== Microsoft

Supercharging Virtual
Plant Configurations
usin

Nikolaj Bjgrner, Max Levatich,
Nuno Lopes,;;Andrey Rybalchenko,
Chandra Vuppalapati

Microsoft




1 ‘ Introduction and overview of 2 53

2 | 3 for virtual plant design automation



Logic: The Calculus of Computation

Differential, Integral Calculus

Dynamics, Conduction,..
Matlab, Mathemetica, Simulink
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Logic

Computation

ZB Friday, 24th June [1949]

Checking a large routine by Dr A. Turing.

Claim: Practically all modern program analysis tools involve solving logical formulas



2 3 Efficient Solver for Symbolic Logic

Text and Programmatic API
Formalism support datatypes used in software

N

Efficient search algorithms
+

Solvers tuned for datatypes used in software

(optimal) Infeasible Consequences

Solution Core 0



Symbolic Solving: Foundations and Engineering
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D | | algorithm
Core solvers in Z3 founded on duality between Advances guided by application domains

solution witness / infeasibility proof and evaluated by extensive benchmarking
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Efficiency
Scale

Technology Landscape

Propositional
Satisfiability Solving | >AT

Breakthroughs in 2000s
Cheap local Inferences
Garbage collect useless clauses

Hardware Design
Automation

Mixed Int - 23 Breakthroughs late 2000s
Prlgerarrr::\igner MIP - SAT + global inferences +
9 9 global propagators

Breakthroughs in 1960s ) . P
Harnessed since 1990s Operations . SMT _?_ai;zf;iaelzlllty Modulo
LP: global Inferences Research
IP: Cuts, Branch and Bound | .
. U Software
Constraint CP Development +...

Programming

Breakthroughs since 1990s
Powerful domain-tailored
global propagators

»
»

Expressive Power



SMT Solvers — Main Services

Support domains that are natural in Software and Hardware analysis
* Make it easy to translate program assertions into SMT

Holy grail of SMT: modularity + efficiency

 Combine disjoint Theory Solvers by reconciling equalities between shared variables

Quantifier-Free First Order Theories
* Int, Real, Bit-vectors, IEEE floating point numbers, arrays, algebraic data-types

Quantified First-Order, Higher-Order Logics

* As aid to proof assistants



Base theory: Uninterpreted Functions

a = f(f(a)), a = f(f(f(a))), a* f(a) - Produce Proofs

- Incremental Updates
a =V, a = V3, d* Vq, - Propagate Literals

v; = f(a), v, = f(vy),v3 = f(vy)

Step 1: Equivalence classes from equalities @ Union Find

Step 2: Apply Congruence Rule:
a=v, impliesf(a) = f(vy): v{=1; E-graph



Compiled into SAT: Bit-vectors

out

Bit-vector addition is expressible
using bit-wise operations and
bit-vector equalities.

out =xor(x,y, c)

¢’ = (xAy)Vv(xAc) v (YAC)
c[0] =0

¢’[N-2:0] = c[N-1:1]

Benefits:

- Efficient finite domain reasoning

Limitations:

- Not suitable for heavy use of linear arithmetic
- Bit-vector multiplication is super expensive

Note:

Xyc

out < xor(x,vy, c)

¢’ < (xAy) Vv (xAc) v (yAc)

¢’ out



Combining Theories in the age of CDCL(T)

Foundations Efficiency using rewriting
1979 Nelson, Oppen: Framework 1984 Shostak: Theory solvers

1996 Tinelli & Harindi: N.O Fix 1996 Cyrluk et al: Shostak Fix #1
2000 Barrett et al: N.O + Rewriting 1998 B: Shostak with Constraints

2002 Zarba & Manna: “Nice” Theories 2001 Ruel® & Shankar: Shostak Fix #2

2004 Ghilardi et al: N.O. Generalized 2004 Ranise et al: N.O + Superposition

1998 de Silva, Sakallah; 2001 Moskewicz et al: DPLL — CDCL made guessing cheap

2006 Bruttomesso et al: Delayed Theory Combination

2007 de Moura & B: Model-based Theory Combination



Model-based theory combination

Pre-existing methods
+ Propagate all implied equalities — complicated costly.

- Delayed theory combination — 0(n#) equalities, 21" time.

Model-based theory combination
« Each theory constructs a candidate model.

- Propagate all equalities implied by candidate model, hedging
that other theories will agree.

 If not, use backtracking to fix the model.



