0.06

Kudo et al. (2019b) Bangladesh

Treatment A:

- - - - - -

Any visible burn: -0.045** Treatment A:
Treatment A: Eye redness: -0.143** Cough: 0.008

3 light solar products (164 lumens) at Eye irritation: -0.137** Sore throat: 0.000
total cost of $ 63.5 USD by 2018. Teary eyes: -0.020 Snivel: -0.039

Binary outcome variables, equal 1 if the Dimness of vision: 0.006 Phlegm: -0.005
Treatment B: student reporting having the symptom at

1 solar light product (110 lumens) at endline. Treatment B: Treatment B:
total cost of around $ 40 USD. Any visible burn: -0.001 Cough: -0.031

Eye redness: -0.141*** Sore throat: -0.009
Population was 4th to 8th grade Eye irritation: -0.103* Snivel: -0.043

students. Teary eyes: -0.034 Phlegm: -0.003
Dimness of vision: 0.002

Grimm et al. (2017) Rwanda

Provision of Pico-PV kits including a 1 Male Male

-

Male

- -

Watt panel, a rechareable 4-LED- 6-11 y.o.: -3.00 6-11 y.o.: 1.00 6-11 y.o.: 0.22
diodes lamp (40 lumen max.) + Outcomes measured as share of household 12-17 y.o.: 1.00 Male: -0.00 12-17 y.o.: 0.00 Male: -2.00 12-17 y.o.: 0.35
installed battery, a mobile phone members (in percent) suffering from Female: -6.00 Female: 0.00
charger, a radio + charger, and a symptoms. Female Female Female

back-up battery package. 6-11 y.o.: 5.00 6-11 y.o.: 0.00 6-11 y.o.: 0.20
12-17 y.o.: 8.00 12-17 y.o.: 3.00 12-17 y.o.: 0.17

Aevarsdottir et al. (2017) Tanzania

At different levels of subzidation at

- - - - - -
household level, offer to purchase solar Health outcomes as share of household last week: -0.278

lamps fitted with mobile phone members coughing, values are coefficients last month: -0.340
charging point. Target population was associated to IV estimates. last 6 months: -0.092

students from primary schools.

Furukawa (2014) Uganda
Distribution of solar desk lamps with Students’ test scores range of 100 reported

- - - - - -
Average score: -0.894*

market price of $ 10 USD by 2017 to by the teachers. 0.565*** Mathematics: -0.763
5th to 7th grade students English: -1.054*

Kudo et al. (2019a) Bangladesh - - - - -

Treatment A:
Bengali: -0.046

Treatment A: English: -0.056
3 light solar products (164 lumens) at Math: -0.041

total cost of $ 63.5 USD by 2018. Gen. science: 0.052
Islam studies: 0.055

Treatment B: Study time and school hours originally Treatment A: 0.22** Treatment A: 0.03 Bangladesh studies: 0.066
1 solar light product (110 lumens) at measured in minutes. Test scores are Treatment B: 0.32 *** Treatment B: 0.05

total cost of around $ 40 USD. z-scores of the GPA (ranging from 0-5). Treatment B:
Bengali: 0.023

Population was 4th to 8th grade English: -0.136*
students. Math: -0.087

General science: 0.037
Islam studies: 0.020

Bangladesh gen. studies: 0.121

Stojanovski et al. (2020) Zambia
Provision of a solar lantern to students Outcomes are standardized scores of a

- - - - - - -
Grade 7: 0.08

in grades 7-9 in 12 randomly selected National Examination Grade 9: -0.10
schools.

Hassan and Lucchino (2016) Kenya
Distribution of solar lamps to 7th grade Outcomes are standardized grades,

- - - - - - - Mathematics: 0.88**students attending off-grid schools. reporting ITT estimates associated to the
treatment variable.
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L Impact Outcomes No Gender FEs

Impacts of main analysis

Table L.1: Impact on Light Use - Pooled

(1) (2) (3) (4) (5) (6)
Lighting use Lighting use Probability of Used solar Used tin Used kerosene

yesterday yesterday lighting light for lamp for lantern for
guardians (hours) students (hours) interruption homework homework homework

Solar light −0.201 0.364∗∗∗ −0.385∗∗∗ 1.054∗∗∗ −0.888∗∗∗ −0.111∗∗∗

(0.141) (0.135) (0.042) (0.049) (0.051) (0.024)

School FE Yes Yes Yes Yes Yes Yes

Control complier mean 3.127 3.275 0.470 0.000 0.861 0.128
Number of observations 1,313 1,202 1,286 1,050 1,050 1,050
R-squared -0.02 -0.00 0.16 0.19 0.16 0.01

Notes: Treatment-on-the-treated estimates of having a working solar light on light use following Equations (3) and (4). Columns (1) and (2)
show the number of hours during which guardians and students, respectively, used any source of lighting. To measure time use in these variables,
the respondents were asked about each time slot of the day. Column (3) shows lighting interruption due to running out of fuel or battery for any
of their lighting devices in the past month, reported by the guardian. Columns (4) to (6) show whether the student relied as a main source of
light to do homework a solar light, a tin lamp, and a kerosene lantern, respectively. Robust standard errors in parentheses. *** p < 0.01, ** p
< 0.05, * p < 0.1.
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Table L.2: Impact on Kerosene Use - Pooled

(1) (2) (3) (4) (5)
Number of Number of Number of Kerosene Kerosene

kerosene-fueled tin lamps kerosene lanterns light used purchased last
lights used used last used last yesterday month (liters)
last month month month

