
Concepts of Object-Oriented Programming

Exercise 2

Types and Subtyping

1. The compiler allows the code to go through although it can’t prove that c implements

I. The reason is that there might be a subclass D of C such that D implements I and c

might be an object of D. Here Java opts for the flexibility of dynamic type checking.

 When the code executes a runtime exception is thrown, because c does not implement

I and this is caught by the runtime check.

2. B=C <: A

 D <: E = G <: F

No other subtyping relations exist, except the reflexive and transitive closure of the

above.

The type J is not a subtype of L, even though it might seem that J has a larger interface

than L. That would be the case if we had read-only instead of immutable.

3. Consider
 if (x=x) then y:=1 else y:=true
 y:=y+1

A usual static type system would reject this program, while the program would not

cause typing problems. The static type system would reject the following program

which would generate a runtime type error:
 f(x) { return x+1 }

 print f(true)

4. “in” parameters – contravariant. “out” parameters covariant. The rest invariant.

Notice that the answer depends on whether a type refers to a value that can be read

and/or written by the method. This means that “in out” and “ref” behave similarly as far

as the present question is concerned.

5. The code tries to override a non-existing method. The new method has type

ColoredPoint->bool and the old method has type Point->bool. Since C#

classes are invariant in the method parameter types, the new method cannot override the

old one. This is reasonable, because the requirement that ColoredPoint is a

subclass of Point entails the following substitution principle: every object of

ColoredPoint should be useable wherever a point is expected. The substitution

principle is not respected whenever a ColoredPoint c is compared to a Point p,

as in c.isEqual(p).

Eiffel would allow the overriding due to its covariance policy. This allows the program

to compile. It allows Point objects to be compared to Point objects and

ColoredPoint objects to ColoredPoint objects. However, the unsoundness

above will remain. Eiffel will try to catch this statically by forbidding all calls that

Concepts of Object-Oriented Programming

would potentially compare objects coming from two different classes. This forbids too

much. Also, it does not respect the substitution principle of subtyping.

If we removed the override keyword, the program would compile. Due to

overloading, ColoredPoint will be a subtype of Point, supporting two different

methods:
 boolean isEqual (Point)

 boolean isEqual (ColoredPoint)

In Java the same thing would happen. However, a Java programmer used to dynamic

dispatch will find the following program surprising:
 void f ()

 {

 ColoredPoint p,q;

p = new ColoredPoint ();

 p.x = 1; p.y = 2; p.color = 3;

q = new ColoredPoint ();

q.x = 1; q.y = 2; q.color = 4;

boolean b1 = p.isEqual (q); // b1 == false

boolean b2 = g (p, q); // b2 == true

 }

 boolean g (ColoredPoint pp, Point qq)

 {

 return pp.isEqual (qq); // returns true

 }

If we don’t want ColoredPoint to be a subtype of Point, we are free to ignore the

comparison between the two. However, a language with only subclassing, like Java or

C#, will force us to rewrite all the members that could have been reused (in this

example, these are only x,y, but in general, this may be a huge rewriting). Languages

that decouple subtyping from inheritance, like C++ and Eiffel, do not have this problem.

