
Supercharging Virtual
Plant Configurations
using Z3

Nikolaj Bjørner, Max Levatich,
Nuno Lopes, Andrey Rybalchenko,
Chandra Vuppalapati

Microsoft

Introduction and overview of 1

for virtual plant design automation2

Differential, Integral Calculus
Dynamics, Conduction,..
Matlab, Mathemetica, Simulink

Logic
Computation

Claim: Practically all modern program analysis tools involve solving logical formulas

Advances guided by application domains
and evaluated by extensive benchmarking

new
algorithm

old
algorithm

Infeasible

So
lu

tio
n

Conflict Resolution

Core solvers in Z3 founded on duality between
solution witness / infeasibility proof

Propositional
Satisfiability Solving

Breakthroughs in 2000s
Cheap local Inferences

Garbage collect useless clauses

Breakthroughs in 1960s
Harnessed since 1990s

LP: global Inferences
IP: Cuts, Branch and Bound

Breakthroughs since 1990s
Powerful domain-tailored

global propagators

Breakthroughs late 2000s
SAT + global inferences +
global propagators

SAT

Mixed Integer
Programming MIP

Constraint
Programming CP

Satisfiability Modulo
TheoriesSMT

Support domains that are natural in Software and Hardware analysis
• Make it easy to translate program assertions into SMT

Holy grail of SMT: modularity + efficiency
• Combine disjoint Theory Solvers by reconciling equalities between shared variables

Quantifier-Free First Order Theories
• Int, Real, Bit-vectors, IEEE floating point numbers, arrays, algebraic data-types

Quantified First-Order, Higher-Order Logics
• As aid to proof assistants

𝑎 𝑣!

𝑎 = 𝑓(𝑓(𝑎)), 𝑎 = 𝑓(𝑓(𝑓(𝑎))), 𝑎 ¹ 𝑓(𝑎)

𝑎, 𝑣!, 𝑣" 𝑣#

Step 2: Apply Congruence Rule:
𝑎 ≃ 𝑣" implies 𝑓 𝑎 ≃ 𝑓 𝑣" : 𝑣!≃ 𝑣# 𝑎, 𝑣!, 𝑣", 𝑣#

Step 1: Equivalence classes from equalities

1 0 1 0 1 1

0 1 1 0 0 1

0 0 0 1 0 0

+

FAFAFAFAFAFA

out = xor(x, y, c)
c’ = (xÙy)Ú(xÙc) Ú (yÙc)
c[0] = 0
c’[N-2:0] = c[N-1:1]

Bit-vector addition is expressible
using bit-wise operations and
bit-vector equalities.

Benefits:
- Efficient finite domain reasoning
Limitations:
- Not suitable for heavy use of linear arithmetic
- Bit-vector multiplication is super expensive

out « xor(x, y, c)
c’ « (xÙy) Ú (xÙc) Ú (yÙc)FA

x y c

c’ out

Note:

x

y

out

c

1979 Nelson, Oppen: Framework

1996 Tinelli & Harindi: N.O Fix

2000 Barrett et al: N.O + Rewriting

2002 Zarba & Manna: “Nice” Theories

2004 Ghilardi et al: N.O. Generalized

2007 de Moura & B: Model-based Theory Combination

2006 Bruttomesso et al: Delayed Theory Combination

1984 Shostak: Theory solvers

1996 Cyrluk et al: Shostak Fix #1

1998 B: Shostak with Constraints

2001 Rueß & Shankar: Shostak Fix #2

2004 Ranise et al: N.O + Superposition

Foundations Efficiency using rewriting

1998 de Silva, Sakallah; 2001 Moskewicz et al: DPLL ® CDCL made guessing cheap

Infeasible

So
lu

tio
n

Conflict Resolution

Asserted	inequalities
𝑥 + 𝑢 ≤ 𝑧 𝑧 − 1 ≤ 𝑦 𝑦 ≤ 𝑥 1 ≤ 𝑢 ≤ 1

𝑥 + 1 = 𝑦 𝑦 − 1 = 𝑧
𝑥 = 𝑧

Equality inferences require
addition/subtraction operations

How	the	solver	sees	the	constraints
𝑥 + 𝑢 + 𝑠! = 𝑧 𝑧 − 1 + 𝑠" = 𝑦 𝑦 + 𝑠# = 𝑥 1 ≤ 𝑢 ≤ 1 0 ≤ 𝑠! 0 ≤ 𝑠" 0 ≤ 𝑠#

