
Concepts of Object-Oriented Programming

Exercise 4

Inheritance, and more Inheritance

Unless otherwise stated, assume we are working with a language (such as Java) in which

method dispatch is dynamic for the type of the receiver and static for the type of the arguments.

1. Consider a class Matrix to implement matrices with integer values. A simple

implementation would be to store a (private) 2-dimensional array of integers, and

provide methods such as:
void set(int i, int j, int value);

int get(int i, int j);

Matrix add(Matrix m);

Matrix multiply(Matrix m);

A sparse matrix is a matrix which contains mainly zeros. When such matrices are large

it can be that an alternative representation of the matrix, which only stores the locations

and values of non-zero entries, can provide a much more efficient implementations for

common expensive operations such as addition and multiplication with other sparse

matrices. If a sparse matrix is to be added or multiplied with a standard matrix, it also is

possible to define an implementation which is more efficient that the standard one (but

not as good as for two sparse matrices).

Consider writing a new class SparseMatrix to implement sparse matrices, with the

similar methods available to those for Matrix.

 Is it likely that there will be scope for reusing code from the class Matrix?

 Does it seem that SparseMatrix can (and should?) be a behavioural subtype of

Matrix?

 What would be the implications of making SparseMatrix a subclass of

Matrix?

 What alternative ways are there of expressing the relationship between the classes?

2. Suppose from now on that SparseMatrix is to be implemented as a subclass of

Matrix. Assume (reasonably!) that the two classes will use different internal

representations (fields). If you sketch a possible implementation it might help.

 What would happen if client code could access the fields? e.g., suppose entries

is the 2-d array field of Matrix, and m is a local Matrix variable, and consider:

 m.entries[i][j] = 4;

 if(m.get(i,j)!= 4) { // crash }

What can go wrong here? To what extent are these problems avoided by making

the fields private?

 What might go wrong (or at least give unexpected behavior) if we do not override

all of the methods of Matrix when writing SparseMatrix?

 What difficulties might occur if we wanted to add extra methods to Matrix later?

Concepts of Object-Oriented Programming

3. Consider the add and multiply methods. These operations should be implemented

differently depending on the (runtime) types of both the receiver and the argument the

methods are applied to, i.e., we need binary methods to handle this situation.

 Sketch how to implement the add method (the details of how to perform the actual

addition are not essential) in both Matrix and SparseMatrix based on each

of the following approaches to binary methods:

i. Explicit type tests to check the runtime type of the argument

ii. Double invocation (Visitor pattern)

iii. Multiple dispatch

 Which approach seems most elegant/appropriate for this example?

 Suppose that, for reasons of compatibility with existing code, we are not allowed to

change the existing definition of the Matrix class. For each of the three

approaches above, consider how feasible it is to adapt to this constraint. Does your

answer depend on how the existing Matrix class is actually defined?

4. Suppose we introduce a further class ZeroMatrix which is a subclass of

SparseMatrix, representing the zero matrix (in particular, all instances of this class

should be indistinguishable in behaviour). We observe that we can improve efficiency

still further by implementing simplified versions of add and multiply when zero

matrices are involved.

We observe that we can overload the definition of add in Matrix to treat the special

case of a ZeroMatrix argument with a simplified implementation.

 What should the result of a call to add() be, when the argument is a

ZeroMatrix? What happens if we simply overload the definition in Matrix?

 Symmetrically, when the receiver of a call to add is a ZeroMatrix we can use a

more efficient implementation. Sketch how to extend each of the three approaches

from the previous question for implementing add as a binary method.

 In the case of multiple dispatch, there is an additional requirement – what is it? Is

this extra requirement reasonable?

 Which of the approaches seems most elegant/appropriate for this example now?

 Suppose that, for reasons of compatibility with existing code, we are not allowed to

change the existing definitions of either the Matrix or SparseMatrix classes.

By comparing with your sketches for the previous question, consider how feasible

it is to adapt to this constraint.

