
Concepts of Object-Oriented Programming  

 

  

Exercise 3 
 

 

Behavioral Subtyping 
 

1. Let sortedArray be a Java class, which supports a single private field content.  

The field content must be an array of integers with no duplicates, which is sorted in 

increasing order.  The following is a method for the insertion of a value in the array: 

 
 void insert (int newElement) 

 { 

   int[] newContent = new int[content.length+1]; 

  int i = 0; 

  while (i<content.length && content[i]< newElement) 

  { 

   newContent[i]=content[i]; 

   i++; 

  } 

  newContent[i]= newElement; 

  while (i<content.length) 

  { 

   newContent[i+1]= content[i]; 

   i++; 

  } 

  content=newContent; 

 } 

 

 Write an appropriate invariant for the class, as well as a pre- and postcondition for the 

method insert.  Make the specification as precise as possible.  In these conditions, 

you may use the logical quantifiers ∀and ∃. 

 

2. Consider the following code: 
class A 

{ 

  int x; 

  public int getX () {return x;} 

  public void setX (int x) {this.x = x;} 

}; 

 

class B 

{ 

  //requires a1 != a2 && x1 > x2; 

  //ensures result > 0; 

  int m (A a1, A a2, int x1, int x2) 

  { 

    a1.setX (x1); 

    a2.setX (x2); 

    return a1.getX() - a2.getX(); 

  } 

} 



Concepts of Object-Oriented Programming  

 

  

Add pre/post conditions to the methods of class A in a way that satisfies the 

postcondition of method m. 
 

 

3. Let C be a class with an integer field x and a method m.  Let m have 

 Precondition   x>0 

 Postcondition   x<1 

 Suppose now that there is a class D with an integer field x and a method m.  In which 

of the following cases does the displayed specification of m in D permit D to be a 

behavioral subtype of C? 

(a) Pre   x > 0  Post  x < -1 

(b) Pre   x > 0  Post  x < 2 

(c) Pre   x > -1  Post  x < 1 

(d) Pre   x > 2  Post  x < 1 

(e) Pre   x > -4  Post  x < -old(x)*old(x) 

(f) Pre   true  Post  false 

 

4. Consider the following Java code annotated with specifications: 

   
 class A 

 { 

  int f; 

  //invariant f>0; 

 

   //requires p > f; 

   //ensures result > 0;  

   int m (int p) { … } 

 }; 

 

 class B 

 { 

  int f; 

  //invariant f>0; 

 

   //requires p > 0; 

   //ensures result == old(p) + f;  

   int m (int p) { … } 

 }; 

 

Can you prove that B is a behavioral subtype of A?  If not, then provide a generalization 

of the behavioral subtyping rules that: 

 Has the substitution property. 

 Is flexible enough to prove that B is a behavioral subtype of A. 

 

 

 

 

 

 

 



Concepts of Object-Oriented Programming  

 

  

5. You are provided with three classes ArrayNonDecreasing, 

ArrayIncreasing, and ArrayNoDuplicates. Each of them has a private field 

content of type array of integers. The classes have the following properties: 

 ArrayNonDecreasing – elements of content must be in non-

decreasing order 

 ArrayIncreasing - elements of content must be in increasing 

order 

 ArrayNoDuplicates – elements of content must be unique  

 

(a) Write invariants that express these properties 

(b) Suppose that there are no mutator methods. Could there be any behavioral 

subtype relations between these classes? If yes, then describe them. 

(c) Can you find mutator methods that break the potential for behavioral 

subtyping relations between the classes? 

 

 

 

6. Consider two classes Stack and Queue, implementing the obvious data structures, 

both of which have methods with the following signatures: 
void push(Object o); 

Object pop(); 

bool isEmpty(); 

int size(); 

void reverse(); 

 Despite having identical signatures, these two classes cannot be behavioral 

subtypes of one another. Why not? 

 When implementing these two classes, is there any possibility of code re-

use? If so, give details. 

 What programming languages/features could support such code re-use 

without subtyping? Which of these do you think would be most suitable here? 


