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Information  about  social  networks  can  often  be  collected  as  event  stream  data.  However,  most  methods
ctor oriented modeling
vent streams
ultinomial logit model
arkov process
uestion and answer communities

in  social  network  analysis  are  defined  for static  network  snapshots  or for panel  data.  We  propose  an  actor
oriented Markov  process  framework  to analyze  the  structural  dynamics  in  event  streams.  Estimated
parameters  are  similar  to  what  is known  from  exponential  random  graph  models  or  stochastic  actor
oriented  models  as  implemented  in SIENA.  We  apply  the  methodology  on  a question  and  answer  web
community  and  show  how  the  relevance  of  different  kinds  of  one-  and  two-mode  network  structures
can  be  tested  using  a new  software.
. Introduction

Question and answer (Q&A) communities (like Yahoo! Answers,
osmIQ, Answers.com) have become very popular in the web. People
an easily (often even without registration) pose arbitrary ques-
ions. Members of these communities try to answer these questions
uickly. Often, the only obvious incentives to answer questions are
irtual points given to people who answer many questions. The
ore points someone has, the higher is his/her virtual ranking (e.g.

anging from Newbie to Albert Einstein). But are there any other
ffects that make people stay in these groups? Are there, for exam-
le, community structures that can be revealed when looking at
ow actors write private messages to others? Or is most of this
rivate communication just functional and related to questions,

ike to provide further explanations or to say thank you if someone
nswered a question?

Actor oriented models are a good way to investigate tie changes
n social networks dependent on structures in networks. Snijders
2005) introduced a class of models that is usually applied with
anel data of binary network snapshots. The emergence of net-
ork structures can also be assessed on cross-sectional network
ata using the class of exponential random graph models (ERGM,

ee Wasserman and Pattison, 1996; Snijders et al., 2006; Robins
t al., 2007). Here, the view is not actor oriented, but rather a global
iew on the network data. The standard class of ERGM has been
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extended so that it can handle multi-mode networks (see Wang
et al., 2009). Beside models for cross-sectional data and panel data
there is new research about the analysis of event stream data with
dyad oriented models (Butts, 2008; Brandes et al., 2009; Stadtfeld
et al., 2010). The increasing availability of event stream data allows
to estimate structural models on this type of data as well. Event
stream data incorporates a high amount of information that can
be exploited. Algorithmic improvements in preprocessing and the
estimation of local models make the application of such models
feasible for long data streams and big networks.

In this paper, we present and apply a Markov process model
framework to understand what drives the dynamics of private mes-
sages sent between actors in a Q&A community. Actor decisions
about private communication tie formation and updates are con-
ceptually described as a two-level decision process (for technical
reasons, a third level is later added to the model). First, actors
have a personal activity rate that influences the decision when
to write a message at all. In case they decide to write a message,
second, actors have to choose a receiver of the private message.
This second decision about private message receivers is mod-
eled as a multinomial logit model. This model expresses whether
endogenous one-mode communication structures and two-mode
affiliation structures have an influence on the choice of receivers
in the community dataset at hand. A new java software package
called ESNA1 (event based social network analysis) was developed

to estimate the parameters of this model framework.

Section 2 introduces the case study, a dataset of a big Ger-
man  speaking Q&A community, and identifies four phases of the

1 More information can be found at http://www.em.uni-karlsruhe.de/ref/esna.
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ig. 1. Number of three different event types (questions, answers and private mess
ere  identified: (I) Initialization, (II) Growth, (III) Stabilization and (IV) Community G

ommunity development. The event stream of the case study is
xplained. Section 3 introduces the Markov process model that is
sed to analyze the data stream of the case study. It is introduced
s a a composition of actor-driven choice models. Network update
ules and network structures that potentially influence actor deci-
ions are shown. The model is compared to other related models.
n Section 4 parameter estimates for the last three sub-phases
f the community development are given as well as information
bout the estimation algorithms. Section 5 discusses the param-
ter estimates of the multinomial receiver choice sub-model, as
hose results are especially interesting when trying to understand
o whom people write private messages within the analyzed Q&A
ommunity. Finally, Section 6 summarizes and gives an outlook on
urther research.

. Case study

A dataset of a big German Q&A community is analyzed to
emonstrate the potential of an exploratory analysis with the
arkov process framework introduced in Section 3. Some char-

cteristics of the dataset at hand will be presented in Section 2.1.
he event stream will be explained in Section 2.2.

.1. The dataset

The dataset describes a time span from December 2005 to June
008. Regarding their communication behavior, people in the Q&A
ommunity behave very different from other online social com-
unities. First, the total number of members is big, but only a

mall subset of all actors is “active” at the same time, because a
ot of people only pose one question and leave quickly. There are
16,879 activated user accounts, but 329,055 (79%) of them are
light accounts” that are just used to pose questions, but cannot
e used to write or receive private messages. This implies that
7,824 (21%) actors are considered as the set of actors in the dataset.
econd, the communication within the community is assumed
o be influenced by questions. A virtual rank in the community
s only based on how often and how good a member answers
uestions.

There are 946,603 questions in the dataset with 2,996,446

nswers. Although the dataset starts in December 2005, private
essages are only logged since August 2006. Fig. 1 shows how

he activity concerning questions, answers and private messages
hanges over time.
=PM’s) per month over the whole observed period (1K = 1000 events). Four phases
).

The x-axis shows the different months, beginning with
December 2005. The dotted line represents the number of answers,
the dashed line the number of questions and the solid line the num-
ber of private messages sent. The y-axis gives the number of events
(1K = 1000 events). Generally, the activity in the Q&A community
increased. From this first visualization, four different phases were
identified as shown in Fig. 1.

In phase I there is only little activity in the dataset with
a rather low growth rate (from December 2005 to the end of
January 2007). The number of private messages is low: In the
first months, the number of messages does not exceed a few hun-
dred messages. This first phase of the Q&A-Community is called
Initialization.

Phase II is identified between February 2007 and October 2007
and is characterized by a rapidly increasing amount of questions,
answers and a slow increase of the number of private messages.
Therefore, it is called Growth.

In phase III, the numbers of questions, answers and private mes-
sages seem to have reached a more or less stable level. Although
there is a lot of variance between the months (probably caused by
Christmas time), the total number is always about 65,000 for ques-
tions and 210,000 for answers. The number of private messages is
stable at a level of about 5000 per month. Phase III ranges from
November 2007 to February 2008 and is called Stabilization.

Phase IV is probably the most interesting one regarding the
dynamics of private communication, because the number of pri-
vate messages rapidly increases, while the number of questions
and answers is relatively stable. Phase IV ends – like the whole
dataset – at the beginning of June 2008. The values for this last
month are extrapolated as it was  not completely logged. It will be
tested, whether community effects are the reason for this sudden
and significant increase of messages from an average of about 5000
per months to more than 30,000 messages in the last completely
observed months. This phase is therefore called Community Growth.
Whether this name is suitable (because the increasing number of
messages is based on “community structures”) will be tested in this
paper.

2.2. Event stream
Events are any kind of directed, dyadic interaction between two
nodes in a network for which at least a time-stamp is defined.
Events may  include more information, like an event type or an event
intensity. The dataset includes events of different types, that can
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Table 1
Part of the analyzed event stream (with fictitious names).

Time Sender Receiver Type

2007-07-07 14:10:47 Anke 283613 question opened
2007-07-07 14:10:51 mov 81 283604 answer
2007-07-07 14:11:00 doc-LE 283604 answer
2007-07-07 14:11:16 Snooker01 283600 answer
2007-07-07 14:11:19 mrs  incredible 270053 question closed
2007-07-07 14:11:31 Nekoy doc-LE message
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Fig. 2. Three different graphs are defined on the two node sets A (actors) and Q
(questions). The weighted one-mode graph Xm represents recent private communi-

value would remain stable and we  would still consider the private
communication level as being very high.

Table 2
Overview of probabilistic (event triggered) graph change rules.

Event types

question open question close answer message
2007-07-07 14:11:42 Anke 283614 question opened

e used to describe the changes in three different networks. The
hange in these networks is well defined by the event stream and

 set of change rules. As the state of these networks is known for
ach point in time, this approach processes a lot more information
han, for example, models using aggregated panel data.

