
Concepts of Object-Oriented Programming

Exercise 8

Information hiding, encapsulation, aliasing

1) The subtyping relations are as follows:

C <: B <: A

Using structural subtyping we need that the methods and fields of subclasses are more

accessible than those of superclasses. When dealing with access modifiers, this means that

methods with more permissive modifiers may override methods with more restricted

modifiers.

2)

The 1
st
 program does not compile because method f of class Y tries to access a field of the

superclass with default access modifier (that is, it can be accessed only by classes in the

same package) from an external package.

The 2
nd

 program does not compile because method f of class Y tries to access a

protected field of an object instance of the superclass, but from a different package (A2,

while the superclass belongs to A1). Note that Java does not allow subclasses to access

protected fields of other objects instance of the superclass if they belongs to a different

package.

The 3
rd

 program does not compile because method f of class Y tries to access a private field

of the superclass.

Finally, the 4
th

 program compiles. In fact, method f of class Y is allowed to access this.x

since it is a protected field of class X.

3) Assume that obj is of dynamic type B. The output of foo is:

Class B:0

This happens because in obj.x=10 we have the static binding of the class whose field we

are going to assign, that is, the compiler infers to assign field x of class A since the static

type of obj is A. On the other hand, the method call obj.print() is dynamically

bounded to the dynamic type of obj, that is, it calls method print() of class B. Thus

method print() of class B reads the value of field x of class B, that contains the initial

value 0.

Under the same assumptions, the output of bar is:

Class B:10

This happens because we have the dynamic binding on the object used to call method

setX, thus we assign value 10 to the field x of class B. In addition, we have the same

Concepts of Object-Oriented Programming

binding when calling print(), thus we invoke it when field x of class B is equal to 10

and we obtain that output.

In general, it is better to adopt setter and getter methods from the point of view of

information hiding in order not to rely on the internal representation of the class. This

example and the unexpected behavior obtained when executing the first program make

evidence of this fact: if we rely on accesses to fields we may access fields that are different

from the ones accessed using method calls, since in the first case we have static binding,

while in the second case we have dynamic binding.

4)

The external interface is composed only by method public set(int) since this is the

only public element of class Hour.

The invariant can be easily broken extending class Hour, and accessing directly to field h.

For instance,

public WrongHour extends Hour {

 public WrongHour() {super.h=-1;}

}

5)

For the fields of class BankAccout, the most permissive access modifiers are:

 importantCustomer: default modifier. In this way, it would be accessible by

other classes in the same package but not by subclasses. Otherwise, we may have a class

that extends BankAccount and sets to true importantCustomer without being a

RichCustomer.

 maxDebit: public, since it is final and it cannot be modified by other classes.

 amount: default, since we need to access it from other classes of this package, but

we need that an external attacker cannot modify it.

Methods withdraw and deposit can be declared public, since they preserve the

invariants.

If class BankAccount would be declared as sealed, we can choose protected as

access modifier of amount and importantCustomer fields, since external classes will

not allowed to extend it and so none will be in position to access such fields.

More generally, if a class is sealed, the default and protected levels are equivalent, since

it is not possible to extend the current class outside the current package.

6)

Drawback: we cannot check the consistency of an object considering only the current

instance.

public Foo {

 int a=0; //invariant a>=0

 public Foo broken() {

 Foo result=new Foo();

 result.a=-1;

Concepts of Object-Oriented Programming

 return result;

 }

}

Advantage: we can access the internal structure of other objects of the same class. Note that

we already know their internal structure, since it is exactly the same of the current object.

public class List {

 private Object el;

 private List next;

 public removeSecondElement() {this.next=this.next.next;}

}

If we apply the same idea of private fields, we would expect that subclasses are allowed to

access fields of superclasses of objects that are instance of the superclass (we can call it

subclass-level of encapsulation). Instead this is not allowed, since we can access

protected fields only of the current instance and not of other objects (let it call

subobject-level of encapsulation). Intuitively, if the same concept have been applied to

private field, this would have lead to the individual object level.

7)

We can easily break the invariants through alias leaking. For instance, the following code

breaks the invariant of class Time:

Time t=new Time();

Hour h=t.getHour();

h.h=-1;

We can fix in two ways. We have to avoid the alias leaking. We can reach this goal

returning an integer value instead of an object, or a copy of the Hour object stored in the

current Time object.

public int getHour() {return hour.h;}

public Hour getHour() {return (Hour) hour.clone();}

In general, it is better if possible to return only primitive values, or avoid to exposing aliases

to the local state of the object, by instead returning copies of the stored objects. In this way,

we can avoid alias leaking, thus no external code can modified the values contained in the

current object.

8)

The main advantage is that it is not possible to modify the strings. Thus, an external class

cannot modify the content of a string contained in the current object even if we leak its

reference. In this particular example, imagine that the toString method of the elements

of the list returns a string contained in an internal field. When we return the string

representing the list, the receiver of the result of method prettyprint will not be able to

modify the string contained in that fields. For instance:

String s=prettyprint(list)

Concepts of Object-Oriented Programming

Strins s1=s.replace(“a”, “b”)

does not affect nor the single string representing an element of the list, neither the string

returned by prettyprint.

The main drawback is that we create a new string (a new object) each time we concatenate

two strings. Supposing that only result+list.get(i).toString()+”,” will

create a new string (but it may be the case that it creates before

result+list.get(i).toString() and then it concatenates it with “,”), at the end

of the method we created 2*list.size()+1 strings (one with the initial value “” of

result, and inside the loop the one returned by list.get(i).toString() and the one

resulting from the concatenation). This hampers the efficiency of the execution.

