
Concepts of Object-Oriented Programming  

 

  

Exercise 4 
 

 

Inheritance 

 

October 21
st
, 2011 

 

Unless otherwise stated, assume we are working with a language (such as Java) in which 

method dispatch is dynamic for the type of the receiver and static for the type of the arguments. 

 

1. Consider two classes Stack and Queue, implementing the obvious data structures, 

both of which have methods with the following signatures: 
void push(Object o); 

Object pop(); 

bool isEmpty(); 

int size(); 

void reverse(); 

 Despite having identical signatures, these two classes cannot be behavioral 

subtypes of one another. Why not? 

 When implementing these two classes, is there any possibility of code re-

use? If so, give details. 

 What programming languages/features could support such code re-use 

without subtyping? Which of these do you think would be most suitable here? 

 

2. Consider a class Matrix to implement matrices with integer values. A simple 

implementation would be to store a (private) 2-dimensional array of integers, and 

provide methods such as: 
void set(int i, int j, int value); 

int get(int i, int j); 

Matrix add(Matrix m); 

Matrix multiply(Matrix m); 

 

A sparse matrix is a matrix which contains mainly zeros. When such matrices are large 

it can be that an alternative representation of the matrix, which only stores the locations 

and values of non-zero entries, can provide much more efficient implementations for 

common expensive operations such as addition and multiplication with other sparse 

matrices. If a sparse matrix is to be added or multiplied with a standard matrix, it also is 

possible to define an implementation which is more efficient that the standard one (but 

not as good as for two sparse matrices). 

 

Consider writing a new class SparseMatrix to implement sparse matrices, with the 

similar methods available to those for Matrix.  

  Is it likely that there will be scope for reusing code from the class Matrix? 

  Does it seem that SparseMatrix can (and should?) be a behavioural subtype of 

Matrix?  

  What would be the implications of making SparseMatrix a subclass of 

Matrix?  

  What alternative ways are there of expressing the relationship between the classes? 

  



Concepts of Object-Oriented Programming  

 

  

3. Suppose from now on that SparseMatrix is to be implemented as a subclass of  

Matrix. Assume (reasonably!) that the two classes will use different internal 

representations (fields). If you sketch a possible implementation, it might help. 

  What would happen if client code could access the fields? e.g., suppose entries 

is the 2-d array field of Matrix, and m is a local Matrix variable, and consider: 

 
 m.entries[i][j] = 4; 

 if(m.get(i,j)!= 4) { // crash } 

 

What can go wrong here? To what extent are these problems avoided by making 

the fields private?  

  What might go wrong (or at least give unexpected behavior) if we do not override 

all of the methods of  Matrix when writing SparseMatrix? 

  What difficulties might occur if we wanted to add extra methods to Matrix later? 

 

4. (from a previous exam) 

Consider the following Java classes: 
public class B { 

 public void foo(B obj) { 

  System.out.print("B1 "); 

 } 

 public void foo(C obj) { 

  System.out.print("B2 "); 

 } 

 

} 

 

class C extends B { 

 public void foo(B obj) { 

  System.out.print("C1 "); 

 } 

 public void foo(C obj) { 

  System.out.print("C2 "); 

 } 

 public static void main(String[] args) { 

  B c = new C(); 

  B b = new B(); 

  b.foo(c); 

  c.foo(b); 

  c.foo(c); 

 } 

} 

 

What is the output of the execution of method main in class C? 

 

 