To analyze the private message dynamics in the database, four
ifferent event types were identified and transformed into an event
tream with more than 5 million entries. Each of these entries (a
ow in the resulting database table) describes one event and con-
ists of a time-stamp, a sender, a receiver and an event type. An
xemplary snapshot of the event stream is given in Table 1.

In this dataset, senders are always actors, while receivers may
ither be actors or questions. The first event type is question opened
hich indicates that an actor poses a question (which is identi-
ed by a unique number). Event type answer shows that an actor
esponds to a question, while question closed indicates that a ques-
ion is closed either by the question opener, by an administrator,
r because the maximum question lifetime of 7 days has been
eached. Though the different event streams are not independent,
his paper focuses on the dynamics of the fourth event type message,
hich shows that one actor writes a private message to another

ctor.

. Modeling the case study

The decision making of actors regarding private message send-
ng can be modeled as a Markov process with three different
evels of decisions. First, this process has to decide, which actor

rites a private message. Second, the conceptual decision about
he receiver is split into two sub-decision: It is decided whether
he possible receiver should be active or non-active.  This “deci-
ion” is included for computational reasons since it considerably
ecreases the size of the multinomial choice model and reflects the
act that many actors leave the community after a short while. If the
eceiver is of non-active type the chosen sender picks the sender
ith equal probability. If the receiver is of active type, then the cho-

en sender decides whom of all active actors he or she sends the
rivate message. This decision depends on the network structures
hat surround sender and receiver. Whether certain structures are
elevant for actors’ decisions can be tested with a multinomial logit
odel based on the observed behavior in the dataset. The network

tructures are a result of all events having been observed in the
ast and a set of change rules. These rules are briefly explained in
ection 3.1.  Section 3.2 shows how the regression statistics look
ike that are tested for influence on the decision process of actors.
ection 3.3 introduces a heuristic that distinguishes active and non-
ctive actors. In Section 3.4 the global Markov process is modeled. It
onsists of many individual decision processes that are explained
n Section 3.5.  The econometric evaluation of the model is based
n certain assumptions that are listed in Section 3.6.  Section 3.7

ompares the model to stochastic actor-oriented models for longi-
udinal data sets, to exponential random graph models and to other
vent-based models.
cation. Xq and Xr are binary two-mode networks and show which actors have asked
questions (Xq) and which actors have responded to them (Xr) on the platform.

3.1. Transforming events into graphs

A state of the whole process is named x. x is a realization of
a random variable X. x is defined by the state of three graphs at
a certain point in time. These graphs are defined on two sets of
nodes (two modes), which are the set of actors A (with elements
a1, a2, . . .)  and the set of questions Q (with elements q1, q2, . . .).
The three graphs describing private messages, question asking and
responses to questions are named Xm, Xq and Xr. A realization of
x equals (xm, xq, xr). Xm reflects the recent intensity of message
writing between actors and has directed, weighted ties in R

+
0 . Xq

shows which actors have posed a question that has not been closed,
yet. Xr is a similar graph that connects actors with active ques-
tions they have responded to. The last two  of these graphs have
directed, binary ties and are bipartite two-mode graphs (affiliation
networks). Fig. 2 shows how the node sets are connected by the
three different graphs.

The event stream is an ordered sequence  ̋ with elements ω1,
ω2, . . .,  ω�, . . .,  ω|˝|. If the position within the sequence is not of
interest, the elements will just be named ω. The variables ω.time,
ω.sender, ω.receiver and ω.type indicate the four attributes of events
as introduced in Section 2.2 and shown in Table 1. Depending on
these characteristics, events change certain ties of the graphs that
define the Markov state X.

An overview of the used probabilistic (event triggered) change
rules is given in Table 2. If an event of type question open is observed,
a new tie from an actor node to a question node is added to the
two-mode network Xq. If this question is responded to (event type
answer), a binary tie is added between the answering actor and the
question node in graph Xr. If the question is closed (event type ques-
tion close), all attached ties are removed from graph Xq and Xr. Xm

is a weighted graph (although the later used statistics dichotomize
the observed ties). So, if an event of type message is observed in the
data stream, the corresponding directed network tie from message
sender to recipient is increased by 1 (xm′

ij
= xm

ij
+ 1).

But even if no event takes place, the values of ties change due
to deterministic, time dependent processes. In this case only one
deterministic change rule is applied. The tie values of the pri-
vate message graph Xm decrease over time with an exponential
decay function (see Greiner et al., 1993). Introducing such a natural
decay function seems reasonable, as otherwise the communica-
tion intensity between actors could only increase. Even, if there
was  no communication between actors for very long periods, this
Xm – – – tie value + 1
Graphs Xq add tie remove tie – –

Xr – remove ties add tie –
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people have a smaller set of receivers they regularly communicate
with, so we assume that this structure will have a positive influence
on the probability of choosing the corresponding actor. This effect
ig. 3. Change of a directed private message tie from actor ai to aj . At each point in t
he  tie value by 1 (probabilistic rule). Between events there is an exponential decay

In an exponential decay function only a parameter half-life t1/2
eeds to be specified. It gives the time after which each tie value
ecreases by 50%. Ties that have a value ≤� are reset to zero. �

s a small value, in this paper it was set to 0.01. The half-life was
efined as 1 week. This is done for computational reasons to reduce
he set of active actors that are considered to be potential receivers
f messages (see Section 3.3). Note, that a decay plus a threshold
alue is similar to dichotomizing networks using a threshold in
ongitudinal models.

Fig. 3 shows how a directed communication tie (representing
he recent private message writing intensity) between two actors
hanges over time driven by events of type message with ai being
he sender and aj being the receiver. Whenever such an event takes
lace (at times t1, t2, . . .,  t7) the tie value is increased by one.
etween the events, the tie value decreases due to the exponential
ecay.

.2. Decision statistics

Ties in social networks do not emerge randomly. Existing net-
ork structures are often a good predictor for how people connect
ith others. These structures (see Figs. 4 and 5) can be measured

nd the resulting decision statistics be understood as independent
ariables of the receiver choice process modeled by a multinomial
ogit model (see Section 3.5). Parameter estimates describing the
elevance of these structures can be interpreted similarly to esti-
ates in exponential random graph models (ERGM, see Robins et al.

2007)) and SIENA models (Snijders, 2005).
For each decision, this model evaluates the structures in the local
nvironment of the senders and receivers of private messages. Deci-
ion statistics are functions sd(x, i, j) which map  the state of the
arkov process x = (xm, xq, xr) and the indices i and j of the sender

(a) Re-use of messag e ties (b) Rec iprocity of messag e
writing

(c) Bi-direc tional communi ca-
tion

? ?

(d) Sender and rece iver have
comm on contacts

ig. 4. Four endogenous one-mode network structures that might influence private
essage receiver decisions. Actor ai is the sender, aj the receiver: (a) re-use of mes-

age ties, (b) reciprocity of message writing, (c) bi-directional communication, (d)
ender and receiver have common contacts.
, . . .,  t7 there is an event ω with ω.sender = ai and ω.receiver = aj . Each event increase
s with a fixed half-life (deterministic rule).

ai and the receiver aj into R. Structures can be measured within the
communication network itself (endogenous structures) or in other
one- or two-mode networks. Structures can in general incorporate
actor attributes, multi-network structures or any combination of
these (Stadtfeld, 2010).

In this paper, we are interested in whether endogenous (pri-
vate communication is driven by previous private communication)
structures in the message graph and two-mode structures mea-
suring question affiliation influence the choice of event receivers.
As mentioned before, only structures in the local environment of
sender ai and receiver aj in A are evaluated.

