
Concepts of Object-Oriented Programming

Exercise 10

1. The general typing rules are any>:peer and any>:rep since any is more restrictive
than rep and peer. Following these rules, we obtain that
a. peer Object foo(any String el) overrides any Object foo(peer

String el)
b. rep Object foo(any String el) overrides rep Object foo(peer

String el), that overrides any Object foo(peer String el)
c. peer Object foo(any String el) overrides peer Object foo(rep

String el)

2. The general rules are:

a. readwrite T <: readonly T
b. when we access a field/method, we take the upper bound of the

readonly/readwrite modifiers.

Program 1: does not compile since obj2 is readonly, and we try to assign to a
readwrite variable the field of one of the objects contained in it.
Program 2: does not compile since field y in B is readonly.
Program 3: compiles!
Program 4: does not compile since obj is readonly and it is passed to the constructor of
B as first argument.
Program 5: compiles!
Program 6: compiles!

3.
a.

i. setElems is capturing an external array
ii. getElems is leaking the internal representation

b.
i.

void capturing(ArrayList al) {
 int[] myarr = new int[10];
 for(int i=0; i < myarr.length; ++i)
 myarr[i] = i;
 al.setElems(myarr);
 myarr[0] = 42;
}
In this example, the last line changes the internal representation of the
ArrayList because of the capturing problem.

ii.
void leaking(ArrayList al) {
 int[] myarr = al.getElems();
 myarr[0] = 42;
}
In this example, the last line changes the internal representation of the
ArrayList because of the leaking problem.

Concepts of Object-Oriented Programming

c+d.

class ArrayList{
protected rep int[] array;
protected int next;

public void add(int i) {
 if(next==array.length){
 resize();
 }
 array[next] = i;
 next++;
}

public peer int[] getElems() {
 peer int[] result =
 new peer int[array.length];
 System.arraycopy
 (array, 0, result, 0, array.length);
 return result;
}

public void setElems(any int[] ia){
 array = new rep int[ia.length];
 System.arraycopy
 (ia, 0, array, 0, ia.length);
 next = ia.length;
}

protected void resize() {
 if(next==array.length) {
 int[] oa = array;
 array = new rep int[2*oa.length];
 System.arraycopy
 (oa, 0, array, 0, oa.length);
 }
}

Public peer String toString() {
 if(array.length == 0) return "[]";
 StringBuffer buf = new peer
 StringBuffer("[" + array[0]);

 for(int i=1; i < next; ++i) {
 buf.append(", " + array[i]);
 }
 buf.append("]");
 return buf.toString();
}

}

Concepts of Object-Oriented Programming

4.

class Producer {
 rep int[] buf;
 int n;
 peer Consumer con;
 Producer() {
 buf = new rep int[10];
 }
 void produce(int x) {
 buf[n] = x;
 n = (n+1) % buf.length;
 }
}

class Consumer {
 any int[] buf;
 int n;
 peer Producer pro;
 Consumer(peer Producer p)
{
 buf = p.buf;
 pro = p;
 p.con = this;
 }
 int consume() {
 n = (n+1) % buf.length;
 return buf[n];
 }
}

class Context {
 rep Producer p;
 rep Consumer c;

 Context(){
 p = new rep Producer();
 c = new rep Consumer(p);
 }

 public void run() {
 for(int i=-5; i <=5; ++i){
 p.produce(i);
 if(i%2 == 0)
 c.consume();
 }
 }
}

Concepts of Object-Oriented Programming

5.

a. Redraw the subtype relation diagram below to include the newly introduced type of the
universe type system.

b.
► peer rep lost any down
self peer rep lost any down
peer peer down lost any down
rep rep down lost any down
lost lost lost lost any lost
any lost lost lost any lost
down down down lost any down

c. The field write exp.f = v; is correctly typed if:
• exp is correctly typed
• τ(v) <: τ(exp) ► τ(f)
• τ(exp) ► τ(f)not equal to lost and down

peer T rep T

lost T

self T

any T

down T

Concepts of Object-Oriented Programming

6.
a. With the current system we cannot annotate this example to ensure encapsulation.

b. The problem is typing the result of clone – we want the caller of the method to be

able to modify the result (hence view the returned reference as either peer or rep),
but we cannot know where the caller is in the hierarchy and hence cannot type the
result suitably, in general (the caller could potentially be a peer, owner, etc..).

This seems however to be an implementation which would ideally be supported –
intuitively there is no violation of encapsulation because the newly created list in the
clone method is not aliased at any point during execution – its sole purpose is to be
returned to the caller and manipulated from within their context. Intuitively, we
would like to support the possibility of postponing the decision of what the owner of
the cloned list will be, until after it has been returned to the calling context.

