
Concepts of Object-Oriented Programming

Exercise 4

Inheritance, and more Inheritance

1.

 Code reuse is not going to be possible (at least for the primitive operations), since

the two classes will use different internal representations of the data.

 So long as the internal representation (fields) cannot be observed, then they should

ideally behave as subtypes, since ultimately all of the operations should produce

the same answers. In particular, the difference in the implementations cannot be

observed by get() calls. This seems intuitively to be correct also, since sparse

matrices are a special case of matrices.

However, unless the specifications of the methods are written abstractly, then it

will be hard to technically justify behavioural subtyping (e.g., if the specification

of set()in Matrix is written in terms of the array used to store the data, then

the specification of set()in SparseMatrix will not be able to satisfy the

requirements of behavioural subtyping).

 If we make them subtypes then we can nicely handle the appropriate

implementations of the add and multiply methods in the various cases (see

questions 3 and 4). On the other hand, a SparseMatrix object will inherit a

useless copy of the fields used in Matrix – this means an overhead in memory

and initialisation time (since by default the superclass constructor will still be

called). This can also lead to subtle bugs (see next question).

 An interface (or abstract class) could alternatively be defined, which both classes

implement (or subclass). This eliminates the redundant overlap between fields

used in the two classes. However, if client code has already been written in terms

of the class Matrix then adding the interface will not avoid any problems for this

client code (this is a good reason to always provide interfaces rather than class

definitions, to clients!).

2.

 In the case of the code
 m.entries[i][j] = 4;

 if(m.get(i,j)!= 4) { // crash }

if m turns out to reference a SparseMatrix object, then because the method call

to get() will be dynamically dispatched, it will refer to the fields used for the

internal representation of SparseMatrix, and not the entries array.

Therefore, there is no reason to expect the if-condition to be true. Making the

fields private avoids this problem arising in client code, but it can still occur in

other methods of Matrix if there is a mixture of direct field accesses and

(dynamically dispatched) method calls.

 Similarly to the previous part, if we retain any method implementations from the

Matrix class then these are likely to refer to the fields used for internal

representation of the superclass and not the subclass, which are unlikely to contain

meaningful values.

 Any extra methods that we add to Matrix will suffer the same difficulty –

because they will typically refer to the entries array, they will not operate

Concepts of Object-Oriented Programming

correctly on SparseMatrix objects. The only exception is a method which is

implemented entirely in terms of previously-defined methods (no field accesses).

3.

i. In the Matrix class:
Matrix add(Matrix m) {

 if(m instanceof SparseMatrix) {

 // semi-efficient implementation

 } else {

 // old implementation

 }

}

In the SparseMatrix class:

Matrix add(Matrix m) {

 if(m instanceof SparseMatrix) {

 // efficient implementation

 } else {

 // semi-efficient implementation

 }

}

ii. In the Matrix class:
Matrix add(Matrix m) {

 return m.addMatrix(this);

}

Matrix addMatrix(Matrix m) {

 // old implementation

}

Matrix addSparseMatrix(SparseMatrix m) {

 // semi-efficient implementation

}

In the SparseMatrix class:
Matrix add(Matrix m) {

 return m.addSparseMatrix(this);

}

Matrix addMatrix(Matrix m) {

 // semi-efficient implementation

}

SparseMatrix addSparseMatrix(SparseMatrix m) {

 // efficient implementation

}

iii. In the Matrix class:

Matrix add(Matrix m) {

 // old implementation

}

Matrix add(SparseMatrix m) {

 // semi-efficient implementation

}

Concepts of Object-Oriented Programming

In the SparseMatrix class:

SparseMatrix add(Matrix m) {

 // semi-efficient implementation

}

SparseMatrix add(SparseMatrix m) {

 // efficient implementation

}

 The last approach is probably the simplest and most intuitive.

 For the first and last approaches, all that would be lost is the potential extra

efficiency when adding a SparseMatrix to a Matrix. However, for the

second approach (Visitor pattern) it’s essential to be able to add the extra

methods to the superclass, in order to make the second dispatch possible.

Whatever the approach to binary methods, if the add method in Matrix had

been written using direct field accesses on its argument (rather than calls to

get()) then it will need to be rewritten anyway when the subclass is added.

