
Concepts of Object-Oriented Programming

Exercise 9

Aliasing, encapsulation of object structures, read only types

1) The invariant can be broken by exploiting the fact that CList captures and stores

Coordinates objects.

CList list=new CList();

Coordinates c=new Coordinates(2, 1);

list.add(c);

c.x=0;

We can fix CList quite easily: we need to clone the Coordinates element before

storing it.

 public void add(Coordinates el) {

 if(el.x>el.y) super.add((Coordinates) el.clone());

 }

The limit of such an approach is that we create a copy of all the elements stored in the list.

On the other hand, it is not possible to make sure the invariant is preserved without creating

objects that are only in the current CList object. The main benefit of using alias sharing in

data structures is to minimize the consumption of memory. In addition, we may want to

share aliases on data structures, for instance, in order to further update the content of an

element in a list. The main drawback is that alias sharing does not allow us to reason locally

on the values stored in the data structure, since the object may have been stored by the

program that added elements, and so it may modify the content of the elements after they

were stored.

2) We have to introduce a ReadonlyHour interface, let Hour extend it, and impose

on class Time to return a ReadonlyHour.

public interface ReadonlyHour {

 public int getHour();

}

public class Hour implements ReadonlyHour {

 public int h=0;

 public int getHour() {return h;}

}

public class Time {

 private Hour hour;

 private int m=0;

 //invariant hour.h>=0 && hour.h<24

 Time (Hour hour) { this.hour = hour; }

 public void setHour(int h) {

 if(h>=0 && h<24) this.hour.h=h;

 }

Concepts of Object-Oriented Programming

 public ReadonlyHour getHour() {return hour;}

}

This solution is unsatisfactory, because we need to be able to assign to h, which makes it

possible for outsiders to also assign to h. For example: (a) the constructor of Time takes an

hour object as a parameter. This remains as an Hour object on the side of the client, which

can change h. (b) The client can downcast a ReadOnlyHour reference to Hour.

3)

We can violate the claim by changing the target object this passing through the field

spouse, for instance with spouse->spouse->money=0;

In order to do that, we have to suppose that the current object was initialized passing a value

different from null as second argument of the constructor.

4)

 A method is pure if and only if:

(1) It does not contain field updates

(2) It does not invoke non-pure methods

(3) It does not create objects

 Method getMaxMin is not pure because it allocates new objects. This is not

allowed by the definition of pure method since it modifies the heap.

In order to allow the getMaxMin method to be pure, we should relax such rules by

allowing that pure methods create objects. So the proof obligation of pure methods

will be relaxed in the following way: a method is pure if and only if:

(1) It does not contain field updates

(2) It does not invoke non-pure methods

Note that we have to change the previous definition of pure methods (that is, a method

is pure if it does not modify the heap) to the following one: a method is pure if and

only if it does not modify the part of the heap it receives at the beginning of its

execution.

 Method getLessThan does not change the behavior of other methods but it is not

pure following neither the initial definition nor the relaxed one. In fact, it calls non-

pure methods in order to add all the elements that are less than the given bound to the

set returned by getLessThan. In order to accept method getLessThan as pure,

we may relax the proof obligation of pure methods allowing calls of non-pure

methods if they modify only newly allocated objects. This leads to the following

definition: a method is pure if and only if:

(1) It does not contain field updates

(2) It invokes non-pure methods that modify only newly allocated objects

5) The general rules are:

 readwrite T <: readonly T

 when we access a field/method, we take the upper bound of the

readonly/readwrite modifiers.

Program 1: it does not compile since obj2 is readonly, and we try to assign to a

readwrite variable the field of one of the objects contained in it.

Concepts of Object-Oriented Programming

Program 2: it does not compile since field y in B is readonly.

Program 3: it compiles!

Program 4: it does not compile since obj is readonly and it is passed to the constructor

of B as first argument.

Program 5: it compiles!

Program 6: it compiles!

6) The general typing rules are any >: peer and any >: rep since any is more

restrictive than rep and peer. Following these rules, we obtain that

 peer Object foo(any String el) overrides any Object foo(peer

String el)

 rep Object foo(any String el) overrides rep Object foo(peer

String el), that overrides any Object foo(peer String el)

 peer Object foo(any String el) overrides peer Object foo(rep

String el)

7)

 readonly int[] is more restrictive than readwrite int[], so we could have

readonly int[] <: readwrite int[].

 Considering y[1].f as an access which goes first via y, and then y[1], we would

obtain that:

i) If the first modifier is readonly, all the accesses to elements of the array will be

treated as readonly, since the readonly modifier for the array will be

considered first. Therefore, the only interesting combinations are:
(1) readonly readonly

(2) readwrite readonly

(3) readwrite readwrite

Note: The same approach is adopted when we have a readonly object

variable and we access a readwrite field through it: the result would be

readonly, since any access via a readonly reference is readonly.

ii) (1) is more restricted than (2), and (2) is more restricted than (3). So the

reasonable subtyping relations are (1) :> (2) :> (3)

 Considering y[1].f as a direct access, we would obtain that:

i) All the four different combinations have different semantics. With respect to the

previous example, we would have that readonly readonly will allow only

read accesses both on the array and on the elements stored in it, while with

readonly readwrite we have that we cannot assign elements in the array but

we can write fields accessed via the array elements.

ii) The subtyping relations already pointed out still work. In addition we could

have

(1) readonly readonly :> readonly readwrite

Concepts of Object-Oriented Programming

(2) readonly readwrite :> readwrite readwrite

 The second solution is more expressive than the first one, since it allows the developer

to have more fine-grained control on the read and write accesses on arrays and on their

elements. Thus, the second choice seems to be the best. However, it should be carefully

considered whether such an approach (that would be different compared to the one

adopted for objects and field accesses) may confuse the developers, and eventually

create safety problems.