After	pivoting
𝑥 = 𝑧 − 𝑢 − 𝑠! 𝑦 = 𝑧 − 1 + 𝑠" 𝑠# = −𝑠" − 𝑢 + 1 − 𝑠! 1 ≤ 𝑢 ≤ 1 0 ≤ 𝑠! 0 ≤ 𝑠" 0 ≤ 𝑠#

After	propagating	bounds	on	𝑠!, 𝑠", 𝑠#
𝑥 = 𝑧 − 𝑢 − 𝑠! 𝑦 = 𝑧 − 1 + 𝑠" 𝑠# = −𝑠" − 𝑢 + 1 − 𝑠! 1 ≤ 𝑢 ≤ 1 0 ≤ 𝑠! ≤ 0 0 ≤ 𝑠" ≤ 0 0 ≤ 𝑠# ≤ 0

Subtract	first	two	equalities	to	infer
𝑥 = 𝑦

Subtle complexity: Every row can have many fixed variables.
Adding values of constant bounds requires significant runtime.

Propagating Equalities

𝑥 = 𝑧 − 𝑢 − 𝑠! 𝑦 = 𝑧 − 1 + 𝑠" 1 ≤ 𝑢 ≤ 1 0 ≤ 𝑠! ≤ 0 0 ≤ 𝑠" ≤ 0 0 ≤ 𝑠# ≤ 0
𝑥 = 𝑦

Instead of adding up rows to prove implied equality

Use fact: all variables have values assigned by Simplex solver

Then two variables are equal if
- They are connected through offset equalities
- They have the same value

Example: If solver assigns 𝑥 = 3 then 𝑧 = 4, 𝑦 = 3

𝑥, 𝑦 are connected (over 𝑧 − 1).
𝑥, 𝑦 have the same value (3)

𝑥 = 𝑦 + 𝑎!𝑧! + 𝑎"𝑧" +⋯
$!%&!%$!, $"%&"%$",

offset equality

Propagating Equalities - Efficiently

Azure Network
Verification

Verified Crypto
Libraries & Protocols

Security Risk
Detection

Dynamics
AX

Verifying C
Compiler

Smart Contract
Verification

Quantum
Compilation

ALIVE2
Translation Validation

for LLVM & Visual C++

SVACE
Static Analysis Engines

Axiomatic
Economics

NFL
Scheduling

Biological
Computations

Artificial
Life

Live Monitoring of Forwarding Behavior

R1 R2 R3 R4

D1 D2 D3 D4

A1 A2 A3 A4 B1 B2 B3 B4

ToR1 ToR2 ToR4ToR3

Reachability
invariants

Topology Database

Error Reports
10.0.0.0/16 11.0.0.0/16 12.0.0.0/16 13.0.0.0/16

Global reachability as local contracts

üEach router has a fixed rule for a set of
addresses

üEnough to verify rule is enforced on
each router

5 Billion Z3 queries per day [Jayaraman et al, Sigcomm 2019]

LLVM IR

LLVM IR

LLVM middle-end
optimizers

Alive2 IR

Alive2 IR

C, C++,
ObjC,
Rust,
Swift,
…

frontend llvm2alive
Alive2 IR

Alive2 IR

static unroll

SMT formulas

encode semantics &
refinement check

UNSAT
or partial model

Alive2: Integration with LLVM

clang w/ alive2 plugin:
$ alivecc file.c

opt plugin:
$ opt -tv -instcombine -tv file.ll

Alive2

clang, rustc, etc

LLVM

[Nuno Lopes, Juneyoung Lee, Chung-Kil Hur,
Zhengyang Liu, John Regehr, PLDI 2021]

