
Concepts of Object-Oriented Programming

Exercise 13 Solutions

Non null Types and Invariants

1.

a. False. A field declared to be possibly-null can always refer to null, even

when the reference to the object whose field it is has a non-raw type.

b. False. If the reference has a raw (non-null) type then the object might still

have null values in its non-null fields (e.g., the start of a constructor call).

c. True. A non-raw reference to an object can only exist after its constructor

has executed (see previous sheet), by which time it is guaranteed to have non-

null values in non-null fields by the definite assignment checks imposed on

constructors.

d. False. For example, at the very end of a constructor body the newly-

constructed object will be locally initialised, but the this reference is still raw.

e. False. For example, at the very end of a constructor body, the newly-

constructed object will be locally initialised, but if it was passed a raw non-null

argument then it might have assigned that to one of its fields.

f. True. If e has a non-raw type then e.f has a non-raw type, and so must be

locally initialised (see (c) above).

g. True. No difference with the previous statement, since non-raw references

always refer to locally initialised objects anyway (c).

h. True. Only non-null values are allowed to be assigned to non-null fields.

i. True. This is what the definite assignment checks guarantee.

2.

•
public class DogOwner {

 Dog! dog; // DogOwners must have a dog

 Bone! bone; // DogOwners must have a bone (for their dog)

 public DogOwner() {

 this.dog = new Dog(this);

 this.bone = dog.bone;

 }

}

public class Dog {

 DogOwner! owner; // Dogs must have an owner

 Bone! bone; // Dogs must have a bone

 public Dog(raw DogOwner! owner) {

 this.owner = owner;

 this.bone = new Bone(owner, dog);

 }

}

public class Bone {

 DogOwner! owner; // Bones must have an owner

Concepts of Object-Oriented Programming

 Dog! dog; // Bones must belong to a dog..

 public Bone(raw DogOwner! owner, raw Dog! dog) {

 this.owner = owner;

 this.dog = dog;

 }

}

• The line this.bone = dog.bone; will not type-check because dog is a raw

reference (it is returned from a constructor which was passed a raw argument), and

reading a field from a raw reference always yields a possibly-null type (which is not

allowed to be assigned to a field declared with a non-null type).

• We can change the line to this.bone = (!) dog.bone;

• We can add the following post-condition to the Dog constructor:

// ensures: this.bone != null

3.

 Immediate from the definition of reachability.

 This follows by essentially “appending” the field accesses used – if we have o2 ==

o1.f1.f2...fm and o3 == o2.g1.g2...gn then by substituting the former in

the latter, we also have o3 == o1.f1.f2...fm.g1.g2...gn

 Suppose o1 is an object with one field f, which currently references a further object

o2 which has no fields. Then o2 is reachable from o1 but o1 is not reachable from

o2.

NOTE: At the start of a constructor or method call, consider the set of objects

reachable via all the references in scope. This is basically all the objects reachable

via the object referenced by this and the objects referenced by the parameters

which were passed to the constructor/method. During the execution of the

constructor/method (including any constructors/methods it calls, etc.), any field

updates that take place must be assigning to and from objects which were already

reachable. Therefore, field updates can’t increase the set of objects which are

reachable. The only extra objects which can become reachable are those which get

newly allocated during the execution of the constructor/method.

Recall that for any object to be reachable from e , there must be a chain of field

accesses starting at e which refers to the object. We can show by induction on n

that for any such reference involving n field accesses, i.e., an expression

e.f1.f2...fn , the reference will be non-raw, and any object referred to by the

reference will be locally initialised. The argument goes as follows:

For the base case, we need that the object which e itself refers to is locally

initialised. This, we know by question 1(c). Note that the current question already

stated that e is a non-raw reference.

For the inductive case, assume e.f1.f2...fk is a non-raw reference, and that if

it refers to an object, the object is locally initialised. Then we need to show that,

Concepts of Object-Oriented Programming

for any valid field fk+1 we can deduce that e.f1.f2...fk.fk+1 is a non-raw

reference, and that if it refers to an object, the object is locally initialised. We

know the reference is non-raw, by the type system rules – looking up a field on a

non-raw reference always yields another non-raw reference. We conclude that any

object referred to by the reference must be locally initialised, by question 1(g).

4.

 Suppose that expression e refers to an object and the object is not fully initialised. If

it were possible that e had a non-raw type, then by question 3, we would deduce

that all objects reachable from e are locally initialised, i.e., that e is fully

initialised. This contradicts the assumption that e is not fully initialised, so it

cannot be possible for e to have a non-raw type.

