
Economics and Human Biology 40 (2021) 100950
Modelling children's anthropometric status using Bayesian
distributional regression merging socio-economic and remote
sensed data from South Asia and sub-Saharan Africa

Johannes Seilera, Kenneth Harttgenb,*, Thomas Kneibc, Stefan Langa

aDepartment of Statistics, University of Innsbruck, Universitätsstr. 15, 6020 Innsbruck, Austria
bDepartment of Humanities, Social and Political Sciences, ETH Zurich, Clausiusstr. 37, 8092 Zurich, Switzerland
cUniversity of Göttingen, Chair of Statistics, Humboldtallee 3, 37073 Göttingen, Germany

A R T I C L E I N F O

Article history:
Received 6 February 2020
Received in revised form 11 November 2020
Accepted 11 November 2020
Available online 2 December 2020

Keywords:
Anthropometric measures and growth
failures
Childhood malnutrition Bayesian
distributional regression
UNICEF framework of malnutrition
South Asia
Sub-Sahara Africa

A B S T R A C T

A history of insufficient nutritional intake is reflected by low anthropometric measures and can lead to
growth failures, limited mental development, poor health outcomes and a higher risk of dying. Children
below five years are among those most vulnerable and, while improvements in the share of children
affected by insufficient nutritional intake has been observed, both sub-Saharan Africa and South Asia
have a disproportionately high share of growth failures and large disparities at national and sub-national
levels. In this study, we use a Bayesian distributional regression approach to develop models for the
standard anthropometric measures, stunting and wasting. This approach allows us to model both the
mean and the standard deviation of the underlying response distribution. Accordingly, the whole
distribution of the anthropometric measures can be evaluated. This is of particular importance,
considering the fact that (severe) growth failures of children are defined having a z-score below �2 (�3),
emphasising the need to extend the analysis beyond the conditional mean. In addition, we merge
individual data taken from the Demographic and Health Surveys with remote sensed data for a large
sample of 38 countries located in sub-Saharan Africa and South Asia for the period 1990–2016, in order to
combine individual and household specific characteristics with geophysical and environmental
characteristics, and to allow for a comparison over time. Our results show besides gender differences
across space, and strong non-linear effects of included socio-economic characteristics, in particular for
maternal education and the wealth of the household that, surprisingly, in the presence of socio-economic
characteristics, remote sensed data does not contribute to variations in growth failures, and including a
pure spatial effect excluding remote sensed data leads to even better results. Further, while all regions
showed improvements towards the target of the Sustainable Development Goals (SDGs), our analysis
identifies hotspots of growth failures at sub-national levels within India, Nigeria, Niger, and Madagascar,
emphasising the need to accelerate progress to reach the target set by the SDGs.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The risk of dying as a neonate or a young child is found to be
higher for undernourished children, compared to those who are
well nourished. A strong, positive relationship is found between
the nutritional status and the risk of dying, and this holds
particularly true for children with a low weight-for-height z-score
(Pelletier et al., 1995; Pelletier and Frongillo, 2003; Bryce et al.,

2005; Black et al., 2008, 2013; United Nations Children's Fund et al.,
2017, 2019). While anthropometry does not reflect all aspects of
nutrition (for example, anthropometric indicators do not account
for micronutrient deficiencies), immediate and chronic nutritional
deficiencies are well captured. Assessing growth failures using
anthropometric measures is thus a useful technique to assess the
health status of individual children as well as the general health
status of a population at an aggregated level, for instance on a sub-
national or national level (World Health Organization Multicentre
Growth Reference Study Group and de Onis, 2006; World Health
Organization Multicentre Growth Reference Study Group, 2006).
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alnutrition worldwide’ (United Nations, 2015). The highest
hares of malnourished children are found in Asia and sub-
aharan Africa, and in 2016, 23.9% (Asia) and 31.2% (sub-Saharan
frica) of children were found to be stunted, and 9.9% and 7.4%
ere found to be wasted.1 Globally, malnutrition is highly
oncentrated in these two regions, which account for 91% (92%)
f the 149 (49) million stunted (wasted) children globally. Within
hese two continents the most affected sub-regions are South Asia,
astern, Middle, and Western sub-Saharan Africa (World Health
rganization, 2017; United Nations Children's Fund et al., 2017,
019).
Assessing anthropometric measures and associated risk factors,

hile controlling for geographic factors, will help to evaluate and
onitor the progress on Sustainable Development Goal 2, zero
unger, and in particular the second sub goal, which aims to end all
orms of malnutrition by 2030. Identifying areas with high
revalence of low anthropometric outcomes can help to improve
he provision of assistance for the population in need.

Studies that analyse anthropometric measures of malnutrition
ombining individual data and spatial information include Belitz
t al. (2010), Kandala et al. (2011), Haile et al. (2016), and Gayawan
t al. (2019). These studies apply geostatistical regression models
o analyse spatial differences of malnutrition for individual
ountries in Asia and sub-Saharan Africa and aim to identify
eographic hotspots with a high prevalence of malnutrition within
he analysed country. However, studies which analyse determi-
ants of malnutrition in combination with spatial information
hile jointly pooling several countries are scarce (see, for instance,
andala et al., 2009; Osgood-Zimmerman et al., 2018). While
rowth failure and its socio-economic determinants are analysed
y Kandala et al. (2009), explicitly accounting for spatial
eterogeneity using Markov random fields for sub-national
egions in three countries located in Eastern sub-Saharan African,
he study by Osgood-Zimmerman et al. (2018) aims to map spatio-
emporal trends of growth failures for the whole continent by
aking advantage of the georeferenced survey data provided by the
emographic and Health Surveys (DHS). The latter approach has
he advantage that the estimated effects are available on a finer
esolution, which allows for the identification of areas with high
rowth failure prevalence beyond the administrative subdivisions
ithin a country. Identifying these spatial hotspots can help to
valuate and monitor the progress towards the SDGs on a sub-
ational level. This is of particular importance for policymakers in
rder to distribute assistance more effectively within countries.
Our analysis examines effects of socio-economic correlates of

alnutrition in combination with remote sensed data and spatio-
emporal trends for long- and short- term nutritional deficiencies
sing the standard anthropometric measures that approximate
hronic and acute undernutrition. The inclusion of remote sensed
nformation in the analysis of growth failures is motivated by their
ncreased availability and recent studies that highlight the
mportance of variables related to climate- (drought severity,
ainfall), health- (malaria incidence), or population-dynamics
population density) for which remote sensed data products exist
see, for example, López-Carr et al., 2016; Bauer and Mburu, 2017;
moah et al., 2018). The novel contributions to the literature on
alnutrition are threefold: first, in this comprehensive study for

sub-Saharan Africa and South Asia, we go beyond the existing
literature by analysing spatio-temporal patterns of childhood
malnutrition, while also controlling for underlying and basic
determinants of malnutrition for a large sample from 38 low- and
middle-income countries located in sub-Saharan Africa and South
Asia for the period from 1990 to 2016. Combining data taken from
the DHS and merging it with several other data sources allows us to
add an economic, a political, a socio-economic, and an environ-
mental perspective to our analysis on childhood malnutrition. For
this we pool individual socio- economic characteristics stemming
from the household recode section of available georeferenced DHS
for more than one million children within sub-Saharan Africa and
South Asia with remote sensed information from various different
sources.

Second, by relying on Bayesian distributional regression in our
analysis, we are able to model all parameters of the underlying
response distribution.2 Besides considering complex spatio-
temporal interactions, and accounting for complex non-linear
relationships, this approach explicitly allows us to model the mean
m and the standard deviation s of the underlying response
distribution, and we analyse the whole distribution accordingly.
This is also helpful to gain more accurate results and better
targeting of undernourished children as Osgood-Zimmerman et al.
(2018) highlights small scale heterogeneity within and between
sub-national boundaries.

Third, child malnutrition is analysed at the individual level,
permitting us to include information on the child and household
level to make better use of the United Nations Children's Fund
(UNICEF) conceptual framework to assess malnutrition. For
example, we explicitly account for potential gender differences,
an observation highlighted in the literature. Moreover, relying on
distributional regression models has the advantage that the effects
of included covariates remain interpretable. Even though, these
effects cannot be interpreted as causal given the data structure, the
importance of a covariate can be interpreted. This is of great
relevance for future studies in this area, that aim to establish a
causal relationship.

Apart from the three major contributions, extending the
existing literature on this important topic, this research has also
limitations, which we want to acknowledge, before we briefly
summarise our main findings. First, surveys such as the DHS report
information on anthropometric measures only for those children
living at the day of the interview. Accordingly, the analysis in this
article and studies with a similar focus, for example the article by
Osgood-Zimmerman et al. (2018), are restricted to the observable
anthropometric measures of children who are still alive on the day
of the interview. However, recent studies such as Alderman et al.
(2011) or Harttgen et al. (2019) simulate the anthropometric status
and in order to generate plausible values for the anthropometric
measures of the whole population and deceased children. They do
not find a statistically significant difference for the first group.
Second, merging a large number of surveys and using the available
observational data from the DHS does not allow us to draw causal
conclusions. The effects found in this study are prone to a
(potentially) large endogeneity bias and can only be seen as
correlation between the anthropometric measures and the
variables of interest.

