
Concepts of Object-Oriented Programming

Exercise 13

Non-null Types and Invariants

Don’t forget the extra restriction for the non-null/raw type system, which was introduced in the

previous sheet: “If e2 is of a raw type, then a field assignment e1.f = e2 is only allowed

when the field assignment is in the body of a constructor and e1 is the expression this”

For this sheet, you can assume a slightly-stronger version of the type invariant given in the

lectures (lecture 8.2, slide 25):

“If the static type of an expression e is a non-null type then e’s value at run time is different

from null”

1. Let’s say that an object is “locally initialised” exactly when: every one of its fields

which is declared with a non-null type contains a non-null value (which might or might

not be raw). That is, when the local non-null constraints are satisfied for the object.

Which of the following statements are always true in the raw/non-null type system?

Justify your answers carefully.

a. If expression e has a non-raw type, then e refers to an object.

b. If expression e has a non-null type and e refers to an object then the object

is locally initialised.

c. If expression e has a non-raw type and e refers to an object then the object

is locally initialised.

d. If expression e has a raw type and e refers to an object then the object is not

locally initialised.

e. If expression e refers to an object which is locally initialised, and e.f refers

to an object then the latter object is also locally initialised.

f. If expression e has a non-raw type and e refers to an object which is locally

initialised, then if e.f refers to an object then the latter object is also locally

initialised.

g. If expression e has a non-raw type and e refers to an object, then if e.f

refers to an object then the latter object is also locally initialised.

h. Once an object is locally initialised, it always remains locally initialised.

i. Once a constructor for an object completes, the object is locally initialised.

2. Consider the following three classes:
public class DogOwner {

 Dog! dog; // DogOwners must have a dog

 Bone! bone; // DogOwners must have a bone (for their dog)

 public DogOwner() {

 this.dog = new Dog(this);

 this.bone = dog.bone;

 }

}

public class Dog {

Concepts of Object-Oriented Programming

 DogOwner! owner; // Dogs must have an owner

 Bone! bone; // Dogs must have a bone

 public Dog(DogOwner owner) {

 this.owner = owner;

 this.bone = new Bone(owner, this);

 }

}

public class Bone {

 DogOwner! owner; // Bones must have an owner

 Dog! dog; // Bones must belong to a dog..

 public Bone(DogOwner owner, Dog dog) {

 this.owner = owner;

 this.dog = dog;

 }

}

• Annotate the code with non-null and raw annotations where they are necessary.

• The code will still not type-check according to the non-null rules. Why not?

• Use casting to fix the problem, so that the example type-checks.

• Add a post-condition (“ensures” clause) to one of the constructors, to provide

sufficient information to guarantee that the cast(s) you have introduced are always safe.

3. An object o2 is said to be reachable from an object o1 if it is possible to reference o2

via (possibly nested) field lookups starting from a reference to o1.

For a recursive definition, we could state equivalently that o2 is reachable from o1 if and

only if either:

a) o1 and o2 are the same object, or,

b) for some field f of o1, the lookup o1.f gives an object (not null) and o2 is

reachable from o1.f

Justify carefully why the following statements are true:

 Any object is reachable from itself (reachability is reflexive).

 If o2 is reachable from o1 and o3 is reachable from o2 then o3 is reachable from o1

(reachability is transitive).

 If o2 is reachable from o1 it is not necessarily the case that o1 is reachable from o2

(reachability is not always symmetric).

NOTE: During execution of any method/constructor, the only objects which are

ever reachable must either have been originally reachable from the method

receiver/arguments, or must have been created during the execution. (Justify?).

Use your answers to question 1 to carefully justify why the following statement is

always true in the raw/non-null type system:

“If expression e has a non-raw type and e refers to an object then all objects

reachable from the object are locally initialised.”

4. Let’s say that an object is “fully initialised” if all objects reachable from the object are

locally initialised. In particular, all objects in a program should be “fully initialised” if

Concepts of Object-Oriented Programming

no constructors are currently executing. The point of “raw” types is to identify objects

which might not be fully initialised.

Using your answers to questions 1(i) and 3, justify the following two statements:

 “If expression e refers to an object and the object is not fully initialised, then e

cannot possibly have a non-raw type.”

