
Concepts of Object-Oriented Programming

Exercise 9

Aliasing, encapsulation of object structures, read only types

1) Data structures intentionally share aliases. For instance, consider the following

ArrayList class:

class ArrayList<T> {

 private T[] elements=…;

 private int LastEl=0;

 public T get(int i) {return elements[i];}

 public void add(T el) {elements[intLastEl++]=el;}

}

Imagine that this class is extended as follows

class Coordinates {

 int x, y;

 public Coordinates(int xx, int yy) {x=xx; y=yy;}

}

class CList extends ArrayList<Coordinates> {

 // invariant \forall el \in elements : el.x>el.y

 public void add(Corrdinates el) {

 if(el.x>el.y) super.add(el);

 }

}

Write a program that breaks the invariant of CList. How can we fix this class? Is it

possible to fix it without allocating directly or indirectly new objects, that is, without

consuming additional memory? Discuss the benefits and the drawbacks of using alias

sharing in data structures.

2) In Question 7 of the previous week we were able to break the invariant because of

alias leaking.

public class Hour {

 public int h=0;

}

public class Time {

 private Hour hour;

 //invariant hour.h>=0 && hour.h<24

 public Time(Hour hour) {this.hour=hour;}

 public void setHour(int h) {

 if(h>=0 && h<24) this.hour.h=h;

 }

 public Hour getHour() {return hour;}

}

Modify class Hour by using readonly interfaces. Find an example that still breaks the

Concepts of Object-Oriented Programming

invariant, and explain why such a solution is not satisfactory in terms of safety.

3) Consider the following C++ class:

 class Person

 {

 int money;

 Person *spouse;

 public:

 void f () const;

 Person (int m, Person *s)

 { if (!s) spouse = 0;

 else { spouse = s; s->spouse = this; }

 money = m;

 }

 };

Method f promises not to make any changes to its target object. Show that this claim can

still be violated by a definition of f, without using casting and without introducing any

local variables.

4) The intuition behind a pure method is that its execution effects are not observable by

the client. This essentially means that the result of any other method call or field read

inside client code wouldn’t be affected by a pure method execution. One way to formalize

this property is to require that the execution of a pure method doesn’t change the program

heap.

 Provide proof obligations that guarantee the purity of a method.

 Class Pair represents a pair of integers. Class Set represents a set of integers.

Method Pair getMaxMin() returns a freshly-allocated instance of class Pair that

contains the minimal and maximal values of the set.

o Even though the method getMaxMin does not change the behavior of

other methods, it is not pure, according to our definition. Why?

o How can the provided definition of purity be relaxed to allow declaration of

the method getMaxMin as pure, without violating the intuition above?

o Provide proof obligations that guarantee purity of a method according to

your relaxed definition.

 Class Set has also method Set getLessThan(int bound) which returns all

elements of the set that are smaller than bound. Answer the previous questions for
getLessThan.

5) Consider the following classes:

class A {

 readwrite StringBuffer n1=…;

 readonly StringBuffer n2=…;

}

class B {

 readwrite A x;

 readonly A y;

Concepts of Object-Oriented Programming

 public B(readwrite A x, readonly A y) {

 this.x=x;

 this.y=y;

 }

}

Check which programs are correct and explain why.

Program 1
readwrite A obj=new A();

readonly B obj2=

 new B(obj, obj);

readwrite StringBuffer v=

 obj2.y.n1;

Program 2
readwrite A obj=new A();

readwrite B obj2=

 new B(obj, obj);

readwrite StringBuffer v=

 obj2.y.n1;

Program 3
readwrite A obj=new A();

readwrite B obj2=

 new B(obj, obj);

readwrite StringBuffer v=

 obj2.x.n1;

Program 4
readonly A obj=new A();

readonly A obj2=new A();

readwrite B obj3=

 new B(obj, obj2);

readwrite StringBuffer v=

 obj3.y.n1;

Program 5
readwrite A obj=new A();
readonly A obj2=new A();

readwrite B obj3=

 new B(obj, obj2);

readonly StringBuffer v=

 obj3.y.n1;

Program 6
readwrite A obj=new A();
readonly A obj2=new A();

readwrite B obj3=

 new B(obj, obj2);

readonly StringBuffer v=

 obj3.y.n2;

6) Consider the following method signatures:

peer Object foo(any String el);

peer Object foo(rep String el);

rep Object foo(any String el);

any Object foo(peer String el);

rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other.

7) Consider how we might extend readonly types to handle arrays. For an array of

primitive types, one might want to declare that the array cannot be written to, using a

declaration such as:

 readonly int[] x;

which, similarly to the rules for accessing fields of objects, would forbid an update such as

 x[2] = 2; // error – x is declared with a readonly type

Should there be a subtyping relationship (in either direction) between types readwrite int[]

and readonly int[]?

For arrays of reference types, there are two reasonable questions to consider for readonly

typing. Firstly, just as for an array of primitive types, whether or not the array reference can be

used for modifications. Secondly, whether the array elements can be used for modifications.

 y[1] = y[2]; // is this allowed?

 y[1].f = y[2].f; // is this allowed?

 In order to express all possibilities, consider having two readonly/readwrite modifiers for

an array type – the first to denote access via the array, and the second to denote access via its

elements, e.g., readonly readonly T[] y; is the most restrictive.

Concepts of Object-Oriented Programming

Consider what the semantics of readonly readwrite T[] y; could be. There are two

reasonable choices here, depending on whether we regard accesses of the form y[1].f as

accesses which go first via y, and then y[1], or consider them as accesses directly from y[1]

(in a sense “skipping” y). For each of these two possible semantics, consider the following:

Do all four combinations of modifiers express something different from one another?

Can you think of an example in which each might be potentially useful?

What subtyping relationships (if any) would be reasonable between the four possible variants of

a T[] type?

In the light of these questions, which of the two semantics seems the best choice?