3.2.1. Endogenous one-mode statistics
Fig. 4 shows four endogenous one-mode structures on the pri-

vate message graph Xm.
The statistic of the structure in Fig. 4(a) measures whether there

is a tendency to re-use message ties, thus to repeatedly communi-
cate with the same actors. Creating new ties is costly and most
(a) Messag e to question respon-
der

(b) Messag e to question asker

(c) Responder writes asker (d) Asker writes responder

(e) Respond er writes responder

Fig. 5. Two-mode structures measuring the affiliation of actors to questions. Actor
ai is the sender, aj the receiver: (a) message to question responder, (b) message to
question asker, (c) responder writes asker, (d) asker writes responder, (e) responder
writes responder.
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s only measured binary – the actual weight of the tie has no effect.
ormally, it is defined with the function

1(x, i, j) =
{

1, if xm
ij

> 0
0, else (1)

he statistic of the structure in Fig. 4(b) measures whether actors
end to reciprocate previous, incoming private communication.

 positive estimate for this statistic indicates that people pre-
er communication partners that have written a private message
hemselves before. It is measured by

2(x, i, j) =
{

1, if xm
ji

> 0
0, else

(2)

The third of the endogenous structures is given in Fig. 4(c). It is a
ombination of the first two statistics and measures whether actors
ommunicate repeatedly. It should, therefore, not be interpreted
ithout regarding the first two statistics. This structure covers

ll the reciprocated messages from Fig. 4(b) except the very first
esponse to a private message (or similar structures due to a decay
f ties). It also covers all re-uses of a tie from Fig. 4(a) except re-uses
f ties that are not reciprocated. It is only measured if the first two
tatistics are measured with a statistic of 1. This structure is, there-
ore, an interaction of the first two structures. It indicates whether
ctors tend to communicate bi-directionally with messages going
ack and forth for a long time, or whether private conversations
re rather short. This could be expected in a rather topic oriented
nline community like a Q&A platform. The statistic is defined as

3(x, i, j) =
{

1, if xm
ij

> 0 ∧ xm
ji

> 0
0, else

(3)

The fourth structure in Fig. 4(d) may  reveal whether sender and
eceiver of the private message are embedded in community-like
tructures. The statistic counts the number of actors that sender and
ecipient are both connected to by previous private messages. The
rivate communication with the counted third actors does not have
o be bi-directional. So, it includes all types of transitive triangles,
ircles and their combinations. It is not taken into account whether
i and aj are connected on the message graph xm. For each third
ctor, this structure is measured as the binary function f4. The sum
f these measurements (in N) is the statistic of this structure.

4(x, i, j) =
∑

ak∈A\{ai,aj}
f4(x, i, j, k) (4)

4(x, i, j, k) =
{

1, if (xm
ik

> 0 ∨ xm
ki

> 0) ∧ (xm
jk

> 0 ∨ xm
kj

> 0)
0, else

.2.2. Two-mode statistics measuring question affiliation
Fig. 5 shows five structures that are measured to test, whether

uestion affiliation has an effect on private communication. All five
tructures are two-mode structures with sender ai and receiver aj
n A and questions from the set of questions Q. Structures in the
sker graph Xq and in the responder graph Xr are evaluated.

All five structures measure binary ties. The first two structures
Fig. 5(a) and (b)) evaluate whether the receiver is connected to
uestions. Statistic s5(x, i, j) measures the tendency to write private
essages to question askers, statistic s6(x, i, j) the tendency to write
rivate messages to question responders:

5(x, i, j) =
∑
qt∈Q

f5(x, j, t) (5)
Networks 33 (2011) 258– 272

f5(x, j, t) =
{

1, if xr
jt

= 1
0, else

s6(x, i, j) =
∑
qt∈Q

f6(x, j, t) (6)

f6(x, j, t) =
{

1, if xq
jt

= 1
0, else

The structures in Fig. 5(c)–(e) evaluate whether actors tend to
write private messages to receivers who  are connected to the same
questions as the sender. It is differentiated between private mes-
sages from responder to asker (statistic s7(x, i, j)), asker to responder
(s8(x, i, j)) and between responders of the same questions (s9(x, i,
j)). The statistics are defined as follows:

s7(x, i, j) =
∑
qt∈Q

f7(x, i, j, t) (7)

f7(x, i, j, t) =
{

1, if (xr
it

= 1) ∧ (xq
jt

= 1)
0, else

s8(x, i, j) =
∑
qt∈Q

f8(x, i, j, t) (8)

f8(x, i, j, t) =
{

1, if (xq
it

= 1) ∧ (xr
jt

= 1)
0, else

s9(x, i, j) =
∑
qt∈Q

f9(x, i, j, t) (9)

f9(x, i, j, t) =
{

1, if (xr
it

= 1) ∧ (xr
jt

= 1)
0, else

Note, that more complex structures could be tested as well. Also,
it is possible to combine binary structures with weighted struc-
tures. More information is given in Stadtfeld (2010).

3.3. Active actors

A lot of accounts on the Q&A platform are only used for short
time spans, e.g. just to pose one question. Therefore, active actors
and non-active actors are distinguished. The set of actors A is split
into the subsets A+, the set of active, and A−, the set of non-active
actors with A+ ∪ A− = A. These sets vary over time. We  use a simple
heuristic to define the set of active actors based on the three graphs
Xm, Xq and Xr. Active actors are those that are connected to a non-
closed question (as asker or responder) or have at least one in- or
outgoing message tie with a value >0. Formally, for all actors ai ∈ A+

the following condition holds for each point in time:

ai ∈ A+ ⇔ (∃qk ∈ Q : xq
ik

= 1 ∨ xr
ik

= 1)

∨ (∃aj ∈ A : xm
ij

> 0 ∨ xm
ji

> 0)
(10)

A graphical representation of the idea is shown in Fig. 6.
This heuristic reduces the computational complexity of the esti-

mation significantly as A+ is much smaller than A and in the model

only actors in A+ are considered as potential receivers of a private
message (with high probability). The development of the size of set
A+ over time and an evaluation of the precision of the heuristic are
given in Section 4.2.



C. Stadtfeld, A. Geyer-Schulz / Social 

(a) Active actors (A+) (b) Inactive actors (A−)
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ig. 6. It is distinguished between active actors in A+ and non-active actors in A−:
a)  active actors (A+) and (b) inactive actors (A−).

.4. Markov process

The proposed Markov process models the occurrence of private
essage events in the event stream (see Table 1) from a global

erspective. It is a composition of three individual choice models
hat are explained in Section 3.5.

Let {X(t)|t ≥ 0} with state space X  be a Markov process (a
ontinuous-time Markov chain) with right-continuous realizations.
he state space X  is defined by all combinations of the possible
tates of the three graphs Xm (private message graph), Xq (posed
uestions) and Xr (responses to questions) – see Fig. 2. The Markov
rocess describes updates of ties in Xm due to the occurrence of
rivate message events in the event stream (see Table 1) as state
hanges. Formally, it holds that the state space is

 = {(xm, xq, xr) : xm ∈ (R+
0 )n×n; xq, xr ∈ {0, 1}n×m} (11)

here n is the size of the set of actors A, m the number of questions
n set Q and the small x denote concrete realizations of random
ariables X. Recall that Xm describes a weighted graph on the set
f actors, while Xq and Xr are binary and bipartite graphs with ties
onnecting actors and questions as explained in Section 3.1.

A Markov process (or continuous time Markov chain) is a process
without memory” which means that all relevant information for
he next process change is represented by the current state. There-
ore, the emergence of new ties in the event stream is assumed
o depend only on current network structures in the three graphs
nd a set of constant parameters. In this case, it does not matter by
hich sequence of events the graphs actually evolved. However,

he state space can be extended to model this fact.
For two subsequent private message events ω� = (i�, j�, t�),

�+1 = (i�+1, j�+1, t�+1) the Markov property holds:

P(X(t�+1) = x�+1|X(t�) = x�, X(t�−1)

= x�−1, . . . , X(t0) = x0) = P(X(t�+1) = x�+1|X(t�) = x�) (12)

For each possible message event from a sender ai ∈ A to a receiver
j ∈ A a “tendency” for its occurrence is defined as a Poisson process
ith a rate �ij (explained in Eq. (13)). This is similar to the statement

hat the time between two consecutive messages from ai to aj is
ij-exponentially distributed.

These rates vary with the sending and receiving actors. �ij can be
nderstood as the propensity of actor ai to write a private message
o aj. It depends, first, on the general activity of ai and, second, on the

etwork structures that ai, aj and all other potential event receivers
re embedded in. Based on these structures, ai is assumed to make

 choice about the receiver. A rather artificial third additional deci-
ion on the type of actor is included: It is distinguished between
Networks 33 (2011) 258– 272 263

the two  cases that the event receiver may be active or non-active
at the time of the event. We  understand all three decision levels of
the Markov process transition rates as driven by individual choices
of the sending actor.

