
Concepts of Object-Oriented Programming

Exercise 6

Bytecode verification

November 5th

1) Consider the following type hierarchy:

Suppose that the method f of class E has the following signature:
 A f(boolean b1, boolean b2);
and three local variables x, y, z. It is known that the initial state is
 ([], [E,boolean,boolean,C1,C2,A])
The maximal stack size is equal to 1.

The method f has the following body:

 0: iload_1
 1: ifeq 22
 4: iload_2
 5: ifeq 12
 8: aload_3
 9: goto 14
 12: aload_4
 14: astore_3
 15: aload_5
 17: astore_4
 19: goto 0
 22: aload_3
 23: areturn

• Verify that the program is type safe.
• Provide the minimal type information that enables verification of the bytecode

without a fixpoint computation.

Note: In this example, ifeq x pops an integer from the stack and jumps to line x if the integer
is equal to zero.

A

B

C1 C2

Concepts of Object-Oriented Programming

2) Consider the following Java classes

 class C

 class A extends C {
 void foo() {…}
 }

 class B extends C {
 void foo() {…}
 }

Consider the following bytecode program (suppose that it is produced when compiling a
method in class C):

 0: iconst_5
 1: ifeq 4
 2: new A
 3: goto 5
 4: new B
 5: invokevirtual A.foo()

 ifeq jumps to the given index if the integer value at the top of the stack is equal to
zero. new D creates a new instance of a class D and pushes a reference to this instance onto the
operand stack. invokevirtual D.m() invokes method m() of class D. For this statement,
suppose that the type checker checks that the type of the reference at the top of the stack is D or
one of D’s subtypes.

• Show what will be computed by the type inference algorithm.
• The type checker will not validate this program. Why?
• Propose a modification of the verifier in order to accept this program.
• Modify the bytecode program (without removing the if statement) in order

to obtain a program that is validated by the original type checker, and whose
runtime behavior is exactly the same as that of the original program.

Now consider replacing the invokevirtual A.foo() statement with an
invoke foo() statement that invokes method foo() on the class of the reference
that is at the top of the operand stack.

• The verifier will fail to statically enforce that method foo() is defined on

the type the reference at the top of the operand stack. Why?
• What happens instead if we do not have a static verifier but only dynamic

checks?
• Propose a modification of the verifier in order to accept this program.
• Can you imagine why the Java bytecode designers decided to have the

invokevirtual statement instead of something like the invoke statement we
considered above?

Concepts of Object-Oriented Programming

3) Consider the following code:

interface IFace {
 void m();
}
class Cl1 implements IFace {

 public void m() { System.out.println("Cl1.m"); }
}
class Cl2 implements IFace {
 public void m() { System.out.println("Cl2.m"); }
}
public class Test1 {
 public static void main(String[] args) {
 xxx(true);
 xxx(false);
 }

 public static void xxx(boolean param) {
 IFace iface = null;
 if(param) { iface = new Cl1();}

else { iface = new Cl2(); }
 iface.m(); }}

• What type will be calculated for the variable iface of the method xxx during the

bytecode verification?
• When can we decide that iface.m() is safe to call? During bytecode verification,

or execution?
• What if IFace was a class instead of an interface? What if it was an abstract class?

4) The Java bytecode verifier is more permissive than the Java type system. Provide a
program that demonstrates this.

5) The bytecode type inference algorithm rejects a verified program if there are different

stack sizes for input values of a join point.

• Provide a bytecode program that is rejected because of this limitation but that does not
cause runtime errors.

• Is it possible to construct a bytecode verification algorithm that avoids this limitation?
If yes, then provide an updated algorithm. If no, then show that it can’t be done.

• How serious is this restriction from a pragmatic perspective?

