
Concepts of Object-Oriented Programming

Exercise 3

Behavioral Subtyping

1.
class sortedArray{

 int[] content;

 invariant content  null;

 invariant  i:int | 0  i  i < content.length -1

  content[i] < content[i+1];

 requires  i:int | 0  i  i < content.length

  newElement  content[i];

 ensures content.length = old(content.length) + 1;

 ensures  i0:int | (0  i0  i0 < content.length)

  ( i:int | 0  i  i < i0 

 content[i] = old(content[i]))

  ( i:int | i0 < i  i < content.length

  content[i] = old(content[i-1]))

  content[i0] = newElement;
 void insert (int newElement){...}

}

Here is another way to express the last ensures clause. First of all we need to introduce

an auxiliary predicate contains:

contains (L, x) = ∃ j:int | 0j  j<L.length  L[j]=x
Using this predicate we can express the desired property as:

ensures  i:int | contains (content, i) 

i=newElement  contains (old(content), i)

2.
class A{

 int x;

 ensures result = this.x;

 ensures  o:object, f:field | o.f = old(o.f)

 public int getX(){return x;}

 ensures x = this.x;

 ensures  o:object, f:field | (o  this  f  x)

  o.f = old(o.f)

 public void setX(int x){this.x = x;}

}

Concepts of Object-Oriented Programming

It is possible, in principle, that getX and setX could affect not only the receiver but

other objects as well. In such a case, execution of a2.setX (x2); could potentially

change the value of the field x of the object a1. This can result in violation of the post-

condition. To prevent it we need to precisely specify the write effects of the methods

getX and setX.

3.

 Presuper Presub Postsub Postsuper Behavioral subtyping

(a) Yes Yes Yes

(b) Yes No No

(c) Yes Yes Yes

(d) No Yes No

(e) Yes Yes Yes

(f) Yes Yes Yes

4. The proposed example violates the behavioral subtyping rules that we currently have.

Nevertheless class B can be used in any context where class A can be used. The source

of this mismatch is that we ignore the invariant of the object when we check properties

of preconditions, and that we ignore invariants and preconditions when checking post-

conditions. So if we want to check that a class Sub is a behavioral subtype of a class

Super it is enough to check that:

 Invsub Invsuper

 For each inherited method m:

o Invsub  Presuper Presub

o old(InvSub)  InvSub  old(Presub)  Postsub  Postsuper

 Note: Invsub (which is in general stronger than Invsuper) can be assumed in both cases,

since we are considering the behavior of an object which is actually of the subclass (although it

may be accessed via the specification of the superclass).

 We can see that the new rules are satisfied for classes A and B:

 f>0  f>0

 f>0  p> f  p>0

 old(f)>0  f>0  old(p)>0  result=old(p)+f 

 result > 0

5.

(a) All of the classes have the invariant content  null , and in addition

the following specific invariants:

 ArrayNonDecreasing

 invariant  i:int | 0  i  i < content.length -1

  content[i] ≤ content[i+1];

 ArrayIncreasing

 invariant  i:int | 0  i  i < content.length -1

  content[i] < content[i+1];

Concepts of Object-Oriented Programming

 ArrayNoDuplicates

 invariant  i,j:int |

 (0  i  i < content.length)

  (0  j  j < content.length)

  i  j

  content[i]  content[j];

(b) ArrayIncreasing is a behavioral subtype of

ArrayNonDecreasing and ArrayNoDuplicates.

(c) An example of such a method is an addToFront(int x) method. The

appropriate preconditions for this method are the following:

 ArrayNonDecreasing

 invariant content.length > 0  x  content[0];

 ArrayIncreasing

 invariant content.length > 0  x < content[0];

 ArrayNoDuplicates

 invariant  i:int | 0  i  i < content.length

  x  content[i];

 We can see that the precondition of the method of class

ArrayIncreasing is not implied by the preconditions of the methods of the other

two classes, which violates the previous behavioral subtype relations.

6.

 The intended behaviour is that a Stack is first-in-first-out, while a Queue

is last-in-first-out. Therefore, it is impossible that both the pop and push

methods can have similar behaviours across the two classes, and so neither class

can be a behavioural subtype of the other.

 Depending on the internal representation, either the pop()or the push()

method (but not both) could be re-used, from one implementation to the other.

For example, if one implements a Queue by pushing to the end of a linked list,

and popping from the beginning, then a Stack could be implemented either by

pushing on the beginning of the list and reusing the pop() method, or by

reusing the push() method and popping from the end of the list. Furthermore,

it’s likely that the isEmpty(), size() and reverse() methods could all

be reused.

 Any mechanism which allows code reuse without subtyping, e.g., private

inheritance in C++. In principle, aggregation could be employed, but the

“common class” would be rather strange (e.g., a list which could only grow, and

only at one end). Traits might also provide a solution to this problem, but again,

identifying a fragment of the implementation to abstract out might not be

natural. One could argue that this kind of code reuse binds the implementations

too closely together, when it might be that one or other class wants to evolve

independently (e.g., given some other desired methods, we want to change the

underlying implementation of one class in a way which isn’t helpful for the

other). However, the ability to reuse a large number of common methods seems

tempting.

