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Differential, Integral Calculus
Dynamics, Conduction,..
Matlab, Mathemetica, Simulink    

Logic
Computation 

Claim: Practically all modern program analysis tools involve solving logical formulas





Advances guided by application domains 
and evaluated by extensive benchmarking  

new 
algorithm

old 
algorithm

Infeasible

So
lu

tio
n

Conflict Resolution

Core solvers in Z3 founded on duality between 
solution witness / infeasibility proof



Propositional 
Satisfiability Solving

Breakthroughs in 2000s
Cheap local Inferences

Garbage collect useless clauses

Breakthroughs in 1960s
Harnessed since 1990s

LP: global Inferences
IP: Cuts, Branch and Bound

Breakthroughs since 1990s
Powerful domain-tailored

global propagators

Breakthroughs late 2000s
SAT + global inferences + 
global propagators 

SAT

Mixed Integer
Programming MIP

Constraint 
Programming CP

Satisfiability Modulo 
TheoriesSMT



Support domains that are natural in Software and Hardware analysis
• Make it easy to translate program assertions into SMT

Holy grail of SMT: modularity + efficiency
• Combine disjoint Theory Solvers by reconciling equalities between shared variables

Quantifier-Free First Order Theories
• Int, Real, Bit-vectors, IEEE floating point numbers, arrays, algebraic data-types

Quantified First-Order, Higher-Order Logics
• As aid to proof assistants



𝑎 𝑣!

𝑎 = 𝑓(𝑓(𝑎)), 𝑎 = 𝑓(𝑓(𝑓(𝑎))), 𝑎 ¹ 𝑓(𝑎)

𝑎, 𝑣!, 𝑣" 𝑣#

Step 2: Apply Congruence Rule:
𝑎 ≃ 𝑣" implies 𝑓 𝑎 ≃ 𝑓 𝑣" : 𝑣!≃ 𝑣# 𝑎, 𝑣!, 𝑣", 𝑣#

Step 1: Equivalence classes from equalities
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out = xor(x, y, c)
c’ = (xÙy)Ú(xÙc) Ú (yÙc)
c[0]  = 0
c’[N-2:0] = c[N-1:1] 

Bit-vector addition is expressible 
using bit-wise operations and 
bit-vector equalities.

Benefits:
- Efficient finite domain reasoning
Limitations:
- Not suitable for heavy use of linear arithmetic
- Bit-vector multiplication is super expensive

out « xor(x, y, c)
c’ « (xÙy) Ú (xÙc) Ú (yÙc)FA

x y c

c’ out

Note:

x

y

out

c



1979 Nelson, Oppen: Framework

1996 Tinelli & Harindi: N.O Fix

2000 Barrett et al: N.O + Rewriting

2002 Zarba & Manna: “Nice” Theories

2004 Ghilardi et al: N.O. Generalized

2007 de Moura & B: Model-based Theory Combination

2006 Bruttomesso et al: Delayed Theory Combination

1984 Shostak: Theory solvers

1996 Cyrluk et al: Shostak Fix #1

1998 B: Shostak with Constraints 

2001 Rueß & Shankar: Shostak Fix #2

2004 Ranise et al: N.O + Superposition

Foundations Efficiency using rewriting

1998 de Silva, Sakallah; 2001 Moskewicz et al: DPLL ® CDCL made guessing cheap
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Asserted	inequalities
𝑥 + 𝑢 ≤ 𝑧 𝑧 − 1 ≤ 𝑦 𝑦 ≤ 𝑥 1 ≤ 𝑢 ≤ 1

𝑥 + 1 = 𝑦 𝑦 − 1 = 𝑧
𝑥 = 𝑧

Equality inferences require 
addition/subtraction operations

How	the	solver	sees	the	constraints
𝑥 + 𝑢 + 𝑠! = 𝑧 𝑧 − 1 + 𝑠" = 𝑦 𝑦 + 𝑠# = 𝑥 1 ≤ 𝑢 ≤ 1 0 ≤ 𝑠! 0 ≤ 𝑠" 0 ≤ 𝑠#

