
Concepts of Object-Oriented Programming

Exercise 9

More on Polymorphism, aliasing and encapsulation of object structures

1) Class P1 can be instantiated with any type, while P2 has to be instantiated with

subtypes of A.
T1<:T2 <=> P1[T1] <: P1[T2], while P2 is invariant (T1=T2 <=> P2[T1] <:

P2[T2]).

Thus T1<:A <=> P1[T1] <: P1[A], while A=T1 <=> P2[T1] <: P2[A]

Then P1[A] is more general than P2[A].

val x : P1[A]=new P1[B] //correct

val y : P2[A]=new P2[B]

//wrong: found P2[B], required P2[A]

2) If we adopt a covariance annotation on T (that is, Matrix[+T]), the compiler rejects

the program with the following error:

error: covariant type T occurs in contravariant position in type T of

value elem

 def set(i : int, j : int, elem : T) : Unit = {

 ^

This happens because covariance annotation is allowed only for types that do not occur on

type parameters.

On the other hand, if we adopt a contravariance annotation (that is, Matrix[-T]), the

compiler still rejects the program with the following error:

error: contravariant type T occurs in covariant position in type

(int,int)T of method get

 def get(i : int, j : int) : T = {return m(i)(j);}

 ^

This happens because covariance annotation is allowed only for types that do not occur on

result type.

The following assignments are rejected:

val z : Matrix[String, String, String]=

 new Matrix[Object, Object, Object](Array(Array(new Object())))
val y : Matrix[Object, Object, Object]=

 new Matrix[String, String, String] (Array(Array(“foo”)))

val x : Matrix[String, String, Object]=

 new Matrix[String, String, String] (Array(Array(“foo”)))

while the following ones are accepted

val y1 : Matrix[Object, Object, String]=

 new Matrix[Object, Object, Object] (Array(Array(new Object())))

val z1 : Matrix[String, Object, String]=

 new Matrix[String, String, String] (Array(Array("foo")))

Concepts of Object-Oriented Programming

In this way we can hide some information from the client (that is, y1 can add only strings to

a matrix of objects, while z1 expects to receive Object values from method get).

3) The invariant can be broken by exploiting the fact that CList captures and stores

Coordinates objects.

CList list=new CList();

Coordinates c=new Coordinates(2, 1);

list.add(c);

c.x=0;

We can fix CList quite easily: we need to clone the Coordinates element before

storing it.

 public void add(Coordinates el) {

 if(el.x>el.y) super.add((Coordinates) el.clone());

 }

The limit of such an approach is that we create a copy of all the elements stored in the list.

On the other hand, it is not possible to make sure the invariant is preserved without creating

objects that are only in the current CList object. The main benefit of using alias sharing in

data structures is to minimize the consumption of memory. In addition, we may want to

share aliases on data structures, for instance, in order to further update the content of an

element in a list. The main drawback is that alias sharing does not allow us to reason locally

on the values stored in the data structure, since the object may have been stored by the

program that added elements, and so it may modify the content of the elements after they

were stored.

4) We have to introduce a ReadonlyHour interface, let Hour extend it, and impose

on class Time to return a ReadonlyHour.

public interface ReadonlyHour {

 public int getHour();

}

public class Hour implements ReadonlyHour {

 public int h=0;

 public int getHour() {return h;}

}

public class Time {

 private Hour hour;

 private int m=0;

 //invariant hour.h>=0 && hour.h<24

 Time (Hour hour) { this.hour = hour; }

 public void setHour(int h) {

 if(h>=0 && h<24) this.hour.h=h;

 }

 public ReadonlyHour getHour() {return hour;}

}

Concepts of Object-Oriented Programming

This solution is unsatisfactory, because we need to be able to assign to h, which makes it

possible for outsiders to also assign to h. For example: (a) the constructor of Time takes an

hour object as a parameter. This remains as an Hour object on the side of the client, which

can change h. (b) The client can downcast a ReadOnlyHour reference to Hour.

5)

We can violate the claim by changing the target object this passing through the field

spouse, for instance with spouse->spouse->money=0;

In order to do that, we have to suppose that the current object was initialized passing a value

different from null as second argument of the constructor.

6)

 A method is pure if and only if:

(1) It does not contain field updates

(2) It does not invoke non-pure methods

(3) It does not create objects

We cannot reasonably provide an analogous notion for constructors, since a constructor call

is guaranteed to modify the heap.

o Method allLessThan is not pure because it allocates new objects. Furthermore, it

must either make field updates or call non-pure methods in order to add all the

elements that are less than the given bound to the set returned by allLessThan.

Nonetheless, it seems likely it does not change the behavior of other methods, and we

would like to consider it as pure.

o We need to allow “pure” methods to allocate new objects, and to perform
modifications on those newly-allocated objects. In this case, we say that the method is
“weakly pure”

o A method is “weakly pure”, if:
(1) It only contains field updates on newly allocated objects

(2) It only invokes non-weakly-pure methods that are known to modify only

objects which have been allocated since the beginning of the weakly-pure

method execution. Note that to check this concept statically (and modularly),

one needs some kind of “modifies” clause or similar on methods, to be able to

deduce which objects a non-weakly-pure method might modify.

 For constructors, we can make the same requirements. Note that we can also
consider the object under construction as a newly-allocated object (i.e., it is ok to
make modifications to the receiver object in the constructor, as well as any objects
allocated during the constructor execution).