Solar light −0.926∗∗∗ −0.933∗∗∗ −0.110∗∗ −0.296∗∗∗ −1.331∗∗∗

(0.155) (0.098) (0.048) (0.037) (0.214)

School FE Yes Yes Yes Yes Yes

Control complier mean 2.429 2.204 0.277 0.959 2.644
Number of observations 1,313 1,312 1,313 1,307 1,299
R-squared 0.08 0.13 -0.01 0.17 0.03

Notes: Treatment-on-the-treated estimates of having a working solar light on kerosene use following Equations (3) and (4).
Column (1) shows the number of kerosene-fueled lights the guardian used in the household in the past month. Columns
(2) and (3) show the number of tin lamps and kerosene lantern that the guardian used in the household in the past month.
Column (1) is the sum of tin lamps, kerosene lanterns, and pressurized lamps. Column (4) refers to whether any household
member used a kerosene-fueled light in the previous evening. Column (5) shows the change in liters of kerosene purchased
in the past month at the household level. All variables are from the guardian survey. Robust standard errors in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L.3: Impact on Emissions - Pooled

(1) (2) (3) (4)
BC CO2 CO2-eq PM2.5

emissions emissions emissions emissions
(g/month) (g/month) (g/month) (g/month)

Solar light −84.66∗∗∗ −3, 002∗∗∗ −73, 774∗∗∗ −88.00∗∗∗

(14.34) (477) (12,443) (14.84)

School FE Yes Yes Yes Yes

Control complier mean 166.72 5,845 145,222 173.22
Number of observations 1,291 1,291 1,291 1,291
R-squared 0.04 0.04 0.04 0.04

Notes: Treatment-on-the-treated estimates of having a working solar light on household
emissions following Equations (3) and (4). The impact on emissions is calculated based on
households’ kerosene consumption, as reported in Column (5) of Table 5, and the type of
kerosene lamp households use, as detailed in Subsection 2.1. The number of observations
differ from those from Column (5) of Table 5 because we don’t have information about the
type of light used of 8 households. As a result, these four columns are linearly dependent
among each other. Column (1) shows black carbon, Column (2) CO2 emissions, Column (3)
CO2-equivalents of the previous two columns combined, and Column (4) particulate matter
(PM2.5). Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

116



Table L.4: Impact on Energy Expenditures - Basic vs. Larger Light

(1) (2) (3) (4) (5) (6) (7) (8)
Total Kerosene Phone Firewood Batteries Charcoal Electricity Other

expenditure charging bill

Basic light −1.202∗∗ −0.677∗∗∗ 0.270 −0.389∗∗ 0.004 −0.011 −0.289 −0.111
(0.595) (0.150) (0.172) (0.185) (0.075) (0.284) (0.328) (0.118)

Larger light −2.540∗∗∗ −0.953∗∗∗ −0.881∗∗∗ −0.113 0.107 −0.097 −0.447 −0.156∗

(0.527) (0.118) (0.108) (0.223) (0.074) (0.191) (0.294) (0.090)

School FE Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 4.193 1.707 1.122 0.430 0.291 0.227 0.378 0.041
Number of observations 1,313 1,312 1,313 1,313 1,313 1,313 1,313 1,313
R-squared -0.01 0.05 -0.01 -0.01 0.00 -0.00 0.00 -0.01
F-test for same effect 0.008 0.056 0.000 0.138 0.241 0.740 0.482 0.552

Notes: Treatment-on-the-treated estimates of having a working solar light on households’ monthly energy expenditures (in USD) by type of
light. Each row results from a separate TSLS regression following Equations (3) and (4). The sample of each regression includes households
in the control group and the respective treatment groups. Column (1) shows total energy expenditure, Columns (2) to (8) its components.
Column (8) includes expenditures on candles, generator fuel, LPG, sawdust, dung/charcoal mixture, and other types of fuel. To conduct the
F-test of whether the effect is the same across types of light, we use stacked regressions with robust standard errors clustered at the household
level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L.5: Impact on Health - Pooled

Eyes Respiratory

Guardians Students Guardians Students
(1) (2) (3) (4)

Solar light −0.222∗∗ −0.262∗∗ −0.133 −0.287∗∗∗

(0.102) (0.104) (0.102) (0.104)

School FE Yes Yes Yes Yes

Number of observations 1,313 1,202 1,313 1,202
R-squared 0.00 -0.00 0.00 -0.01

Notes: Treatment-on-the-treated estimates of having a working solar light on health
following Equations (3) and (4). Columns (1) and (2) show an index of eye-related
symptoms such as dryness, grittiness, redness, etc. based on Lee et al. (2002). Columns
(3) and (4) show an index of respiratory symptoms such as shortness of breath, asthma,
cough, etc. based on Bates et al. (2013) and The European Community Respiratory
Health Survey II Steering Committee (2002). Effects are expressed in standard devia-
tions. Higher values indicate more symptoms. Robust standard errors in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L.6: Impact on Education - Pooled

(1) (2) (3) (4) (5) (6) (7) (8)
Homework Share homework Homework and School Sleep Average score Average score Participation
completion after dark personal studies (hours) (hours) of 5 subjects KCPE in school exams

(hours) in March 2016

Solar light 0.159∗∗∗ 0.115∗∗∗ 0.317∗ 0.549∗∗ −0.718∗∗∗ −0.076 −0.061 0.030
(0.047) (0.036) (0.184) (0.226) (0.224) (0.072) (0.204) (0.041)