Propagating Equalities

Equality inferences require
Asserted inequaligies 1 = y y—1=z addition/subtraction operations

xt+u<sz z—lsyxg;x T<u<l

How the solver sees the constraints
x+u+s;,=z z-—-14+s,=y y+s3=x 1<u<l1 0<s 0<s, 0<s;

After pivoting
xX=z—u-s; y=z-1+s, S3=—-s,—u+1-— s 1<uc<l1i 0<s 0<s, 0<sy4

After propagating bounds on s, S5, S3
X=Z—Uu —§ y:Z_].‘l‘SZ 53:_Sz_u+1_51 1<u<lil OSS]_SO OSSZSO OSSgSO

Subtract first two equalities to infer Subtle complexity: Every row can have many fixed variables.
xX=y Adding values of constant bounds requires significant runtime.




Propagating Equalities - Efficiently

xX=z—u-s;4 y=z-1+s, 1<u<sl 0<s5,=<0 0<s5,<0 055350

Instead of adding up rows to prove implied equality
Use fact: all variables have values assigned by Simplex solver

Then two variables are equal if

- They are connected through offset equalities offset equality

- They have the same value X=Y+ a12; +azzy; + -
bl—zl—bll bZ—ZZ—bZ'

Example: If solver assigns x = 3thenz =4,y =3

x,y are connected (over z — 1).

x,y have the same value (3) [Lev Nachmanson, B]



2 2 for Software +...
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Live Monitoring of Forwarding Behavior

Global reachability as local contracts

v'Each router has a fixed rule for a set of
addresses

v Enough to verify rule is enforced on
Topology Database  each router

|

Reachability
invariants

Ia. P, Ha; Ja. We. s, Bs; Je.

Error Reports

10.0.0.0/16 11.0.0.0/16  12.0.0.0/16 13.0.0.0/16

5 Billion Z3 queries per day [Jayaraman et al, Sigcomm 2019]



Alive2: Integration with LLVM

C, C++, frontend llvm2alive static unroll encode semantics &

ObjC, LLVM IR Alive2 IR > Alive2 IR refinement check
Rust, \
Swift, SMT formulas

LLVM middle-end

optimizers
LLVM IR Alive2 IR » Alive2 IR
clang, rustc, etc
LLVM .
y 455
UNSAT
Clang W/ alive2 plugin: or partial model
$ alivecc file.c
opt plugin:
$ opt -tv -instcombine -tv file.ll [Nuno Lopes, Juneyoung Lee, Chung-Kil Hur,

Zhengyang Liu, John Regehr, PLDI 2021]



NINGIaG

Tools and internals developed
in a feedback loop

SLS, floats

vZ: Opt+MaxSMT
FORMULA uZ: Datalog

p——— Generalized PDR

Existential Reals
3 Model Constructing SAT

CutSAT: Linear Integer Formulas

‘ ﬂ 4 SAGE Quantified Bit-Vectors
TOO|S ER”;’HNATOE Linear Quantifier Elimination ZB lnternals

Model Based Quantifier Instantiation

Generalized, Efficient Array Decision Procedures
Engineering DPLL(T) + Saturation

Effectively Propositional Logic

Model-based Theory Combination

Relevancy Propagation

Efficient E-matching for SMT solvers



Z3 for Virtual Plant Design Automation

An ongoing collaboration



Solving Virtual Plants (in a nutshell)

Solve for:
- Assign every task to a station and an operator

Subject to:

- Bounded completion time

- Partial order of stations and processes
- What operations stations can perform

Objectives:
- Minimize resource consumption
- Minimize operator congestion

Enable:

- Automate manual puzzle

- Optimize over design space

- Scale and be nimble: new factories, new models
- Track and manage inventory
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Experiences Summary

Domain Engineering Solver Engineering

Model Formalization Data Validation Constraints
as Code
Small 1 process

: CSP based Partial

Solved 10%  Solved 80% Dead end Solved 100%
in 20 hrs in 10 hrs cad en in 3 min

Develop mathematically

orecise model Visualization

Relational Object Model Semantic validation
of SQL data of SQL data




Experiences Summary

Domain Engineering

Model Formalization Data Validation

Develop mathematically
precise model

|

Vs

Visualization

N

Relational Object Model
of SQL data

Semantic validation
of SQL data




Domain Engineering — Mathematical Modeling

Solve for:

assign,: Station each process p

Auxiliary Functions:

maxHeight: Station — Nat
operator: StationXZone — Operator

Assignment Constraints:

operator(assignp ,z) € {opy, 0p,}
maxHeight(assignp) = height,

Mapping to Z3 at same the level of model
- Uninterpreted functions

- Nested formulas (no tuning for big Ms)

- Finite domains using bit-vectors

Process

Process

Process

Task 5

Task 6

Task 4

Task 5

Research Angles
- Mathematical concepts matured
in tools for requirements capture (TLA+)
- A sweet spot for Formal Methods skillsets
- Uncovered many subtle implicit assumptions