Our results show strong non-linear effects of included socio-
economic covariates, highlighting the importance of character-
istics, such as maternal education or the family's wealth. Moreover,1
 Stunting refers to the height-for-age z-score and reflects long-term nutritional

eficiencies, while wasting refers to the weight-for-height z-score and measures
cute nutritional deficiencies. The z-score is calculated as follows: zi ¼ xi�xm;r

sr
;

here xi is the anthropometric measurement of child i, xm,r is the median
nthropometric index of the reference population, and sr is the standard
eviation of the reference population. The z-score is calculated following the
ecommendations of the WHO growth standard (World Health Organization
ulticentre Growth Reference Study Group, 2006).

2

gender differences that have been highlighted in the literature (for
2 Choosing the response distribution of the anthropometric measures to be
Gaussian, both parameters, the location parameter m, and scale parameter s are
modelled. Of course also other response distributions can be incorporated.



Table 1
UNICEF framework of malnutrition: key factors of childhood malnutrition found in the literature and included in this analysis.

Variable Description UNICEF
framework

Author Data source Anthropometric
measure

Level Relationship

Child specific factors
Birth order Binary index birth

order fourth or higher
Underlying Gayawan et al.

(2019)
DHS Nigeria 2013 Stunting,

underweight,
wasting

Child Fourth or higher in birth order
significantly more stunted and
underweight

Breastfeeding Interaction
breastfeeding interval
and age of child

Underlying Belitz et al.
(2010)

National Family Health
Survey (NFHS) India
1998/99

Stunting Child Poor nutritional status when
breastfeeding interval � six month

Age child Age of children in
month

– Kandala et al.
(2011)

DHS Congo, Dem., Rep.
2007

Stunting Child Non-linear decreasing

Age child Age of children in
month

– Gayawan et al.
(2019)

DHS Nigeria 2013 Stunting,
underweight,
wasting

Child Nonlinear behaviour depending on
analysed indicator

Gender Binary indicator – Kandala et al.
(2009)

DHS Malawi, Tanzania,
Zambia 2009

Stunting Child Female children less stunted

Gender Binary indicator – Kandala et al.
(2011)

DHS Congo, Dem., Rep.
2007

Stunting Child Female children less stunted

Gender Binary indicator – Gayawan et al.
(2019)

DHS Nigeria 2013 Stunting,
underweight,
wasting

Child Female children less stunted

Vaccination
coverage

Child fully vaccinated Underlying Belitz et al.
(2010)

NFHS India 1998/99 Stunting Child Higher z-score when child is fully
vaccinated

Immunisation rate Underlying Frongillo et al.
(1997)

WHO Global Database on
Child Growth

Prevalence of
stunting, wasting

Country Lower prevalence of wasting
associated with higher
immunisation rates

Household specific factors
Household's
wealth

Quantiles wealth
index

Basic Gayawan et al.
(2019)

DHS Nigeria 2013 Stunting,
underweight,
wasting

Child Nutrition improves with
household's wealth

Household’s
wealth

Quartile wealth index Basic Vollmer et al.
(2017)

DHS from 39 countries
1990–2014

Composite index of
anthropometric
failure

Child Prevalence of anthropometric
failure improves with household's
wealth

Residency Binary indicator Underlying Kandala et al.
(2009)

DHS Malawi, Tanzania,
Zambia 2009

Stunting Child Stunting worse in rural areas

Residency Binary indicator Underlying Kandala et al.
(2011)

DHS Congo, Dem., Rep.
2007

Stunting Child Stunting worse in rural areas

Residency Binary indicator Underlying Gayawan et al.
(2019)

DHS Nigeria 2017 Stunting,
underweight,
wasting

Child Anthropometric measures worse in
stunting areas

Maternal specific factors
Age mother Age of mother at birth – Gayawan et al.

(2019)
DHS Nigeria 2013 Stunting,

underweight,
wasting

Child Non-linear increasing for stunting
and underweight, insignificant for
wasting

Education
mother

Female literacy rate Basic Frongillo et al.
(1997)

WHO Global Database on
Child Growth

Prevalence of
stunting, wasting

Country Improving with education

Education
mother

Mother's level of
educational
attainment

Basic Gayawan et al.
(2019)

DHS Nigeria 2013 stunting,
underweight,
wasting

Child Positive association with
anthropometric measures

Education
mother

Mother's level of
educational
attainment

Basic Vollmer et al.
(2017)

DHS from 39 countries
1990–2014

Composite index of
anthropometric
failure

Child Prevalence of anthropometric
failure improves with education

Environmental and socio-economic factors
Wealth
country

Gross national product Basic Frongillo et al.
(1997)

WHO Global Database on
Child Growth

Prevalence of
stunting, wasting

Country Lower prevalence of stunting
associated with higher GNP levels

Wealth
country

Gross domestic
product

Basic Smith and
Haddad (2015)

WHO UNICEF Prevalence of
stunting

Country Lower prevalence of stunting
associated with higher GDP levels

Time trend Pentads (1980–2005) – de Onis et al.
(2000)

WHO Global Database on
Child Growth and
Malnutrition

Prevalence stunting,
wasting

Region Differing between regions,
decreasing in most regions

Time trend Pentads (1990–2020) – de Onis et al.
(2012)

WHO Global Database on
Child Growth and
Malnutrition

Prevalence stunting,
wasting

Region
and
countries

Differing between regions,
decreasing in most regions

Spatial factors
Rainfall Precipitation Basic López-Carr

et al. (2016)
DHS, CHIRPS Stunting, wasting Grid cell Stunting improves with increasing

rainfall
Vegetation
index

Normalized difference
vegetation index
(NDVI)

Basic Johnson and
Brown (2014)

DHS of five countries in
Western SSA 2001–2006

Severely stunted or
wasted

Children No association with stunting,
higher NDVI reduces prevalence of
wasting

Vegetation
index

NDVI Basic López-Carr
et al. (2016)

DHS, GIMMS Stunting, wasting Grid cell Negative

Vegetation
index

NDVI Basic Bauer and
Mburu (2017)

IBLI Survey Kenya 2009–
2013

MUAC Children Positive
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xample in Kandala et al., 2009, 2011; Gayawan et al., 2019) are
apped for the analysed regions, showing smaller differences in
outh Asia. Surprisingly, incorporating remote sensed information
urned out to be statistically insignificant when controlling for
ndividual- and household-specific socio-economic characteristics.
n terms of spatio-temporal developments, South Asia has
chieved the greatest progress towards reducing chronic malnu-
rition; however, when compared to sub- Saharan Africa, acute
alnutrition still remains high.
The remainder of the paper is organised as follows: Section 2,

rovides an overview of the data, its source, and the included
ovariates. Section 3 summarises the statistical method focusing
n modelling the spatial effect. Section 4 depicts the results, and
ection 5 closes with an outlook and concluding remarks.

. UNICEF framework of malnutrition and data

.1. UNICEF conceptual framework to assess malnutrition

A conceptual framework to assess malnutrition was developed
y the UNICEF in 1990 (United Nations Children's Fund, 1990) and
as further refined in subsequent years (Black et al., 2008, 2013;
nited Nations Children's Fund, 2013). It aims to extend the
roblem of malnutrition to a wider scope than a solely physiologi-
al characterisation (United Nations Children's Fund, 1990).
nstead, it claims that such a framework should also reflect the
ousehold, the socio-economic, and the environmental dimen-
ions of malnutrition. The framework characterises these aspects
ccording to how they affect malnutrition, and can be grouped into
he following determinants: immediate determinants of malnu-
rition, underlying determinants, and basic determinants. While
ata for underlying determinants (for example, food security
ithin household, quality of care, and health environment) and
asic determinants (for example, the household's endowment of
esources, education, or the economic or social conditions of the

2.1.1. Immediate determinants
Following the framework introduced by UNICEF, immediate

determinants of malnutrition are the caloric intake and health
status of the child, and affect directly the child. Both dimensions
can be seen as interrelated, as nutritional intake influences health
status and vice versa. Information on immediate determinants,
however, is not sampled routinely by the DHS, and would also
require a different sampling mechanism – observing individuals
over time – as both dimensions are subject to change.

