Supercharging Virtual Plant Configurations using Z3

Nikolaj Bjørner, Max Levatich, Nuno Lopes; Andrey Rybalchenko, Chandra Vuppalapati

Microsoft

1 Introduction and overview of $\mathbb{Z} 3$

2 Z3 for virtual plant design automation

Logic: The Calculus of Computation

Differential, Integral Calculus
Dynamics, Conduction,.
Matlab, Mathemetica, Simulink

Claim: Practically all modern program analysis tools involve solving logical formulas

25 Efficient Solver for Symbolic Logic

Symbolic Solving: Foundations and Engineering

Core solvers in Z3 founded on duality between solution witness / infeasibility proof

Advances guided by application domains and evaluated by extensive benchmarking

SMT Solvers - Main Services

Support domains that are natural in Software and Hardware analysis

- Make it easy to translate program assertions into SMT

Holy grail of SMT: modularity + efficiency

- Combine disjoint Theory Solvers by reconciling equalities between shared variables

Quantifier-Free First Order Theories

- Int, Real, Bit-vectors, IEEE floating point numbers, arrays, algebraic data-types

Quantified First-Order, Higher-Order Logics

- As aid to proof assistants

Base theory: Uninterpreted Functions

$$
\begin{array}{ll}
a=f(f(a)), \quad a=f(f(f(a))), \quad a \neq f(a) & \text { - Produce Proofs } \\
a=v_{2}, a=v_{3}, a \neq v_{1}, & \\
v_{1} \equiv f(a), v_{2} \equiv f\left(v_{1}\right), v_{3} \equiv f\left(v_{2}\right) &
\end{array}
$$

Step 1: Equivalence classes from equalities
a, v_{2}, v_{3}

Step 2: Apply Congruence Rule:
$a \simeq v_{2}$ implies $f(a) \simeq f\left(v_{2}\right): \quad v_{1} \simeq v_{3}$
a, v_{2}, v_{3}, v_{1}

Compiled into SAT: Bit-vectors

Bit-vector addition is expressible using bit-wise operations and bit-vector equalities.

$$
\begin{aligned}
& \text { out }=x o r(x, y, c) \\
& c^{\prime}=(x \wedge y) \vee(x \wedge c) \vee(y \wedge c) \\
& c[0]=0 \\
& c^{\prime}[N-2: 0]=c[N-1: 1]
\end{aligned}
$$

Benefits:

- Efficient finite domain reasoning Limitations:
- Not suitable for heavy use of linear arithmetic - Bit-vector multiplication is super expensive

Note:
x yc

$$
\begin{aligned}
& \text { out } \quad \leftrightarrow x \circ r(x, y, c) \\
& c^{\prime} \quad \leftrightarrow(x \wedge y) \vee(x \wedge c) \vee(y \wedge c)
\end{aligned}
$$

Combining Theories in the age of $\operatorname{CDCL}(\mathrm{T})$

Foundations

1979 Nelson, Oppen: Framework
1996 Tinelli \& Harindi: N.O Fix

2000 Barrett et al: N.O + Rewriting
2002 Zarba \& Manna: "Nice" Theories
2004 Ghilardi et al: N.O. Generalized

Efficiency using rewriting

1984 Shostak: Theory solvers
1996 Cyrluk et al: Shostak Fix \#1
1998 B: Shostak with Constraints

2001 Rueß \& Shankar: Shostak Fix \#2
2004 Ranise et al: N.O + Superposition

1998 de Silva, Sakallah; 2001 Moskewicz et al: DPLL \rightarrow CDCL made guessing cheap

2006 Bruttomesso et al: Delayed Theory Combination
2007 de Moura \& B: Model-based Theory Combination

Model-based theory combination

Pre-existing methods

- Propagate all implied equalities - complicated costly.
- Delayed theory combination $-O\left(n^{2}\right)$ equalities, " $2^{n^{2} "}$ time.

Model-based theory combination

- Each theory constructs a candidate model.
- Propagate all equalities implied by candidate model, hedging that other theories will agree.
- If not, use backtracking to fix the model.