3.5. The individual choice model

The transition rates of the Markov process are based on individ-
ual choices. They are described by a Poisson parameter �ij(x ; �i, ˇ,
p+) which models the decision of actor ai to write a message and
to choose actor aj as the receiver, given the process state x and a
set of stable parameters (�i, ˇ, p+). The process state is only stable
for short time intervals, as several not explicitly modeled processes
change it: The exponential decay, new questions and answers in the
community, and the closing of questions. Therefore, the transition
rate is defined as an approximation:

�ij(x; �i, ˇ, p+) ≈

⎧⎨
⎩

�ip
?
ij
(x; ˇ)p+, if aj ∈ A+ (i)

�i
1

|A−| (1 − p+), if aj ∈ A− (ii)
(13)

with �i the parameter which describes the general activity level
of actor ai, p+ denoting the probability P(ω.receiver ∈ A+), and p?

ij

a multinomial logit model describing the choice of receivers and
explained in Eq. (14). It depends on x and a weight vector ˇ. The set
A+ changes with the state of the Markov process and can directly
be derived from x as explained in Eq. (10). The rationale for the
parameters is explained below.

�i is a parameter of a Poisson process. It describes the general
activity of an actor ai regarding the sending of private messages.
The parameters �i of this process can be interpreted as the expected
number of messages sent by actor ai in a defined time span. In Eq.
(13), the Poisson rate �i is split into sub-Poisson rates of indepen-
dent sub-processes in two  different ways:

(i) For receivers in the set of active actors A+, �i is split by multi-
plying with the probability p?

ij
from a multinomial logit model

which describes ai’s choice of a receiver from this set. This case
is weighted with p+.

(ii) For receivers in the set of non-active actors A−, �i is split – for
reasons of simplicity – into equal sub-rates by multiplying with
1/|A−|. This case is weighted with (1 − p+).

p+: A case distinction is made depending on whether the receiver
of the private message is active (aj ∈ A+) or not (aj ∈ A−, A− = A \ A+).
Probability p+ is equal to P(ω.receiver ∈ A+). p+ is assumed to be con-
siderably higher than 1 − p+. So, most receivers of private messages
are actually active. For all other receivers ∈A− the probability of a
selection is just equally distributed. The probability p+ is a Bernoulli
probability and is assumed to be independent from the size of the
set of active actors A+ that considerably changes over time (see
results in Fig. 8). For any period in the dataset it is computed by
the fraction of the number of messages sent to active actors to the
number of all messages.

p?
ij
: In case of an active receiver, the probability for choosing a

specific receiver aj ∈ A+ depends on the network structures sender
ai and receiver aj are embedded in. p?

ij
(x; ˇ) is a multinomial logit

model (see McFadden, 1974; Cramer, 2003, pp. 107–108; Hosmer
and Lemeshow, 2000, pp. 260–263) on the set of all active receivers

in A+.

p?
ij(x; ˇ) = 1

c+ exp(ˇT s(x, i, j)) (14)
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ith

+ =
∑

ak∈A+
exp(ˇT s(x, i, k)) (15)

(x, i, j) is a vector of network statistics that includes statistic func-
ions like those in Section 3.2 (Eqs. (1)–(9)):

(x, i, j) =

⎛
⎝ s1(x, i, j)

s2(x, i, j)
...

⎞
⎠ (16)

Each statistic sd(x, i, j) in vector s(x, i, j) is weighted with a cor-
esponding parameter ˇd ∈ R. The vector  ̌ is unknown but can be
alculated using a maximum likelihood estimation.  ̌ and s(x, i, j)
ave the same dimension. The linear function ˇTs(x, i, k) describing

 possible decision is transformed with an exponential function.
he resulting value, giving a “weight” for the structures surround-
ng the sender and the observed receiver is normalized with the
haracteristics of all those weights that might have occurred, given
hat ai decided to write the message to any active actor ak ∈ A+.
his assures that p?

ij
(x; ˇ) is a proper probability distribution. The

enominator c+ (“+” indicates that only active actors are evaluated)
s given in Eq. (15). A+ directly follows from the process state x and
he heuristic in Eq. (10).

.6. Assumptions for estimating the individual choice models

There are three important assumptions connected to the formu-
ation of this stochastic process as a Markov process:

1) No phase transitions in analyzed windows: From Fig. 1 it fol-
lows that there are (at least four) different phases with specific
characteristics. The characteristics of a phase should have some
influence on the emergence of private message ties and should,
therefore, be part of the Markov process state. However, we
assume that within a shorter analyzed time window certain
parameters are constant and therefore do not need to be
encoded as part of the process states. This holds for the individ-
ual activity of actors, the probability to write messages to active
actors and also for structural effects determining the choice of
event receivers. We  assume that there is no phase transition
within one of the analyzed periods of the Markov process.

2) Local homogeneity: The Markov process is assumed to be homo-
geneous (to be independent from the concrete point in time t)
within an analyzed period as long as it is small enough. This
is reasonable at least within phases II to IV (see Fig. 1) as the
distribution of possible states would only marginally depend
on the initial state with three empty graphs. Growth processes
within a phase are not further considered. We  assume differ-
ent behavior patterns between the different phases II to IV and,
in addition, homogeneous behavior in each “small” period ana-
lyzed.

3) Stability in short time spans: A concrete process state x = (xm, xq,
xr) is influenced by a decay of message ties of graph xm and also
by events of other type that change the graphs xq and xr. We
define the Markov process transition rates only for very short
time spans so that we can assume an only marginal relevance of
those factors. As the general activity of private message writing
is high we consider this a reasonable assumption.

.7. Related models
The probability p?
ij

in Eq. (14) and its combination with the
ctivity Poisson parameter �i in Eq. (13) are similar to the stochas-
ic actor oriented model for longitudinal network data (SAOM)
Networks 33 (2011) 258– 272

introduced by Snijders (2001, 2005) and implemented in SIENA.
However, the proposed model in this paper does not explicitly
describe a creation and dissolving of binary ties but an update of
weighted ties. Dissolving of ties is modeled as an external expo-
nential decay process. A further difference is the local evaluation
of network structures from an ego perspective of the event sender
while SAOM evaluates all structures in the network. In this paper,
we estimate individual Poisson rates, instead of estimating an aver-
age activity rate for all actors. The model we propose here can
further be extended to estimate multinomial decision models on
an actor level as well. As we assume full information about events
in the data set the estimation is much more straightforward.

The probability in Eq. (14) is also comparable to the evaluation of
network probabilities in exponential random graph models (ERGM,
see Robins et al., 2007). Both ERGM and this probability depend on
the occurrence of network structures. While ERGM evaluates the
global network, the probability p?

ij
from Eq. (14) has a local view

(the local environment of sender and receiver) on network struc-
tures. The base line model of ERGM is a random graph, while in this
case the parameters are compared to a random decision over all
potential actors. In ERGMs, the denominator is a (often not com-
putable) constant over all possible outcomes of a graph. Therefore,
ERGMs can be interpreted as exponential family models. Due  to
the homogeneity assumption in the proposed Markov process, the
expected outcome of the denominator can be interpreted as a sta-
tionary distribution of local environments which is similar to the
idea of a normalizing constant.

In Butts (2008) the occurrence of events is described by Pois-
son rates that can be parameterized in a very flexible way. The
proposed relational event framework is based on classical event his-
tory modeling. As in the framework introduced in this paper, the
time intervals between events are exponentially distributed. It is,
however, not distinguished between different decision levels. In
an exemplary application, Butts uses a time-discrete sub-model
which does only take the order of events over time into account.
The multinomial likelihoods defined for each event observation in
this discrete sub-model look similar to Eq. (14) but are not based
on (econometric) choice theory. The relational event framework is
not explicitly actor-oriented. The original idea is rather “behavior-
oriented” modeling (see Butts, 2008, p. 167). The relational event
model does not allow external processes to change the process
states like the external decay function in our model.

In this paper we  try to separate different decisions. This is
very useful in very big datasets as the different sub-models
can be estimated separately. This means, however, that in our
approach we  have to consider quite strong independence assump-
tions between the different decision levels. It is possible to extend
this approach with more sophisticated Poisson rates that also
depend on environmental parameters. But these parameters must
then be independent from the parameters used in the other
sub-models like, for example, the choice of receivers. Other addi-
tional sub-decisions, like decisions about event intensities or event
types, can easily be included in this framework. Butts (2008)
allows modeling several event types in one dynamic model. In
Brandes et al. (2009) an extension of the approach in Butts
(2008) was introduced that explicitly takes weights of events into
account.