2.1.2. Underlying determinants
Underlying determinants of undernutrition are household

characteristics that impact the nutritional status of the individual
child through their effect on the immediate determinants. These
can be roughly grouped into three dimensions: First, the house-
hold's ability to guarantee food security for all household
members, especially for all children within the household.
Children growing up in a household that cannot attribute enough
resources to provide and secure enough quality food on a daily
basis are prone to various growth failures (Gayawan et al., 2019;
Vollmer et al., 2017). Second, adequate maternal and child care.
Third, adequate access to health services and the provision of a
healthy environment for childhood development. For instance,
pathogens that spread infectious disease such as malaria and a
child is exposed to will impede the development of the child
through transmitted infectious diseases. Accordingly, both the
quality and the access to health services is crucial for the long-term
development of children. Similarly, the environment in which a
child is raised, and the household's sanitation facilities and access
to water, are important factors associated with growth failures of
children.3 For instance Spears (2013) and Hathi et al. (2017), find
that the two aforementioned factors are robust determinants
which explain growth failures and child mortality. A recent study
by Aizawa (2019) highlights that children growing up in

able 1 (Continued)

Variable Description UNICEF
framework

Author Data source Anthropometric
measure

Level Relationship

Drought
index

Aridity Basic Osgood-
Zimmerman
et al. (2018)

DHS, Malaria Atlas Project Prevalence of
stunting,
underweight,
wasting

Grid cell Effect not further specified

Malaria Plasmodium
falciparum endemicity

Basic Osgood-
Zimmerman
et al. (2018)

DHS, Malaria Atlas Project Prevalence of
stunting,
underweight,
wasting

Grid cell Effect not further specified

Malaria Plasmodium
falciparum incidence

Basic Amoah et al.
(2018)

DHS, Malaria Atlas Project Stunting Grid cell Weak association with both
negative and positive effects
depending on survey

Population
density

Number of people per
km2

Basic Osgood-
Zimmerman
et al. (2018)

DHS, WorldPop Prevalence of
stunting,
underweight,
wasting

Grid cell Effect not further specified

Night-time
light

Night-time light Basic Osgood-
Zimmerman
et al. (2018)

DHS, MODIS Prevalence of
stunting,
underweight,
wasting

Grid cell Effect not further specified

otes: Incomplete list of risk factors associated with growth failures analysed in existing works and their classification according to the UNICEF framework of malnutrition.
old covariates indicate covariates included in the final model of this analysis. The other covariates are omitted due to high correlation with included covariates.
3 To reduce the number of covariates and to speed up, the estimation the asset
index also includes information on the households access to water and sanitation
facilities. The index is calculated following Filmer and Pritchett (2001) and Sahn and
Stifel (2003). This also increases the number of included surveys and the sample
size as the wealth index of the household provided by the DHS (hv270) is not
calculated based on a principal component analysis for all surveys.
ountry in which a household is located) are available from various
ources, the immediate causes of malnutrition (dietary intake and
ealth status) are seldom included, and hard to quantify with
espect to the temporal dimension. In the following we give a brief
ummary of the UNICEF framework and the different determinants
f malnutrition.
4
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marginalised households that have poor access to sanitation
facilities, or a low level of parental and maternal education, are
more vulnerable to undernourishment. This study also argues, like
Hatton et al. (2018), that family or household size is associated
with growth failures, potentially through increasing competition
for food in larger households. The latter study also establishes a
negative causal effect of the family size on anthropometric
outcomes.

2.1.3. Basic determinants
Basic determinants of malnutrition include aspects beyond the

individual and household level, and consider potential regional,
national or even global aspects of child malnutrition. Basic
determinants add an economic, a political, a socio-economic,
and an environmental perspective to the determinants of
malnutrition and permit a closer look at malnutrition of children
in a broader context (Smith and Haddad, 2015). López-Carr et al.
(2016), for instance, finds a positive association between stunting
and rainfall. Moreover, Smith and Haddad (2015) find that in
economically more successful countries the prevalence of stunting
and wasting is lower. Income at the country level is thought to
influence childhood nutrition via two main channels: increasing
income and pro-poor growth.

Table 1 summarises key findings found in the literature on
childhood undernutrition of underlying and basic determinants,
offers an overview of the effects one can expect from determinants
of childhood malnutrition, and indicates socio-economic and
remote sensed characteristics included in this analysis.

2.2. Anthropometric measures

Long-term nutritional deficiencies are approximated using the
height-for-age z-score, also referred to as stunting, since it best
reflects long-term development (World Health Organization,
1999). In contrast, short-term nutritional deficiencies, and
accordingly, acute malnutrition, are detected by either measuring
the mid-upper arm circumference (MUAC), examination for
bilateral pitting oedema, or the weight-for-height z-score (wast-
ing) (World Health Organization, 1999, 2013). The DHS provides
information on the weight-for-height z-score, which is routinely
recorded for children younger than five years. In this work we are

2.3. Data source

2.3.1. Demographic and Health Surveys
The main data used in our analysis is sourced from the

children's recode of each country's national DHS, for which either
the GPS location of the primary sampling unit the household in
which child i lives in resides, or information about the
administrative region has been collected.4 The DHS provides
information about a country's population and the, socio-economic
and health status of individuals, and i nationally representative and
standardised across countries and over time. The data is collected
by Macro International Inc., Calverton, Maryland and local
administration and receives funding from U.S. Agency for
International Development (USAID).

The study, depending on the analysed anthropometric measure,
uses information from the DHS children's recode of 1,292,758
children sampled at 13,731 locations within 38 countries between
1990 and 2016.5 Five of the included countries are located in South
Asia and 33 are located in sub-Saharan Africa. This is shown in
Fig. 1, where the left-hand panel shows the included countries,
while the right-hand panel illustrates the improvements of the
analysed anthropometric measures over time. See also Table B.1 for
country details on the development of the anthropometric
measures.

2.3.2. Remote sensed and further covariates
A vast literature focuses on the socio-economic aspects of

health outcomes such as low anthropometric measures or
mortality of children in developing countries, but do not consider
remote sensed data (see, for instance, Black et al., 2013; Fenske
et al., 2013; Kandala et al., 2011, 2014; Ayele et al., 2015; Smith and
Haddad, 2015). For example, Smith and Haddad (2015) emphasise
that, besides the educational level of the mother, access to drinking
water, and sanitation, the country's GDP has a strong non-linear
relationship with stunting, and this relationship is particularly
pronounced for low-income countries. This body of literature aims
to either find correlates of health outcomes or to establish causal
relationships between socio-economic covariates and health
outcomes, with the final goal of improving policy advice that
yields improved health outcomes. Despite the interest in this topic,

Fig. 1. Map of included countries, trend stunting and wasting by UN regions and survey wave with 95% confidence intervals. Source: DHS; calculations by the authors.
4 To include also surveys for which geographic information is only available in the
form of the administrative region, the GPS coordinate of the regions centroid is
used.

5 Numbers presented in the text are for stunting, when instead wasting is used as
measure of undernutrition the sample consists of 1,275,387 children sampled at
13,509 locations within 38 countries.
modelling two anthropometric measures, stunting and wasting,
which give a broad picture of malnutrition, and are derived from
the children's recode of the DHS following the guidelines of the
World Health Organization Multicentre Growth Reference Study
Group (2006). They are the recommended indicators used to assess
growth failures under the SDG (Schmidt-Traub et al., 2015).
5
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imited work on the influence of geophysical and environmental
spects on health outcomes has been conducted, in particular for
alnutrition (see, for instance, Grace et al., 2012; Bauer and
buru, 2017). This is mainly due to data limitations, however, and
ith changing ecosystems and environments due to climate
hange, health outcomes are potentially becoming increasingly
ffected by geophysical and environmental aspects. Combining
ndividual and country level data with remote sensed data can
herefore help formulate targeting practices to improve health
utcomes such as growth failures and child mortality (Brown et al.,
014).
The data from the DHS is supplemented by additional socio-

conomic and remote sensed covariates that have been used in the
iterature, in addition to the standard socio-economic factors
rovided by the DHS to model growth failures using geophysical
nd environmental aspects. Previous country studies have linked
arious remote sensed data to growth failures. For example, Bauer
nd Mburu (2017) use the normalized difference vegetation index
NDVI) as a drought measure, and find a positive relationship
etween the NDVI and acute malnutrition, and as a consequence,
he authors emphasise the negative effects of varying climate
atterns on childhood malnutrition. However, other studies (see,
or example, Johnson and Brown, 2014) find no clear association
etween the NDVI and chronic malnutrition. López-Carr et al.
2016) find a positive association of precipitation history on
tunting, indicating the potential relevance of climate-specific

factors. Similarly, night-time light data has drawn the attention of
researchers who consider it to be, for example, a proxy for
urbanisation or economic activity at sub-national levels (see, for
instance, Savory et al., 2017). Accordingly, remote sensed
covariates that reflect population dynamics (population density,
urbanisation), environmental changes (for example changes in
precipitation, temperature, the growing season), and economic
development (e.g. level and growth of GDP) can be potentially
useful in explaining variation in health outcomes. See Table A.1 for
factors related to childhood malnutrition found in the literature.
The covariates included in this analysis stem from different data
sources. See Table A.1 for additional information on these
covariates and their sources. In a recent work by Osgood-
Zimmerman et al. (2018), growth failures are mapped using
remote sensed information, although particular effects were not
further specified. However, to our knowledge, no multi country
study exists that analyses growth failures by combining socio-
economic and remote sensed data. Going beyond the work of
Osgood-Zimmerman et al. (2018), we merge individual level
characteristics with remote sensed data, and analyse whether
including remote sensed data provides additional information
when accounting for children and household characteristics.