Domain Engineering — Semantic Validation

Deep Solving

Humble
Path

DIRTYIDATA YOU-
i M,IlAle'.r‘

-~

3
&r"ﬁf e
CLERNIT'UPYOU MUST|
Deep Validation

Validation Approaches

1. Scripts that check invariants of
database entries

2. Provenance information
using infeasible cores from Z3

Z3 Features

- Native core minimization in SAT solver
- Core and correction set enumeration

- Software bug localization and repair

Practical impact

- Invariant checker and provenance
tools in hands of collaborators

- Used to fix a significant set of data
entry bugs



Domain Engineering - Visualization

TTE _ TeeelmEE - -==" | Aid to understand model stored in database

— T T T et m T - and spot bugs by simple inspection

Day 43 Dt o
-== :ff;_:_:_:__“ <= é = o T == L MSAGL — Automated Graph Layout engine
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Experiences Summary

Solver Engineering

Constraints
as Code

Small 1 process

: CSP based Partial
Full Encoding on Z3 Encoding

Solved 10%  Solved 80% Dead end Solved 100%
in 20 hrs in 10 hrs €ad € in 3 min



A Fly in the Ointment

and a Wasp in the Rose




Domain Overload

Number of Processes = O(1K)
Number of Stations = O(1K)
Number of Tasks = O(10K)

Up to O(10) different operators per station
Direct MIP-style encoding: t; s », - Task i is at station s using operator op

10Kx1KX10 = 100M variables



Constraint Overload

Cycle Time
Cycle times for each station s and op € s.operators:

Y { t.time |t € p.tasks Nt.zone = 2}
Y { t.time |t € p.preTasks A t.zone = z }
Y { t.time |t € p.postTasks Nt.zone = z}

time(p, z)
preTime(p, z)
postTime(p, z) :

Full { time(p, z) | —isSplit(p) A station(p) = s N op = wz2op(station(p), z)) }
Pre { preTime(p, z) | jejaliddim—tbiai il Salieieliaadels
Post { postTime(p, z) ||isSplit(p) A station(p) + 1 = s AN op = wz2op(station(p), z) }

Y Full + >  Pre + ) Post < s.time

a polluting, nasty side constraint

Comprehension Full, Pre, Post is over p € Process, z € {t.zone | t € p.tasks}.

Constrained multi-knapsack:
A set of items, each is added to one knapsack, subject to side-constraints

Our approach: program constraint as an ad-hoc theory



Solver Engineering — Mathematical Modeling

Solve for:

assign,: Station each process p

Auxiliary Functions:

maxHeight: Station — Nat
operator: StationXZone — Operator

Assignment Constraints:

operator(assignp ,z) € {opy, 0p,}
maxHeight(assignp) = height,

Mapping to Z3 at same the level of model
- Uninterpreted functions

- Nested formulas (no tuning for big Ms)

- Finite domains using bit-vectors

Process

Process

Process

Task 5

Task 6

Task 4

Task 5

Research Angles
- Mathematical concepts matured
in tools for requirements capture (TLA+)
- A sweet spot for Formal Methods skillsets
- Uncovered many subtle implicit assumptions



Solver Engineering — Mathematical Modeling

Solve for:

assign,: Station each process p

Auxiliary Functions:

Z3 solves for functions not just

maxHeight: Stqtion — Nat (integer/real) variables Maps to specialized solver
operator: StationXZone — Operator Incremental Congruence Closure

Assignment Constraints: x=f (g(f(x)))
. Allows succinct encodings x=g(f(x)
operator(assign, ,z) € {op,, op,} SRR = g(x)

maxHeight(assignp) = height,

Mapping to Z3 at same the level of model
- Uninterpreted functions Bit-vectors map to SAT solver technology

- Nested formulas (no tuning for big Ms) Integers map to MIP solver technology
- Finite domains using bit-vectors




Solver Engineering — Constraints as Code

When supported formalisms lag, or encoding is impractical

As constraints: = _ = _ _ As code:
O(100K) atomic formulas 1000 = 0<i;500 Xi+ X 4z (xl > 30V Xj > 30) > callback + conflicts on demand

def on x is fixed to value v(self, x, v):
old sum = self.sum
self.trail.append(lambda : self.undo(old sum, X))

self.sum += len(w for w in self.xvalues.values() if v + w == 42 and (v > 30 or w > 30))
self.xvalues[x] = v

if self.sum > 1000:
self.conflict([self.x2id[x] for x in self.xvalues])



Solving Strategy

e Assign a small batch of 4-
10 processes to stations at
a time

e Stations and processes,
station heights and task
time are integers

e Solved 100 processes very
slowly.

e Assign just one process at

a time and only encode
process constraints when
a process gets assigned.

e The resulting solver can

assign 950 out of 1050
processes in a few
minutes.

e Perform branching and
propagation of cycle time
constraints on top of
repeated calls to Z3.

e Maintain backtracking
stack and add lemmas
based on the chosen
branches.

e This was complex to
engineer and only

exercised in preliminary
form.

e With bit-vectors, without

cycle-time: solvable in 30
seconds.