After	pivoting
𝑥 = 𝑧 − 𝑢 − 𝑠! 𝑦 = 𝑧 − 1 + 𝑠" 𝑠# = −𝑠" − 𝑢 + 1 − 𝑠! 1 ≤ 𝑢 ≤ 1 0 ≤ 𝑠! 0 ≤ 𝑠" 0 ≤ 𝑠#

After	propagating	bounds	on	𝑠!, 𝑠", 𝑠#
𝑥 = 𝑧 − 𝑢 − 𝑠! 𝑦 = 𝑧 − 1 + 𝑠" 𝑠# = −𝑠" − 𝑢 + 1 − 𝑠! 1 ≤ 𝑢 ≤ 1 0 ≤ 𝑠! ≤ 0 0 ≤ 𝑠" ≤ 0 0 ≤ 𝑠# ≤ 0

Subtract	first	two	equalities	to	infer
𝑥 = 𝑦

Subtle complexity: Every row can have many fixed variables. 
Adding values of constant bounds requires significant runtime.

Propagating Equalities 



𝑥 = 𝑧 − 𝑢 − 𝑠! 𝑦 = 𝑧 − 1 + 𝑠" 1 ≤ 𝑢 ≤ 1 0 ≤ 𝑠! ≤ 0 0 ≤ 𝑠" ≤ 0 0 ≤ 𝑠# ≤ 0
𝑥 = 𝑦

Instead of adding up rows to prove implied equality

Use fact: all variables have values assigned by Simplex solver

Then two variables are equal if
- They are connected through offset equalities
- They have the same value

Example: If solver assigns 𝑥 = 3 then 𝑧 = 4, 𝑦 = 3

𝑥, 𝑦 are connected (over 𝑧 − 1).
𝑥, 𝑦 have the same value (3)

𝑥 = 𝑦 + 𝑎!𝑧! + 𝑎"𝑧" +⋯
$!%&!%$!, $"%&"%$",

offset equality

Propagating Equalities - Efficiently



Azure Network 
Verification

Verified Crypto 
Libraries & Protocols

Security Risk 
Detection 

Dynamics 
AX

Verifying C 
Compiler

Smart Contract 
Verification

Quantum 
Compilation

ALIVE2 
Translation Validation

for LLVM & Visual C++

SVACE 
Static Analysis Engines

Axiomatic 
Economics

NFL 
Scheduling

Biological 
Computations

Artificial 
Life



Live Monitoring of Forwarding Behavior

R1 R2 R3 R4

D1 D2 D3 D4

A1 A2 A3 A4 B1 B2 B3 B4

ToR1 ToR2 ToR4ToR3

Reachability
invariants

Topology Database

Error Reports
10.0.0.0/16 11.0.0.0/16 12.0.0.0/16 13.0.0.0/16

Global reachability as local contracts

üEach router has a fixed rule for a set of 
addresses

üEnough to verify rule is enforced on 
each router

5 Billion Z3 queries per day [Jayaraman et al, Sigcomm 2019]



LLVM IR

LLVM IR

LLVM middle-end
optimizers

Alive2 IR

Alive2 IR

C, C++,
ObjC,
Rust,
Swift,
…

frontend llvm2alive
Alive2 IR

Alive2 IR

static unroll

SMT formulas

encode semantics &
refinement check

UNSAT
or partial model

Alive2: Integration with LLVM

clang w/ alive2 plugin:
$ alivecc file.c

opt plugin:
$ opt -tv -instcombine -tv file.ll

Alive2

clang, rustc, etc

LLVM

[Nuno Lopes, Juneyoung Lee, Chung-Kil Hur, 
Zhengyang Liu, John Regehr, PLDI 2021]



SAGE

HAVOC

Efficient E-matching for SMT solvers

Model-based Theory Combination
Relevancy Propagation

Effectively Propositional Logic

Engineering DPLL(T) + Saturation
Generalized, Efficient Array Decision Procedures