SAGE

HAVOC

Efficient E-matching for SMT solvers

Model-based Theory Combination
Relevancy Propagation

Effectively Propositional Logic

Engineering DPLL(T) + Saturation
Generalized, Efficient Array Decision Procedures

Linear Quantifier Elimination

Model Based Quantifier Instantiation

Quantified Bit-Vectors
CutSAT: Linear Integer Formulas

Model Constructing SAT
Existential Reals

nZ: Opt+MaxSMT
µZ: Datalog

Generalized PDR

SLS, floats

Internals Tools

Tools and internals developed
in a feedback loop

An ongoing collaboration

Process

Process

Process
Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1

Task 2

Task 3

Task 4

Task 5

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6
Enable:
- Automate manual puzzle
- Optimize over design space
- Scale and be nimble: new factories, new models
- Track and manage inventory

Domain Engineering

Develop mathematically
precise model

Relational Object Model
of SQL data

Semantic validation
of SQL data

Solver Engineering

Solved 10%
in 20 hrs

Solved 100%
in 3 minDead endSolved 80%

in 10 hrs

Visualization

Domain Engineering

Develop mathematically
precise model Visualization

Relational Object Model
of SQL data

Semantic validation
of SQL data

Solver Engineering

Solved 10%
in 20 hrs

Solved 100%
in 3 minDead endSolved 80%

in 10 hrs

Process

Process

Process
Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1

Task 2

Task 3

Task 4

Task 5

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Research Angles
- Mathematical concepts matured

in tools for requirements capture (TLA+)
- A sweet spot for Formal Methods skillsets
- Uncovered many subtle implicit assumptions

Solve for:

a𝑠𝑠𝑖𝑔𝑛(: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 each process 𝑝

Auxiliary Functions:

𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 → 𝑁𝑎𝑡
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛×𝑍𝑜𝑛𝑒 → 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Assignment Constraints:

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛(, 𝑧 ∈ 𝑜𝑝!, 𝑜𝑝"
𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑖𝑔𝑛(≥ ℎ𝑒𝑖𝑔ℎ𝑡(

Mapping to Z3 at same the level of model
- Uninterpreted functions
- Nested formulas (no tuning for big Ms)
- Finite domains using bit-vectors

Deep Solving

Grand
Goal

Deep Validation

Humble
Path

1. Scripts that check invariants of
database entries

2. Provenance information
using infeasible cores from Z3

Validation Approaches

Z3 Features
- Native core minimization in SAT solver
- Core and correction set enumeration
- Software bug localization and repair

Practical impact
- Invariant checker and provenance

tools in hands of collaborators
- Used to fix a significant set of data

entry bugs

MSAGL – Automated Graph Layout engine

Day 43

Day 61

Aid to understand model stored in database
and spot bugs by simple inspection

Domain Engineering

Develop mathematically
precise model

Relational Object Model
of SQL data

Semantic validation
of SQL data

Solver Engineering

Solved 10%
in 20 hrs

Solved 100%
in 3 minDead endSolved 80%

in 10 hrs

Visualization

Our approach: Use uninterpreted functions for “symbolic indices”

Constrained multi-knapsack:
A set of items, each is added to one knapsack, subject to side-constraints

Our approach: program constraint as an ad-hoc theory

a polluting, nasty side constraint

Process

Process

Process
Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1

Task 2

Task 3

Task 4

Task 5

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Research Angles
- Mathematical concepts matured

in tools for requirements capture (TLA+)
- A sweet spot for Formal Methods skillsets
- Uncovered many subtle implicit assumptions

Solve for:

a𝑠𝑠𝑖𝑔𝑛(: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 each process 𝑝

Auxiliary Functions:

𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 → 𝑁𝑎𝑡
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛×𝑍𝑜𝑛𝑒 → 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Assignment Constraints:

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛(, 𝑧 ∈ 𝑜𝑝!, 𝑜𝑝"
𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑖𝑔𝑛(≥ ℎ𝑒𝑖𝑔ℎ𝑡(

Mapping to Z3 at same the level of model
- Uninterpreted functions
- Nested formulas (no tuning for big Ms)
- Finite domains using bit-vectors