4. Estimation and results

The proposed event model is an actor-driven three-level

decision process (see Eq. (13)). First, the general actor activity is
modeled with the Poisson parameter �i. Second, the probability
for choosing an active actor instead of an unconnected actor is
given by the probability p+. Third, if an active actor is chosen, the
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Fig. 7. Relative number of individual Poisson rates in the sub-windows of p

Table  3
Three sub-streams of phases II–IV were selected.

Phase II Phase III Phase IV

Windows starts August 1, 2007 December 3, 2007 March 10, 2008
Window ends August 14, 2007 December 9, 2007 March 11, 2008
Length 14 days 7 days 2 days
Messages 1465 1323 1227
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Sending actors 288 297 217
Avg. size of A+ 8710.96 6725.97 10,102.90

ultinomial choice is given by the probability p?
ij
(x; ˇ). Results of

he parameter estimates are given for each level separately.
As the four phases of the Q&A community seem to have different

haracteristics (see Fig. 1), a subsequence of each phase II to IV was
valuated separately. The whole event stream has more than five
illion events including 120,000 private message events. There-

ore, it is already sufficient to analyze smaller samples of the stream
o get statistically significant results. Also, the process assumes a
omogeneity in behavior within shorter time spans as mentioned

n Section 3. This makes it reasonable to look at smaller, stable sub-
ets of the stream within three of the four phases. Subsequences of

 days to 2 weeks were chosen for estimation that included enough
essage events to get stable results. Analyzing bigger sub-streams

s possible though, as memory complexity and computational com-
lexity only increase linearly with the number of estimated events
or each simulation iteration step (due to a preprocessing of net-
ork statistics). Some characteristics of the three windows chosen

re provided in Table 3.

.1. Estimated actor activities �i

The Poisson rates �i are given separately for each of the defined
hases II to IV. Only those actors that wrote a message within such
 time span are considered. The estimates were calculated with a
aximum likelihood estimation. The time unit is days. The average

ndividual Poisson rates �i are presented in Table 4. On average, the

able 4
verage Poisson rates of all actors that wrote at least one message in one of the
hases II–IV (see Fig. 1) with standard errors of estimates.

Phase �i (S.E.)

II 0.372 (0.036)
III  0.657 (0.047)
IV 2.903 (0.116)
al actor rates

hase II ( ), phase III (
), and phase IV (+). Both scales are logarithmic.

actors that send messages in phase II at all wrote 0.372 messages
per day. In phase III this rate almost doubled to 0.657 messages per
day. In phase IV actors wrote (on average) 2.903 messages per day
if they wrote private messages at all. In this phase, we  observed
a big growth of private messages in the community. Partly, this is
reflected by a higher average activity of actors.

In Section 3 the Poisson rates �i were defined as individual
parameters of actors ai. Plots of the individual actor activities in the
selected windows are shown in Fig. 7. The x-axis shows individual
actor rates, the y-axis gives the fraction of actors. Both axes are
logarithmic. The different phases are indicated by three different
symbols. It can be seen that the frequency distribution of parame-
ters seems similar (many actors have a low rate and only few actors
have very high rates, the logarithm of the curve is almost linear),
but the absolute values are significantly higher in the later phases.
In phase IV almost 7% of all actors had an activity rate in the range
from 10 to 30 expected messages per day. In phase II the highest
observed rate was  5.86 only. In phase III the maximum was 7.86
only.

4.2. Probability for choosing active actors p+

The average probability p+ of choosing an active actor in A+

over a non-active actor in A− was  96.27% in the observed event
stream. Of 112,811 messages in the completely logged months from
September 2006 to May  2008 only 4208 were observed to be sent
to inactive actors, which shows that our heuristic (see Eq. (10))
worked quite well.

In phases II, III and IV the observed probability p+ had values
between 96.92% and 97.67%. The estimates of this Bernoulli prob-
ability are shown in Table 5.

The average number of active actors |A+| per month is shown
in Fig. 8. The x-axis indicates the beginning of the months. As in

Fig. 1, the different phases are highlighted with different shades of
gray. In phase I less than 2000 active actors were in the network.
The number increased to an average of almost 10, 000 active actors
at the end of phase II. We  showed in Fig. 1 that also the number

Table 5
Observed probabilities of p+ in the sub-streams of phases II–IV.

Phase All messages Messages to any aj ∈ A+ p+

II 1500 1465 97.67%
III  1365 1323 96.92%
IV 1260 1227 97.38%
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ig. 8. Number of active actors in the analysis over time. The plotted values are ave
-axis  indicates the first day of a month. The total number of actors is |A| = 87, 824.

f questions and answers increased significantly in this time span.
n phase III, the number of active actors varied between 6000 and
0, 000. In December we observed a much lower activity on the
latform, probably due to Christmas break. In phase IV, the number
f active actors slightly increased with the increasing number of
rivate messages and goes up to about 12, 000 in the last 2 months.
he set of actors A is constant and has a size of 87,824.

Fig. 9 shows how the parameter p+ changes over time. As in
ig. 8 the x-axis indicates the months between September 2006 to
une 2008. The y-axis represents the percentage of messages sent to
ctive actors (the monthly average of p+). Except from low values at
he end of phase I and the beginning of phase II the value is rather
table and always higher than 92.5%. In phase IV which includes
ost of the messages, the percentage of messages written to active

ctors is at a even higher level of about 97.5%.

.3. Choice of event receivers p?

The best fitting parameters ˆ̌ of probability p?
ij
(x; ˇ) (see Eq. (14))

re calculated by applying a maximum likelihood (ML) estimation.

ax
ˇ

log L =
|˝|∑
�=1

log p?
i�j�

(x�; ˇ) (17)

 is the event stream with ordered events ω1, . . .,  ω�, . . . ω|˝|. i�
nd j� are the indices of actors ai� = ω�.sender and aj� = ω�.receiver.
he event triggered changes have not yet been applied on x�.

For each event ω� ∈  ̋ the decision probabilities p?
i�j�

(x�, ˇ, A+
� )

ere assumed to depend only on the network structures at that
ime (being conditionally independent given x). We  assumed that
hose structures have a stable stationary distribution at least for
horter time windows within the event stream and are not sig-
ificantly influenced by previous events taking place in other
nvironments.
Standard errors of parameter estimates were estimated using
 bootstrapping approach with a sample size of 50 (Efron and
ibshirani, 1986).

The log likelihood function in Eq. (17) is concave and
an therefore be estimated using a Newton-Raphson algo-
ithm (see Deuflhard, 2004). The software for network statistics
values of a month. Phases I–IV are indicated by the background color. A tick on the

preprocessing and estimation was  developed in Java, partly using
software packages from Apache Commons.2

The estimation results for the sub-windows in phases II to IV are
shown in Tables 6, 7 and 8. The figure references and the names of
the statistics are given in the first column. Nine different models
were tested. The first model only includes the one parameter that
improved the log likelihood most compared to a random decision
model. This base line model includes no parameters and returns
a probability of 1/A+

� (uniform probability distribution over all
potential receivers) for each event ω� in the window. The log like-
lihood of these random decision models is given in the captions of
the tables. The additional eight parameters were included stepwise
by the additional improvement of the log likelihood (forward selec-
tion, see Miller, 2002). The log likelihood of a model is shown in the
first row under the model together with Akaike’s information crite-
rion (AIC, see Akaike, 1974). In the second row, for each model the
deltas of the log likelihood (� log L) and the AIC (� AIC) are given.
The values are compared to the model with the highest log likeli-
hood and the model with the lowest AIC. In all three tables most
parameters are significant with a level of p < 0.001 in most cases.
Less significant parameters are italicized, non-significant parame-
ters are marked with an “x”. More details are given in the captions
of the three Tables 6, 7 and 8. The best model regarding the AIC is
highlighted by a gray background. This means that all subsequent
models with more parameters (and a higher log likelihood) did not
further reduce the AIC. The best model has the minimum AIC which
is defined by (− 2 log L/n) + (2k/n) with k is the number of parame-
ters and n the number of private messages in the observed window
(see Table 3). The AIC values are given in the same row as the model
log likelihood.

