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1. a)  The insertion might fail, if there are already 100 elements in the array.  Since there 
is an explicit requirement that x not be an element of the array, the only way this can 
happen is if the array has elements that are equal to each other.  The following invariant 
fixes the problem: 
  ∀i,j:int. 0≤i<size ∧ 0≤j<size ∧ i≠j  ⇒  c[i]≠c[j] 
 
b)  After the first statement is executed, we have: 
  s.size = 0 
After the second statement is executed, we have: 
  s.size = 1 ∧ s.c[0]=5 
The assertion to prove, using the postcondition of contains, becomes: 
  s.c[0]=5 ∧ s.c[0]≠7 
which is true. 
 
c)  This is impossible to do modularly.  The proof in (b) depends on the internal 
representation of SetN, which we must now change. 
 
d)  The specification must not refer to the implementation of the class.  A way to do that 
is to use pure methods, such as contains.  Here is how we can do it here: 
 

 class SetN 
 { 
  ... 
 
  public SetN() 

  // ensures ∀x:int. 0≤x<100 ⇒ ¬contains(x) 
  { ... }  
 
  public void insert(int x) 
  // requires 0≤x<100 

  // requires ¬contains(x) 
  // ensures ∀y:int. 0≤y<100 ∧ x≠y ⇒ 
   //  contains(y)=old(contains(y)) 
  // ensures contains(x) 
  { ... } 
 
  public bool contains(int x)  // pure 
  // requires 0≤x<100 
  { ... } 

 } 
 
e)  After the first statement is executed, we have: 
  ∀x:int. 0≤x<100 ⇒ ¬contains(x) 
After the second statement is executed, we have: 
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  ∀y:int. 0≤y<100 ∧ 5≠y ⇒ ¬contains(y) 
and 
  contains(5) 
which proves the assertion immediately. 
 
f)  The new implementation keeps the same specifications, which means that the proof 
of (e) is preserved: 
 

 class SetN 
 { 
  public boolean[] b; 
  // invariant b.length=100 
   
  public SetN() 

  // ensures ∀x:int. 0≤x<100 ⇒ ¬contains(x) 
  { 
   b=new boolean[100]; 
   for(int i=0; i++; i<100) b[i]=false; 
  }  
 
  public void insert(int x) 
  // requires 0≤x<100 

  // requires ¬contains(x) 
  // ensures ∀y:int. 0≤y<100 ∧ x≠y ⇒ 
   //  contains(y)=old(contains(y)) 
  // ensures contains(x) 
  { b[x]=true; } 
 
  public bool contains(int x)  // pure 
  // requires 0≤x<100 
  { return b[x]; } 
 } 

 
 

2. a) The invariant can be written as follows: 
  ∀i.0≤i<theTree.length/2⇒ 
   theTree[i] = theTree[2*i+1]+theTree[2*i+2] 
Note that the condition  0≤i<theTree.length/2 says that node i is not a leaf 
(proof by induction on the height).  Note also that “height” means the maximum 
distance of the root to the leaves (so a single node is a 0-height tree) 

 Of course, there should also be an invariant saying that the tree is complete: 
  ∃h:int. h≥0 ∧ theTree.length=2h+1-1 
 
b)  
• The method clearly does not preserve the invariant.  For example, imagine a 

three-node tree [10,5,5] and a call to addToNode(0,100) 
 
• When addToLeaf is called on a leaf, a sequence of recursive calls to 

addToNode begins.  The first call adds a number s to the leaf, which 
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temporarily breaks the invariant, because the parent of that leaf no longer holds 
the correct sum.  Each subsequent call of addToNode corrects the sum of its 
current node, similarly making the sum of its parent (if there is one) outdated.  The 
calls to addToNode happen recursively all the way up from the leaf to the root, 
at which point the invariant is fixed. 

 
So, either the method addToNode is called on a leaf or the invariant must be 
broken exactly at the node we call addToNode.  Furthermore, the sum of the 
children of that node must be exactly s less than what it is supposed to be. 

 
• Precondition for addToNode that expresses this requirement: 

 
  theTree.length/2≤i<theTree.length 
 ∨ ((   ∀j.0≤j<theTree.length/2 ∧ j≠i ⇒ 
   theTree[j]=theTree[2*j+1]+theTree[2*j+2]) 

  ∧ theTree[i]=theTree[2*i+1]+theTree[2*i+2]-s) 
 
• The method addToNode is private and therefore can be called only from 

two places: The first place is addToLeaf, which, by its precondition, satisfies 
the first disjunct of the precondition of addToNode. 
 
