
Concepts of Object-Oriented Programming

Exercise 5

Multiple Inheritance and Traits

October 29th

In-class Assessment: One or more questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

1) Consider the following C++ code:

class Person
{
 Person *spouse;
 string name;

public:
 Person (string n) { name = n; spouse = NULL; }

 bool marry (Person *p)
 {
 if (p == this) return false;
 spouse = p;
 if (p) p->spouse = this;
 return true;
 }

 Person *getSpouse () { return spouse; }
 string getName () { return name; }
 };

The method marry is supposed to ensure that a person cannot marry itself. Without changing
the code above, create a new object that belongs to a subclass of Person and marry it with
itself. Hint: use multiple inheritance. Explain exactly what happens.

2) Write three classes

• A normal queue class Queue
• A subclass of Queue that also stores (and allows clients to retrieve) the current sum

of all items in the queue, using the enqueue and dequeue methods
• A subclass of Queue that also stores (and allows clients to retrieve) the current

product of all items in the queue, using the enqueue and dequeue methods
We now want a class that supports both functionalities.
• Suppose that we want to use multiple inheritance to do that. We want to override the

enqueue and dequeue methods of the new class, such that the new methods call
the enqueue and dequeue methods of both the old classes. Are there any
problems with this approach?

Concepts of Object-Oriented Programming

• How do we attack the problem using traits? Does this fix the above-mentioned
problems? Are there any new problems with this approach?

3) Consider the following declarations in Scala:

class C
trait T extends C
trait U extends C
class D extends C

Find all the types that can be created with or without traits, as well as the subtype relations
between them.

4) Consider the following Scala code:

class Cell
{
 private var x:int = 0
 def get() = { x }
 def set(i:int) = { x=i }
}

trait Doubling extends Cell
{
 override def set(i:int) = { super.set(2*i) }
}

trait Incrementing extends Cell
{
 override def set(i:int) = { super.set(i+1) }
}

• What is the difference between the following objects?
 val a = new Cell
 val b = new Cell with Incrementing
 val c = new Cell with Incrementing with Doubling
 val d = new Cell with Doubling with Incrementing

• We use the following code to implement a cell that stores the argument of the set

method multiplied by four:
val e = new Cell with Doubling with Doubling
Why doesn’t it work? What does it do? How can we make it work?

• (Harder) Find a modularity problem in the above, or a similar, situation.

Hint: In Scala, fields of an object may be assigned types. Below we explain how.
A class declaration can be as follows:

class D
{
 type t<:C
 …

Concepts of Object-Oriented Programming

}

where C is the name of a known class. Class D can be instantiated as follows:

val c = new D { override type t = C1 }

where C1 must be a subtype of C. One can have access to the field c.t as a normal
type, i.e.

val o = new c.t

5) Assume all the definitions of the previous exercise. Assume that Cell has the
invariant that x is always even. Furthermore, consider a Scala method
 foo(x: Cell with Doubling with Incrementing) {…}

• During the execution of foo, if we assume that all subclasses of Cell respect
behavioural subtyping, then are we allowed to conclude that x.get() always
returns an even number?

• Answer the same question, with an extra assumption that the only traits that extend
Cell are Incrementing and Doubling.

• We propose the following solution to support traits together with behavioral
subtyping:

Assume C is a class with specification S. Each time we create a new trait T that
extends C, we must ensure that C with T also satisfies S.

 Show a counterexample that demonstrates that this approach does not work

