
Concepts of Object-Oriented Programming  

 

  

Exercise 5 
 

 

Multiple Inheritance and Traits 
 

1) Consider the following C++ code: 

 
class Person 

{ 

 Person *spouse; 

 string name; 

 

public: 

 Person (string n) { name = n; spouse = NULL; } 

 

 bool marry (Person *p) 

 { 

  if (p == this) return false; 

  spouse = p; 

  if (p) p->spouse = this; 

  return true; 

 } 

 

 Person *getSpouse () { return spouse; } 

 string getName () { return name; } 

 }; 

  

The method marry is supposed to ensure that a person cannot marry itself.  Without changing 

the code above, create a new object that belongs to a subclass of Person and marry it with 

itself.  Hint: use multiple inheritance.  Explain exactly what happens. 

 

2) Consider the following C++ code: 
 

class Person 

{ 

 bool likesDiamonds; 

 

public: 

 Person (bool l) { likesDiamonds = l; } 

}; 

 

class Programmer : virtual public Person 

{ 

public: Programmer () : Person (false) {} 

// diamonds are a programmer's worst enemy 

}; 

 

It is expected that !likesDiamonds is an invariant in class Programmer.  Use virtual 

inheritance to break this invariant, without altering the above code. 

 

 



Concepts of Object-Oriented Programming  

 

  

3) Why doesn’t C++ allow the following? 
class C : public D, public D {…} 

 

4) Write three classes 

 A normal queue class Queue 

 A subclass of Queue that maintains the sum of all items in the queue, using the 

enqueue and dequeue methods 

 A subclass of Queue that maintains the size of the queue, using the enqueue and 

dequeue methods 

We now want a class that supports both functionalities. 

 Suppose that we want to use multiple inheritance to do that.  We want to override the 

enqueue and dequeue methods of the new class, such that the new methods call the 

enqueue and dequeue methods of both the old classes.  Are there any problems with 

this approach? 

 How do we attack the problem using traits?  Does this fix the above-mentioned 

problems? 

 

5) Find an example of a class C and two traits A and B, such that C with A with B 

behaves differently from C with B with A.  You may adapt your solution for Q.2 to 

traits. 

 

6) Consider the following declarations in Scala: 

 
class C 

trait T extends C 

trait U extends C 

class D extends C 

 

Find all the classes that can be created with or without traits, as well as their subtype 

relations between them. 

 

7) Suppose that trait U extends trait T.  Is it reasonable to expect that C with U is a 

subtype of C with T?  What happens in Scala? 

 

8) Consider our favorite classes Matrix and SparseMatrix and suppose that they 

are implemented somehow in Scala using single dispatch.  You may adopt any reasonable 

configuration.  You may assume the existence of methods add, multiply etc.  Write a 

trait to implement a thick interface on top of matrices.  For example, the trait may support a 

method that raises a matrix to a power of n, or a method that pretty-prints the matrix etc.  

What are the merits of such a design? 

 

 