With bit-vectors and cycle-
time: solvable for 300
processes in a few
minutes, but not all
processes.

With bit-vectors,
programmable-propagator
for cycle-time: patching +
solving

¢ |nitial: a few hours
e Current: a few minutes.



SMT for OR?

e Already happened: CP-SAT uses CDCL(T) for OR domains
* Approach here: Uninterpreted Functions, Bit-Vectors, Constraints as Code

* From experiences to tuning:
* LNS for Modulo Theories?
A modernized core solver for Z3: In-processing for SMT?
e Sound MIP is too costly for CP: Specialized LP for modular machine arithmetic



Summary

Z3 - an efficient SMT solver Theories

[ — e R : Congruence Closure Constraints as Code
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Tools used as part of collaboration
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Microsoft

Currently at early stage

Understanding what best serves our
scenario

Likely main objective

Reduce number of operators, reduce
number of tools used overall.

First approach is by programmable Branch

& Bounding to find a Pareto Front per run.

Research Angles

Pareto Strategies
Any-time optimization
Local Neighborhood search
MaxSAT based on:

- Cores

- Hitting sets

- Correction sets

- Branch and bound

Z3 Technologies

Core based MaxSAT
Primal Simplex
Multi-objective optimization: Pareto, Lex, Box

Some years ago
Used Azure cloud scaling (cube & conquer) and large
neighborhood search to optimize NFL schedules



Z3 — an efficient SMT solver

P master - F 5Sbranches ) 20tags Go to file Add file ~ 4 Code ~

° NikolajBjorner add recfuns to Java #4320 .. ® deasef4 3 hoursago ® 14,647 commits

cmake regex pattern per #2986 10 months ago
contrib modular Axiom Profiler (#¥4619) 4 months ago
doc align readme-cmake and cmakelists.txt according to current state #2732 12 months ago
examples c++ example: call Z3_finalize_memory() so that the buildbot leak chec... last month
noat cmd_context fllx 247.90 o h 14 days ago
math add a comment in nla_order 15 days ago
reso
model fix #4812 3 days ago
SCFIF muz adding dt-solver (#4739) last month
nlsat pass algebraic manager to arith-plugin mk-numeral because rational ch... 4 months ago
src
opt add recfuns to Java #4820 4 hours ago
D .doc params fix #4808 4 days ago
i parsers DRAT debugging updates 3 days ago
0D .gita
ge redo purification
D gltl§ sat add recfuns to Java #4820 4 hours ago
shell DRAT debugging updates 3 days ago
B trav
smt z3str3: reject certain unhandled expressions (#4818) 4 hours ago
D CMaz solver debug arith/mbi 23 days ago
tactic include order 3 days ago
O Luce
test adding dt-solver (#4739) last month

About
The Z3 Theorem Prover

0 Readme

&5 View license

Releases 20

O z3-489 (Latest)
on Sep 10

+ 19 releases

‘ C++ Python .Net Java Ocaml

)

SMTLIB2

Optimization

'S

Tactics

Preprocessing Cube & Conquer

Tacticals: Then, Or, Probe, Parallel Or/Then

 —

Solvers

NLSat }

SMT 1 [ Fixedpoint

SAT

QSAT

—




Congruence Closure Constraints as Code

x = f (g(f(x))) def on_x_is_fixed to_value v(self, x, v):

old sum = self.sum

x = (f(X)) self.trail.append(lambda : self.undo(old sum, x))
g self.sum += len(w for w in self.xvalues.values() if v + w == 42 and (v > 30 or w > 30))
X = g(x) self.xvalues[x] = v

Bit-

vectors

if self.sum > 1000:
self.conflict([self.x2id[x] for x in self.xvalues])

def encoding(self)d

line bits

self.
self.
self.
self.
self
self.
self.

Line

Station
Operator
Segment =

.0p_used

wz_used
min height

Implies (p.
Implies (p.

= math.ceil (math.log(len(self.model.lines), 2))
= BitVecSort (line_bits)

BitVecSort (station bits)
BitVecSort (operator_bits)
BitVecSort (segment bits)

= Function( 'op used', self.Station, self.Operator, BoolSort() ) # Is operator used
= Function( 'wz_used’', self.Station, self.Zone, BoolSort () ) # Which workzones used
= Function( 'min height', self.Station, self.Height ) # Min height of station

is_split, self.min height(p.to_station + 1) <= min height), E.suf height_ lo(p, min_height)
is_split, self.max height (p.to_station + 1) >= max height), E.suf height_ hi(p, max_height)



