
Concepts of Object-Oriented Programming

Exercise 11 solutions

Non-null types and (a little) initialisation

10th December
1.

• If c were null, the field dereferences c.x and c.y would generate exceptions.
Furthermore, if c.x were null then method call c.x.doubleValue()would
generate an exception. Similarly if c.y were null.

• There is no reasonable answer for the method to return if it encounters null values
– any attempt to deal with these cases would have to return some arbitrary value,
since the question the method is meant to answer is undefined in these cases.

• requires: c≠null ∧ c.x≠null ∧ c.y≠null
• public double vectorLength(Coordinates! c) would make the

following pre-condition sufficient: requires: c.x≠null ∧ c.y≠null
• By changing the types of the fields x and y to be Number! we could guarantee that

no pre-condition would be required. This seems a reasonable change, since a null
coordinate doesn’t seem to be meaningful anyway.

2. getVolume1 won’t compile for two reasons – Java will complain that c is of (class)
type Coordinates for which method volume is not defined, and a non-null type
checker would complain that it cannot determine that c is non-null when the call is
made. However, the program would run safely – the if-condition not only guarantees
that the method is defined for the call, but implicitly that the expression c is non-null
when the call is made (because Java defined that (null instanceof T) always
evaluates to false.
getVolume2 won’t compile for the first reason above - Java will complain. The code
would still be safe.
getVolume3 will compile - the cast satisfies all the necessary constraints to be
checked. The code will still be safe (in particular, the case always succeeds).
getVolume4 and getVolume5 won’t compile for the first reason above - Java will
complain. The code would be safe though. Note that the non-null type checker won’t
complain in either case, because of the new if-condition.
getVolume6 will compile and run safely.

3.

- T?[]! <: T?[]? SAFE
- T![]! <: T![]? SAFE
- T![]? <: T?[]? UNSAFE

Object![]? x = new Object![1]?;
Object?[]? y = x;
if(y!=null)
 y[0]=null;
if(x!=null)
 x[0].toString();

Concepts of Object-Oriented Programming

- T![]! <: T?[]! UNSAFE

Object![]! x = new Object![1]!;
Object?[]! y = x;
y[0]=null;
x[0].toString();

In both the last two cases, we need to check at runtime if a value stored in an array
with dynamic non-null type for the elements stored in the array is not the null
value.
Alternatively, we can check at runtime if a value read from an array with dynamic
non-null type is not the null value.

4. (Side note: the interaction of generic types and non-null types, e.g., the interpretation
of a type X! if X can be instantiated with types that themselves include non-nullity
expectations, is beyond the scope of the course, but in case you are worried, you can
assume that the explicitly visible annotation ! overrides any annotation in the
instantiation for X, i.e., X! can still be safely assumed to always store a non-null value)

• The following class definitions express the design expectations:

public class AcyclicListNode<X> extends ListNode<X> {
 protected X! item;
 protected AcyclicListNode<X>? next;

 public AcyclicListNode<X> (X! item) {
 this.item = item;
 }

 public void setItem(X! x) { item = x; }
 public X! getItem() { return item; }
 public AcyclicListNode<X>? getNext() { return next; }
}

•
public class CyclicListNode<X> extends ListNode<X> {
 protected X? item;
 protected CyclicListNode<X>! next;

 public CyclicListNode<X> (X? item) {
 this.item = item;
 this.next = this; // default – maybe changed later
 }

 public void setItem(X! x) { item = x; }
 public X? getItem() { return item; }
 public CyclicListNode! getNext() { return next; }
}

Concepts of Object-Oriented Programming

In this implementation, the design intention is that every node will always have a next
object in the list (sometimes itself). In this design, we choose to represent an empty list
by a single node whose next field points to itself, but whose item field is null. All
non-empty lists will be represented using only nodes whose item fields are non-null.
• We have to pick suitable method signatures so that the implementing methods have

valid overriding signatures in both classes above. This typically means
strengthening the argument types and weakening the return types:

 public abstract class ListNode<X> {
 public abstract void setItem(X! x);
 public abstract X? getItem();
 public abstract ListNode<X>? getNext();
 }

• The implementations of the three methods above are all non-controversial in terms

of the non-null annotations. In all cases, we assign references of exactly the right
types to fields. For constructors, we need to be slightly careful because of the use
of “raw” types. For the constructor of AcyclicListNode, we assign a value of
type X! to a field whose type (at that point) is raw X! (since this is of a raw
type, its fields are also). For the CyclicListNode<X> constructor, the first
assignment sets a field of type raw X? to a value of type X?. This is allowed.
Finally, it assigns the value this, which is currently of type raw
CyclicListNode<X> to the field next of this which is currently of type
raw CyclicListNode<X>. This is also allowed.

5.

•
public int length(ListNode<Integer>? l) {
 ArrayList! seen = new ArrayList(); // nodes seen

 ListNode<Integer>? current = l;
 int count = 0;

 while(current!=null && !seen.contains(current)) {
 if(current.getItem()!=null) { // skip null items
 count++;
 }
 seen.add(current); // termination in cyclic lists
 current = current.getNext();
 }

 return count;
 }

Note that the method argument may reasonably be null, since this is the
AcyclicListNode<Integer> representation of an empty list.

• The method will terminate for the two implementation classes in the previous
question because we keep track of the nodes we have already inspected – this is
necessary in the case of cyclic lists. It seems likely that the methods would
terminate for all “usual” implementations of ListNode<X>. However, if the
behaviour of getNext()was not to return an existing reference, but to create a
new list node every time and return that, we couldn’t guarantee termination.

Concepts of Object-Oriented Programming

Incidentally, if we were to declare getNext()to be pure, and impose the
strictest definition of purity checks, this awkward case could be avoided.