Individual- and household-level covariates, are merged with
remote sensed covariates in a way that is similar to Grace et al.
(2012). Remote sensed data is aggregated by including a buffer
around the centroid of the grid cell a child pertains to, and
ig. 2. Illustration of the homoscedastic Gaussian model (top left) as specified in Model 1 and heteroscedastic Gaussian model (top right) as specified in Model 6, together
ith a random sample drawn from the underlying data used to estimate both models. Notes: The panels show the estimated marginal effect of the asset index on the weight-
r-height z-score together 2.5%, 10%, 90%, 97.5% quantiles. See Section 3 for a more elaborate model description. In the bottom panel the spatio-temporal distribution of the
eight-for-age z-score is depicted. Source: DHS; calculations by the authors.
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aggregating remote sensed information of all cells included within
this buffer. This accounts for the random displacement of the DHS
sampling cluster where the child resides, and the fact that
geophysical and environmental aspects outside of the household's
immediate place of residence might also influence the decisions
made by household members with respect to nutrition.

3. Modelling growth failures of children

Having described the data and the UNICEF framework to assess
malnutrition in the previous section, in this section we illustrate
the main concept of Bayesian distributional regression, which
enables us to model all parameters of a response distribution and
relate growth failures of children to underlying and basic
determinants of malnutrition. The idea of a distributional
regression model is also illustrated in Fig. 2, which shows the
advantages of modelling both the mean m and the standard
deviation s using a heteroscedastic Gaussian model compared to
the homoscedastic Gaussian model. In particular, this approach
makes it possible to extend the analysis beyond the conditional
mean. In the context of analysis of growth failures, this is of great
importance, as (severe) growth failures of children are defined
having a z-score below �2 (�3), emphasising the need to extend
the analysis to more extreme quantiles. The first row illustrates the
differences between the homoscedastic Gaussian model on the left
and the heteroscedastic Gaussian model on the right, showing, for
example, that the variation is lowest for small values of the
explanatory variable. In addition, the spatio-temporal distribution
of the weight-for-height z-score is shown in the second row,
highlighting the high sub-national heterogeneity.

Bayesian hierarchical distributional regression is used to model
the standard anthropometric indicators for each geographic region
that belong to those most affected by low anthropometric
indicators of children.6 Accordingly, we model all parameters of
the underlying response distribution, instead of only considering
the conditional mean. This is crucial for more accurate results and
better targeting of undernourished children as previous literature
emphasises the high heterogeneity even within sub-national
administration boundaries.

In this paper, we use distributional structured additive
regression models that allows us to incorporate the following
concepts that go beyond a classical regression approach:

� The estimation of all parameters of the response distribution:
Assuming the anthropometric measure is normally distributed,
both the mean and the standard deviation are related to a
structured additive predictor.

� Complex spatio-temporal trends: Spatio-temporal heterogene-
ity is accounted for by including a smooth spatio-temporal effect.

� Non-linear relationships: Continuous covariates are estimated
using Bayesian penalized splines (P-splines) to allow for complex
non-linear covariate effects.

� Complex covariate interactions: Consider the age of the mother
and the birth order of the child within the household, two highly
correlated covariates. For example, the effect of being the third
born within the household should vary for different ages of the
mother, which makes it necessary to incorporate a two-
dimensional effect.

3.1. Distributional regression

Bayesian structured additive distributional regression allows us
to estimate all parameters of the response distribution (Klein et al.,
2015a,b). Assuming that the response distribution for each
indicator is Gaussian, both parameters of the normal distribution,
the mean and the standard deviation, are related to a predictor of
the regression containing socio-economic characteristics of
individuals and spatial information at the cluster level. Thus, each
indicator within a specific region is specified as Gaussian response,
with z � scoreil � Nðmil; silÞ.7 Here i = 1, . . . , I indexes the
observed children's within each region, and l = 1, . . . , L indexes the
location of the grid cells within each geographical region the
individuals pertain to. Accordingly, the regression model for each
region and indicator can be specified as follows:

m ¼ hmðhmÞ ¼ idðhmÞ;
s ¼ hsðhsÞ ¼ exp ðhsÞ;

ð1Þ

where the response functions hm and hs link m and s to structured
additive predictors using the corresponding link function, and the
predictors can contain a different set of covariates. Choosing the
appropriate link function guarantees that the restrictions of the
parameter space are satisfied (see also methodology manual of
BayesX, Belitz et al., 2015). See Appendix C for a more thorough
discussion on Bayesian distributional regression.

For estimation the open source statistical software BayesX
(Belitz et al., 2015) is used, and the data has been pre-processed

Table 2
Estimated results for the mean m of the categorical covariates.

Variable Covariate South Asia Eastern SSA MDG Central SSA Western SSA

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Stunting Intercept �1.91 �1.98; �1.86 �1.55 �1.6; �1.5 �1.91 �2.08; �1.75 �1.57 �1.67; �1.47 �1.59 �1.66; �1.5
Male �0.03 �0.04; �0.02 �0.09 �0.11; �0.08 �0.09 �0.15; �0.04 �0.08 �0.11; �0.06 �0.09 �0.1; �0.07
Urban 0.01 0.01; 0.02 0.07 0.06; 0.08 �0.01 �0.04; 0.02 0.02 0.01; 0.04 0.08 0.07; 0.09

Wasting Intercept �0.76 �0.82; �0.7 �0.08 �0.12; �0.04 �0.46 �0.62; �0.31 �0.14 �0.22; �0.06 �0.32 �0.39; �0.25
Male �0.02 �0.03; �0.01 �0.01 �0.02; 0 �0.03 �0.09; 0.03 �0.02 �0.04; 0 �0.01 �0.03; 0
Urban 0 �0.01; 0 0.01 0; 0.01 �0.06 �0.08; �0.03 �0.01 �0.02; 0.01 0 �0.01; 0

Notes: As pointed out amongst others by Lai et al. (2015), spatial correlation between sampled units or locations is interpreted differently when separated by land or by sea.
Accordingly, Madagascar (MDG) was treated separately from main land sub-Saharan Africa. International country codes (ISO-3) are used as abbreviations. Source: DHS;
calculation by authors.
6 These regions are South Asia, Eastern, Middle, and Western sub-Saharan Africa.
Sub-Saharan Africa is divided into its three UN regions (Eastern, Middle, Western),
which allows for different covariate effects, while avoiding the tremendous increase
in computational time and memory which accompanies further division into
smaller regions. In addition, as structured additive regression models require that
the map object is connected, stunting and wasting was estimated separately for
Madagascar.

7

using the statistical software R (R Core Team, 2016) and the
7 Choosing the response distribution to be Gaussian can be justified by verifying
the histograms of the response variables. Further analysis using randomised
quantile residuals as suggested by Dunn and Smyth (1996) confirms the normal
distribution to be an appropriate choice. See also D for details.



c
(
s
l
u

4

m
w
T
d
m
a
l
g
A
u

4

c
a
c
w
o
t

F
c
A

J. Seiler, K. Harttgen, T. Kneib et al. Economics and Human Biology 40 (2021) 100950
orresponding R-packages bamlss (Umlauf et al., 2018a), BayesX
Umlauf et al., 2018b) and R2BayesX (Umlauf et al., 2015). The
patial effects are visualised relying on a diverging hue-chroma-
uminance (HCL) colour space to allow for effective visualisation
sing the R-package colorspace (Zeileis et al., 2009).

. Results

Table 2 summarises the effects of the covariates which enter the
odel linearly – the place of residence and the gender – both of
hich are found to be significant and in line with the literature (see
able 1 for established effects found in the literature). The
ifference between boys and girls for both anthropometric
easures is found to be lowest in South Asia, where the
nthropometric measures are 0.03 and 0.02 standard deviations
ower for boys, respectively. This potentially reflects the observed
ender preferences for boys in South Asia, observed by for instance
rnold (1997) and Dancer et al. (2008), and accordingly the
nequal distribution of the households resources.

.1. Socio-economic characteristics

Figs. 3 and 4show the results for a selection of the included
ontinuous covariates which best describe the non-linear effects
nd the effect of the interaction caused by highly correlated
ovariates. Fig. 3 illustrates the marginal effects by region together
ith 10%, 30%, 70%, and 90% quantiles of the asset index, the years
f education of the mother, and the year of the survey. Fig. 4 depicts
he marginal effect on the mean m and the standard deviation s of

the interaction between the age of the child and the breastfeeding
duration, and the interaction of the age of the mother and the birth
order.