Linear Quantifier Elimination 

Model Based Quantifier Instantiation

Quantified Bit-Vectors
CutSAT: Linear Integer Formulas

Model Constructing SAT
Existential Reals 

nZ: Opt+MaxSMT
µZ: Datalog 

Generalized PDR 

SLS, floats 

Internals Tools

Tools and internals developed 
in a feedback loop



An ongoing collaboration 



Process

Process

Process
Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1

Task 2

Task 3

Task 4

Task 5

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6
Enable:
- Automate manual puzzle
- Optimize over design space
- Scale and be nimble: new factories, new models
- Track and manage inventory



Domain Engineering

Develop mathematically 
precise model

Relational Object Model 
of SQL data

Semantic validation 
of SQL data

Solver Engineering

Solved 10% 
in 20 hrs

Solved 100% 
in 3 minDead endSolved 80% 

in 10 hrs

Visualization



Domain Engineering

Develop mathematically 
precise model Visualization

Relational Object Model 
of SQL data

Semantic validation 
of SQL data

Solver Engineering

Solved 10% 
in 20 hrs

Solved 100% 
in 3 minDead endSolved 80% 

in 10 hrs



Process

Process

Process
Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1

Task 2

Task 3

Task 4

Task 5

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Research Angles 
- Mathematical concepts matured 

in tools for requirements capture (TLA+)
- A sweet spot for Formal Methods skillsets
- Uncovered many subtle implicit assumptions

Solve for:

a𝑠𝑠𝑖𝑔𝑛(: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 each process 𝑝

Auxiliary Functions:

𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 → 𝑁𝑎𝑡
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛×𝑍𝑜𝑛𝑒 → 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Assignment Constraints:

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛( , 𝑧 ∈ 𝑜𝑝!, 𝑜𝑝"
𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑖𝑔𝑛( ≥ ℎ𝑒𝑖𝑔ℎ𝑡(

Mapping to Z3 at same the level of model
- Uninterpreted functions
- Nested formulas (no tuning for big Ms)
- Finite domains using bit-vectors



Deep Solving

Grand 
Goal

Deep Validation

Humble 
Path

1. Scripts that check invariants of 
database entries

2. Provenance information 
using infeasible cores from Z3

Validation Approaches

Z3 Features
- Native core minimization in SAT solver
- Core and correction set enumeration
- Software bug localization and repair

Practical impact
- Invariant checker and provenance 

tools in hands of collaborators
- Used to fix a significant set of data 

entry bugs



MSAGL – Automated Graph Layout engine

Day 43

Day 61

Aid to understand model stored in database
and spot bugs by simple inspection



Domain Engineering

Develop mathematically 
precise model

Relational Object Model 
of SQL data

Semantic validation 
of SQL data

Solver Engineering

Solved 10% 
in 20 hrs

Solved 100% 
in 3 minDead endSolved 80% 

in 10 hrs

Visualization





Our approach: Use uninterpreted functions for “symbolic indices”



Constrained multi-knapsack: 
A set of items, each is added to one knapsack, subject to side-constraints

Our approach: program constraint as an ad-hoc theory

a polluting, nasty side constraint
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Research Angles 
- Mathematical concepts matured 

in tools for requirements capture (TLA+)
- A sweet spot for Formal Methods skillsets
- Uncovered many subtle implicit assumptions

Solve for:

a𝑠𝑠𝑖𝑔𝑛(: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 each process 𝑝
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𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 → 𝑁𝑎𝑡
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛×𝑍𝑜𝑛𝑒 → 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Assignment Constraints:

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛( , 𝑧 ∈ 𝑜𝑝!, 𝑜𝑝"
𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑖𝑔𝑛( ≥ ℎ𝑒𝑖𝑔ℎ𝑡(

Mapping to Z3 at same the level of model
- Uninterpreted functions
- Nested formulas (no tuning for big Ms)
- Finite domains using bit-vectors
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Research Angles 
- Mathematical concepts matured 

in tools for requirements capture (TLA+)
- A sweet spot for Formal Methods skillsets
- Uncovered many subtle implicit assumptions