School FE Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 0.647 0.721 2.427 3.983 8.327 0.027 0.011 0.775
Number of observations 1,050 1,050 1,202 1,202 1,202 1,267 236 1,313
R-squared -0.01 -0.01 -0.01 0.00 -0.00 -0.00 0.00 0.00

Notes: Treatment-on-the-treated estimates of having a working solar light on educational outcomes following Equations (3) and (4). Column (1) shows whether the student
was able to complete the homework in the past week. Column (2) shows the share of times the student did homework after dark in the past week. Columns (3) to (5) show
results for time use on the day before the endline interview (homework and personal studies, time spent in class, time spent sleeping). Column (6) shows the average final
exam scores of the first term in 2016. When the score for a subject is missing, we use the corresponding score from the last term of 2015, when available. The probability of
scores missing is balanced across treatment arms (see Appendix Table A.9). Column (7) contains the average score of graduating students who took the national KCPE exam.
Column (8) indicates whether the student took at least one of the 5 compulsory exams Variables in Columns (1) to (5) are from the student survey; variables in Columns (6)
to (8) from administrative test score records. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Impacts with controls

Table L.7: Impact on Light Use with Controls

(1) (2) (3) (4) (5) (6)
Lighting use Lighting use Probability of Used solar Used tin Used kerosene

yesterday yesterday lighting light for lamp for lantern for
guardians (hours) students (hours) interruption homework homework homework

Solar light −0.203 0.344∗∗∗ −0.385∗∗∗ 1.061∗∗∗ −0.896∗∗∗ −0.111∗∗∗

(0.142) (0.133) (0.042) (0.050) (0.051) (0.024)

School FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Control complier mean 3.130 3.295 0.469 0.000 0.869 0.128
Number of observations 1,313 1,202 1,286 1,050 1,050 1,050
R-squared 0.00 0.05 0.16 0.21 0.17 0.01

Notes: Treatment-on-the-treated estimates of having a working solar light on light use following Equations (3) and (4). Columns (1) and (2)
show the number of hours during which guardians and students, respectively, used any source of lighting. To measure time use in these variables,
the respondents were asked about each time slot of the day. Column (3) shows lighting interruption due to running out of fuel or battery for any
of their lighting devices in the past month, reported by the guardian. Columns (4) to (6) show whether the student relied as a main source of
light to do homework a solar light, a tin lamp, and a kerosene lantern, respectively. In all the specifications we control for baseline characteristics
such as class of the student, connection to the grid, household size and ownership of a solar light. Robust standard errors in parentheses. *** p
< 0.01, ** p < 0.05, * p < 0.1.
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Table L.8: Impact on Kerosene Use with Controls

(1) (2) (3) (4) (5)
Number of Number of Number of Kerosene Kerosene

kerosene-fueled tin lamps kerosene lanterns light used purchased last
lights used used last used last yesterday month (liters)
last month month month

Solar light −0.905∗∗∗ −0.914∗∗∗ −0.112∗∗ −0.291∗∗∗ −1.307∗∗∗

(0.156) (0.095) (0.048) (0.037) (0.215)

School FE Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes

Control complier mean 2.409 2.186 0.279 0.954 2.619
Number of observations 1,313 1,312 1,313 1,307 1,299
R-squared 0.10 0.18 -0.00 0.20 0.05

Notes: Treatment-on-the-treated estimates of having a working solar light on kerosene use and energy
expenditure with controls following Equations (3) and (4). Column (1) shows the number of kerosene-
fueled lights the guardian used in the household in the past month. Columns (2) and (3) show the number
of tin lamps and kerosene lantern that the guardian used in the household in the past month. Column
(1) is the sum of tin lamps, kerosene lanterns, and pressurized lamps. Column (4) refers to whether any
household member used a kerosene-fueled light in the previous evening. Column (5) shows the change in
liters of kerosene purchased in the past month at the household level. In all the specifications we control for
baseline characteristics such as class of the student, connection to the grid, household size and ownership
of a solar lamp. All variables are from the guardian survey. Robust standard errors in parentheses. *** p
< 0.01, ** p < 0.05, * p < 0.1.
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Table L.9: Impact on Emissions with Controls

(1) (2) (3) (4)
BC CO2 CO2-eq PM2.5

emissions emissions emissions emissions
(g/month) (g/month) (g/month) (g/month)

Solar light −83.12∗∗∗ −2, 948∗∗∗ −72, 435∗∗∗ −86.40∗∗∗

(14.39) (478) (12,483) (14.88)

School FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Control complier mean 165.18 5,791 143,884 171.62
Number of observations 1,291 1,291 1,291 1,291
R-squared 0.05 0.05 0.05 0.05

Notes: Treatment-on-the-treated estimates of having a working solar light on household
emissions with controls following Equations (3) and (4). The impact on emissions is
calculated based on households’ kerosene consumption, as reported in Column (3) of
Table 5, and the type of kerosene lamp households use, as detailed in Subsection 2.1.
As a result, these four columns are linearly dependent among each other. Column (1)
shows black carbon, Column (2) CO2 emissions, Column (3) CO2-equivalents of the
previous two columns combined, and Column (4) particulate matter (PM2.5). In all
the specifications we control for baseline characteristics such as class of the student,
connection to the grid, household size and ownership of a solar light. All variables are
from the guardian survey. Robust standard errors in parentheses. *** p < 0.01, ** p
< 0.05, * p < 0.1.
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Table L.10: Impact on Expenditures with Controls

