
Concepts of Object-Oriented Programming

Exercise 5

Multiple Inheritance and Traits

1) The following C++ code breaks the invariant:

class B : public Person
{ public: B (string n) : Person (n) {} };
class C : public Person
{ public: C (string n) : Person (n) {} };
class D : public B, public C
{ public: D (string n) : B(n), C(n) {} };

void marryMyself ()
{
 D me ("Me");
 B *b = &me;
 C *c = &me;
 b->marry (c);
 if (b->getSpouse ()) cout << b->getSpouse ()->getName ();
}

The object me contains an object of class B and an object of class C. The addresses of these
objects are different and they are obtained using the assignments to b and c respectively.
During the call b->marry (c), the condition p == this compares these two addresses
and finds them not equal.

2) Here are the three requested classes:

class Queue
{
 int[] contents;
 int size;

public:
 Queue() { contents = new int[100]; size = 0; }
 void enqueue(int x) {…}
 int dequeue() {…}
 int getSize() { return size; }
};

class SumQueue : virtual public Queue
{
 int sum;

public:
 SumQueue() : Queue() { sum = 0; }

Concepts of Object-Oriented Programming

 void enqueue(int x)
 {
 sum+=x;
 Queue::enqueue(x);
 }

 int dequeue()
 {
 int r = Queue::dequeue();
 sum-=r;
 return r;
 }

 int getSum() { return sum; }
};

class ProductQueue : virtual public Queue {…};

class SuperQueue : public ProductQueue, SumQueue
{
public:
 SuperQueue()
 : public Queue(), ProductQueue(), SumQueue() {}

 void enqueue(int x)
 {
 SizeQueue::enqueue(x);
 SumQueue::enqueue(x);
 }

 int dequeue()
 {
 int r = SizeQueue::dequeue();
 SumQueue::dequeue();
 return r;
 }
};

One obvious problem is that the enqueue and dequeue methods of the superclass are
called twice. An item is enqueued and dequeued twice. Interestingly, this behaves exactly
like a queue, but the capacity is half of the capacity of the original and the getSize
method reports the correct size multiplied by 2.
 We can use traits and linearization to ensure that the enqueue/dequeue methods are
called only once. Here is the relevant Scala code:

class Queue
{
 …
 def enqueue(x:int) = {…}
 def dequeue():int = {…}
}

Concepts of Object-Oriented Programming

trait Sum extends Queue
{
 var sum:int = 0
 override def enqueue(x:int) =
 { sum+=x; super.enqueue(x) }
 override def dequeue():int =
 { var x = super.dequeue; sum=sum-x; x }
}

trait Prod extends Queue
{
 var count:int = 1
 override def enqueue(x:int) =
 { prod*=x; super.enqueue(x) }
 override def dequeue():int =
 { var x = super.dequeue; prod=prod/x; x }
 // side remark: this assumes no zeros in the queue!
}

Now, an object of Queue with Sum with Prod has both functionalities, but calls each
underlying enqueue/dequeue method only once. The problems of the multiple inheritance
solution do not appear here.

3) Let X’,Y’ be the two base classes from which we derive X and Y by mixing in traits.

Let A be the set of all traits mixed in to the first class and B the set of all traits mixed in to
the second class. The rule is as follows:
 X<:Y if and only if X’<:Y’ and A⊇B.

 Note: The above rule applies in our example, but it is not a general rule for subtyping
in the presence of traits.
 Notice that D with T with U and D with U with T are equivalent types
(subtypes of each other)! Since, as we saw, they can describe different behaviour, this
causes a subtle problem for behavioral subtyping!

4)

• Object a behaves like a normal cell. Object b is also a cell, but it increases the stored
value by 1. The interesting difference is between c and d. They are both cells. They
have mixed in exactly the same traits. However, calling set(i) has a different effect
on them: it stores 2i+1 to the first one and 2(i+1) to the second one.

• Trait Doubling will not get mixed in twice, as perhaps the programmer would
expect. Scala rejects this statically.
 The problem can be bypassed in an ugly way, by creating a new trait Doubling2
that behaves exactly like Doubling and then introducing e = new Cell with
Doubling with Doubling2. Here is our first try:
 trait Doubling2 extends Doubling
 val e = new Cell with Doubling with Doubling2

Concepts of Object-Oriented Programming

The code passes through, but dynamically e behaves as if it were a Cell with
Doubling. Scala lets the code go through, because Doubling2 may introduce new
functionality, but refuses to include Doubling twice in the linearization.
 Our last try, the ugliest of all, but the one which will finally work, is to create a whole
new trait from scratch, reusing nothing:
 trait Doubling3 extends Cell
 {
 override def set(i:int) = { super.set(2*i) }
 }
 val e = new Cell with Doubling with Doubling3
And now e.set quadruples its argument as expected.

• We can produce the problem using the traits provided, but here is a more interesting
case. Consider the following code:

class C
{
 def m() = { println("m executing") }
}

trait Logging extends C
{
 val logFileName: String
 override def m() =
 {
 println("Logging to: " + logFileName)
 super.m()
 }
}

class C1 extends
 C with Logging
 { override val logFileName = "A" }
 // this class logs all calls to m
 // to a file named "A"

Suppose now that we give the client the classes C, C1 and the trait Logging. The client
has no knowledge that C1 was created using Logging. The client wishes to log calls to m
to a file called “B”. The client does this for both classes C, C1.

class C2 extends
 C with Logging
 { override val logFileName = "B" }

class C3 extends
 C1 with Logging
 { override val logFileName = "B" }

object LogEx1
{
 def main (args:Array[String]) =
 {

Concepts of Object-Oriented Programming

 val a = new C2
 val b = new C3
 a.m
 b.m
 }
}

The call a.m works as it should: the method call is logged to file “B” only.
 However, the call b.m, does not behave as it should: it logs the call to m only to file
“B”, even though it is an instance of C1, which is supposed to log calls to m to file “A” too.
 The problem is that, unbeknownst to the client, the trait Logging has been mixed in
twice. This overrode its initial behaviour, interrupting the logging to “A”.

5)

• No. The dynamic type of x can be mixing in traits that break the invariant
• No! A parameter of type Cell with Incrementing with Doubling is

allowed by Scala
• Consider the following example:
 class C
 {
 var x:int;
 def foo() = {} //ensures true
 }
 trait T1 extends C
 {
 override foo() = { x=x+1 } //ensures x>old(x)
 }
 trait T2 extends C
 {
 override foo() = { x=x-1 } //ensures x<old(x)
 }
 Both C with T1 and C with T2 are behavioral subtypes of C. But C with T1
with T2 is not a subtype of C with T1.