Solve for:

a𝑠𝑠𝑖𝑔𝑛(: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 each process 𝑝

Auxiliary Functions:

𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 → 𝑁𝑎𝑡
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛×𝑍𝑜𝑛𝑒 → 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Assignment Constraints:

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛( , 𝑧 ∈ 𝑜𝑝!, 𝑜𝑝"
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Mapping to Z3 at same the level of model
- Uninterpreted functions
- Nested formulas (no tuning for big Ms)
- Finite domains using bit-vectors

Z3 solves for functions not just 
(integer/real) variables

Allows succinct encodings 
of constraints

Bit-vectors map to SAT solver technology
Integers map to MIP solver technology

Maps to specialized solver
Incremental Congruence Closure

𝑥 = 𝑓 𝑔 𝑓 𝑥

𝑥 = 𝑔 𝑓 𝑥
𝑥 = 𝑔(𝑥)



When supported formalisms lag, or encoding is impractical

1000 ≥ c
)%*+,%-))

𝑥* + 𝑥, = 42 ∧ 𝑥* > 30 ∨ 𝑥, > 30As constraints:
O(100K) atomic formulas

As code:
callback + conflicts on demand



v1: Pre-solving 

• Assign a small batch of 4-
10 processes to stations at 
a time

• Stations and processes, 
station heights and task 
time are integers

• Solved 100 processes very 
slowly.

v2: Pre-solving take two

• Assign just one process at 
a time and only encode 
process constraints when 
a process gets assigned.

• The resulting solver can 
assign 950 out of 1050 
processes in a few 
minutes.

v3: A custom CDCL / CSP 
solver

• Perform branching and 
propagation of cycle time 
constraints on top of 
repeated calls to Z3.

• Maintain backtracking 
stack and add lemmas 
based on the chosen 
branches.

• This was complex to 
engineer and only 
exercised in preliminary 
form.

v4: with Custom Propagator 
and Bit-vectors

• With bit-vectors, without 
cycle-time: solvable in 30 
seconds.

• With bit-vectors and cycle-
time: solvable for 300 
processes in a few 
minutes, but not all 
processes.

• With bit-vectors, 
programmable-propagator 
for cycle-time: patching + 
solving

• Initial: a few hours
• Current: a few minutes.



• Already happened: CP-SAT uses CDCL(T) for OR domains

• Approach here: Uninterpreted Functions, Bit-Vectors, Constraints as Code

• From experiences to tuning:
• LNS for Modulo Theories?
• A modernized core solver for Z3: In-processing for SMT?
• Sound MIP is too costly for CP: Specialized LP for modular machine arithmetic



Theories

Data Validation

Humble Path Fly in the Ointment

Nimble Constraints



Extra Slides



Tools used as part of collaboration

Azure Bastion Microsoft 
Automated
Graph Layout

Shared VM

Snapshot

Object Model Constraints

Visu
aliza

tion

Requirements

Weekly + ad-hoc sync

Contact at 
Manufacturer



Optimization Objectives
Currently at early stage

Understanding what best serves our 
scenario

Likely main objective
Reduce number of operators, reduce 
number of tools used overall. 

First approach is by programmable Branch 
& Bounding to find a Pareto Front per run.

Research Angles
- Pareto Strategies
- Any-time optimization
- Local Neighborhood search
- MaxSAT based on:

- Cores
- Hitting sets 
- Correction sets
- Branch and bound

Z3 Technologies
- Core based MaxSAT
- Primal Simplex
- Multi-objective optimization: Pareto, Lex, Box

Some years ago
Used Azure cloud scaling (cube & conquer) and large 
neighborhood search to optimize NFL schedules





𝑥 = 𝑓 𝑔 𝑓 𝑥

𝑥 = 𝑔 𝑓 𝑥
𝑥 = 𝑔(𝑥)

Bit-vectors

Congruence Closure Constraints as Code