Beginning with the asset index, a similar effect is found across
the five analysed regions, which is that the nutritional status
increases with the wealth of the household (reflected by the
household's asset index). Similarly, as seen in the bottom panel of
Fig. 3, the height-for-age z-score increases with the education of
the mother. This increase is non-linear, however, with the steepest
effect for the children of mother's with a high level of education.
This implies that investment in education not only reduces child
mortality (Breierova and Duflo, 2004; Grépin and Bharadwaj, 2015;
Makate and Makate, 2016) but also decreases the chance of growth
failures. This can be explained as follows: higher education results
in monetary leverage and increases the income of the household
through better job opportunities. In addition, women with a higher
level of education can in some cases better assess the needs of their
children, which will be reflected in the health status of the
children. In addition, the results show the large dispersion present
in the data, and emphasise the importance of modelling more than
just the conditional mean.

Another finding is illustrated in the third and fourth row of
Fig. 4, showing the effect of the age of the child and the
breastfeeding duration on the anthropometric measure. Newborn
children are better nourished, implying that children are not born
undernourished and that environmental factors during pregnancy
do not cause children to be born with anthropometric failures. The
anthropometric status declines quickly until the age of approxi-
mately 12 months, after which the effect stabilises at a low level.
ig. 3. Marginal effects on the height-for-age z-score of the asset index (first column), the years of education of the mother (second column), and the year of the survey (third
olumn), together with the 10%, 30%, 70% and 90% quantiles for South Asia, Eastern sub-Saharan Africa, Madagascar, Central sub-Saharan Africa, and Western sub-Saharan
frica. Source: DHS; calculations by the authors.

8



J. Seiler, K. Harttgen, T. Kneib et al. Economics and Human Biology 40 (2021) 100950
However, this effect also depends on breastfeeding duration. The
children showing the lowest anthropometric outcomes are around
three to four years old with an equally long breastfeeding duration.
This effect is particularly dominant in Central and Western sub-
Saharan Africa. This emphasises that breastfeeding duration and
the age of the child cannot be interpreted as isolated factors.
Similarly, the age of the mother and the birth order cannot
interpreted individually given their high correlation.

4.2. Georeferenced information

Surprisingly, remote sensed information turned out to be
statistically significant only when individual and household socio-
economic characteristics were omitted. This is surprising as
previous studies have found significant effects of remote sensed
information, albeit without considering the effect of socio-
economic covariates (Osgood-Zimmerman et al., 2018), or only
considering their effects on a highly local level (López-Carr et al.,
2016; Johnson and Brown, 2014). This aspect is also reflected in the
significant increase of the DIC and WAIC of the models omitting
individual characteristics (see Table C.1).

for m and s for the height-for-age z-score. The first row shows the
marginal spatio- temporal effect of boys, followed by the marginal
spatio-temporal effect for girls, and the marginal effect of the
standard deviation s. Similarly, the marginal spatio-temporal
effect for the weight-for-height z-score is depicted in Fig. 6.

While both indicators improved over time, differences between
regions are striking. While the greatest progress on the height-for-
age z-score, a measure of chronic malnutrition, was achieved in
South Asia, progress seems to have stagnated and only to have
improved after the fifth wave of the DHS in sub- Saharan Africa, in
particular in Madagascar and within Western sub-Saharan African
countries in Northern Nigeria, Southern Niger, and Central Chad,
and in Eastern sub-Saharan Africa along the Great Rift Valley in
North-Eastern Zambia, Burundi, and Tanzania. This is also
consistent with findings of Akombi et al. (2017). Hotspots of
chronic malnutrition are now concentrated in smaller areas within
sub-Saharan Africa and South Asia, with the exception of
Madagascar, which is found to belong to countries with the
highest prevalence of chronic malnutrition, in line with findings of
Rakotomanana et al. (2017). In addition to the improvement of
chronic malnutrition, an increase in uncertainty can be observed,

Fig. 4. Marginal effects on the height-for-age z-score for the interaction of the age of the mother and the birth order of the child (top), and the interaction of the age of the child
and breastfeeding duration (bottom) for South Asia, Eastern sub-Saharan Africa, Madagascar, Central sub-Saharan Africa, and Western sub-Saharan Africa. Notes: The even
lines of the panel show the marginal effects on the mean m, while the odd lines of the panel show the marginal effect on the standard deviation s. Note that the colour range
differs due illustration purposes. Source: DHS; calculations by the authors (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.).
4.3. Spatio-temporal development

Spatial patterns of malnutrition are illustrated by overlying the
map of South Asia and sub-Saharan Africa with the marginal
spatial effect of the corresponding time. Fig. 5 illustrates the results
9

in particular in Western sub-Saharan Africa. This shows that
growth failures still exist and that the positive development is
accompanied by an increasing heterogeneity otherwise not
captured by standard mean models.

In contrast, the weight-for-height z-score, a measure of acute
malnutrition, seems to have stagnated in South Asia, while only
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lowly improving in sub-Saharan Africa. When compared to
hronic malnutrition, the levels of acute malnutrition are generally
ower, though, hotspots exist in Madagascar, Southern Niger,
orthern Nigeria and India.

. Conclusion

The contribution of this work to the analysis of the MDGs and
DGs is twofold: first, risk factors associated with growth failures
re analysed for a large sample of low- and middle-income
ountries located in sub-Saharan Africa and South Asia, paying
articular attention to the spatio-temporal development of growth

in particular for the height-for-age z-score. Of these regions,
Madagascar has one of the highest observed prevalence rates for
stunting (for a more in-depth analysis of the determinants of
stunting in Madagascar, consult Rakotomanana et al., 2017). On a
smaller scale, local hotspots of low height-for-age z-scores are
found, for example, along the Great Rift Valley in North-Eastern
Zambia, Burundi, and Tanzania and in Western sub-Saharan Africa
in Northern Nigeria, and Central Chad, which are in line with the
country-level findings of Akombi et al. (2017).

Using Bayesian hierarchical distributional regression, the effect
of socio-economic and remote sensed data on anthropometric
measures is estimated. In addition, the spatio-temporal develop-

ig. 5. Spatio-temporal distribution of the height-for-age z-score for the mean m and the standard deviation s over time. Notes: The top panel shows the marginal effects for
he mean of the height-for-age z-score of boys, the middle panel shows the marginal effects for the mean of the height-for-age z-score of girls, while the bottom row shows the
arginal effect for the standard deviation of the height-for-age z-score. The other covariates are kept constant at their means. Source: DHS; calculations by the authors (For
terpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
ailures. This contributes to the monitoring of the SDGs. Second,
igh risk areas with particularly low anthropometric outcomes are
dentified, which can help improve the provision of assistance in
everely affected areas. While all regions made improvements in
educing the levels of both acute and chronic malnutrition, our
nalysis shows that hotspots with high prevalence rates still exist,
1

ment of malnutrition is analysed, identifying past, and current
hotspots of low anthropometric outcomes of children of less than
five years of age. Using Bayesian distributional regression to model
heterogeneity highlighted in the literature (Osgood-Zimmerman
et al., 2018) allows to account for sub-national heterogeneity and
evaluate the uncertainty of our estimates.
0
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Most interestingly, while South Asia has made great progress in
reducing chronic malnutrition, wasting is found to have increased.
Moreover, large disparities on a sub-regional level exist, which
emphasises the need to account for this heterogeneity. Mapping
the results of the distributional regression approach allows us
identify two points which remained unaddressed: first, it seems
that disparities increase over time, which implies that even though
anthropometric measures have improved on average, variation at
the individual level has increased, and the gap between well- and
undernourished children has become wider. This emphasises the
importance of identifying the impact of socio-economic, environ-

income. This could potentially be explained by the higher levels of
pollution associated with mining regions, a possibility that calls for
further research.
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Appendix A. Source geospatial covariates

Appendix B. Summary statistics data

B.1 Z-scores, and observations by country and survey year

able A.1
ource additional covariates.

Covariate Description Resolution Source Reference

GDP real per capita GDP Country level PENN World Table Feenstra et al. (2015)
Malaria Plasmodium vivax

endemicity
30 arc sec.
(�0.0083
deg.)

Malaria Atlas Project Gething et al. (2012)

Night-time light DMSP-OLS night-time
Lights

30 arc sec.
(�0.0083
deg.)

NOAA Earth
Observation Group

National Geophysical Data Center (n.d.)

Night-time light DMSP-OLS and VIIRS
night-time Lights

30 arc sec.
(�0.0083
deg.)

Harmonized NTL Li et al. (2020)

Population density Number of people per
km2; 1990–1999
GPWv3

2.5 arc min.
(�0.04167
deg.)

Socioeconomic Data
and Applications
Center

Center for International Earth Science Information Network – CIESIN –

Columbia University (and Centro Internacional de Agricultura Tropical –

CIAT, 2005)
Population density Number of people per

km2; 2000–2017
GPWv4

2.5 arc min.
(�0.04167
deg.)