Propagating Equalities

Equality inferences require addition/subtraction operations

Asserted inequalitieq $1=y \quad y-1=z$
$x+u \leq z \quad \overline{z-1 \leq y} \quad \underset{\underline{x}_{z}^{z}}{x} \quad 1 \leq u \leq 1$

How the solver sees the constraints

$$
x+u+s_{1}=z \quad z-1+s_{2}=y \quad y+s_{3}=x \quad 1 \leq u \leq 1 \quad 0 \leq s_{1} \quad 0 \leq s_{2} \quad 0 \leq s_{3}
$$

After pivoting

$$
x=z-u-s_{1} \quad y=z-1+s_{2} \quad s_{3}=-s_{2}-u+1-s_{1} \quad 1 \leq u \leq 1 \quad 0 \leq s_{1} \quad 0 \leq s_{2} \quad 0 \leq s_{3}
$$

After propagating bounds on s_{1}, s_{2}, s_{3}

$$
x=z-u-s_{1} \quad y=z-1+s_{2} \quad s_{3}=-s_{2}-u+1-s_{1} \quad 1 \leq u \leq 1 \quad 0 \leq s_{1} \leq 0 \quad 0 \leq s_{2} \leq 0 \quad 0 \leq s_{3} \leq 0
$$

Subtract first two equalities to infer

$$
x=y
$$

Subtle complexity: Every row can have many fixed variables.
Adding values of constant bounds requires significant runtime.

Propagating Equalities - Efficiently

$$
\begin{array}{ccccc}
x=z-u-s_{1} \quad y=z-1+s_{2} & 1 \leq u \leq 1 & 0 \leq s_{1} \leq 0 & 0 \leq s_{2} \leq 0 & 0 \leq s_{3} \leq 0 \\
\hline x=y
\end{array}
$$

Instead of adding up rows to prove implied equality

Use fact: all variables have values assigned by Simplex solver
Then two variables are equal if

- They are connected through offset equalities
- They have the same value

$$
\begin{aligned}
& \text { offset equality } \\
& x=y+a_{1} z_{1}+a_{2} z_{2}+\cdots \\
& \qquad \sigma_{1} \leq z_{1} \leq b_{1}, b_{2} \leq z_{2} \leq \sigma_{2},
\end{aligned}
$$

Example: If solver assigns $x=3$ then $z=4, y=3$
x, y are connected (over $z-1$).
x, y have the same value (3)

Z3 for Software +...

	Hyper-V Wercosoft
Azure Network Verification	Verifying C Compiler
Verified Crypto Libraries \& Protocols	Dynamics AX
(3)	\geqslant
Security Risk Detection	Smart Contract Verification

Static Analysis Engines

Biological Computations

Axiomatic

Economics

Scheduling

Live Monitoring of Forwarding Behavior

Global reachability as local contracts

Alive2: Integration with LLVM

```
clang w/ alive2 plugin:
```

clang w/ alive2 plugin:
\$ alivecc file.c
\$ alivecc file.c
opt plugin:
\$ opt -tv -instcombine -tv file.ll

```

\section*{Tools and internals developed in a feedback loop}

\section*{Z3 for Virtual Plant Design Automation}

An ongoing collaboration

\section*{Solving Virtual Plants (in a nutshell)}

\section*{Solve for:}
- Assign every task to a station and an operator

\section*{Subject to:}
- Bounded completion time
- Partial order of stations and processes
- What operations stations can perform

\section*{Objectives:}
- Minimize resource consumption
- Minimize operator congestion

\section*{Enable:}
- Automate manual puzzle
- Optimize over design space
- Scale and be nimble: new factories, new models
- Track and manage inventory


\section*{Experiences Summary}

\section*{Domain Engineering}
\begin{tabular}{c|c}
\hline Model Formalization & Data Validation \\
\hline \begin{tabular}{c} 
Develop mathematically \\
precise model
\end{tabular} & Visualization \\
\hline \begin{tabular}{c} 
Relational Object Model \\
of SQL data
\end{tabular} & \begin{tabular}{c} 
Semantic validation \\
of SQL data
\end{tabular} \\
\hline
\end{tabular}

\section*{Solver Engineering}


\section*{Experiences Summary}

\section*{Domain Engineering}


Solver Engineering

Constraints
as Code

\section*{Full Model}

\section*{Domain Engineering - Mathematical Modeling}

\section*{Solve for:}
```

