
Concepts of Object-Oriented Programming

Exercise 3

Behavioral Subtyping

1.
class sortedArray{

 int[] A;

 invariant A  null;

 invariant  i:int | 0  i  i < A.length -1

  A[i] < A[i+1];

 requires  i:int | 0  i  i < A.length

  x  A[i];

 ensures A.length = old(A.length) + 1;

 ensures  i0:int | (0  i0  i0 < A.length)

  ( i:int | 0  i  i < i0 

 A[i] = old(A[i]))

  ( i:int | i0 < i  i < A.length

  A[i] = old(A[i-1]))

  A[i0] = x;
 void insert (int x){...}

}

Here is another way to express the last ensures clause. First of all we need to introduce

an auxiliary predicate contains:

contains (L, x) = ∃ j:int | 0j  j<L.length  L[j]=x
Using this predicate we can express the desired property as:

ensures  i:int | contains (A, i) 

i=x  contains (old(A), i)

2.

a. The two classes have no behavioural subtyping relation. The invariant of

SortedArrayEven is stronger than that of SortedArray, because it includes

an extra conjunct:

  i:int | 0  i  i < A.length -1  A[i] % 2 == 0

However, using insert with an odd parameter now breaks the invariant.

b. If we want to use SortedArrayEven as a behavioural subtype of SortedArray,

then we can strengthen the precondition of SortedArray.insert, by

conjoining x%2 == 0 to it. This however is not what SortedArray is meant to

do.

c. The problem disappears if we forbid mutating methods: there is now no way for a

method to break the stronger invariant.

d. The specification for NoDupArray is as follows:

Concepts of Object-Oriented Programming

class NoDupArray{

 int[] A;

 invariant A  null;

 invariant  i,j:int |

 0  i  i<j  j< A.length  A[i] ≠ A[j];

 requires  i:int | 0  i  i < A.length

  x  A[i];
 ensures A.length = old(A.length) + 1;

 ensures  i:int |

 contains (A, i)  i=x  contains (old(A), i)

 void insert (int x){...}

}

This class is a behavioural supertype of SortedArray. The reason that the mutator

method insert does not pose a problem here is that its contract does not break the

invariant of the subclass.

3.

 Presuper Presub Postsub Postsuper Behavioral subtyping

(a) Yes Yes Yes

(b) Yes No No

(c) Yes Yes Yes

(d) No Yes No

(e) Yes Yes Yes

(f) Yes Yes Yes

4. The proposed example violates the behavioral subtyping rules that we currently have.

Nevertheless class B can be used in any context where class A can be used. The source

of this mismatch is that we ignore preconditions when checking post-conditions. So if

we want to check that a class Sub is a behavioral subtype of a class Super it is enough

to check that for each inherited method m:

o Presuper Presub

o old(Presuper)  Postsub  Postsuper

We can see that the new rules are satisfied for classes A and B (we assume that p is an in-

parameter – this means that old(p) is equal to p):

 p==p*p  p==0 || p==1

 result==2 && p==p*p  p<result

5.
a.

Concepts of Object-Oriented Programming

class IncCounter

{

 int key;

 IncCounter () { key = 0; }

 //ensures key == old(key)+1 && result == old(key)

 int generate () { return key++; }

 }

b. The postcondition for generate is
 key == old(key)-1 && result == old(key)

and it is easy to see that it does not refine the postcondition of
IncCounter.generate.

c. The abstract parent class can be declared using a helper pure method

boolean used(int). Informally, the meaning of the helper method is:

 x has been used as a key before ⇒ used(x)

Furthermore, the correctness of the class relies on the property that once a

number is used, it never becomes unused again. This can be expressed with a

two-state history constraint.

The definitions of the classes follow:

 abstract class GenerateUniqueKey

 {

 abstract boolean used(int);

 //constraint x:int | old(used(x))  used(x)

 //ensures !old(used(result)) && used(result)

 abstract int generate ();

 }

 class IncCounter // … and similarly for DecCounter

 {

 int key;

 IncCounter () { key = 0; }

 boolean used (int x)

 { return x < key; }

 //ensures key == old(key)+1 && result == old(key)

 int generate () { return key++; }

 }