(1) (2) (3) (4) (5) (6) (7) (8)
Total Kerosene Phone Firewood Batteries Charcoal Electricity Other

expenditure charging bill

Basic light −1.325∗∗ −0.670∗∗∗ 0.288∗ −0.403∗∗ 0.003 −0.014 −0.402 −0.129
(0.588) (0.150) (0.169) (0.189) (0.075) (0.283) (0.322) (0.116)

Larger light −2.443∗∗∗ −0.962∗∗∗ −0.890∗∗∗ −0.111 0.105 −0.090 −0.348 −0.148
(0.492) (0.117) (0.108) (0.224) (0.075) (0.192) (0.239) (0.092)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 4.190 1.704 1.115 0.433 0.292 0.225 0.380 0.045
Number of observations 1,313 1,312 1,313 1,313 1,313 1,313 1,313 1,313
R-squared 0.05 0.06 0.02 -0.01 0.00 -0.00 0.17 0.01
F-test for same effect 0.021 0.041 0.000 0.120 0.248 0.772 0.788 0.759

Notes: Treatment-on-the-treated estimates of having a working solar light on households’ monthly energy expenditures (in USD) by
type of light. Each row results from a separate TSLS regression following Equations (3) and (4). The sample of each regression includes
households in the control group and the respective treatment groups. Column (1) shows total energy expenditure, Columns (2) to (8)
its components. Column (8) includes expenditures on candles, generator fuel, LPG, sawdust, dung/charcoal mixture, and other types
of fuel. In all the specifications we control for baseline characteristics such as class of the student, connection to the grid, household
size and ownership of a solar light. All variables are from the guardian survey. To conduct the F-test of whether the effect is the same
across types of light, we use stacked regressions with robust standard errors clustered at the household level. *** p < 0.01, ** p <
0.05, * p < 0.1.
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Table L.11: Impact on Health with Controls

Eyes Respiratory

Guardians Students Guardians Students
(1) (2) (3) (4)

Solar light −0.222∗∗ −0.261∗∗ −0.139 −0.293∗∗∗

(0.103) (0.104) (0.103) (0.105)

School FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Number of observations 1,313 1,202 1,313 1,202
R-squared 0.01 0.00 0.01 -0.00

Notes: Treatment-on-the-treated estimates of having a working solar light on
health with controls following Equations (3) and (4). Columns (1) and (2) show
an index of eye-related symptoms such as dryness, grittiness, redness, etc. based
on Lee et al. (2002). Columns (3) and (4) show an index of respiratory symptoms
such as shortness of breath, asthma, cough, etc. based on Bates et al. (2013) and
The European Community Respiratory Health Survey II Steering Committee
(2002). Effects are expressed in standard deviations. Higher values indicate
more symptoms. In all the specifications we control for baseline characteristics
such as class of the student, connection to the grid, household size and ownership
of a solar lamp. Robust standard errors in parentheses. *** p < 0.01, ** p <
0.05, * p < 0.1.
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Table L.12: Impact on Education with Controls

(1) (2) (3) (4) (5) (6) (7) (8)
Homework Share homework Homework and School Sleep Average score Average score Participation
completion after dark personal studies (hours) (hours) of 5 subjects KCPE in school exams

(hours) in March 2016

Solar light 0.158∗∗∗ 0.114∗∗∗ 0.298∗ 0.521∗∗ −0.692∗∗∗ −0.079 −0.048 0.030
(0.048) (0.036) (0.181) (0.225) (0.224) (0.070) (0.200) (0.041)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 0.648 0.723 2.445 4.011 8.302 0.030 0.000 0.776
Number of observations 1,050 1,050 1,202 1,202 1,202 1,267 236 1,313
R-squared 0.00 -0.00 0.04 0.03 0.02 0.00 0.01 0.00

Notes: Treatment-on-the-treated estimates of having a working solar light on educational outcomes with controls following Equations (3) and (4). Column (1)
shows whether the student was able to complete the homework in the past week. Column (2) shows the share of times the student did homework after dark in
the past week. Columns (3) to (5) show results for time use on the day before the endline interview (homework and personal studies, time spent in class, time
spent sleeping). Column (6) shows the average final exam scores of the first term in 2016. When the score for a subject is missing, we use the corresponding
score from the last term of 2015, when available. The probability of scores missing is balanced across treatment arms (see Appendix Table A.9). Column (7)
contains the average score of graduating students who took the national KCPE exam. Column (8) indicates whether the student took at least one of the 5
compulsory exams. Variables in Columns (1) to (5) are from the student survey; variables in Columns (6) to (8) from administrative test score records. In
all the specifications we control for baseline characteristics such as class of the student, connection to the grid, household size and ownership of a solar lamp.
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

125



Impacts basic vs. larger light

Table L.13: Impact on Light Use - Basic vs. Larger Light

(1) (2) (3) (4) (5) (6)
Lighting use Lighting use Probability of Used solar Used tin Used kerosene

yesterday yesterday lighting light for lamp for lantern for
guardians (hours) students (hours) interruption homework homework homework

Basic light −0.216 0.366∗∗ −0.376∗∗∗ 1.090∗∗∗ −0.911∗∗∗ −0.098∗∗∗

(0.172) (0.168) (0.052) (0.065) (0.064) (0.031)
Larger light −0.254 0.385∗∗ −0.413∗∗∗ 0.998∗∗∗ −0.844∗∗∗ −0.116∗∗∗

