
Concepts of Object-Oriented Programming

Exercise 10

Ownership type system

3
rd

 December

1. Consider the following method signatures:

peer Object foo(any String el);

peer Object foo(rep String el);

rep Object foo(any String el);

any Object foo(peer String el);

rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other.

2. Consider the following classes:

class A {

 readwrite StringBuffer n1=…;

 readonly StringBuffer n2=…;

}

class B {

 readwrite A x;

 readonly A y;

 public B(readwrite A x, readonly A y) {

 this.x=x;

 this.y=y;

 }

}

Check which programs are correct and explain why.

Program 1

readwrite A obj= new A();

readonly B obj2= new B(obj, obj);

readwrite StringBuffer v=obj2.y.n1;

Program 2

readwrite A obj=new A();

readwrite B obj2=new B(obj, obj);

readwrite StringBuffer v=obj2.y.n1;

Program 3

readwrite A obj=new A();

readwrite B obj2=new B(obj, obj);

readwrite StringBuffer v=obj2.x.n1;

Program 4

readonly A obj=new A();

readonly A obj2=new A();

readwrite B obj3=new B(obj,obj2);

readwrite StringBuffer v=obj3.y.n1;

Program 5

readwrite A obj=new A();

readonly A obj2=new A();

readwrite B obj3=new B(obj, obj2);

readonly StringBuffer v=obj3.y.n1;

Program 6

readwrite A obj=new A();

readonly A obj2=new A();

readwrite B obj3=new B(obj,obj2);

readonly StringBuffer v=obj3.y.n2;

Concepts of Object-Oriented Programming

3. Look at the following program:

class ArrayList {

class ArrayList {

a. What aliasing problems can arise in the example program?

b. Write example code for every problem.

c. Change the code of ArrayList in a way that guarantees that there are no more aliasing

problems.

d. Annotate ArrayList with appropriate ownership type modifiers

class ArrayList {

protected int[] array;

protected int next;

public void add(int i) {

 if(next==array.length){

 resize();

 }

 array[next] = i;

 next++;

}

public int[] getElems() {

 return array;

}

public void setElems(int[] ia){

 array = ia;

 next = ia.length;

}

protected void resize() {

 if(next==array.length) {

 int[] oa = array;

 array = new int[2*oa.length];

 System.arraycopy

 (oa, 0, array, 0, oa.length);

 }

}

public String toString() {

 if(array.length == 0) return "[]";

 StringBuffer buf =

 new StringBuffer("[" + array[0]);

 for(int i=1; i < next; ++i) {

 buf.append(", " + array[i]);

 }

 buf.append("]");

 return buf.toString();

}

}

Concepts of Object-Oriented Programming

4. Annotate the following program with appropriate ownership type modifiers to maximize the

buffer, the producer, and the consumer encapsulation:

5. Encapsulation question from a previous exam!
The Universe type system allows the following ownership modifiers peer, rep, self, lost,

and any - to structure the object store and to restrict how references can be passed and used.

We want to extend the Universe type system by adding one more modifier down. This

modifier is introduced to denote references to objects in the same context as this or in the

context (transitively) owned by an object in the same context as this.

 Redraw the subtype relation diagram below to include the newly introduced type of the

universe type system.

 Define the most specific (in terms of the context information it conveys) type

combinator function ►by filling the table below (first argument: left-most cell of the

rows, second argument: top-most cell of the columns).

Recall that the type combinator function ► is used, in particular, to determine the

owner of an object referenced by a field access. More exactly, if the ownership

class Producer {

 int[] buf;

 int n;

 Consumer con;

 Producer() {

 buf = new int[10];

 }

 void produce(int x) {

 buf[n] = x;

 n = (n+1) % buf.length;

 }

}

class Consumer {

 int[] buf;

 int n;

 Producer pro;

 Consumer(Producer p) {

 buf = p.buf;

 pro = p;

 p.con = this;

 }

 int consume() {

 n = (n+1) % buf.length;

 return buf[n];

 }

}

class Context {

 Producer p;

 Consumer c;

 Context(){

 p = new Producer();

 c = new Consumer(p);

 }

 public void run() {

 for(int i=-5; i <=5; ++i){

 p.produce(i);

 if(i%2 == 0)

 c.consume();

 }

 }

}

any T

peer T rep T

lost T

self T

Concepts of Object-Oriented Programming

modifier of x is Tx and the ownership modifier of a field f is Tf , then the ownership

modifier assigned to the field access x.f is determined as Tx►Tf.

► peer rep lost any down

self

peer

rep

lost

any

down

a. Define type checking rules for field update.

Concepts of Object-Oriented Programming

6. (harder) Consider the following code:

a. Can you annotate these classes with ownership?

b. What problems do you encounter – are these because of an aliasing issue with the

implementation or the type system?

c. Can you think of a way to modify the ownership type system to allow for this

example to be typed:

i. What kind of topological property would you like to describe?

ii. What rules do you need to preserve this property? Think about field reads

and field writes

iii. How does this property relate to the already defined ones (rep,peer etc)? can

you suggest rules for casting?

public class List{

 …

 public void addFirst(int x) {

 head = new Node(x,head);

 }

 public List clone(){

 return new List(this);

 }

 private List(List other){

 head = null;

 Node p = null;

 for (Node n=other.head;n!=null;n=n.next){

 Node h = new Node(n.val,null);

 if (p!=null)

 p.next=h;

 else

 head = h;

 p = h;

 }

 }

 rep Node head;

 private class Node{

 Node(int val, Node next){

 this.next = next;

 this.val = val;

 }

 Node next;

 int val;

 }

}

class Client{

 void f(any List list){

 this.list = list.clone();

 this.list.addFirst(42);

 }

rep List list;

}