 Unfortunately, the question isn’t quite correct as written (sorry!). The statement

“Once an object is fully initialised, it will always remain fully initialised.” is not

actually always true. To see why, consider the following example code:

public class C {

 C! f;

 public C(raw C! x) {

 this.f = this; // this is fully initialised

 this.f = x; // this might not be fully initialised

 }

}

Once the constructor of this has finished executing, then we are no longer

allowed to assign raw references to its fields (because of the restriction at the start

of the sheet, as discussed last week) and so it’s tempting to think that the

statement would be true if we added the extra proviso that the constructor of the

object had already run. But the following example shows that this is not enough:

public class C { public class D {

 D! f; D! f;

 public C(raw D! x) { C! g;

 this.f = x; public D(raw D! y) {

 } this.f = this;

} this.g = new C(this);

 this.f = y;

 }

 }

Consider an execution of D’s constructor. After the first two lines have been

executed, the newly-created object of class D will be fully initialised, as will the

newly-created object of class C which was created. However, when the third line

of the constructor is executed, both of these objects are potentially no-longer fully

initialised (even though their constructors have both finished executing).

In fact, the statement in the question should be weakened to the following:

“Once an object is fully initialised and the constructors of all objects reachable

from it have been run, it will always remain fully initialised.”

Concepts of Object-Oriented Programming

This weaker statement can be shown to be true as follows. Firstly, by the

restriction on field updates, once the constructors of all reachable objects have

been run, it will never be possible to assign raw references to those objects’ fields.

When we assign non-raw references to those object’s fields, it might be that new

objects are reachable via the references. But this is ok – by question 3, we know

that all of these objects will be locally initialised as well. Therefore, we will

always maintain the property that all reachable objects are locally initialised, i.e.,

that the original object is fully initialised.

Point during execution: Reachable “raw” objects... ...which are locally initialised

Beginning of executing

DogOwner constructor

O none

Beginning of executing

Dog constructor

O, D none

Beginning of executing

Bone constructor

O, D, B none

End of executing Bone

constructor

O, D, B B

End of executing Dog

constructor

O, D, B D, B

End of executing

DogOwner constructor

O, D, B O, D, B

a) This follows from the definite assignment check for constructors.

b) Any objects which were created will have had their constructors run, so this

follows from the previous part (and question 1(h)).

c) Since it is possible to pass a raw reference to an object whose constructor

has not finished executing yet, there is no guarantee that it (or any other objects

reachable from it) will be locally initialised.

d) By the previous part, there can be references in scope which refer to objects

which are not yet locally initialised. Since these references might have been

assigned to the fields of the newly-constructed object, we deduce that the object

might not be “fully initialised”.

e) If we could give a non-raw type to such an object, then, given the previous

part, we would contradict the statement at the end of question 3 (i.e., we

wouldn’t be living up to the intended invariants of the type system).

f) Since the only objects reachable will be newly-created objects, this follows

by parts (a) and (b).

g) This follows from the previous part, and the definition of “fully initialised”.

h) We could potentially have non-raw arguments to such a constructor. But, by

question 3, any objects reachable from these arguments are guaranteed to be

locally initialised (and will remain so, by 1(h)). During the execution of the

constructor, only these objects, plus any newly-allocated objects, will be

reachable (see NOTE in question 3). Therefore, by the previous part of this

question, we know that all reachable objects will be locally initialised.

i) The previous part tells us that the constructed object will be fully initialised.

But, since reachability is transitive (question 3), for any object o reachable from

Concepts of Object-Oriented Programming

the constructed object, we know that all object reachable from o must also be

locally initialised (since they are reachable from the constructed object too). This

means that all such objects o must be fully initialised.

j) As explained in the previous questions, the expectations which the type

system has for a non-raw reference type are that all objects reachable via the

references are fully initialised. By the previous part of the question, we know

that these expectations are met when a constructor which was passed no raw

references terminates. Therefore, it is safe to give the returned reference a non-

raw type. Furthermore, note that in this situation we also know that all objects

reachable from the newly-constructed object have had their constructors run.

Therefore, the amended quoted statement in question 3 guarantees that the

expectations of a non-raw reference will also continue to be satisfied as the

program executes further.

5. a) The invariant can be written as follows:

 ∀i.0≤i<theTree.length/2⇒
 theTree[i] = theTree[2*i+1]+theTree[2*i+2]

 Note that the condition 0≤i<theTree.length/2 says that node i is not a leaf

(proof by induction on the height). Note also that “height” means the maximum

distance of the root to the leaves (so a single node is a 0-height tree)

 Of course, there should also be an invariant saying that the tree is complete:

 ∃h:int. h≥0 ∧ theTree.length=2h+1-1

b)

 (a) The method clearly does not preserve the invariant. For example, imagine a three-

node tree [10,5,5] and a call to addToNode (0, 100)

 (b) When addToLeaf is called on a leaf, a sequence of recursive calls to

addToNode begins. The first call adds a number s to the leaf, which temporarily

breaks the invariant, because the parent of that leaf no longer holds the correct sum.