For all models the fit seems to be quite good. Compared with
the log likelihood of the random decision reference models (II:
−13, 290.974; III: −11, 660.567; IV: −11, 313.649) all models in
Tables 6, 7 and 8 have a considerably higher log likelihood (in the
range from −3993.563 to −6111.000). This indicates that the mod-
els made a contribution towards explaining the receiver choices of
the private communication behavior. The estimates are discussed
in Section 5.
2 http://commons.apache.org/.

http://commons.apache.org/
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. Discussion of receiver choice parameters

In all sub-windows of phases II to IV we discovered both signifi-
ant endogenous effects and significant question affiliation effects.
ost statistics turned out to be significant on a very high level.
n total, only three statistics were not included in a best fit-
ing model. The most important effect in all phases turned out
o be the tendency of actors to re-use ties. Reciprocity and bi-
irectional communication were always relevant but seemed to

able 6
ine models with detailed parameters for a sub-window of phase II. The last two  mode

og  likelihood improvement does not reduce the AIC. The random decision log likelihood
ignificance level of p < 0.01 only are italicized. Parameters with a lower significance level

Figure Name Model II-1 

ˆ̌ S.E.

4(a) Re-use of ties 9.071 0.113 

5(a)  Message to responder 

5(d) Asker writes responder 

log  L/AIC −6111.000/8.344 

�  log L/� AIC −430.774/+0.579 

Figure Name Model II-4 

ˆ̌
 S.E.

4(a) Re-use of ties 8.508 0.112 

5(a)  Message to responder 0.008 6.E-4 

5(d)  Asker writes responder 0.253 0.07 

4(d)  Common contacts 0.114 0.020 

4(b) Reciprocity
4(c)  Bi-directional comm.  

log  L/AIC −5787.983/7.907 

�  log L/� AIC −107.754/+0.142 

Figure  Name Model II-7 

ˆ̌
 S.E.

4(a) Re-use of ties 8.574 0.151
5(a)  Message to responder 0.007 6.E-4
5(d)  Asker writes responder 0.224 0.077
4(d)  Common contacts 0.108 0.02 

4(b) Reciprocity 4.860 0.471
4(c)  Bi-directional comm.  −4.448 0.564
5(b)  Message to asker 0.011 0.004
5(c) Responder writes asker 

5(e)  Responder writes responder 

log  L/AIC −5681.133/7.765 

�  log L/� AIC −0.907/0.000 
ted by the background color. A tick on the x-axis indicates the first day of a month.

be more common in the last analyzed phase. Common contacts
also increased the probability for communication. The two-mode
structures helped a lot to explain the model variance as well. In
the first two analyzed phases, question affiliation structures were
even the second and third most important independent variables

contributing to model fit.

In the following, we discuss the findings for endogenous
one-mode statistics and two-mode statistics measuring question
affiliation separately.

ls were excluded as the additional parameters are insignificant and the additional
 is −13, 290.974. Most parameters are significant with p < 0.001. Estimates with a

 are indicated by a “x”.

Model II-2 Model II-3

ˆ̌ S.E. ˆ̌ S.E.

8.711 0.123 8.598 0.142
0.008 7.E-4 0.008 6.E-4

0.275 0.080
−5862.794/8.007 −5822.067/7.952
−182.568/+0.242 −141.834/+0.187

Model II-5 Model II-6

ˆ̌
 S.E. ˆ̌

 S.E.

8.425 0.159 8.605 0.141
0.008 6.E-4 0.007 9.E-4
0.249 0.094 0.232 0.072
0.102 0.020 0.113 0.020
0.663 0.190 4.837 0.429

−4.423 0.482
−5773.338/7.834 −5687.623/7.773
−93.112/+0.069 −7.397/+0.008

Model II-8 Model II-9

ˆ̌
 S.E. ˆ̌

 S.E.

 8.567 0.135 8.565 0.154
 0.007 7.E-4 0.007 7.E-4

 0.232 0.070 0.230 0.069
0.108 0.025 0.108 0.024

 4.863 0.521 4.861 0.321
 −4.435 0.554 −4.433 0.405

 0.014 0.005 0.014 0.005
−0.025 0.022x −0.026 0.028x

0.004 0.012x
−5680.348/7.766 −5680.226/7.767
−0.122/+0.001 0.000/+0.002
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Table 7
Nine models with detailed parameters for a sub-window of phase III. The last model was excluded as the additional parameter is insignificant and the additional log likelihood
improvement does not reduce the AIC. The random decision log likelihood is −11, 660.567. Most parameters are significant with p < 0.001. Estimates with a significance level
of  p < 0.05 only are italicized. Parameters with a lower significance level are indicated by a “x”.

Figure Name Model III-1 Model III-2 Model III-3

ˆ̌ S.E. ˆ̌ S.E. ˆ̌ S.E.

4(a) Re-use of ties 8.648 0.170 8.203 0.149 8.176 0.156
5(e)  Responder writes responder 0.360 0.036 0.281 0.036
5(d)  Asker writes responder 0.340 0.049
log  L/AIC −5697.398/8.614 −5308.846/8.028 −5220.517/7.896
�  log L/� AIC −721.462/+1.079 −332.910/+0.493 244.581/+0.361

Figure Name Model III-4 Model III-5 Model III-6

ˆ̌
 S.E. ˆ̌

 S.E. ˆ̌
 S.E.

4(a) Re-use of ties 8.067 0.172 8.220 0.190 8.246 0.201
5(e) Responder writes responder 0.26 0.030 0.256 0.036 0.189 0.033
5(d) Asker writes responder 0.330 0.051 0.340 0.050 0.294 0.039
4(b)  Reciprocity 1.477 0.236 5.944 0.414 6.447 0.460
4(c) Bi-directional comm. −4.729 0.410 −5.464 0.463
4(d)  Common contacts 0.065 0.017
log  L/AIC −5166.512/7.816 −5076.189/7.681 −5018.122/7.595
�  log L/� AIC −190.576/+0.281 −100.253/+0.146 −42.186/+0.060

Figure  Name Model III-7 Model III-8 Model III-9

ˆ̌ S.E. ˆ̌ S.E. ˆ̌ S.E.

4(a) Re-use of ties 8.221 0.145 8.081 0.165 8.080 0.186
5(e)  Responder writes responder 0.166 0.036 0.112 0.038 0.111 0.041
5(d) Asker writes responder 0.280 0.040 0.293 0.043 0.294 0.042
4(b)  Reciprocity 6.411 0.335 6.234 0.335 6.227 0.411
4(c) Bi-directional comm.  −5.348 0.432 −5.174 0.415 −5.156 0.447
4(d)  Common contacts 0.058 0.020 0.060 0.026 0.059 0.024
5(c)  Responder writes asker 0.234 0.074 0.242 0.069 0.226 0.086
5(a)  Message to responder 0.004 0.001 0.004 7.E-4
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5(b)  Message to asker 

log  L/AIC −4996.916/7.5
�  log L/� AIC −20.980/+0.02

.1. Endogenous one-mode statistics

In all three windows we observed highly significant estimates
f the three dyadic,  endogenous one-mode statistics: Re-use of ties
nd Reciprocity were always positive, while Bi-directional commu-
ication was negative. It is interesting to see that Re-use of ties
lways explained most of all parameters and as soon as Reciprocity
as included in a model, the statistic Bi-directional communica-

ion increased the log likelihood significantly as the next included
arameter (and increased the significance of the first two). As
entioned in Section 3.2,  the third structure is interpreted as an

nteraction effect.
The statistics Re-use of ties and Reciprocity are the two  main

ffects and Bi-directional communication models the interaction
etween the two main effects. Therefore, the interpretation of the
hird effect has to take the estimates of the first two effects into
ccount. This can best be understood by defining an “equivalent”
odel with two new statistics replacing Re-use of ties and Reci-

rocity:
In this equivalent model, Re-use of ties (s1(x, i, j)) can be substi-

uted by an effect that measures the re-use of a tie only if there is
o in-coming tie from the sender. This effect is named s′

1. The stan-
ard Reciprocity effect (s2(x, i, j)) can be replaced with an effect that
easures reciprocity only if there is no re-usable communication

ie from sender to receiver. This effect is named s′
2. Eqs. (18)–(23)

how how these effects are formally defined.
1 := s1(x, i, j) (18)

2 := s2(x, i, j) (19)

3 := s3(x, i, j) (20)
0.005 0.007x
−4976.391/7.535 −4975.936/7.536

−0.455/0.000 0.000/+0.001

s′
1 := s1 − s3 (21)

s′
2 := s2 − s3 (22)

s′
3 := s3 (23)

Table 9 shows how the different dyadic statistics measure the
four possible states of the communication dyad between sender ai
and receiver aj in the private message communication network xm.