(0.171) (0.158) (0.048) (0.057) (0.058) (0.025)

School FE Yes Yes Yes Yes Yes Yes

Control complier mean 3.127 3.275 0.470 0.000 0.861 0.128
Number of observations 1,313 1,202 1,286 1,050 1,050 1,050
R-squared -0.02 -0.00 0.15 0.15 0.11 0.01
F-test for same effect 0.833 0.911 0.457 0.190 0.268 0.420

Notes: Treatment-on-the-treated estimates of having a working solar light on light use following Equations (3) and (4). The sample of each
regression includes households in the control group and the treatment arms offered the respective type of light. Columns (1) and (2) show the
number of hours during which guardians and students, respectively, used any source of lighting. To measure time use in these variables, the
respondents were asked about each time slot of the day. Column (3) shows lighting interruption due to running out of fuel or battery for any
of their lighting devices in the past month, reported by the guardian. Columns (4) to (6) show whether the student relied as a main source of
light to do homework a solar light, a tin lamp, and a kerosene lantern, respectively. Robust standard errors in parentheses. *** p < 0.01, ** p
< 0.05, * p < 0.1.
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Table L.14: Impact on Kerosene Use - Basic vs. Larger Light

(1) (2) (3) (4) (5)
Number of Number of Number of Kerosene Kerosene

kerosene-fueled tin lamps kerosene lanterns light used purchased last
lights used used last used last yesterday month (liters)
last month month month

Basic light −1.060∗∗∗ −0.949∗∗∗ −0.119∗∗ −0.249∗∗∗ −1.289∗∗∗

(0.133) (0.119) (0.060) (0.044) (0.275)
Larger light −0.814∗∗∗ −0.901∗∗∗ −0.119∗∗ −0.361∗∗∗ −1.285∗∗∗

(0.239) (0.119) (0.055) (0.050) (0.235)

School FE Yes Yes Yes Yes Yes

Control complier mean 2.429 2.204 0.277 0.959 2.644
Number of observations 1,313 1,312 1,313 1,307 1,299
R-squared 0.08 0.13 -0.01 0.19 0.04
F-test for same effect 0.319 0.720 0.992 0.070 0.989

Notes: Treatment-on-the-treated estimates of having a working solar light on kerosene use following Equations (3) and (4).
The sample of each regression includes households in the control group and the treatment arms offered the respective type
of light. Column (1) shows the number of kerosene-fueled lights the guardian used in the household in the past month.
Columns (2) and (3) show the number of tin lamps and kerosene lantern that the guardian used in the household in the past
month. Column (1) is the sum of tin lamps, kerosene lanterns, and pressurized lamps. Column (4) refers to whether any
household member used a kerosene-fueled light in the previous evening. Column (5) shows the change in liters of kerosene
purchased in the past month at the household level. All variables are from the guardian survey. Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L.15: Impact on Emissions - Basic vs. Larger Light

(1) (2) (3) (4)
BC CO2 CO2-eq PM2.5

emissions emissions emissions emissions
(g/month) (g/month) (g/month) (g/month)

Basic light −79.58∗∗∗ −2, 883∗∗∗ −69, 414∗∗∗ −82.81∗∗∗

(18.63) (615) (16,166) (19.27)
Larger light −82.74∗∗∗ −2, 958∗∗∗ −72, 131∗∗∗ −86.04∗∗∗

(15.40) (521) (13,369) (15.94)

School FE Yes Yes Yes Yes

Control complier mean 166.72 5,845 145,222 173.22
Number of observations 1,291 1,291 1,291 1,291
R-squared 0.04 0.04 0.04 0.04
F-test for same effect 0.850 0.894 0.852 0.852

Notes: Treatment-on-the-treated estimates of having a working solar light on household
emissions following Equations (3) and (4). The sample of each regression includes households
in the control group and the treatment arms offered the respective type of light. The impact
on emissions is calculated based on households’ kerosene consumption, as reported in Column
(3) of Table 5, and the type of kerosene lamp households use, as detailed in Subsection 2.1.
As a result, these four columns are linearly dependent among each other. Column (1) shows
black carbon, Column (2) CO2 emissions, Column (3) CO2-equivalents of the previous two
columns combined, and Column (4) particulate matter (PM2.5). Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L.16: Impact on Energy Expenditures - Pooled

(1) (2) (3) (4) (5) (6) (7) (8)
Total Kerosene Phone Firewood Batteries Charcoal Electricity Other

expenditure charging bill

Solar light −1.832∗∗∗ −0.851∗∗∗ −0.340∗∗∗ −0.263 0.049 −0.017 −0.287 −0.124
(0.466) (0.113) (0.118) (0.172) (0.061) (0.192) (0.261) (0.088)

School FE Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 4.193 1.707 1.122 0.430 0.291 0.227 0.378 0.041
Number of observations 1,313 1,312 1,313 1,313 1,313 1,313 1,313 1,313
R-squared -0.02 0.05 -0.01 -0.01 0.00 -0.00 0.00 -0.01

Notes: Treatment-on-the-treated estimates of having a working solar light on households’ monthly energy expenditures (in USD) following
Equations (3) and (4). Column (1) shows total energy expenditure, Columns (2) to (8) its components. Column (8) includes expenditures on
candles, generator fuel, LPG, sawdust, dung/charcoal mixture, and other types of fuel. Robust standard errors in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1.
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Table L.17: Impact on Health - Basic vs. Larger Light

Eyes Respiratory

Guardians Students Guardians Students
(1) (2) (3) (4)