Socioeconomic Data
and Applications
Center

Center for International Earth Science Information Network – CIESIN –

Columbia University (2017)

Self-calibrating Palmer
Drought Severity Index
(scPDSI)

scPDSI CRU4.03 0.5 deg. Climate Research
Unit

van der Schrier et al. (2013), Barichivich et al. (2018)

otes: Source of additional covariates, including description, periodicity, source, and spatial resolution. Bold covariates have been included in the final model. As mentioned in
otnote eight, the night-time light index has been omitted due to the high correlation with population density and as it contains, especially in sub-Saharan Africa many zeros.

able B.1
tunting, wasting and number of observations (n), by country, and survey year.

Country Year Stunting n Wasting n Country Year Stunting n Wasting n Country Year Stunting n Wasting n

AGO 2016 �1.21 5749 �0.73 5842 IND 1999 �1.75 50,023 �1.51 51,307 NPL 2016 �1.07 3402 �0.98 3421
BDI 2010 �2.02 4898 �1.3 4927 IND 2006 �1.48 78,358 �1.47 80,197 PAK 1991 �2.04 5333 �1.47 5391
BDI 2016 �1.72 5153 �1.14 5150 IND 2015 �1.32 171,218 �1.47 173,501 PAK 2013 �1.65 6135 �1.17 6627
BEN 1996 �1.5 1248 �1.27 1277 KEN 1993 �1.56 6325 �0.91 6541 RWA 1992 �2 6292 �1.16 6359
BEN 2001 �1.51 5479 �1.12 5521 KEN 1998 �1.34 4150 �0.66 4308 RWA 2000 �1.65 9257 �0.92 9340
BEN 2006 �1.73 16,533 �0.98 17,424 KEN 2003 �1.31 7541 �0.72 7757 RWA 2005 �1.92 4773 �0.95 4849
BEN 2012 �1.77 13,775 �0.79 15,067 KEN 2009 �1.3 7769 �0.75 7966 RWA 2010 �1.61 6381 �0.69 6412
BFA 1993 �1.3 6339 �1.14 6556 KEN 2014 �1.11 14,546 �0.65 14,666 RWA 2015 �1.51 5994 �0.53 6042
BFA 1999 �1.67 5567 �1.46 5721 LBR 2007 �1.44 5812 �0.91 5933 SEN 1993 �1.41 4818 �1.06 4881
BFA 2003 �1.55 11,541 �1.44 11,748 LBR 2013 �1.19 4813 �0.79 4866 SEN 2005 �0.93 3815 �0.86 3862
BFA 2010 �1.29 9043 �1.18 9129 MDG 1992 �2.2 6504 �1.52 6519 SEN 2011 �1.2 5127 �0.99 5286
BGD 1997 �2.12 9242 �1.91 9618 MDG 1997 �2.04 4752 �1.44 4812 SEN 2013 �0.93 8244 �0.91 8216
BGD 2000 �1.9 11,443 �1.65 12,428 MDG 2004 �1.86 8076 �1.39 8221 SEN 2014 �1.03 8064 �0.87 8021
BGD 2004 �1.84 12,897 �1.68 13,157 MDG 2009 �1.6 8002 NA NA SEN 2015 �1.08 8057 �1 8050
BGD 2007 �1.63 11,930 �1.64 12,254 MLI 1996 �1.3 6144 �1.57 6100 SEN 2016 �0.95 8374 �0.93 8365
BGD 2011 �1.47 16,254 �1.44 16,645 MLI 2001 �1.53 9474 �1.26 9494 SLE 2008 �1.25 3355 �0.66 3459
BGD 2014 �1.3 10,479 �1.28 10,887 MLI 2006 �1.34 15,067 �1.18 15,194 SLE 2013 �1.2 7167 �0.6 7523
CAF 1995 �1.54 3465 �1.1 3520 MLI 2013 �1.34 6581 �1.16 6798 SWZ 2007 �1.2 4042 �0.23 4098
CIV 1994 �1.21 4533 �0.94 4544 MMR 2015 �1.09 1696 �0.92 1781 TCD 1997 �1.57 5887 �1.37 5991
CIV 2012 �1.18 5037 �0.82 5093 MOZ 1997 �1.56 5011 �1.01 5077 TCD 2004 �1.35 4835 �1.18 4892
CMR 1991 �1.36 1179 �0.67 1174 MOZ 2003 �1.77 12,099 �0.91 12,299 TCD 2015 �1.5 11,995 �1.31 12,200
CMR 1998 �1.24 1978 �0.61 2050 MOZ 2011 �1.57 15,328 �0.71 15,625 TGO 1998 �1.24 4552 �1.18 4591

CMR 2004 �1.24 5429 �0.5 5573 MWI 1992 �2.05 4704 �0.97 4787 TGO 2014 �1.29 4367 �0.98 4397
CMR 2011 �1.15 8229 �0.48 8329 MWI 2000 �1.95 14,247 �0.99 14,775 TZA 1992 �1.97 10,172 �1.19 10,367
COD 2007 �1.51 4633 �1.02 4979 MWI 2004 �2 12,293 �0.91 13,117 TZA 1996 �1.91 5117 �1.17 5176
COD 2014 �1.5 10,932 �1.02 11,126 MWI 2010 �1.85 6961 �0.81 7175 TZA 1999 �1.93 2786 �1.2 2813
COG 2005 �1 7239 �0.52 7400 MWI 2015 �1.17 4995 �0.53 5056 TZA 2005 �1.88 6910 �1.04 6963
COG 2012 �1.05 5827 �0.72 5861 NAM 1992 �1.34 5050 �0.96 5034 TZA 2010 �1.64 8457 �0.92 8588
ETH 2000 �1.97 13,085 �1.58 13,310 NAM 2000 �1.11 5293 �0.93 5370 TZA 2015 �1.04 5724 �0.51 5762
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B.2 Descriptive statistic

Appendix C. Modelling approach

The observed anthropometric measures, stunting and wasting,
approximate long-term and short-term nutritional deficiencies
respectively. This is a common approach when modelling
nutritional outcomes, since growth failures are characteristic for
nutritional deficiencies (for literature approximating nutritional
deficiencies using anthropometric measures, see among others, de
Onis et al., 2000; Kandala et al., 2009, 2011; Osgood-Zimmerman
et al., 2018). Using distributional structured additive regression,
both parameters of the normal distribution, the mean m, and the
standard deviation s of the response variables are related to the
predictors hm and hs, respectively, which take the following form:

two sub-predictors hSocio�economic and hGeoreferenced (note that for
reasons of readability the subscripts of the parameters are
omitted). f13(�) is a smooth spatio-temporal effect with Markov
random field prior. Note that the neighbourhood structure for the
spatio-temporal effect f13(�) is defined such that it allows for a
complex spatio-temporal interaction and resembles a tensor
product approach. g1 and g2 are linear effects of the gender and
the place of living, for which diffuse priors are assumed, such that p
(g i) / const. In more detail, the two sub-predictors hSocio�economic

and hGeoreferenced contain socio-economic characteristics and
georeferenced characteristics of the grid cells, respectively, as
specified hereafter:

Table B.1 (Continued)

Country Year Stunting n Wasting n Country Year Stunting n Wasting n Country Year Stunting n Wasting n

ETH 2005 �1.62 5377 �1.27 5698 NAM 2007 �1.1 7075 �0.84 7139 UGA 1995 �1.69 6894 �0.98 6987
ETH 2011 �1.56 14,095 �1.29 14,314 NAM 2013 �0.94 3470 �0.66 3461 UGA 2001 �1.74 6033 �0.91 6202
ETH 2016 �0.85 8213 �0.8 8394 NER 1992 �1.67 4912 �1.53 5012 UGA 2006 �1.45 2938 �0.86 2965
GAB 2000 �1.12 6209 �0.52 6239 NER 1998 �1.73 5026 �1.76 5082 UGA 2011 �1.13 1660 �0.68 1684
GAB 2012 �1.08 4505 �0.46 4624 NER 2006 �1.97 4538 �1.54 4628 UGA 2016 �0.93 3881 �0.46 3903
GHA 1993 �1.31 2465 �1.09 2481 NER 2012 �1.57 5686 �1.57 5841 ZMB 1992 �1.86 7756 �1.11 7854
GHA 1998 �1.32 3865 �1.08 3932 NGA 1990 �1.84 216 �1.33 218 ZMB 1996 �1.94 8757 �1.04 8912
GHA 2003 �1.38 4966 �0.95 5138 NGA 1999 �1.89 2587 �0.52 3337 ZMB 2002 �2.04 8717 �1.16 8955
GHA 2008 �1.07 3675 �0.73 3852 NGA 2003 �1.52 6786 �1.06 7031 ZMB 2007 �1.6 8048 �0.77 8334
GHA 2014 �0.96 4294 �0.74 4296 NGA 2008 �1.41 27,692 �0.96 30,199 ZMB 2014 �1.47 18,146 �0.81 18,599
GIN 1999 �1.21 5406 �0.88 5521 NGA 2013 �1.16 35,944 �1.11 37,279 ZWE 1994 �1.07 3839 �0.54 3856
GIN 2005 �1.45 3417 �0.99 3464 NPL 1996 �2.02 6225 �1.65 6560 ZWE 1999 �1.08 5422 �0.55 5599
GIN 2012 �0.97 4918 �0.82 4945 NPL 2001 �2.1 11,113 �1.71 11,224 ZWE 2006 �1.38 8254 �0.63 8694
GMB 2013 �1.17 2841 �1.08 2985 NPL 2006 �1.82 10,107 �1.6 10,183 ZWE 2011 �1.39 8882 �0.68 9025
IND 1993 �2.03 65,351 �1.77 84,931 NPL 2011 �1.58 5314 �1.32 5344 ZWE 2015 �0.89 5843 �0.23 5914

Notes: International country codes (ISO-3) are used as abbreviations. Source: DHS data sets; calculation by authors.

