
Concepts of Object-Oriented Programming

Exercise 6

Bytecode verification

1) Consider the following type hierarchy:

Suppose that the method f of class E has the following signature:
 A f(boolean b1, boolean b2);

and three local variables x, y, z. It is known that the initial state is

 ([], [E,boolean,boolean,C1,C2,A])

The maximal stack size is equal to 1.

The method f has the following body:

 0: iload_1

 1: ifeq 22

 4: iload_2

 5: ifeq 12

 8: aload_3

 9: goto 14

 12: aload_4

 14: astore_3

 15: aload_5

 17: astore_4

 19: goto 0

 22: aload_3

 23: areturn

 Verify that the program is type safe.

 Provide the minimal type information that enables verification of the bytecode

without a fixpoint computation.

Note: In this example, ifeq x pops an integer from the stack and jumps to line x if the integer

is equal to zero.

A

B

C1 C2

Concepts of Object-Oriented Programming

2) The method f of class E has the following signature:

 void f();

and one local variable v. The maximal stack size is equal to 1.

It has the following body:

 0: iconst_5

 1: istore_1

 2: aload_0

 3: astore_1

 4: iload_1

 5: iconst_1

 6: iadd

 7: istore_1

 8: return

 Can the provided byte code be verified? If so then verify it, otherwise explain which

line of the code causes the problem and why.

3) Consider the following code:

interface IFace {

 void m();

}

class Cl1 implements IFace {

 public void m() { System.out.println("Cl1.m"); }

}

class Cl2 implements IFace {

 public void m() { System.out.println("Cl2.m"); }

}

public class Test1 {

 public static void main(String[] args) {

 xxx(true);

 xxx(false);

 }

 public static void xxx(boolean param) {

 IFace iface = null;

 if(param) { iface = new Cl1();}

else { iface = new Cl2(); }

 iface.m(); }}

 What type will be calculated for the variable iface of the method xxx during the

bytecode verification?

 When can we decide that iface.m() is safe to call? During bytecode verification,

or execution?

 What if IFace was a class instead of an interface? What if it was an abstract class?

Concepts of Object-Oriented Programming

4) The Java bytecode verifier is more permissive than the Java type system. Provide a

program that demonstrates it.

5) The bytecode type inference algorithm assumes that maximal stack size is provided.

 Is it possible to drop this requirement and infer the maximal stack size?

 If the answer is yes, then describe how the bytecode verification algorithm can

be updated.

 If the answer is no, then show that it can’t be done.

6) The bytecode type inference algorithm rejects a verified program if there are different

stack sizes for input values of a join point.

 Provide a bytecode program that is rejected because of this limitation.

 Is it possible to construct a bytecode verification algorithm that avoids this limitation?

If yes, then provide an updated algorithm. If no, then show that it can’t be done.

 How essential is this restriction from a pragmatic perspective?