4.

 The receiver can be immediately returned from such a call. We could overload:
 Matrix add(ZeroMatrix m) {
 return this;

}

However, in a language like Java, which does static dispatch re: argument types,

this will not have the desired effect when a ZeroMatrix instance has a less

specific static type.

i. In the Matrix class:

Matrix add(Matrix m) {

 if(m instanceof ZeroMatrix) {
 return this;

 } else if(m instanceof SparseMatrix) {

 // semi-efficient implementation

 } else {

 // old implementation

 }

}

In the SparseMatrix class:

Matrix add(Matrix m) {

 if(m instanceof ZeroMatrix) {

 return this;

 } else if(m instanceof SparseMatrix) {

 // efficient implementation

 } else {

 // semi-efficient implementation

 }

}

In the ZeroMatrix class:

Matrix add(Matrix m) {

 return m;

}

Concepts of Object-Oriented Programming

ii. In the Matrix class:

Matrix add(Matrix m) {

 return m.addMatrix(this);

}

Matrix addMatrix(Matrix m) {

 // old implementation

}

Matrix addSparseMatrix(SparseMatrix m) {

 return this.addMatrix(m);

}

In the SparseMatrix class:

Matrix add(Matrix m) {

 return m.addSparseMatrix(this);

}

Matrix addMatrix(Matrix m) {

 // semi-efficient implementation

}

SparseMatrix addSparseMatrix(SparseMatrix m) {

 // efficient implementation

}

In the ZeroMatrix class:
Matrix add(Matrix m) {

 return m;

}

Matrix addMatrix(Matrix m) {

 return m;

}

SparseMatrix addSparseMatrix(SparseMatrix m) {

 return m;

}

iii. In the Matrix class:

Matrix add(Matrix m) {

 // old implementation

}

Matrix add(SparseMatrix m) {

 // semi-efficient implementation

}

Matrix add(ZeroMatrix m) {

 return this;

}

In the SparseMatrix class:

SparseMatrix add(Matrix m) {

 // semi-efficient implementation

}

SparseMatrix add(SparseMatrix m) {

 // efficient implementation

}

Concepts of Object-Oriented Programming

SparseMatrix add(ZeroMatrix m) {

 return this;

}

In the ZeroMatrix class:

Matrix add(Matrix m) {

 return m;

}

SparseMatrix add(SparseMatrix m) {

 return m;

}

ZeroMatrix add(ZeroMatrix m) {

 return this;

}

 We are forced to require specific implementations for many more cases than we

originally thought of, in order to ensure that there is always a most-specific fit for

any pair of receiver and argument type. The definitions in bold above are the extra

ones added for this reason.

 The extra requirement seems somewhat annoying for this example, particularly

since in all cases where an ambiguity would otherwise arise, the choice of

implementation does not intuitively affect the actual result. For example, if we

erased the bold definitions, then for a ZeroMatrix receiver and ZeroMatrix

argument we would have to choose between the ZeroMatrix-Matrix

implementation, and the Matrix-ZeroMatrix implementation. However,

both of these return the non-zero matrix. On the other hand, consider the case

when we have a SparseMatrix receiver and a ZeroMatrix argument. In this

case, we have to choose between the Matrix-ZeroMatrix implementation

and the SparseMatrix-SparseMatrix implementation. But it is not

completely obvious that the latter would work correctly for a ZeroMatrix

argument, depending on its implementation (how much it depended on the

appropriate fields from SparseMatrix being used/initialised as expected).

 In the light of this, there seems to be less to choose between the last two

approaches. One further observation though is that in the case of multiple

dispatch, although the superclass has been modified, it is only for an improvement

in efficiency – if it were essential that the superclass were unchanged then the

Matrix-ZeroMatrix implementation could be omitted from the code above,

and everything would work out fine. The other approaches depend upon being

able to modify the superclass, which may not always be acceptable in practice.

 The second approach (Visitor pattern) doesn’t require any changes to the existing

classes. The other two approaches would have to relinquish the extra efficiency

possible when the argument is a zero matrix (but could still be efficient when the

receiver was a zero matrix).