Table B.2
Descriptive statistics of covariates.

Definition covariate South Asia Eastern SSA MDG Central SSA Western SSA

Mean, % SD n Mean,
%

SD n Mean,
%

SD n Mean,
%

SD n Mean,
%

SD n

Age children (months) 25.61 16.24 486,520 26.83 16.92 347,765 26.59 17.03 27,334 26.82 17.15 108,979 27.46 17.19 322,160
Breastfeeding duration
(months)

16.1 11.72 486,520 13.44 9.65 347,765 15.02 8.19 27,334 9.42 8.5 108,979 10.38 9.59 322,160

Sex of child (male = 1) 0.52 0.5 486,520 0.5 0.5 347,765 0.5 0.5 27,334 0.5 0.5 108,979 0.51 0.5 322,160
Birth order within
household

2.11 1.61 486,520 2.8 2.36 347,765 2.86 2.54 27,334 2.86 2.36 108,979 3.1 2.48 322,160

Number of vaccinations 5.95 2.83 486,520 6.26 2.59 347,765 5.53 3.13 27,334 5.18 2.95 108,979 5.29 3.04 322,160
Age mother at birth
(years)

23.1 5.49 486,520 24.14 6.86 347,765 23.98 7.05 27,334 24.05 6.97 108,979 24.87 7.02 322,160

Years of education
(years)

6.5 4.96 486,520 6.13 4.01 347,765 5.23 3.61 27,334 6.19 4.19 108,979 3.87 4.32 322,160

Place of living (urban = 1) 0.3 0.46 486,520 0.26 0.44 347,765 0.35 0.48 27,334 0.41 0.49 108,979 0.32 0.47 322,160
Asset index deviation
reg. mean

0.01 0.93 486,520 �0.04 0.78 347,765 �0.03 0.92 27,334 �0.02 0.8 108,979 �0.02 0.86 322,160

Number of people in
household

6.83 3.08 486,520 6.28 2.88 347,765 6.24 2.87 27,334 7.5 3.74 108,979 7.94 4.36 322,160

Real per capita GDP 3200.47 1612.51 486,520 1556.15 1067.86 347,765 829.34 207.12 27,334 4309.1 3691.08 108,979 2244.1 1475.91 322,160
Drought index (scPDSI) �0.76 0.98 486,520 �0.79 0.91 347,765 �0.38 0.8 27,334 �0.27 1.14 108,979 �0.69 0.64 322,160
Malaria incidence 0.016 0.012 486,520 0.004 0.003 347,765 0.016 0.004 27,334 0.003 0.001 108,979 0.003 0 322,160
Night-time light 6.47 11.92 486,520 2.59 9.53 347,765 0.21 1 27,334 2.7 8.74 108,979 2.52 8.77 322,160
Population density 761.95 1350.65 486,520 389.27 1358.41 347,765 82.33 106.01 27,334 523.82 1898.61 108,979 413.73 1717.75 322,160

Notes: Descriptive statistics using the height-for-age z-score as depended variable. Considering instead the weight-for-height z-score the results are altered only marginally.
Source: DHS and various other sources described in Table A.1; calculations by authors.
hm ¼ hSocio�economic
m þ hGeoreferenced

m þ f 13ðSpatial; TimeÞ þ x0g

hs ¼ hSocio�economic
s þ hGeoreferenced

s þ f 13ðSpatial; TimeÞ þ x0g;

ðC:1Þ
where both predictors hm, and, hs contain the same set of
covariates that will be specified further below, and subsume the
13
hSocio�economic ¼ f 1ðAsset indexÞ
þ f 2ðBirthorder; Age mother at birthÞ
þ f 3ðAge child; Breastfeeding durationÞ
þ f 4ðEducation motherÞ þ f 5ðlogðGDPÞÞ
þ f 6ðHousehold sizeÞ þ f 7ðSurvey yearÞ
þ f 8ðNumber of vaccinationsÞ; ðC:2Þ
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nd,

Georeferenced ¼ f 9ðDrought severity indexÞ þ f 10ðMalaria endemicityÞþ
f 11ðlogð1 þ Night � time lightÞÞ þ f 12ðlogð1 þ Population densityÞÞ:

ðC:3Þ
here in hSocio�economic , f1(�) to f8(�) are assumed non-linear effects
f socio-economic characteristics and in hGeoreferenced, f9(�) to f12(�)
re assumed non-linear effects of georeferenced characteristics of
he grid cells.8 Note that due to the wide range of the values of
ome covariates (population density, the night-time light index
nd GDP), which are accompanied by large gaps, these covariates
ere log-transformed. The effects are modelled using Bayesian P-
plines assuming as smoothness prior a second order random walk
Lang and Brezger, 2004). The spatio-temporal model is based on a
ully Bayesian approach using Markov Chain Monte Carlo
imulation for inference (Lang and Brezger, 2004; Brezger and
ang, 2006). See Table 1 for detailed information on the included
ovariates and their association with growth failures based on
revious literature. In addition, consult Table B.2 for the summary
tatistics of the included covariates.

.1 Spatio-temporal trends

Combining geostatistical approaches and additive models and
iming to map the response distribution while controlling for non-
inear covariate effects at the same time is also known as
eoadditive models (Kammann and Wand, 2003; Ruppert et al.,
003). A Markov random field prior is used to estimate the spatio-
emporal development for which a complex interaction is
ssumed. Spatial information on the position of the primary
ampling unit the household in which child i lives, is overlayed by a
egular grid with a resolution of 25 � 25 km. The surface is

projected using a cylindric equal area projection as the coordinate
reference system. The indicator l = 1, . . . , L indexes the cells that
form a connected geographical surface of the analysed region,
which subsumes the neighbourhood structure of the cells to each
other. Time is represented by the discrete index t = 1, 2, 3.9

Assuming that spatial and temporal neighbouring cells resemble
each other and are similar compared to non-neighbouring cells,
allows for a spatio-temporal correlated smooth effect. Combining
the available spatial information with the temporal information
and building pairs l, t for each combination of l and t, allows to
incorporate a spatially-temporally correlated smooth effect. See
also Fig. C.1 for a schematic illustration, where red cells indicate
centre cells and blue cells their neighbours across space and time.

A valid definition for the Markov random field prior can be
achieved for each cell l, t by properly defining its neighbourhood
structure across space and time. Two disjoint cells l, t and l0, t0 are
assumed to be neighbours if they share a common border or follow
successively in time. Thus the spatial smoothness prior for

f13(Spatial, Time) is given by bl;tjbl0;t0 ; l; t 6¼ l0; t0; t2 �
Nð 1

Nl;t

P
l0 ;t02dl;tbl0t0 ;

t2
Nl;t

Þ; where Nl,t is the number of neighbouring

cells across space and time, l0, t0 2 dl,t indicates that cell l0, t0 shares a
common border across space and time with cell l, t (see also
methodology manual of BayesX, Belitz et al., 2015, Chapter 4).
Including a spatio-temporal effect f13(Spatial, Time) accounts for
heterogeneity across space and time not explained by the included
socio-economic and remote sensed covariates.

C.2 Hierarchical model formulation

The geolocation of the sampling cluster a child resides in is
located within a specific grid cell, which provides the spatial
information that is used to incorporate a spatio-temporal effect.
Remote sensed information is aggregated at the grid cell, as
described previously. This gives rise to the reformulation of the
model as a hierarchical or multilevel model, as observed children
are nested into grid cells; this process is also referred to as
clustering (Jain et al.,1999; Korenromp et al., 2004). Following Lang
et al. (2014) the model described in Eq. (C.1) can be rewritten as

Fig. C.1. Illustration of the spatio-temporal interaction. Notes: Selected centre cells are shown in red, while their neighbours in space and time are shown in blue.