Basic light −0.252∗∗ −0.255∗∗ −0.145 −0.272∗∗

(0.126) (0.129) (0.129) (0.128)
Larger light −0.223∗ −0.293∗∗ −0.100 −0.253∗∗

(0.124) (0.125) (0.123) (0.126)

School FE Yes Yes Yes Yes

Number of observations 1,313 1,202 1,313 1,202
R-squared 0.00 0.00 0.00 -0.01
F-test for same effect 0.839 0.788 0.753 0.893

Notes: Treatment-on-the-treated estimates of having a working solar light on health
following Equations (3) and (4). The sample of each regression includes households in
the control group and the treatment arms offered the respective type of light. Columns
(1) and (2) show an index of eye-related symptoms such as dryness, grittiness, redness,
etc. based on Lee et al. (2002). Columns (3) and (4) show an index of respiratory symp-
toms such as shortness of breath, asthma, cough, etc. based on Bates et al. (2013) and
The European Community Respiratory Health Survey II Steering Committee (2002).
Effects are expressed in standard deviations. Higher values indicate more symptoms.
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L.18: Impact on Education - Basic vs. Larger Light

(1) (2) (3) (4) (5) (6) (7) (8)
Homework Share homework Homework and School Sleep Average score Average score Participation
completion after dark personal studies (hours) (hours) of 5 subjects KCPE in school exams

(hours) in March 2016

Basic light 0.173∗∗∗ 0.133∗∗∗ 0.306 0.787∗∗∗ −0.825∗∗∗ −0.090 −0.062 0.048
(0.058) (0.044) (0.232) (0.278) (0.250) (0.087) (0.231) (0.050)

Larger light 0.141∗∗ 0.095∗∗ 0.318 0.322 −0.613∗∗ −0.080 0.002 0.016
(0.055) (0.042) (0.223) (0.273) (0.293) (0.078) (0.263) (0.051)

School FE Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 0.647 0.721 2.427 3.983 8.327 0.027 0.011 0.775
Number of observations 1,050 1,050 1,202 1,202 1,202 1,267 236 1,313
R-squared -0.01 -0.01 -0.01 0.00 -0.00 -0.00 -0.00 0.00
F-test for same effect 0.602 0.398 0.963 0.132 0.497 0.808 0.834 0.563

Notes: Treatment-on-the-treated estimates of having a working solar light on educational outcomes following Equations (3) and (4). The sample of each regression includes
households in the control group and the treatment arms offered the respective type of light. Column (1) shows whether the student was able to complete the homework in the
past week. Column (2) shows the share of times the student did homework after dark in the past week. Columns (3) to (5) show results for time use on the day before the
endline interview (homework and personal studies, time spent in class, time spent sleeping). Column (6) shows the average final exam scores of the first term in 2016. When the
score for a subject is missing, we use the corresponding score from the last term of 2015, when available. The probability of scores missing is balanced across treatment arms
(see Appendix Table A.9). Column (7) contains the average score of graduating students who took the national KCPE exam. Column (8) indicates whether the student took
at least one of the 5 compulsory exams. Variables in Columns (1) to (5) are from the student survey; variables in Columns (6) to (8) from administrative test score records.
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Impacts no pooling at all

Table L.19: Impact on Light Use - All Treatment Arms

(1) (2) (3) (4) (5) (6)
Lighting use Lighting use Probability of Used solar Used tin Used kerosene

yesterday yesterday lighting light for lamp for lantern for
guardians (hours) students (hours) interruption homework homework homework

Free basic light −0.152 0.414∗∗ −0.372∗∗∗ 1.121∗∗∗ −0.957∗∗∗ −0.101∗∗∗

(0.190) (0.189) (0.059) (0.078) (0.074) (0.032)
High subsidy (USD 4) −0.391 0.341 −0.397∗∗∗ 1.022∗∗∗ −0.806∗∗∗ −0.093∗∗

(0.241) (0.235) (0.071) (0.079) (0.082) (0.043)
Low subsidy (USD 7) −0.470 0.575 −0.648∗∗∗ 0.995∗∗∗ −0.593∗∗∗ −0.147

(0.619) (0.562) (0.198) (0.177) (0.196) (0.124)
Market price (USD 9) −1.079∗ 0.517 −0.468∗∗ 0.758∗∗∗ −0.757∗∗∗ 0.004

(0.614) (0.602) (0.190) (0.167) (0.214) (0.128)
Free larger light −0.254 0.385∗∗ −0.413∗∗∗ 0.998∗∗∗ −0.844∗∗∗ −0.116∗∗∗

(0.172) (0.159) (0.048) (0.057) (0.058) (0.026)

School FE Yes Yes Yes Yes Yes Yes

Control complier mean 3.127 3.275 0.470 0.000 0.861 0.128
Number of observations 1,313 1,202 1,286 1,050 1,050 1,050
R-squared -0.06 -0.01 0.10 0.07 0.03 0.01
F-test for same effect 0.561 0.991 0.627 0.239 0.179 0.753

Notes: Treatment-on-the-treated estimates of having a working solar light on light use following Equations (3) and (4). The sample of each
regression includes households in the control group and the treatment arms offered the respective type of light. Columns (1) and (2) show the
number of hours during which guardians and students, respectively, used any source of lighting. To measure time use in these variables, the
respondents were asked about each time slot of the day. Column (3) shows lighting interruption due to running out of fuel or battery for any
of their lighting devices in the past month, reported by the guardian. Columns (4) to (6) show whether the student relied as a main source of
light to do homework a solar light, a tin lamp, and a kerosene lantern, respectively. Robust standard errors in parentheses. *** p < 0.01, ** p
< 0.05, * p < 0.1.
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Table L.20: Impact on Kerosene Use - All Treatment Arms

