Concepts of Object-Oriented Programming

Exercise 3

Behavioral Subtyping

1.
class sortedArray{
int[] A;
invariant A # null;
invariant V 1:int | O <1 A 1 < A.length -1
= A[1] < AL[i+1];
requires V 1:int | O <1 A 1 < A.length
= X # A[1];
ensures A.length = old(A.length) + 1;
ensures 3 10:int | (0 < 10 A 10 < A_length)
AWiIint] 0O<i1 A1 <10 =
ALi] = old(ALID)
A (Y izint] 10 <1 A 1 < A_length
= A[i] = old(A[i-1]))
A A[10] = x;
void i1nsert (int xX){...}
by
Here is another way to express the last ensures clause. First of all we need to introduce
an auxiliary predicate contains:
contains (L, xX) = 3 j:-int | 0<J A j<L.length A L[J]=x
Using this predicate we can express the desired property as:
ensures V 12int | contains (A, 1) <
i=x v contains (old(A), 1)
2.
|:)resuper:> Presub Posts,p= I:)()Stsuper Behavioral subtyping
@) Yes Yes Yes
(b) Yes No No
(c) Yes Yes Yes
(d) No Yes No
(e) Yes Yes Yes
()] Yes Yes Yes

3. The proposed example violates the behavioral subtyping rules that we currently have.
Nevertheless class B can be used in any context where class A can be used. The source
of this mismatch is that we ignore preconditions when checking post-conditions. So if

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Concepts of Object-Oriented Programming

we want to check that a class Sub is a behavioral subtype of a class Super it is enough

to check that for each inherited method m:
0 Presuper=> Présup
(0] Old(Presub) A\ Postsub = Postsuper

We can see that the new rules are satisfied for classes A and B:
. p==p*p = p==0 || p==1
o result==2 && (p==0 || p==1) = p<result

@) All of the classes have the invariant content = null , and in addition

the following specific invariants:
o ArrayNonDecreasing
invariant V 1:int | O <1 A 1 < content.length -1

= content[i] < content[i+1];

o Arraylncreasing
invariant V 1:int | O <1 A 1 < content.length -1

= content[i] < content[i+1];

o ArrayNoDuplicates
invariant V i1,j:-int |

O <1 A 1 < content.length)
0 < jJ A J < content.length)

IA

=LA

=
= content[i1] # content[]];
(b) Arraylncreasing is a behavioral subtype of

ArrayNonDecreasing and ArrayNoDupl icates.
(©) An example of such a method is an addToFront(int X) method. The

appropriate preconditions for this method are the following:
o ArrayNonDecreasing
requires content.length > 0 = x < content[0];
o Arraylncreasing
requires content.length > 0 = x < content[0];
o ArrayNoDuplicates
requires V 12int | O < i1 A 1 < content.length

= X # content[i];
We can see that the precondition of the method of class
Arraylncreasing is not implied by the preconditions of the methods of the other
two classes, which violates the previous behavioral subtype relations.

7AN
7AN

(@)

class IncCounter

{
ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Concepts of Object-Oriented Programming

int key;
IncCounter O { key = 0; }

//ensures key == old(key)+1 && result == old(key)
int generate () { return key++; }

+

(b) The postcondition for generate is
key == old(key)-1 && result == old(key)
and it is easy to see that it does not refine the postcondition of
IncCounter.generate.
(©) The abstract parent class can be declared using a helper pure method
boolean used(int). Informally, the meaning of the helper method is:

X has been used as a key before = used(x)

Furthermore, the correctness of the class relies on the property that once a
number is used, it never becomes unused again. This can be expressed with a
two-state history constraint.

The definitions of the classes follow:

abstract class GenerateUniqueKey

{
abstract boolean used(int);
//constraint vx:int | old(used(x)) = used(X)
//ensures 'old(used(result)) && used(result)
abstract int generate ();
3
class IncCounter // .. and similarly for DecCounter
{
int key;
IncCounter () { key = 0; }
boolean used (int Xx)
{ return x < key; }
//ensures key == old(key)+1 && result == old(key)
int generate () { return key++; }
¥

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

