
Concepts of Object-Oriented Programming

Exercise 5

Binary Methods and Multiple Inheritance

October 28
th

, 2011

In-class Assessment: One or more questions from this sheet will be used for the in-class

assessment. No notes are allowed during the assessment.

1) Consider a class Matrix to implement matrices with integer values, and its subclass

SparseMatrix that implements sparse matrices. Consider now the add and multiply

methods. These operations should be implemented differently depending on the (runtime)

types of both the receiver and the argument the methods are applied to, i.e., we need binary

methods to handle this situation.

a. Sketch how to implement the add method (the details of how to perform the actual

addition are not essential) in both Matrix and SparseMatrix based on each of the

following approaches to binary methods:

i. Explicit type tests to check the runtime type of the argument

ii. Double invocation (Visitor pattern)

iii. Multiple dispatch

b. Which approach seems most elegant/appropriate for this example?

c. Suppose that, for reasons of compatibility with existing code, we are not allowed to

change the existing definition of the Matrix class. For each of the three approaches

above, consider how feasible it is to adapt to this constraint. Does your answer depend

on how the existing Matrix class is actually defined?

2) Suppose we introduce a further class ZeroMatrix which is a subclass of

SparseMatrix, representing the zero matrix (in particular, all instances of this class

should be indistinguishable in behaviour). We observe that we can improve efficiency still

further by implementing simplified versions of add and multiply when zero matrices

are involved. We observe that we can overload the definition of add in Matrix to treat the

special case of a ZeroMatrix argument with a simplified implementation.

a. What should the result of a call to add be, when the argument is a ZeroMatrix?

What happens if we simply overload the definition in Matrix?

b. Symmetrically, when the receiver of a call to add is a ZeroMatrix we can use a

more efficient implementation. Sketch how to extend each of the three approaches

from the previous question for implementing add as a binary method.

c. In the case of multiple dispatch, there is an additional requirement – what is it? Is this

extra requirement reasonable?

d. Which of the approaches seems most elegant/appropriate for this example now?

e. Suppose that, for reasons of compatibility with existing code, we are not allowed to

change the existing definitions of either the Matrix or SparseMatrix classes. By

comparing with your sketches for the previous question, consider how feasible it is to

adapt to this constraint.

Concepts of Object-Oriented Programming

3) Consider the following C++ code:

class Person

{

 Person *spouse;

 string name;

public:

 Person (string n) { name = n; spouse = NULL; }

 bool marry (Person *p)

 {

 if (p == this) return false;

 spouse = p;

 if (p) p->spouse = this;

 return true;

 }

 Person *getSpouse () { return spouse; }

 string getName () { return name; }

 };

The method marry is supposed to ensure that a person cannot marry itself. Without changing

the code above, create a new object that belongs to a subclass of Person and marry it with

itself. Hint: use multiple inheritance. Explain exactly what happens.

4) Consider the following C++ code:

class Person

{

 bool likesDiamonds;

public:

 Person (bool l) { likesDiamonds = l; }

};

class Programmer : virtual public Person

{

public: Programmer () : Person (false) {}

// diamonds are a programmer's worst enemy

};

It is expected that !likesDiamonds is an invariant in class Programmer. Use virtual

inheritance to break this invariant, without altering the above code.

5) Write three classes

 A normal queue class Queue

 A subclass of Queue that also stores (and allows clients to retrieve) the current sum

of all items in the queue, using the enqueue and dequeue methods

Concepts of Object-Oriented Programming

 A subclass of Queue that also stores (and allows clients to retrieve) the current

product of all items in the queue, using the enqueue and dequeue methods

We now want a class that supports both functionalities.

 Suppose that we want to use multiple inheritance to do that. We want to override the

enqueue and dequeue methods of the new class, such that the new methods call

the enqueue and dequeue methods of both the old classes. Are there any

problems with this approach?

 How do we attack the problem using traits? Does this fix the above-mentioned

problems? Are there any new problems with this approach?