(1) (2) (3) (4) (5)
Number of Number of Number of Kerosene Kerosene

kerosene-fueled tin lamps kerosene lanterns light used purchased last
lights used used last used last yesterday month (liters)
last month month month

Free basic light −1.070∗∗∗ −0.948∗∗∗ −0.122∗ −0.295∗∗∗ −1.299∗∗∗

(0.151) (0.134) (0.068) (0.053) (0.297)
High subsidy (USD 4) −1.082∗∗∗ −0.955∗∗∗ −0.146∗ −0.215∗∗∗ −1.200∗∗∗

(0.178) (0.163) (0.082) (0.059) (0.398)
Low subsidy (USD 7) −1.203∗∗∗ −1.010∗∗ −0.193 −0.564∗∗∗ −0.395

(0.461) (0.425) (0.206) (0.130) (1.041)
Market price (USD 9) −0.919∗∗ −0.599 −0.320 −0.424∗∗∗ −0.779

(0.428) (0.392) (0.206) (0.127) (0.972)
Free larger light −0.814∗∗∗ −0.901∗∗∗ −0.119∗∗ −0.361∗∗∗ −1.285∗∗∗

(0.241) (0.120) (0.056) (0.050) (0.237)

School FE Yes Yes Yes Yes Yes

Control complier mean 2.429 2.204 0.277 0.959 2.644
Number of observations 1,313 1,312 1,313 1,307 1,299
R-squared 0.07 0.11 -0.02 0.22 0.04
F-test for same effect 0.836 0.882 0.886 0.052 0.905

Notes: Treatment-on-the-treated estimates of having a working solar light on kerosene use following Equations (3) and (4).
The sample of each regression includes households in the control group and the treatment arms offered the respective type
of light. Column (1) shows the number of kerosene lights the guardian used in the household in the past month. Column
(2) refers to whether any household member used a kerosene lamp in the previous evening. Column (3) shows the change in
liters of kerosene purchased in the past month at the household level. All variables are from the guardian survey. Robust
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L.21: Impact on Emissions - All Treatment Arms

(1) (2) (3) (4)
BC CO2 CO2-eq PM2.5

emissions emissions emissions emissions
(g/month) (g/month) (g/month) (g/month)

Free basic light −78.80∗∗∗ −2, 919∗∗∗ −68, 793∗∗∗ −82.08∗∗∗

(20.20) (663) (17,523) (20.89)
High subsidy (USD 4) −74.22∗∗∗ −2, 715∗∗∗ −64, 763∗∗∗ −77.26∗∗∗

(27.10) (896) (23,506) (28.03)
Low subsidy (USD 7) −17.61 −980 −15, 703 −18.78

(72.13) (2,365) (62,562) (74.59)
Market price (USD 9) −35.14 −2, 376 −31, 757 −38.02

(68.68) (2,186) (59,535) (70.98)
Free larger light −82.74∗∗∗ −2, 958∗∗∗ −72, 131∗∗∗ −86.04∗∗∗

(15.50) (525) (13,460) (16.05)

School FE Yes Yes Yes Yes

Control complier mean 166.72 5,845 145,222 173.22
Number of observations 1,291 1,291 1,291 1,291
R-squared 0.03 0.04 0.03 0.03
F-test for same effect 0.871 0.932 0.875 0.875

Notes: Treatment-on-the-treated estimates of having a working solar light on household
emissions following Equations (3) and (4). The sample of each regression includes households
in the control group and the treatment arms offered the respective type of light. The impact
on emissions is calculated based on households’ kerosene consumption, as reported in Column
(3) of Table 5, and the type of kerosene lamp households use, as detailed in Subsection 2.1.
As a result, these four columns are linearly dependent among each other. Column (1) shows
black carbon, Column (2) CO2 emissions, Column (3) CO2-equivalents of the previous two
columns combined, and Column (4) particulate matter (PM2.5). Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L.22: Impact on Expenditures - All Treatment Arms

(1) (2) (3) (4) (5) (6) (7) (8)
Total Kerosene Phone Firewood Batteries Charcoal Electricity Other

expenditure charging bill

Free basic light −1.254∗∗ −0.728∗∗∗ 0.418∗ −0.282 0.011 −0.188 −0.414 −0.070
(0.589) (0.164) (0.221) (0.189) (0.088) (0.226) (0.324) (0.143)

High subsidy (USD 4) −1.411 −0.547∗∗ −0.001 −0.541∗∗ 0.030 0.174 −0.312 −0.214∗

(0.962) (0.221) (0.185) (0.264) (0.100) (0.575) (0.507) (0.125)
Low subsidy (USD 7) −2.317 −0.163 −0.080 0.303 0.012 −0.018 −2.128∗∗ −0.243

(2.027) (0.535) (0.374) (0.913) (0.226) (0.814) (1.017) (0.320)
Market price (USD 9) −3.610∗ −0.418 0.383 −0.535 0.321 −1.560∗∗ −1.572 −0.209

(1.853) (0.543) (0.431) (0.686) (0.267) (0.628) (1.054) (0.429)
Free larger light −2.540∗∗∗ −0.953∗∗∗ −0.881∗∗∗ −0.113 0.107 −0.097 −0.447 −0.156∗

