
Concepts of Object-Oriented Programming

Exercise 11 solutions

Non-null types and Initialisation

1.

 If c were null, the field dereferences c.x and c.y would generate exceptions.

Furthermore, if c.x were null then method call c.x.doubleValue()would

generate an exception. Similarly if c.y were null.

 There is no reasonable answer for the method to return if it encounters null values

– any attempt to deal with these cases would have to return some arbitrary value,

since the question the method is meant to answer is undefined in these cases.

 requires: c≠null c.x≠null c.y≠null

 public double vectorLength(Coordinates! c) would make the

following pre-condition sufficient: requires: c.x≠null c.y≠null

 By changing the types of the fields x and y to be Number! we could guarantee that

no pre-condition would be required. This seems a reasonable change, since a null

coordinate doesn’t seem to be meaningful anyway.

2. getVolume1 won’t compile for two reasons – Java will complain that c is of (class)

type Coordinates for which method volume is not defined, and a non-null type

checker would complain that it cannot determine that c is non-null when the call is

made. However, the program would run safely – the if-condition not only guarantees

that the method is defined for the call, but implicitly that the expression c is non-null

when the call is made (because Java defined that (null instanceof T) always

evaluates to false.

getVolume2 won’t compile for the first reason above - Java will complain. The code

would still be safe.

getVolume3 will compile - the cast satisfies all the necessary constraints to be

checked. The code will still be safe (in particular, the case always succeeds).

getVolume4 and getVolume5 won’t compile for the first reason above - Java will

complain. The code would be safe though. Note that the non-null type checker won’t

complain in either case, because of the new if-condition.

getVolume6 will compile and run safely.

3.

 In both cases, it is guaranteed that the reference will contain a non-null value. For a

reference of type T! it is safe to assume that any fields of the object accessible via

the reference have been initialised – in particular, if the field type is a non-null

type, it is safe to assume that the field stores a non-null value. This is unsafe if the

original reference were of type raw T! – accessing a field of a raw type always

gives a possibly-null type, even if the field is declared with a non-null type.

When writing to a reference of type T! only a non-raw, non-null value may be

assigned. However, for a reference of type raw T! it is allowed for a value of a

(suitable) raw type to be assigned.

 The same differences as in the previous part. The “raw” annotation is essentially

independent of the non-null annotation.

Concepts of Object-Oriented Programming

 Since fields persist in an object, and their declared types cannot change, if we were

allowed to declare a field type as “raw” then it would never be possible to be sure

that an initialised value were stored in the field. Given that “raw” is intended to

express a temporary condition (partial initialisation) it doesn’t seem to make

intuitive sense either for a field to be declared as “raw”. Note that according to the

rules described in the lecture, we are still allowed to assign a raw reference to a

non-raw field of a raw object, so we are able to flexibly initialise multiple objects

at once, assigning them to each others’ fields even while they are temporarily

uninitialised – this seems flexible enough to allow field types to be as permissive

as we need during execution of constructors.

4.

 We need a constructor which takes a possibly-null argument to get started –

otherwise we could only create instances of this class when we had an existing

one (which we wanted to marry...).

 The constructor can be called with a partially-initialised object, so its parameter

needs to be raw. setSpouse can also be called when both its receiver and its

argument are raw, hence the two annotations.
public class MarriedPerson {

 private MarriedPerson! spouse;

 // invariant: this.spouse.spouse == this;

 public MarriedPerson(raw MarriedPerson? spouse)

 if(spouse!=null) {

 this.spouse = spouse;

 } else {

 this.spouse = new MarriedPerson(this);

 }

 this.spouse.setSpouse(this);

 }

 // requires: spouse.spouse == this;

 // ensures: this.spouse == spouse;

 protected void raw setSpouse(raw MarriedPerson! spouse) {

 this.spouse = spouse;

 }

}

 Because the types of the argument (and the receiver!) of setSpouse can only vary

contravariantly in the subclass definition, we are required to keep the same raw

annotations on this method signature as we had for the superclass. Now, the access

to this.childNames will not type-check, since at that point, this is a raw

reference type, and so accessing its field yields a possibly-null type. We cannot

get around this problem by adding raw annotations. However, this restriction is

actually correct – because setSpouse can be dynamically dispatched from the

superclass constructor, it could be the case that childNames is not yet

initialised, and so a null pointer exception would potentially be generated by this

code.

Concepts of Object-Oriented Programming

5.

 The following class definitions express the design expectations:
public class AcyclicListNode<X> extends ListNode<X> {

 protected X! item;

 protected AcyclicListNode<X>? next;

 public AcyclicListNode<X> (X! item) {

 this.item = item;

 }

 public void setItem(X! x) { item = x; }

 public X! getItem() { return item; }

 public AcyclicListNode<X>? getNext() { return next; }

}

public class CyclicListNode<X> extends ListNode<X> {

 protected X? item;

 protected CyclicListNode<X>! next;

 public CyclicListNode<X> (X? item) {

 this.item = item;

 this.next = this; // default – maybe changed later

 }

 public void setItem(X? x) { item = x; }

 public X? getItem() { return item; }

 public CyclicListNode! getNext() { return next; }

}

In this implementation, the design intention is that every node will always have a next

object in the list (sometimes itself). In this design, we choose to represent an empty list

by a single node whose next field points to itself, but whose item field is null. All

non-empty lists will be represented using only nodes whose item fields are non-null.

 We have to pick suitable method signatures so that the implementing methods have

valid overriding signatures in both classes above. This typically means

strengthening the argument types and weakening the return types:
 public abstract class ListNode<X> {

 public abstract void setItem(X! x);

 public abstract X? getItem();

 public abstract ListNode<X>? getNext();

 }

 The implementations of the three methods above are all non-controversial in terms

of the non-null annotations. In all cases, we assign references of exactly the right

types to fields. For constructors, we need to be slightly careful because of the use

of “raw” types. For the constructor of AcyclicListNode, we assign a value of

type X! to a field whose type (at that point) is raw X! (since this is of a raw

type, its fields are also). For the CyclicListNode<X> constructor, the first

assignment sets a field of type raw X? to a value of type X?. This is allowed.

Concepts of Object-Oriented Programming

Finally, it assigns the value this, which is currently of type raw

CyclicListNode<X> to the field next of this which is currently of type

raw CyclicListNode<X>. This is also allowed.

6.

public int length(ListNode<Integer>? l) {

 ArrayList seen = new ArrayList(); // track nodes seen

 ListNode<Integer> current = l;

 int count = 0;

 while(current!=null && !seen.contains(current)) {

 if(current.getItem()!=null) { // skip null items

 count++;

 }

 seen.add(current); // termination in cyclic lists

 current = current.getNext();

 }

 return count;

 }

Note that the method argument may reasonably be null, since this is the

AcyclicListNode<Integer> representation of an empty list.

 The method will terminate for the two implementation classes in the previous

question because we keep track of the nodes we have already inspected – this is

necessary in the case of cyclic lists. It seems likely that the methods would

terminate for all “usual” implementations of ListNode<X>. However, if the

behaviour of getNext()was not to return an existing reference, but to create a

new list node every time and return that, we couldn’t guarantee termination.

Incidentally, if we were to declare getNext()to be pure, and impose the

strictest definition of purity checks, this awkward case could be avoided.