assign

```

\section*{Auxiliary Functions:}
```

maxHeight:Station }->\mathrm{ Nat
operator:Station\timesZone }->\mathrm{ Operator

```

\section*{Assignment Constraints:}
\[
\begin{aligned}
& \operatorname{operator}\left(\operatorname{assign}_{p}, z\right) \in\left\{\text { op }_{1}, \text { op }_{2}\right\} \\
& \operatorname{maxHeight}\left(\operatorname{assign}_{p}\right) \geq \text { height }_{p}
\end{aligned}
\]

Mapping to \(\mathrm{Z3}\) at same the level of model
- Uninterpreted functions
- Nested formulas (no tuning for big Ms)
- Finite domains using bit-vectors

- A sweet spot for Formal Methods skillsets
- Uncovered many subtle implicit assumptions

\section*{Domain Engineering - Semantic Validation}



\section*{Z3 Features}

Native core minimization in SAT solver Core and correction set enumeration
- Software bug localization and repair

Practical impact
- Invariant checker and provenance tools in hands of collaborators
- Used to fix a significant set of data entry bugs

\section*{Domain Engineering - Visualization}


Aid to understand model stored in database and spot bugs by simple inspection


MSAGL - Automated Graph Layout engine

\section*{Experiences Summary}

Domain Engineering

\section*{Model Formalization \\ Develop mathematically}
precise model

Relational Object Model
of SQL data

\section*{Data Validation}

Visualization

Semantic validation of SQL data

\section*{Solver Engineering}



\title{
A Fly in the Ointment and a Wasp in the Rose
}


\section*{Domain Overload}

Number of Processes \(=\mathrm{O}(1 \mathrm{~K})\)
Number of Stations \(=\mathrm{O}(1 \mathrm{~K})\)
Number of Tasks = O(10K)
Up to \(O(10)\) different operators per station

Direct MIP-style encoding: \(t_{i, s, o p}\) - Task \(i\) is at station \(s\) using operator op
\[
10 K \times 1 K \times 10=100 M \text { variables }
\]

Our approach: Use uninterpreted functions for "symbolic indices"

\section*{Constraint Overload}

\section*{Cycle Time}

Cycle times for each station \(s\) and \(o p \in s . o p e r a t o r s\) :
```

$\operatorname{time}(p, z) \quad:=\sum\{$ t.time $\mid t \in$ p.tasks \wedge t.zone $=z\}$
$\operatorname{preTime}(p, z):=\sum\{$ t.time $\mid t \in$ p.preTasks \wedge t.zone $=z\}$
$\operatorname{postTime}(p, z):=\sum\{$ t.time $\mid t \in$ p.postTasks \wedge t.zone $=z\}$
Full $\quad:=\{\operatorname{time}(p, z) \mid \neg \operatorname{isSplit}(p) \wedge \operatorname{station}(p)=s \wedge o p=w z 2 o p(\operatorname{station}(p), z))\}$

```

```

Post $\quad:=\{\operatorname{postTime}(p, z) \mid \operatorname{isSplit}(p) \wedge \operatorname{station}(p)+1=s \wedge o p=w z 2 o p(\operatorname{station}(p), z)\}$

```
\(\sum\) Full \(+\sum\) Pre \(+\sum\) Post \(\leq\) s.time
a polluting, nasty side constraint
Comprehension Full, Pre, Post is over \(p \in \operatorname{Process}, z \in\{\) t.zone \(\mid t \in p . t a s k s\}\).

\section*{Constrained multi-knapsack:}

A set of items, each is added to one knapsack, subject to side-constraints

\section*{Solver Engineering - Mathematical Modeling}

\section*{Solve for:}
```

assign}\mp@subsup{n}{p}{}\mathrm{ :Station each process p

```

\section*{Auxiliary Functions:}
```

maxHeight:Station }->\mathrm{ Nat
operator:Station\timesZone }->\mathrm{ Operator

```

\section*{Assignment Constraints:}
\[
\begin{aligned}
& \operatorname{operator}\left(\operatorname{assign}_{p}, z\right) \in\left\{\text { op }_{1}, \text { op }_{2}\right\} \\
& \operatorname{maxHeight}\left(\operatorname{assign}_{p}\right) \geq \text { height }_{p}
\end{aligned}
\]

Mapping to Z3 at same the level of model
- Uninterpreted functions
- Nested formulas (no tuning for big Ms)
- Finite domains using bit-vectors

\section*{Solver Engineering - Mathematical Modeling}

\section*{Solve for:}
```

assign}\mp@subsup{n}{p}{}\mathrm{ :Station each process p

```

\section*{Auxiliary Functions:}
```