The four rows show first a complete dyad with ties in both direc-
tions, then, second and third, two dyads with just one directed
tie either from sender to receiver or from receiver to sender, and,
fourth, an empty dyad with no positive communication tie. It can
be seen that in a model with the three statistics s′

1, s′
2, s′

3 (the last
three columns of Table 9) the three non-empty structures in the
first three rows are measured disjointly. This has an effect on the
interpretation of parameter estimates as we will demonstrate in
the following.

In Table 10 we  compare the estimates (without s.e.) of model
IV-3 from Table 8 (with statistics s1, s2 and s3) with an equivalent
model IV-3′ (with statistics s′

1, s′
2 and s′

3) which is based on the
“equivalent” definition given above. The results are shown in two
sub tables.

In the first variant the interaction effect acts as a correction
of the two main effects. In the second variant the three statistics
measure disjoint structures (see Table 9). Therefore, the estimates
measure the influence of each dyadic structure on receiver choices
separately. The log likelihood of both models is the same.
What we  learn from this comparison is that in a model with
structures s1, s2 and s3 included (model IV-3, for example) the first
two  structures can – as in model IV-3′ – be interpreted as the influ-
ence of non-bi-directional structures on the choice of receivers.
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Table 8
Nine models with detailed parameters for a sub-window of phase IV. The random decision log likelihood is −11, 313.649. Most parameters are significant with p < 0.001.
Estimates with a significance level of p < 0.01 only are italicized.

Figure Name Model IV-1 Model IV-2 Model IV-3

ˆ̌
 S.E. ˆ̌

 S.E. ˆ̌
 S.E.

4(a) Re-use of ties 8.820 0.112 6.306 0.522 7.967 0.204
4(b) Reciprocity 3.692 0.529 8.380 0.224
4(c) Bi-directional comm. −5.984 0.276
log  L/AIC −5242.867/8.547 −4592.861/7.490 −4186.123/6.828
�  log L/� AIC −1249.304/+2.032 −599.298/+0.966 −192.560/+0.304

Figure  Name Model IV-4 Model IV-5 Model IV-6

ˆ̌
 S.E. ˆ̌ S.E. ˆ̌ S.E.

4(a) Re-use of ties 7.875 0.223 7.665 0.218 7.645 0.181
4(b)  Reciprocity 8.213 0.275 8.051 0.218 7.948 0.257
4(c)  Bi-directional comm.  −5.877 0.303 −5.72 0.264 −5.672 0.265
5(c) Responder writes asker 0.473 0.059 0.474 0.060 0.332 0.068
5(a)  Message to responder 0.004 6.E-4 0.004 7.E-4
5(b) Message to asker 0.033 0.007
log L/AIC −4105.352/6.698 −4067.848/6.639 −4046.842/6.606
�  log L/� AIC −111.789/+0.174 −74.285/+0.115 −53.279/+0.082

Figure Name Model IV-7 Model IV-8 Model IV-9

ˆ̌
 S.E. ˆ̌

 S.E. ˆ̌
 S.E.

4(a) Re-use of ties 7.580 0.234 7.525 0.197 7.516 0.243
4(b)  Reciprocity 7.997 0.249 7.967 0.259 8.015 0.248
4(c)  Bi-directional comm.  −5.744 0.292 −5.727 0.289 −5.763 0.293
5(c)  Responder writes asker 0.319 0.078 0.300 0.082 0.332 0.084
5(a)  Message to responder 0.004 8.E-5 0.003 9.E-4 0.005 9.E-4
5(b) Message to asker 0.034 0.008 0.033 0.005 0.029 0.006
4(d)  Common contacts 0.082 0.018 0.082 0.016 0.085 0.019
5(d) Asker writes responder 0.224 0.071 0.258 0.060
5(e)  Responder writes responder −0.114 0.026
log  L/AIC −4028.618/6.578 −4012.096/6.553 −3993.563/6.524
�  log L/� AIC −35.055/+0.054 −18.533/+0.029 0.000/0.000
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his follows from the fact that the values of the first two  parame-
ers in model IV-3 and IV-3′ are the same (see Table 10). The third
arameter of model IV-3 can best be understood by interpreting

t as a correction of the sum of the first two parameters which is

.967 + 8.380 − 5.984 = 10.363. This is exactly the estimate of the
omplete sender-receiver-dyad on the choice of event receivers
n the disjoint alternative model. Therefore, bi-directional pure

able 9
verview of the values for the dyadic statistics including the three alternative statis-

ics  s′
1, s′

2 and s′
2 (= s3) for each possible state of the dyad between event sender ai

nd receiver aj in the private message communication network xm . In the figures
n  the left a crossed arc indicates that this tie is explicitly missing in the measured
yad. All other directed ties have a value >0.

dyad state s1 s2 s3 s′
1 s′

2 s′
3

1 1 1 0 0 1

X 1 0 0  1 0 0

X
0 1 0 0 1 0

X
X 0 0 0 0 0 0
communication is actually best be understood as enforcing com-
munication choices although the correcting parameter is negative.

Although a model with the equivalent statistics s′
1, s′

2 and s′
3

would have been more straightforward to interpret we chose to use
the non-disjoint statistics. The reason is that with no bi-directional
communication statistic s3 or s′

3 included in a model statistics s1
and s2 explain more of the overall model (they generate a higher
log likelihood). In the following, the interpretation of the absolute
dyadic parameter estimates will be discussed.

The absolute values of the three dyadic parameters can be inter-

preted by comparing the probability for the choice of receivers with
a certain structure to the choice of receivers without any dyadic
structure (the fourth row in Table 9). The probability of sender
ai for choosing a certain receiver aj over any other receiver was

Table 10
The two sub tables show estimates of model IV-3 and an equivalent model IV-3′ in
which the statistics s1, s2 and s3 were replace with statistis s′

1, s′
2 and s′

3 (equals s3)
as  introduced in Eqs. (18) to (23). The sum over all parameters from model IV-3 is
10.363 which equals the parameter ˆ̌ ′

3 of statistic s′
3 in model IV-3′ .

Model IV-3

ˆ̌ 1 7.967
ˆ̌ 2 8.380
ˆ̌ 3 −5.984

Model IV-3′

ˆ̌ ′
1 7.967

ˆ̌ ′
2 8.380

ˆ̌ ′
3 10.363
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efined in Eq. (14) as p?
ij
(x; ˇ). Compared to the base line decision

ith no dyadic structures it is � times higher assuming that all other
tructures influencing the decision are equivalent:

?
ij(x; β) = eβ1s1+β2s2+β3s3 × eβ4s4+...

c+

= θ

=1

eβ1×0+β2×0+β3×0 ×eβ4s4+...

c+

⇔ θ = eβ1s1+β2s2+β3s3

(24)

As stated before, people in the dataset tended to re-use ties, they
ended to reciprocate and they even more tended to communicate
ithin stable bi-directional communication patterns. In model IV-

, for example, the existence of a re-usable tie that was  not part
f a bi-directional communication structure (row two  in Table 9)
ncreased the probability times � = e7.697 = 2201.73 compared to a
eceiver without any dyadic structure.

If there was an incoming message tie from an actor the sender
ad no outgoing tie to (as in row three of Table 9), the probability

or choosing this actor was � = e8.380 = 4359.01 times higher than in
he base line model.

If there were both an incoming and an outgoing tie (row
ne in Table 9), the probability for choosing such a receiver was

 = e7.697+8.380−5.984 = e10.363 = 21, 099.40 times higher which is more
han in one of the dyads with just one private message tie.

For the used dyadic statistics holds: Only if the negative value of
arameter Bi-directional communication would have had a higher
bsolute value than one of the two other dyadic structures, we
ould have inferred that certain “unclosed” dyads were preferred
ver complete communication dyads. This was not the case in
ny of the models. This implies that bi-directional communi-
ation with repeated message writing in both directions was
referred to short conversations with just one private message
ritten in each direction. Still, repeated message writing to the

ame receivers without reciprocation and reciprocating incoming
essage events once were very important predictors of receiver

hoice behavior. We  argue that all these observations indicate
hat private communication in the dataset was not only func-
ional, like to give additional information about questions or to say
thank you” if a question was answered but has a (dyadic) social
omponent.