If we are to allow objects whose owners are not immediately decided, these should
naturally not be considered the rep or peer of objects which already have an owner.
Furthermore, when we reach the point in execution when we wish to decide on the
owner for the cloned list, we need to be careful – any aliases to the list which
consider it to have an “unassigned” owner will be dangerous as soon as we
introduce a reference which specifies its ownership. To avoid such aliasing issues
before an owner is determined, we can try to enforce that only a single (unique)
reference exists to an unowned object at any one time.

c. We would like to describe an object that has exactly one reference pointing to it

(and no owner yet decided) – we shall call it a unique reference and add it as a
new modifier in our type system. This modifier will not be used on field types.
We need to enforce additional restrictions which guarantee that uniqueness is
preserved (and hence, that we won’t need to worry about aliasing when we
choose an owner later).

The obvious place to prevent aliasing is in assignments. A unique reference can
only be assigned to from another unique reference, and the latter pointer must
then be invalidated (to avoid violating the uniqueness guarantee) – it must be re-
assigned with some other value before it can be used again. In this way we can
be certain that only one (usable) reference exists at all times – we can enforce
this requirement by doing the same kind of dataflow analysis as Java does for
definite assignment of local variables (guaranteeing that such variables are
initialized before being read).

Argument passing can be treated similarly to assignment – the same rules apply.
We must also be careful that a unique reference is not passed twice to the same
call.

In order to support the creation of objects without owners, we can add an extra
unique annotation on a constructor declaration, whose meaning is to guarantee
that the created object does not get aliased during the execution of the
constructor. Within such a constructor body, we will treat the receiver as a self
reference, as usual, but with the extra restrictions that it cannot be aliased,
passed as an argument or have methods called on it (these restrictions can be
relaxed, but it complicates the solution). A “unique” constructor, such as

Concepts of Object-Oriented Programming

public unique C(){…}
can be called by a new expression of the form new unique C() and returns a
unique reference.

A unique reference can be cast to a rep, peer or any reference, and the cast
invalidates the original reference (as above, the reference will have to be
assigned a new value before it can be read from again, enforced by definite
assignment checks). In this way we can “assign ownership” to such a reference,
by an assignment such as

this.repField = (rep) new unique C();

Because the old reference is invalidated, and because it was guaranteed to be
unique, we know that this “assignment” of ownership will be consistent – from
now onwards the object will be treated as if it had always been a rep, peer, or
whatever is chosen. Note that if we choose to cast the reference to “any” at this
point, no one will ever know its owner (which is still sound, since no one will be
able to modify its state either).

Here is how to extend the “viewpoint adapation” type combinator:

► peer rep lost any unique
self peer rep lost any unique
peer peer lost lost any unique
rep rep lost lost any unique
lost lost lost lost any unique
any lost lost lost any unique
unique lost lost lost any unique

Various extensions to this idea are possible. For example, one can allow unique to be a subtype
of any, which would then permit any references to alias a unique reference. This is harmless,
since any references do not guarantee any information about the heap/ownership topology.

We might also like to permit method calls on unique references. Here we need something
similar to the “unique” annotation on constructors – we need to enforce that the receiver of the
method is not aliased. Furthermore, we might like to be able to have receivers/arguments which
cannot themselves be returned as “unique”, but which are still forced not to be aliased – this is
necessary if we want to call a method on “this” in a constructor, for example, since the
reference to “this” cannot be invalidated as it cannot be assigned.

One could also allow more flexibility during the construction of such objects. For example, it is
potentially ok for objects referred to by unique references to create their own peers and reps,
and to mutually refer to each others fields. In this way we can build up an object structure in a
“bubble”, in which many objects mutually refer to each other, but the ultimate owner of the
object structure is not yet decided. This concept is weaker than uniqueness (it is known as
“external uniqueness” in research papers). This is also similar to the way in which object
initialisation for non-null types is handled by the Construction Types later on in the course.

Concepts of Object-Oriented Programming

The annotation follows:
Notice that the clone method uses a unique constructor, and that no action can be done on the
unique list before it is converted to rep.

public class List{

 …

 public void addFirst(int x) {
 head = new Node(x,head);
 }

 public unique List clone(){
 return new unique List(this);
 }

 private unique List(any List other) {
 head = null;
 rep Node h,p = null;
 for (any Node n=other.head;n!=null;n=n.next){
 h = new Node(n.val,null);
 if (p!=null)
 p.next=h;
 else
 head = h;
 p = h;
 }
 }

 rep Node head;
 private class Node{
 Node(int val, peer Node next){
 this.next = next;
 this.val = val;
 }
 peer Node next;
 int val;
 }
}

class Client{
 rep List list;

 void f(any List list){
 this.list = (rep) list.clone();
 this.list.addFirst(42);
 }

}