(0.531) (0.119) (0.108) (0.225) (0.075) (0.192) (0.296) (0.091)

School FE Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 4.193 1.707 1.122 0.430 0.291 0.227 0.378 0.041
Number of observations 1,313 1,312 1,313 1,313 1,313 1,313 1,313 1,313
R-squared -0.03 0.04 -0.00 -0.01 -0.00 -0.03 -0.02 -0.02
F-test for same effect 0.057 0.162 0.000 0.184 0.661 0.031 0.218 0.671

Notes: Treatment-on-the-treated estimates of having a working solar light on households’ monthly energy expenditures (in USD) following
Equations (3) and (4). The sample of each regression includes households in the control group and the treatment arms offered the respective
type of light. Column (1) shows total energy expenditure, Columns (2) to (8) its components. Column (8) includes expenditures on candles,
generator fuel, LPG, sawdust, dung/charcoal mixture, and other types of fuel. Robust standard errors in parentheses. *** p < 0.01, ** p <
0.05, * p < 0.1.
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Table L.23: Impact on Health - All Treatment Arms

Eyes Respiratory

Guardians Students Guardians Students
(1) (2) (3) (4)

Free basic light −0.245∗ −0.265∗ −0.148 −0.234
(0.148) (0.149) (0.148) (0.145)

High subsidy (USD 4) −0.306∗ −0.256 −0.092 −0.273
(0.164) (0.176) (0.171) (0.182)

Low subsidy (USD 7) −0.096 −0.829∗ 0.296 0.024
(0.422) (0.428) (0.445) (0.418)

Market price (USD 9) −0.943∗∗ −0.015 −0.220 0.182
(0.442) (0.428) (0.413) (0.436)

Free larger light −0.223∗ −0.293∗∗ −0.100 −0.253∗∗

(0.125) (0.126) (0.123) (0.127)

School FE Yes Yes Yes Yes

Number of observations 1,313 1,202 1,313 1,202
R-squared -0.01 -0.01 -0.00 -0.00
F-test for same effect 0.471 0.560 0.856 0.824

Notes: Treatment-on-the-treated estimates of having a working solar light on health
following Equations (3) and (4). The sample of each regression includes households in
the control group and the treatment arms offered the respective type of light. Columns
(1) and (2) show an index of eye-related symptoms such as dryness, grittiness, redness,
etc. based on Lee et al. (2002). Columns (3) and (4) show an index of respiratory symp-
toms such as shortness of breath, asthma, cough, etc. based on Bates et al. (2013) and
The European Community Respiratory Health Survey II Steering Committee (2002).
Effects are expressed in standard deviations. Higher values indicate more symptoms.
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L.24: Impact on Education - All Treatment Arms

(1) (2) (3) (4) (5) (6) (7) (8)
Homework Share homework Homework and School Sleep Average score Average score Participation
completion after dark personal studies (hours) (hours) of 5 subjects KCPE in school exams

(hours) in March 2016

Free basic light 0.152∗∗ 0.108∗∗ 0.353 0.726∗∗ −0.763∗∗∗ −0.102 −0.040 0.101∗

(0.066) (0.049) (0.275) (0.310) (0.286) (0.089) (0.279) (0.055)
High subsidy (USD 4) 0.190∗∗ 0.166∗∗∗ 0.222 0.988∗∗ −0.940∗∗∗ −0.089 0.314 −0.031

(0.081) (0.057) (0.307) (0.396) (0.338) (0.107) (0.289) (0.072)
Low subsidy (USD 7) 0.153 0.238 −0.202 −0.300 −0.272 −0.341 −1.917 −0.013

(0.214) (0.153) (0.706) (0.921) (0.899) (0.263) (2.824) (0.173)
Market price (USD 9) 0.075 −0.152 0.763 1.747 −1.405 −0.198 2.039 0.220

(0.204) (0.158) (0.762) (1.070) (0.942) (0.254) (2.281) (0.164)
Free larger light 0.141∗∗ 0.095∗∗ 0.318 0.322 −0.613∗∗ −0.080 0.002 0.016

(0.055) (0.043) (0.225) (0.275) (0.295) (0.079) (0.273) (0.051)

School FE Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 0.647 0.721 2.427 3.983 8.327 0.027 0.011 0.775
Number of observations 1,050 1,050 1,202 1,202 1,202 1,267 235 1,313
R-squared -0.01 -0.02 -0.02 -0.01 -0.01 -0.01 -0.54 -0.01
F-test for same effect 0.957 0.148 0.845 0.198 0.763 0.677 0.682 0.220

Notes: Treatment-on-the-treated estimates of having a working solar light on educational outcomes following Equations (3) and (4). The sample of each regression includes
households in the control group and the treatment arms offered the respective type of light. Column (1) shows whether the student was able to complete the homework in the
past week. Column (2) shows the share of times the homework was completed after dark in the past week. Columns (3) to (5) show results for time use on the day before the
endline interview (homework and personal studies, time spent in class, time spent sleeping). Column (6) shows the average final exam scores of the first term in 2016. When
the score for a subject is missing, we use the corresponding score from the last term of 2015, when available. The probability of scores missing is balanced across treatment
arms (see Appendix Table A.9). Column (7) contains the average score of graduating students who took the national KCPE exam. Column (8) indicates whether the student
took at least one of the 5 compulsory exams. Variables in Columns (1) to (5) are from the student survey; variables in Columns (6) to (8) from administrative test score
records. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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