The second place is recursively from addToNode itself, if i>0.  Assuming that 
the precondition a call of addToNode holds, we need to show that the 
precondition also holds when we make a recursive call to addToNode.  
 
Let o be the value of the old tree and t be the value of the new tree.  Let L be the 
length of both trees.  Then assumption becomes: 

 
  L/2 ≤ i <L 
 ∨ ( (∀j.0≤j<L/2 ∧ j≠i ⇒o[j]=o[2*j+1]+o[2*j+2]) 

  ∧  o[i]=o[2*i+1]+o[2*i+2]-s ) 
 

and the two trees are connected by the relation 
 

  (∀j. 0≤j<L ∧ j≠i  ⇒  o[j]=t[j]) ∧ t[i]=o[i]+s 
 
We need to show (for i>0) that: 

 
  L/2 ≤ i/2 < L 
 ∨ ( (∀j.0≤j<L/2∧j≠(i-1)/2⇒t[j]=t[2*j+1]+t[2*j+2]) 
  ∧  t[(i-1)/2]=t[2*((i-1)/2)+1]+t[2*((i-1)/2)+2]-s) 

 
We can get the first disjunct out of the way, since it is false anyway.  It suffices to 
prove that 

 
 ((   ∀j.0≤j<L/2∧j≠(i-1)/2⇒t[j] = t[2*j+1]+t[2*j+2]) 
∧ t[(i-1)/2] = t[2*((i-1)/2)+1]+t[2*((i-1)/2)+2]-s) 
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Consider the last conjunct.  Exactly one of the two indices 2*((i-1)/2)+1 and 
2*((i-1)/2)+2 is equal to i.  By the relationship between o,t the last conjunct 
becomes: 
 

 o[(i-1)/2] = o[2*((i-1)/2)+1]+o[2*((i-1)/2)+2]+s-s 
  
 which becomes 
  
 o[(i-1)/2] = o[2*((i-1)/2)+1]+o[2*((i-1)/2)+2] 

 
From the universal quantification, we break the case j=i.  The whole formula 
becomes: 

 
     (∀j.0≤j<L/2 ∧ j≠(i-1)/2 ∧ j≠i ⇒ 
    t[j]=t[2*j+1]+t[2*j+2] ) 

 ∧   t[i]=t[2*i+1]+t[2*i+2] 

 ∧  o[(i-1)/2] = o[2*((i-1)/2)+1]+o[2*((i-1)/2)+2] 
 

 By the relationship between the trees (note that none of 2*j+1 and 2*j+2 can be 
 equal to i, if j≠i/2): 

 
  ( ∀j.0≤j<L/2 ∧ j≠(i-1)/2 ∧ j≠i ⇒ 
    o[j]=o[2*j+1]+o[2*j+2]) 

 ∧  o[i]+s=o[2*i+1]+o[2*i+2] 
 ∧ o[(i-1)/2] = o[2*((i-1)/2)+1]+o[2*((i-1)/2)+2] 

 
Finally, we combine the first and the third conjunct, and we get exactly the 
precondition (of the original call) that we assumed holds. 

 
• To show now that, given the precondition of addToNode holds in the 

beginning, then the invariant holds in the end, notice that the method does not 
make further calls to itself if and only if i=0.  In that case, given that the 
precondition holds in the beginning of the call: 

 
  theTree.length/2≤0<theTree.length 
 ∨ ((   ∀j.0<j<theTree.length/2 ⇒ 
   theTree[j] = theTree[2*j+1]+theTree[2*j+2]) 

  ∧ theTree[0] = theTree[1]+theTree[2]-s) 
 

After the call, theTree[0] is incremented by s, and no other change happens.  So 
we have: 

 
  (∀j.0<j<theTree.length/2 ⇒ 
   theTree[j]=theTree[2*j+1]+theTree[2*j+2]) 

 ∧  theTree[0] = theTree[1]+theTree[2] 
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which is equivalent to the invariant. 
 

3. a) We need the following specifications: 
  

class SumVectors 
{ 

public Vector[] a=new Vector[0]; 
 
// invariant forall v:a. v≠null 
 
public void insert(Vector vct) 
// requires vct≠null 
// ensures a.length=old(a).length+1 

// ensures ∀i:int. 0≤i<old(a).length ⇒  
//   a[i]=old(a)[i] 
// ensures a[old(a).length]=vct 
{ ... } 
 
public Vector sum() 
// ensures result = Σi=0a.length-1 a[i] 
// (uses vector addition) 
{ ... } 

} 
 
  b) We only need one invariant: 
 
sx=Σi=0a.length-1 a[i].x ∧ sy=Σi=0a.length-1 a[i].y 

 