 “Once an object is fully initialised and the constructors of all objects reachable

from it have been executed, it will always remain fully initialised.” (NOTE: the

text in italics has been added, since the original version of the sheet).

Note that the first of these statements is equivalent to the following:

“If expression e has a non-raw type and refers to an object, then the object is

guaranteed to be fully initialised.”

Now consider the classes from Question 2. Consider an execution of a statement:
new DogOwner();

Complete the following table, describing (at the specified points during execution)

how many reachable objects (reachable from the references available in the method

currently executing) are considered “raw”, in the sense that all existing references to

the objects must have a raw type. In the second column, show how many of these

objects are currently locally initialised. It’s probably easiest to give the objects

“names” – say “O” for the owner which gets created, “D” for the dog, and “B” for the

bone. Note that when the first constructor begins, the only reachable object is “O” (no

arguments are passed).

Point during execution: Reachable “raw” objects... ...which are locally initialised

Beginning of executing

DogOwner constructor

O none

Beginning of executing

Dog constructor

O, D none

Beginning of executing

Bone constructor

End of executing Bone

constructor

End of executing Dog

constructor

End of executing

DogOwner constructor

Using the table, or otherwise, explain carefully why the following properties hold:

a) Once the constructor for an object has finished executing, the object is

guaranteed to be locally initialised.

b) Once a constructor has finished executing, all objects which were created

during execution of the constructor are guaranteed to be locally initialised.

c) If raw references are passed to a constructor then, at the very end of the

execution of the constructor, there might be objects reachable via references

currently in scope (variables, parameters, etc.) which are not yet locally

initialised.(NOTE: the text in italics has been clarified since the original version)

d) If raw references are passed to a constructor, then when it finishes

executing, the object being constructed might not be fully initialised.

Concepts of Object-Oriented Programming

e) If raw references are passed to a constructor, the object returned from the

constructor call should only be allowed to be given a raw type.

f) If no references are passed to a constructor, then when it finishes executing,

all objects reachable from the constructed object will also be locally initialised.

g) If no references are passed to a constructor, then when it finishes executing,

all objects reachable from the constructed object will be fully initialised.

h) If no raw references are passed to a constructor, then when it finishes

executing, all objects reachable from the constructed object will also be locally

initialised.

i) If no raw references are passed to a constructor, then when it finishes

executing, all objects reachable from the constructed object will be fully

initialised.

j) If no raw references are passed to a constructor, it makes sense to give the

object returned from the constructor call can a non-raw type.

5. A technique to represent a complete binary tree T using an array A, is:

 store the root in A[0]

 for any node N stored in A[i], store the children of N to A[2i+1] and A[2i+2].

The size of the array should be equal to 2
h+1

-1, where h is the height of the tree.

 Consider the following invariant on a complete binary tree of integers: any non-leaf

node stores the sum of the integers stored in its two children.

 The following class uses the above-mentioned representation.

class CompleteBinaryTree

{

 private int[] theTree;

 public CompleteBinaryTree (int h)

 {

 theTree = new int [Math.pow(2,h+1)-1];

 for (int i=0; i<theTree.length; i++)

 theTree[i]=0;

 }

 // requires 0 ≤ i < theTree.length

 public int getNode (int i) { return theTree[i]; }

 // requires theTree.length/2 ≤ i < theTree.length

 // this means i must be a leaf

 // attention: this precondition was wrong in the initial

 // version of the exercise

 public void addToLeaf (int i, int s)

 {

 addToNode (i, s);

 }

 private void addToNode (int i, int s)

 {

 theTree[i]+=s;

 if (i>0) addToNode ((i-1)/2, s);

Concepts of Object-Oriented Programming

 }

}

a) Write formally the invariant described above

b) Show that the invariant is always preserved by the public methods of the

class. Hints:

 (a) does the method addToNode preserve the invariant?

 (b) what expectations do you have of the state of the object when

addToNode is called?

 (c) write a precondition for addToNode expressing these expectations

 (d) prove that the precondition is always satisfied when the method is called

 (e) is it true that the invariant holds after every call to addToNode

(assuming your precondition was satisfied when the call was made)?

