
Concepts of Object-Oriented Programming

Exercise 6

Bytecode verification

1) Consider the following type hierarchy:

Suppose that the method f of class E has the following signature:
 A f(boolean b1, boolean b2);

and three local variables x, y, z. It is known that the initial state is

 ([], [E,boolean,boolean,C1,C2,A])

The maximal stack size is equal to 1.

The method f has the following body:

 0: iload_1

 1: ifeq 22

 4: iload_2

 5: ifeq 12

 8: aload_3

 9: goto 14

 12: aload_4

 14: astore_3

 15: aload_5

 17: astore_4

 19: goto 0

 22: aload_3

 23: areturn

 Verify that the program is type safe.

 Provide the minimal type information that enables verification of the bytecode

without a fixpoint computation.

Note: In this example, ifeq x pops an integer from the stack and jumps to line x if the integer

is equal to zero.

A

B

C1 C2

Concepts of Object-Oriented Programming

2) The method f of class E has the following signature:

 void f();

and one local variable v. The maximal stack size is equal to 1.

It has the following body:

 0: iconst_5

 1: istore_1

 2: aload_0

 3: astore_1

 4: iload_1

 5: iconst_1

 6: iadd

 7: istore_1

 8: return

 Can the provided byte code be verified? If so then verify it, otherwise explain which

line of the code causes the problem and why.

3) Consider the following code:

interface IFace {

 void m();

}

class Cl1 implements IFace {

 public void m() { System.out.println("Cl1.m"); }

}

class Cl2 implements IFace {

 public void m() { System.out.println("Cl2.m"); }

}

public class Test1 {

 public static void main(String[] args) {

 xxx(true);

 xxx(false);

 }

 public static void xxx(boolean param) {

 IFace iface = null;

 if(param) { iface = new Cl1();}

else { iface = new Cl2(); }

 iface.m(); }}

 What type will be calculated for the variable iface of the method xxx during the

bytecode verification?

 When can we decide that iface.m() is safe to call? During bytecode verification,

or execution?

 What if IFace was a class instead of an interface? What if it was an abstract class?

Concepts of Object-Oriented Programming

4) The Java bytecode verifier is more permissive than the Java type system. Provide a

program that demonstrates it.

5) The bytecode type inference algorithm assumes that maximal stack size is provided.

 Is it possible to drop this requirement and infer the maximal stack size?

 If the answer is yes, then describe how the bytecode verification algorithm can

be updated.

 If the answer is no, then show that it can’t be done.

6) The bytecode type inference algorithm rejects a verified program if there are different

stack sizes for input values of a join point.

 Provide a bytecode program that is rejected because of this limitation.

 Is it possible to construct a bytecode verification algorithm that avoids this limitation?

If yes, then provide an updated algorithm. If no, then show that it can’t be done.

 How essential is this restriction from a pragmatic perspective?