The absolute values of the dyadic parameters differ between
he window. While Re-use of ties is similar in the best models
f the three phases but decreases slightly (from 8.574 (0.141) to
.516 (0.243)), Reciprocity significantly increases over time. The
stimate is 4.860(0.471) in phase II, grows to 6.234(0.335) in
hase III, and hits 8.015(0.248) in phase IV. Together with the
nly slightly decreasing statistic Bi-directional communication (from
4.448(0.564) in phase II to −5.763(0.293) in phase IV) we conclude

hat actors tend to communicate bi-directionally more and more:
ompared to choosing a potential receiver that is not connected
o the sender in the message graph, the probability for choosing

 receiver connected bi-directionally was 7990.43 times higher in
hase II, 9330.09 times higher in phase III and 17, 465.80 times
igher in phase IV. We  found those values by adding all three
yadic endogenous statistics in the best fitting models of each
hase.

The observed increase of bi-directional communication is
nderlined by the fact that the relative importance of these
arameters in the models increased. Reciprocity and Bi-directional

ommunication were only the fifth and sixth statistic included in
hase II. In phase III they were included as fourth and fifth statistic.

n phase IV, finally, the three dyadic statistics were the three most
mportant variables in the model. This means that dyadic structures
Networks 33 (2011) 258– 272

were observed (and could be well explained) in an increasing num-
ber of cases. However, this change of relative importance could also
be related to an interaction effect that we did not measure.

This supports the hypothesis that actors increasingly write mes-
sages within closed dyads. Partly, this effect can be explained with
the higher rate of written messages per person that prevents a
decay of ties. However, this effect alone is probably less significant,
as the minimum time before a tie is removed from the dataset is
more than 6 weeks and in most cases there is an earlier tie update
if actors communicate bi-directionally. The absolute value of ties
was  not considered as long as the tie was not removed from graph
xm because it had decayed under a certain threshold. We  argue that
these observations indicate an “emergence” of social (in contrast to
functional) behavior over the life-time of the Q&A community.

The three dyadic structures are the only statistics in this analysis
that are rather independent from the state of the process. They are
not influenced by varying factors like network density or number
of active actors. They are also not strongly affected by the general
activity in the dataset. So, we can always compare these parameters
to a decision without the corresponding structure and thereby give
an interpretation of the absolute values and its changes over time
as long as possible interactions with other effects are kept in mind.

This is different with the endogenous statistic Common contacts.
It was  significantly positive (with varying significance levels) in all
models. This means that actors tended to communicate with others
who  they had (many) common contacts with. The absolute param-
eter is harder to interpret. The probability for choosing a receiver
increases in model II-7, for example, with each additional common
contact by 11.4% (e0.1805 = 1.114).

However, in this model we  implicitly assume that changes of the
probability depend linearly on the number of common contacts.
This is probably not the case. So, if we observe different numbers of
common contacts in the local environments in different windows
of the event stream the absolute value of the estimate is influenced
by that fact and is therefore less straightforward to interpret.

The rank of the Common contacts statistic decreased from rank
4 in phase II to rank 6 in phase III to rank 7 in phase IV. The reason
could be an interaction with the dyadic statistics with increasing
rank. The inclusion of this parameter, however, never had a huge
effect on the estimates of the dyadic statistics (or any other statis-
tic), so we  assume that the interaction is not too strong. In general,
however, the existence of common contacts was an important pre-
dictor for communication choices. We  argue that this indicates a
social component in private communication behavior on the plat-
form.

5.2. Two-mode statistics measuring question affiliation

Whenever one of the five two-mode statistics was significant at
all it had a positive weight in almost all models. Only three times
(in models II-7, II-8 and III-9) structures were insignificant. We
observed a tendency for communication with askers or question
responders and also a high tendency for communication between
actors connected to the same questions in any way. This supports
the hypothesis that private communication on the platform was
also driven by question affiliation – affiliated receivers were pre-
ferred over others, especially if the sender was  connected to the
same question. The more question affiliations were counted, the
higher was the probability for choosing the corresponding receiver.

The only exception is the statistic Responder writes responder
in the last model IV-9. Here, a negative effect was observed. Once

again, the reason could be an interaction with other effects. We
observed that in model IV-9 the significance of the estimates of Mes-
sage to responder and Asker writes responder increased (compared
to model IV-8) when the negative effect Responder writes responder
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as included. This is similar to what happened in case of dyadic,
ndogenous statistics.

The rank of the two-mode statistics changed a lot between the
hree analyzed windows. This is not surprising, as these structures
re not independent. We  cannot say whether the general tendency
or certain types of question related private messages increased or
ecreased over time. All we learned was that in general the endoge-
ous structures explained more in the last phase compared to the

ncluded two-mode structures. Still, beside social aspects in private
ommunication choices question affiliation as a rather functional
arameter was important for explaining private communication
hoices in the analyzed web community.

. Conclusions and further research

In this paper the structural dynamics of private message com-
unication in a German speaking Q&A community were analyzed.
e introduced the dataset and the event stream and defined four

ifferent phases in the community development. A generic actor
riented Markov process model was introduced that can be applied
o describe event formation in social environments. To demon-
trate the application, we analyzed the sending of private messages
ithin the Q&A community. The model was constructed as a three-

evel decision process. First, actors were assumed to decide about
he time of private message sending based on individual Pois-
on rates. Second, in case of sending a private message they were
ssumed to choose whether to send an event to a currently active
ctors. This decision level was included to take into account that
nly a smaller subset of all actors was active in the community at
he same time and would therefore be considered as a commu-
ication partner. The third decision is about the choice of private
essage receivers. This last decision was modeled as a multinomial

ogit model. Different endogenous communication structures and
wo-mode question affiliation structures were included as inde-
endent variables. We  estimated different models (using a newly
eveloped software package) to learn how these structures influ-
nce the decision about receivers of private messages. We  also tried
o find out whether we  could identify differences in the different
hases of the community.

It turned out that private communication dynamics in the ana-
yzed community depended on dyadic and triadic endogenous
tructures in the private message graph, but also on two-mode
uestion affiliation structures of senders and receivers. We  found,
or example, a high tendency for repeated private communication
ith the same actors, for bi-directional private communication,

or triadic private communication structures and for choosing
eceivers that are answering or asking questions.

It could be shown that the estimates are slightly different in the
ifferent phases of the community and explain a different amount
f the overall variance. Dyadic, endogenous effects seemed to get
ore relevant in the later phases. We  learned that private com-
unication in the analyzed community was driven both by social

tructures and functional aspects.
We  could show how the proposed model framework can be

pplied on big event streams with different types of events and
odes. Possible extensions of this framework were mentioned.
etwork structures, for example, can also incorporate the values of

ies, actor attributes or multi-network structures. The multi-level
ecision process can be extended by decisions about different event
ypes or event intensities. The simple actor activity rate used in this
aper can also be parameterized to model, for example, the influ-

nce of structures, attributes or time on actor activity. Due to the
ichness of event stream data, the multinomial decisions could be
stimated on an individual level if the research question was target-
ng individual behavior patterns instead of general group behavior.
Networks 33 (2011) 258– 272 271

The current model only describes a small part of the overall dynam-
ics in the Q&A community. It could, for example, be extended to
measure co-evolutionary dynamics of private messages, questions
and answers.

In future work we  plan to apply a more structured model fit-
ting algorithm. There is a huge number of possible independent
variables in structural network models with many possible inter-
actions. It would be interesting to find an algorithm that uses
structural dependencies in the graphs to explore the space of pos-
sible network structures in a more sophisticated way.

Furthermore, we want to test the methodology on more, inter-
esting datasets to learn more about robustness, interpretation of
results and good model fitting strategies. Some of the mentioned
extensions of the model framework may  make sense when model-
ing different event stream datasets.

One advantage of event stream analyses is that the analyzed
periods do not have to be predefined by an experimental setting
but can be chosen ex post. If it was possible to define standard-
ized structures that do not strongly depend on how the networks
look like at a certain point in time, sliding window analyses could
be applied to reveal the periods where structural breaks or slow
changes in the underlying structural dynamics occur.3
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