maxHeight:Station }->\mathrm{ Nat
operator:Station\timesZone }->\mathrm{ Operator

```

\section*{Assignment Constraints:}
\[
\begin{aligned}
& \operatorname{operator}\left(\operatorname{assign}_{p}, z\right) \in\left\{\text { op }_{1}, \text { op }_{2}\right\} \\
& \operatorname{maxHeight}\left(\operatorname{assign}_{p}\right) \geq \text { height }_{p}
\end{aligned}
\]

Z3 solves for functions not just (integer/real) variables

Allows succinct encodings of constraints

Maps to specialized solver Incremental Congruence Closure
\[
\begin{gathered}
x=f(g(f(x))) \\
\frac{x=g(f(x))}{x=g(x)}
\end{gathered}
\]

Mapping to Z3 at same the level of model
- Uninterpreted functions
- Nested formulas (no tuning for big Ms)
- Finite domains using bit-vectors

Bit-vectors map to SAT solver technology Integers map to MIP solver technology

\section*{Solver Engineering - Constraints as Code}

When supported formalisms lag, or encoding is impractical


\section*{Solving Strategy}

\section*{v1: Pre-solving}
- Assign a small batch of 410 processes to stations at a time
- Stations and processes, station heights and task time are integers
- Solved 100 processes very slowly.

\section*{v2: Pre-solving take two}
- Assign just one process at a time and only encode process constraints when a process gets assigned.
- The resulting solver can assign 950 out of 1050 processes in a few minutes.

\section*{v3: A custom CDCL / CSP solver}
- Perform branching and propagation of cycle time constraints on top of repeated calls to Z3.
- Maintain backtracking stack and add lemmas based on the chosen branches.
- This was complex to engineer and only exercised in preliminary form.
v4: with Custom Propagator and Bit-vectors
- With bit-vectors, without cycle-time: solvable in 30 seconds.
- With bit-vectors and cycletime: solvable for 300 processes in a few minutes, but not all processes.
- With bit-vectors, programmable-propagator for cycle-time: patching + solving
- Initial: a few hours
- Current: a few minutes.

\section*{SMT for OR?}
- Already happened: CP-SAT uses CDCL(T) for OR domains
- Approach here: Uninterpreted Functions, Bit-Vectors, Constraints as Code
- From experiences to tuning:
- LNS for Modulo Theories?
- A modernized core solver for Z3: In-processing for SMT?
- Sound MIP is too costly for CP: Specialized LP for modular machine arithmetic

\section*{Summary}

Z3 - an efficient SMT solver


\section*{Experiences}

Domain Engineering
\begin{tabular}{|c|c|c|c|c|c|}
\hline Model Formalization & Data Validation & & & & Constraints as Code \\
\hline Develop mathematically precise model & Visualization & Small Batches & 1 process at a time & \multicolumn{2}{|c|}{Full Model} \\
\hline \multirow{3}{*}{Relational Object Model of SQL data} & \multirow{3}{*}{Semantic validation of SQL data} & \multicolumn{3}{|l|}{Integers + Uninterpreted Functions} & Bit-vectors
\[
+U F
\] \\
\hline & & \multicolumn{2}{|r|}{Full Encoding} & \[
\begin{array}{c|}
\hline \text { CSP based } \\
\text { on } Z 3
\end{array}
\] & \[
\begin{gathered}
\text { Partial } \\
\text { Encoding }
\end{gathered}
\] \\
\hline & & \(\underbrace{}_{\text {Solved } 10 \%}\) in 20 hrs & Solved 80\% in 10 hrs & Dead end & Solved 100\% in 3 min \\
\hline
\end{tabular}

\section*{Theories}
Constraints as Code
```


Bit-vectors

Humble Path

Fly in the Ointment

Nimble Constraints

Extra Slides

Tools used as part of collaboration

Contact at

Manufacturer

Optimization Objectives

Currently at early stage

Understanding what best serves our scenario

Likely main objective

Reduce number of operators, reduce number of tools used overall.

First approach is by programmable Branch \& Bounding to find a Pareto Front per run.

Research Angles

- Pareto Strategies
- Any-time optimization
- Local Neighborhood search
- MaxSAT based on:
- Cores
- Hitting sets
- Correction sets
- Branch and bound

Z3 Technologies

- Core based MaxSAT
- Primal Simplex
- Multi-objective optimization: Pareto, Lex, Box

Some years ago

Used Azure cloud scaling (cube \& conquer) and large neighborhood search to optimize NFL schedules

Z3 - an efficient SMT solver

Congruence Closure

$$
\begin{gathered}
x=f(g(f(x))) \\
x=g(f(x)) \\
x=g(x)
\end{gathered}
$$

Constraints as Code

```
def on_x_is_fixed_to_value_v(self, x, v):
    old_sum = self.sum
    sel\overline{f.trail.append(lambda : self.undo(old_sum, x))}
    self.sum += len(w for w in self.xvalues.values() if v + w == 42 and (v > 30 or w > 30))
    self.xvalues[x] = v
    if self.sum > 1000:
        self.conflict([self.x2id[x] for x in self.xvalues])
```


Bit-vectors

```
def encoding(self):|
line_bits = math.ceil(math.log(len(self.model.lines), 2)
self.Line = BitVecSort(line_bits)
self.Station = BitVecSort(station bits)
self.Operator = BitVecSort(operator_bits)
self.Segment = BitVecSort(segment_bits)
self.op_used = Function( 'op_used', self.Station, self.Operator, BoolSort() ) # Is operator used
self.wz_used = Function( 'wz_used', self.Station, self.Zone, BoolSort() ) # Which workzones used
self.min_height = Function( 'min_height', self.Station, self.Height ) # Min height of station
yield Implies(p.is split, self.min height(p.to station + l) <= min height), E.suf height lo(p, min height)
yield Implies(p.is_split, self.max_height(p.to_station + 1) >= max_height), E.suf_height_hi(p, max_height)
```