Each subsequent call of addToNode corrects the sum of its current node, similarly

making the sum of its parent (if there is one) outdated. The calls to addToNode

happen recursively all the way up from the leaf to the root, at which point the invariant

is fixed.

So, either the method addToNode is called on a leaf or the invariant must be broken

exactly at the node we call addToNode. Furthermore, the sum of the children of that

node must be exactly s less than what it is supposed to be.

 (c) Precondition for addToNode that expresses this requirement:

 theTree.length/2≤i<theTree.length

 ∨ ((∀j.0≤j<theTree.length/2 ∧ j≠i ⇒
 theTree[j] = theTree[2*j+1]+theTree[2*j+2])

 ∧ theTree[i] = theTree[2*i+1]+theTree[2*i+2]-s)

(d) Note: the original exercise sheet provided a wrong precondition for addToLeaf.

The new exercise sheet corrects the mistake. Sorry about that.

Concepts of Object-Oriented Programming

 The method addToNode is private and therefore can be called only from two

places: The first place is addToLeaf, which, by its precondition, satisfies the first

disjunct of the precondition of addToNode.

 The second place is recursively from addToNode itself, if i>0. Assuming that the

precondition a call of addToNode holds, we need to show that the precondition also

holds when we make a recursive call to addToNode.

 Let o be the value of the old tree and t be the value of the new tree. Let L be the

length of both trees. Then assumption becomes:

 L/2 ≤ i <L

 ∨ ((∀j.0≤j<L/2 ∧ j≠i ⇒o[j]=o[2*j+1]+o[2*j+2])

 ∧ o[i]=o[2*i+1]+o[2*i+2]-s)

and the two trees are connected by the relation

 (∀j. 0≤j<L ∧ j≠i ⇒ o[j]=t[j]) ∧ t[i]=o[i]+s

We need to show (for i>0) that:

 L/2 ≤ i/2 < L

 ∨ ((∀j.0≤j<L/2∧j≠(i-1)/2 ⇒ t[j]=t[2*j+1]+t[2*j+2])

 ∧ t[(i-1)/2] = t[2*((i-1)/2)+1]+t[2*((i-1)/2)+2]-s)

We can get the first disjunct out of the way, since it is false anyway. It suffices to prove

that

 ((∀j.0≤j<L/2∧j≠(i-1)/2⇒
 t[j] = t[2*j+1]+t[2*j+2])

 ∧ t[(i-1)/2] = t[2*((i-1)/2)+1]+t[2*((i-1)/2)+2]-s)

Consider the last conjunct. Exactly one of the two indices 2*((i-1)/2)+1 and

2*((i-1)/2)+2 is equal to i. By the relationship between o,t the last conjunct

becomes:
 o[(i-1)/2] = o[2*((i-1)/2)+1]+o[2*((i-1)/2)+2]+s-s

which becomes
 o[(i-1)/2] = o[2*((i-1)/2)+1]+o[2*((i-1)/2)+2]

From the universal quantification, we break the case j=i. The whole formula becomes:

 (∀j.0≤j<L/2 ∧ j≠(i-1)/2 ∧ j≠i ⇒
 t[j]=t[2*j+1]+t[2*j+2])

 ∧ t[i]=t[2*i+1]+t[2*i+2]

 ∧ o[(i-1)/2] = o[2*((i-1)/2)+1]+o[2*((i-1)/2)+2]

Concepts of Object-Oriented Programming

By the relationship between the trees (note that none of 2*j+1 and 2*j+2 can be

equal to i, if j≠i/2):

 (∀j.0≤j<L/2 ∧ j≠(i-1)/2 ∧ j≠i ⇒
 o[j]=o[2*j+1]+o[2*j+2])

 ∧ o[i]+s=o[2*i+1]+o[2*i+2]

 ∧ o[(i-1)/2] = o[2*((i-1)/2)+1]+o[2*((i-1)/2)+2]

Finally, we combine the first and the third conjunct, and we get exactly the precondition

(of the original call) that we assumed holds.

(e) To show now that, given the precondition of addToNode holds in the beginning,

then the invariant holds in the end, notice that the method does not make further calls to

itself if and only if i=0. In that case, given that the precondition holds in the beginning

of the call:

 theTree.length/2≤0<theTree.length

 ∨ ((∀j.0<j<theTree.length/2 ⇒
 theTree[j] = theTree[2*j+1]+theTree[2*j+2])

 ∧ theTree[0] = theTree[1]+theTree[2]-s)

After the call, theTree[0] is incremented by s, and no other change happens. So

we have:

 (∀j.0<j<theTree.length/2 ⇒
 theTree[j] = theTree[2*j+1]+theTree[2*j+2])

 ∧ theTree[0] = theTree[1]+theTree[2]

which is equivalent to the invariant.