8 Due to the high correlation (r = 0.68 for stunting) of the population density and
he night-time light index, we included a two- dimensional effect in the model. This

owever, worsened the model fit significantly. Moreover, we estimated each model
hile omitting one of the two covariates. In the final model specifications only the
opulation density is included, also due to the fact that for about 47% of the grid
ells the value of the night-time light index is zero. After replacing values below 4,
s suggested by Storeygard (2016), by the average value within an geographic unit,
till around 7% of the grid cell are zero. This is also reflected when comparing the
nal model with the model including the adjusted index, using the DIC and the
AIC, which in almost all regions favours the first model.

9 To guarantee that most countries are represented at all time points, instead of
the year of the survey, respectively, the wave of the survey, the corresponding waves
are aggregated as follows: Wave 2, Wave 3; Wave 4, Wave 5; Wave 6, Wave 7.
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multilevel model as follows:

Level � 1 : hm ¼ hSocio�
m economic þ x

0
g

þ f 13ðSpatial; TimeÞLevel�2:f 13ðSpatial; TimeÞ
¼ hGeoref erenced

m þ f 13;5ðSpatial; TimeÞLevel�1:hs
¼ hSocio�

s economic þ x
0
g

þ f 13ðSpatial; TimeÞLevel�2:f 13ðSpatial; TimeÞ
¼ hGeoreferenced

s þ f 13;5ðSpatial; TimeÞ: ðC:4Þ
Reformulating Eq. (C.1) and accounting for the hierarchical data
structure described above,10 yields Eq. (C.4), where the distribu-
tional structured additive predictor is rewritten as a predictor
representing the hierarchical structure. Development over space
and time for the mean m and the standard deviation s are captured
by the level-2 equations of f13(Spatial, Time), which include
besides the spatio-temporal effect f13(�) the remote sensed data

aggregated at the grid cell subsumed in hGeoreferenced
m and

hGeoreferenced
s , respectively.

C.3 Model selection

The goodness-of-fit of each model is first evaluated using the
deviance information criterion (DIC) (Spiegelhalter et al., 2002) and
the widely applicable information criterion (WAIC) (Watanabe, 2010).
Both information criteria can be seen as generalisation of the Akaike
information criterion (AIC), and the lower the values of the DIC and the
WAIC, the better the model fits the data. Second, insignificant
covariates and interactions are gradually removed by inspecting the
significance of the included covariate and interaction using simulta-
neous Bayesian credible intervals (Krivobokova et al., 2010).

The final model is constructed using the following procedure.
Starting with Eq. (C.4) and omitting the predictor hs, the model
complexity is gradually increased, distinguishing between differ-
ent model specifications according to the following scheme:

� Model 1: Multilevel additive model (MAM) equation (C.4),
including available potential determinants of childhood unter-
nutrition, omitting the predictor hs.

� Model 2: MAM equation (C.4), including hSocio�economic
m ,

hSocio�economic
s , hGeoreferenced

m , hGeoreferenced
s , omitting the spatio-

temporal effect f13,5(Spatial, Time) in both predictors hm and
hs.

� Model 3: MAM equation (C.4), omitting hGeoreferenced
m and

hGeoreferenced
s .

� Model 4: Eq. (C.4), omitting hSocio�economic
m and hSocio�economic

s .
� Model 5: MAM equation (C.4).
� Model 6: Eq. (C.4), explicitly accounting for disparities between
boys and girls.

� Model 7: MAM equation (C.4), removing insignificant effects in
hm and hs.

Table C.1 summarises the information criteria for each model,
where we see the following effects. First, by not accounting for
heterogeneity and omitting the predictor hs for the standard
deviation, the model fit is drastically worse in all regions. Similarly,
solely relying on remote sensed determinants and omitting
individual and household specific socio-economic determinants
does not cover all aspects of malnutrition and yields a poorer fit
compared to the model specified in Eq. (C.4), and thus results in a
poor model fit. Second, omitting the spatial effect also results in a
poorer model fit. Third, by using a gender-specific varying
coefficient (Hastie and Tibshirani, 1993) for the spatial effect
(and thus accounting for gender differences directly), the model
improves relative to the model specified in Eq. (C.4). Together,
these effects emphasise that the socio- economic determinants of
malnutrition play a crucial role, and it is not sufficient to rely purely
on remote sensed data as in, for example Osgood-Zimmerman et al.
(2018).

Table C.1
Model selection: Differences DIC and WAIC to Model 5.

Variable Model South Asia Eastern SSA MDG Central SSA Western SSA

D DIC D WAIC D DIC D WAIC D DIC D WAIC D DIC D WAIC D DIC D WAIC

Stunting Model 1 49,410 47,890 39,180 37,450 5199 4932 15,884 14,946 46,960 45,460
Model 2 490 560 140 140 �1 �7 21 18 120 150
Model 3 �20 �20 10 0 �4 �5 5 �3 30 20
Model 4 93,620 93,390 72,540 72,340 7881 7711 25,913 25,626 58,100 57,860
Model 5 0 0 0 0 0 0 0 0 0 0
Model 6 �1980 �1930 �6800 �6530 -907 -817 �5509 �4976 �7510 �7170
Model 7 �1990 �1940 �6810 �6540 �892 �808 �5496 �4965 �7490 �7160

Wasting Model 1 42,170 41,010 34,470 33,170 3515 3298 14,330 13,382 46,300 44,990
Model 2 630 670 310 310 9 12 57 57 260 280
Model 3 30 20 40 40 10 8 12 7 40 40
Model 4 26,800 26,870 23,070 23,280 3663 3577 10,750 10,588 20,520 20,550
Model 5 0 0 0 0 0 0 0 0 0 0
Model 6 �1990 �1950 �6530 �6280 �408 -375 �4925 �4472 �6930 �6550
Model 7 �2010 �1970 �6530 �6260 -409 �374 �4925 �4469 �6940 �6560

Notes: Lowest information criteria are in bold. Results are shown for Model 7. Source: DHS; calculation by authors.
10 Moreover, computational speed and mixing of the parameters sampled via
MCMC simulation techniques improves.
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ppendix D. Randomised quantile residuals

.1 Stunting

ig. D.1. Randomised quantile residuals of the height-for-age z-score. Notes: The left hand panels show the histograms of the height-for-age z-score together with a kernel
ensity estimate and a Gaussian density. The middle panels show the histograms of the randomised quantile residuals together with a kernel density estimate and a Gaussian
ensity. The right hand panels show the randomised quantile residuals against their theoretical quantiles. The first row depicts the estimates for South Asia, the second row
he estimates for Eastern sub-Saharan Africa, and the third row the estimates for Madagascar.
16



Fig. D.2. Randomised quantile residuals of the height-for-age z-score. Notes: The left hand panels show the histograms of the height-for-age z-score together with a kernel
density estimate and a Gaussian density. The middle panels show the histograms of the randomised quantile residuals together with a kernel density estimate and a Gaussian
density. The right hand panels show the randomised quantile residuals against their theoretical quantiles. The first row shows the estimates for Central sub-Saharan Africa,
while in the second row the estimates for Western sub-Saharan Africa are shown.
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.2 Wasting

ig. D.3. Randomised quantile residuals of the weight-for-height z-score. Notes: The left hand panels show the histograms of the weight-for-height z- score together with a
ernel density estimate and a Gaussian density. The middle panels show the histograms of the randomised quantile residuals together with a kernel density estimate and a
aussian density. The right hand panels show the randomised quantile residuals against their theoretical quantiles. The first row depicts the estimates for South Asia, the
econd row the estimates for Eastern sub-Saharan Africa, and the third row the estimates for Madagascar.
18
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Appendix E. Marginal effects wasting

Fig. D.4. Randomised quantile residuals of the weight-for-height z-score. Notes: The left hand panels show the histograms of the weight-for-height-score together with a
kernel density estimate and a Gaussian density. The middle panels show the histograms of the randomised quantile residuals together with a kernel density estimate and a
Gaussian density. The right hand panels show the randomised quantile residuals against their theoretical quantiles. The first row shows the estimates for Central sub-Saharan
Africa, while in the second row the estimates for Western sub-Saharan Africa are shown.
Fig. E.1. Marginal effects on the weight-for-height z-score for the interaction of the age of the mother and the birth order of the child (top), and the interaction of the age of the
child and breastfeeding duration (bottom) for South Asia, Eastern sub-Saharan Africa, Madagascar, Central sub-Saharan Africa, and Western sub- Saharan Africa. Notes: The
even lines of the panel show the marginal effects on the mean m, while the odd lines of the panel show the marginal effect on the standard deviation s. Note that the colour
range differs due illustration purposes. Source: DHS; calculations by the authors.
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Fig. E.2. Marginal effects on the weight-for-height z-score of the asset index (first column), the years of education of the mother (second column), and the year of the survey
(third column), together with the 10%, 30%, 70% and 90% quantiles for South Asia, Eastern sub-Saharan Africa, Madagascar, Central sub-Saharan Africa, and Western sub-
Saharan Africa. Source: DHS; calculations by the authors.
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