
Concepts of Object-Oriented Programming

Exercise 10

Ownership type system

1. Look at the following program:

class ArrayList {

}

 What aliasing problems can arise in the example program?

 Write example code for every problem.

 Change the code of ArrayList in a way that guarantees that there are no more

aliasing problems.

 Annotate ArrayList with appropriate ownership type modifiers

protected int[] array;

protected int next;

public void add(int i) {

 if(next==array.length){

 resize();

 }

 array[next] = i;

 next++;

}

public int[] getElems() {

 return array;

}

public void setElems(int[] ia){

 array = ia;

 next = ia.length;

}

protected void resize() {

 if(next==array.length) {

 int[] oa = array;

 array = new int[2*oa.length];

 System.arraycopy

 (oa, 0, array, 0, oa.length);

 }

}

public String toString() {

 if(array.length == 0) return "[]";

 StringBuffer buf =

 new StringBuffer("[" + array[0]);

 for(int i=1; i < next; ++i) {

 buf.append(", " + array[i]);

 }

 buf.append("]");

 return buf.toString();

}

Concepts of Object-Oriented Programming

2. Annotate the following program with appropriate ownership type modifiers to maximize the

buffer, the producer, and the consumer encapsulation:

3. Use the Universe type system to guarantee the encapsulation of Entry, LinkedList, ReadIterator, and

DeleteIterator. Additionally, annotate the methods with appropriate pure modifiers. If needed,

change the implementation in a way such that Universe typing is possible. Provide arguments to

motivate necessity of the implementation changes.

For this task you are allowed to:

 Add new methods to the classes LinkedList and DeleteIterator.

 Assume that each object has a field “owner” that can be mentioned in pre/post-conditions and

invariants.

 Add pre/post-conditions and invariants that may mention field owner, to the classes LinkedList

and DeleteIterator.

 Use casting from any to peer and rep if it is possible to deduce from pre/post-conditions and

invariants that it will not result in a runtime exception.

class Producer {

 int[] buf;

 int n;

 Consumer con;

 Producer() {

 buf = new int[10];

 }

 void produce(int x) {

 buf[n] = x;

 n = (n+1) % buf.length;

 }

}

class Consumer {

 int[] buf;

 int n;

 Producer pro;

 Consumer(Producer p) {

 buf = p.buf;

 pro = p;

 p.con = this;

 }

 int consume() {

 n = (n+1) % buf.length;

 return buf[n];

 }

}

class Context {

 Producer p;

 Consumer c;

 Context(){

 p = new Producer();

 c = new Consumer(p);

 }

 public void run() {

 for(int i=-5; i <=5; ++i){

 p.produce(i);

 if(i%2 == 0)

 c.consume();

 }

 }

}

Concepts of Object-Oriented Programming

class Entry {

 Object element; Entry previous, next;

 Entry(Object o, Entry p, Entry n)

 {element=o; previous=p; next=n;}

}

public class LinkedList {

 private Entry header;

 private int size;

 public LinkedList() {

 Init();

 }

 public Init() {

 // the header is a dummy that is never null

 header =

 new Entry(null, null, null);

 header.next = header;

 header.previous = header;

 size = 0;

 }

 public void add(Object o){

 Entry newE=

 new Entry(o,header,header.next);

 header.next.previous = newE;

 header.next = newE;

 ++size;

 }

 public Object get(int idx) {

 if(idx > size) return null;

 Entry e = header.next;

 for(int i=0; i<idx; ++i) {

 e = e.next;

 }

 return e.element;

 }

 public ReadIterator getReadIterator() {

 return new ReadIterator(header);

 }

 public DeleteIterator getDeleteIterator() {

 return new DeleteIterator(header);

 }

}

class ReadIterator {

 protected Entry current, header;

 public ReadIterator(Entry h)

 {current = h; header = h;}

 public boolean hasNext()

 {return current.next != header;}

 public void moveNext()

 {current = current.next;}

 public Object element()

 {return current.element;}

}

class DeleteIterator extends ReadIterator {

public DeleteIterator(Entry h)

 {super(h);}

public void delete() {

 if(current.previous != null)

 current.previous.next = current.next;

 if(current.next != null)

 current.next.previous=current.previous;

 current = current.next;

 }

}

Concepts of Object-Oriented Programming

4. The linked list from the previous example is extended with the method merge. The method

moves all nodes from one list to the other.

 Explain why the proposed version of merge can’t be properly annotated with

Universe type system.

 Change the implementation in a way such that Universe typing is possible and annotate the

updated method.

5. Encapsulation question from a previous exam!
The Universe type system allows the following ownership modifiers peer, rep, self, lost, and

any - to structure the object store and to restrict how references can be passed and used. We

want to extend the Universe type system by adding one more modifier down. This modifier is

introduced to denote references to objects in the same context as this or in the context

(transitively) owned by an object in the same context as this.

a. Redraw the subtype relation diagram below to include the newly introduced type of the

universe type system.

public void merge(LinkedList other) {

 if (other.header.next == other.header)

 return;

 Entry first = other.header.next;

 Entry last = other.header.previous;

 header.previous.next = first;

 last.next = header;

 first.previous= header.previous;

 header.previous = last;

 other.Init();

}

any T

peer T rep T

lost T

self T

Concepts of Object-Oriented Programming

b. Define the most specific (in terms of the context information it conveys) type

combinator function ►by filling the table below (first argument: left-most cell of the

rows, second argument: top-most cell of the columns).

Recall that the type combinator function ► is used, in particular, to determine the

owner of an object referenced by a field access. More exactly, if the ownership modifier

of x is Tx and the ownership modifier of a field f is Tf , then the ownership modifier

assigned to the field access x.f is determined as Tx►Tf.

► peer rep lost any down

self

peer

rep

lost

any

down

c. Define type checking rules for field update.