Process

Process

Process
Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1

Task 2

Task 3

Task 4

Task 5

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Research Angles
- Mathematical concepts matured

in tools for requirements capture (TLA+)
- A sweet spot for Formal Methods skillsets
- Uncovered many subtle implicit assumptions

Solve for:

a𝑠𝑠𝑖𝑔𝑛(: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 each process 𝑝

Auxiliary Functions:

𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 → 𝑁𝑎𝑡
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛×𝑍𝑜𝑛𝑒 → 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Assignment Constraints:

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛(, 𝑧 ∈ 𝑜𝑝!, 𝑜𝑝"
𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑖𝑔𝑛(≥ ℎ𝑒𝑖𝑔ℎ𝑡(

Mapping to Z3 at same the level of model
- Uninterpreted functions
- Nested formulas (no tuning for big Ms)
- Finite domains using bit-vectors

Z3 solves for functions not just
(integer/real) variables

Allows succinct encodings
of constraints

Bit-vectors map to SAT solver technology
Integers map to MIP solver technology

Maps to specialized solver
Incremental Congruence Closure

𝑥 = 𝑓 𝑔 𝑓 𝑥

𝑥 = 𝑔 𝑓 𝑥
𝑥 = 𝑔(𝑥)

When supported formalisms lag, or encoding is impractical

1000 ≥ c
)%*+,%-))

𝑥* + 𝑥, = 42 ∧ 𝑥* > 30 ∨ 𝑥, > 30As constraints:
O(100K) atomic formulas

As code:
callback + conflicts on demand

v1: Pre-solving

• Assign a small batch of 4-
10 processes to stations at
a time

• Stations and processes,
station heights and task
time are integers

• Solved 100 processes very
slowly.

v2: Pre-solving take two

• Assign just one process at
a time and only encode
process constraints when
a process gets assigned.

• The resulting solver can
assign 950 out of 1050
processes in a few
minutes.

v3: A custom CDCL / CSP
solver

• Perform branching and
propagation of cycle time
constraints on top of
repeated calls to Z3.

• Maintain backtracking
stack and add lemmas
based on the chosen
branches.

• This was complex to
engineer and only
exercised in preliminary
form.

v4: with Custom Propagator
and Bit-vectors

• With bit-vectors, without
cycle-time: solvable in 30
seconds.

• With bit-vectors and cycle-
time: solvable for 300
processes in a few
minutes, but not all
processes.

• With bit-vectors,
programmable-propagator
for cycle-time: patching +
solving

• Initial: a few hours
• Current: a few minutes.

• Already happened: CP-SAT uses CDCL(T) for OR domains

• Approach here: Uninterpreted Functions, Bit-Vectors, Constraints as Code

• From experiences to tuning:
• LNS for Modulo Theories?
• A modernized core solver for Z3: In-processing for SMT?
• Sound MIP is too costly for CP: Specialized LP for modular machine arithmetic

Theories

Data Validation

Humble Path Fly in the Ointment

Nimble Constraints

Extra Slides

Tools used as part of collaboration

Azure Bastion Microsoft
Automated
Graph Layout

Shared VM

Snapshot

Object Model Constraints

Visu
aliza

tion

Requirements

Weekly + ad-hoc sync

Contact at
Manufacturer

Optimization Objectives
Currently at early stage

Understanding what best serves our
scenario

Likely main objective
Reduce number of operators, reduce
number of tools used overall.

First approach is by programmable Branch
& Bounding to find a Pareto Front per run.

Research Angles
- Pareto Strategies
- Any-time optimization
- Local Neighborhood search
- MaxSAT based on:

- Cores
- Hitting sets
- Correction sets
- Branch and bound

Z3 Technologies
- Core based MaxSAT
- Primal Simplex
- Multi-objective optimization: Pareto, Lex, Box

Some years ago
Used Azure cloud scaling (cube & conquer) and large
neighborhood search to optimize NFL schedules

𝑥 = 𝑓 𝑔 𝑓 𝑥

𝑥 = 𝑔 𝑓 𝑥
𝑥 = 𝑔(𝑥)

Bit-vectors

Congruence Closure Constraints as Code

