
Concepts of Object-Oriented Programming

Exercise 6

Bytecode verification

1)

 Object a behaves like a normal cell. Object b is also a cell, but it increases the stored

value by 1. The interesting difference is between c and d. They are both cells. They

have mixed in exactly the same traits. However, calling set(i) has a different effect

on them: it stores 2i+1 to the first one and 2(i+1) to the second one.

 Trait Doubling will not get mixed in twice, as perhaps the programmer would

expect. Scala rejects this statically.

 The problem can be bypassed in an ugly way, by creating a new trait Doubling2

that behaves exactly like Doubling and then introducing e = new Cell with

Doubling with Doubling2. Here is our first try:
 trait Doubling2 extends Doubling

 val e = new Cell with Doubling with Doubling2

The code passes through, but dynamically e behaves as if it were a Cell with

Doubling. Scala lets the code go through, because Doubling2 may introduce new

functionalities, but refuses to include Doubling twice in the linearization.

 Our last try, the ugliest of all, but the one which will finally work, is to create a whole

new trait from scratch, reusing nothing:
 trait Doubling3 extends Cell

 {

 override def set(i:int) = { super.set(2*i) }

 }
 val e = new Cell with Doubling with Doubling3

And now e.set quadruples its argument as expected.

 We can produce the problem using the traits provided, but here is a more interesting

case. Consider the following code:

class C

{

 def m() = { println("m executing") }

}

trait Logging extends C

{

 val logFileName: String

 override def m() =

 {

 println("Logging to: " + logFileName)

 super.m()

 }

}

class C1 extends

 C with Logging

 { override val logFileName = "A" }

 // this class logs all calls to m

Concepts of Object-Oriented Programming

 // to a file named "A"

Suppose now that we give the client the classes C, C1 and the trait Logging. The client

has no knowledge that C1 was created using Logging. The client wishes to log calls to m

to a file called “B”. The client does this for both classes C, C1.

class C2 extends

 C with Logging

 { override val logFileName = "B" }

class C3 extends

 C1 with Logging

 { override val logFileName = "B" }

object LogEx1

{

 def main (args:Array[String]) =

 {

 val a = new C2

 val b = new C3

 a.m

 b.m

 }

}

The call a.m works as it should: the method call is logged to file “B” only.

 However, the call b.m, does not behave as it should: it logs the call to m only to file

“B”, even though it is an instance of C1, which is supposed to log calls to m to file “A” too.

 The problem is that, unbeknownst to the client, the trait Logging has been mixed in

twice. This overrode its initial behaviour, interrupting the logging to “A”.

2)

 No. The dynamic type of x can be mixing in traits that break the invariant. Even if

we suppose that the only traits that can extend Cell are Incrementing and

Doubling, this is not enough to enforce behavioural subtyping. In particular, an object of

type Cell with Incrementing with Doubling can be still passed as argument

to method foo in this restricted context, and this would break the invariant.

 Consider the following example:
 class C

 {

 var x:int;

 def foo() = {} //ensures true

 }

 trait T1 extends C

 {

 override foo() = { x=x+1 } //ensures x>old(x)

 }

 trait T2 extends C

 {

 override foo() = { x=x-1 } //ensures x<old(x)

 }

Concepts of Object-Oriented Programming

 Both C with T1 and C with T2 are behavioral subtypes of C. But C with T1

with T2 is not a subtype of C with T1.

3)

 Here ([], [E,b,b,C1,C2,A]) is initial state. We denote the type boolean as b for

convenience (in reality the Java bytecode verifier views it as an integer).

0 iload_1 ([b], [E,b,b,C1,C2,A]) [b], [E,b,b,B,A,A]) ([b], [E,b,b,A,A,A])

1 ifeq 22 ([], [E,b,b,C1,C2,A]) ([], [E,b,b,B,A,A]) ([], [E,b,b,A,A,A])

4 iload_2 ([b], [E,b,b,C1,C2,A]) ([b], [E,b,b,B,A,A]) ([b], [E,b,b,A,A,A])

5 ifeq 12 ([], [E,b,b,C1,C2,A]) ([], [E,b,b,B,A,A]) ([], [E,b,b,A,A,A])

8 aload_3 ([C1], [E,b,b,C1,C2,A]) ([B], [E,b,b,B,A,A]) ([A], [E,b,b,A,A,A])

9 goto 14 ([C1], [E,b,b,C1,C2,A]) ([B], [E,b,b,B,A,A]) ([A], [E,b,b,A,A,A])

12 aload 4 ([C2], [E,b,b,C1,C2,A]) ([A], [E,b,b,B,A,A]) ([A], [E,b,b,A,A,A])

14 astore_3 ([B], [E,b,b,C1,C2,A])

 ([], [E,b,b,B,C2,A])

([A], [E,b,b,B,A,A])

 ([], [E,b,b,A,A,A])

([A], [E,b,b,A,A,A])

([], [E,b,b,A,A,A])

15 aload 5 ([A], [E,b,b,B,C2,A]) ([A], [E,b,b,A,A,A]) ([A], [E,b,b,A,A,A])

17 astore 4 ([], [E,b,b,B,A,A]) ([], [E,b,b,A,A,A]) ([], [E,b,b,A,A,A])

19 goto 0 ([], [E,b,b,B,A,A]) ([], [E,b,b,A,A,A]) ([], [E,b,b,A,A,A])

22 aload_3 ([C1], [E,b,b,C1,C2,A]) ([B], [E,b,b,B,A,A]) ([A], [E,b,b,A,A,A])

23 areturn ([], [E,b,b,C1,C2,A]) ([], [E,b,b,B,A,A]) ([], [E,b,b,A,A,A])

In the provided table, each cell contains the output value of a corresponding instruction.

Different columns correspond to different iterations. There are two values for the instruction at

address 14. The first one is the output of the join operation, and the second one is the output of

the corresponding instruction.

 Here the essential information is marked with bold font:

0 iload_1 ([],[E,b,b,A,A,A])

([b], E,b,b,A,A,A])

1 ifeq 22 ([], [E,b,b,A,A,A])

4 iload_2 ([b], [E,b,b,A,A,A])

5 ifeq 12 ([], [E,b,b,A,A,A])

8 aload_3 ([A], [E,b,b,A,A,A])

9 goto 14 ([A], [E,b,b,A,A,A])

12 aload 4 ([A], [E,b,b,A,A,A])

14 astore_3 ([A], [E,b,b,A,A,A])

([], [E,b,b,A,A,A])

15 aload 5 ([A], [E,b,b,A,A,A])

17 astore 4 ([], [E,b,b,A,A,A])

19 goto 0 ([], [E,b,b,A,A,A])

22 aload_3 ([A], [E,b,b,A,A,A])

23 areturn ([], [E,b,b,A,A,A])

Concepts of Object-Oriented Programming

4)

 Because the inference algorithm doesn’t take interfaces into consideration, the

calculated type for the variable iface is Object.

 Because the inferred type of the iface is Object the decision can be made only

during the execution.

 In both cases the inferred type of the iface is IFace. The decision about the safety

of the call can be made during bytecode verification.

5)


0 : aload_0

1 : iconst_1

2 : ifne 4

3 : aload_0

4 : astore_1

Note: ifne jumps to the given index if the integer value at the top of the stack is

not equal to zero. It pops the value at the top of the stack.

There are two possibilities for the stack size after executing this program. On the

other hand, the height of the stack at point 4 is at least 1, and there will be surely a

reference value at the top of the stack.

 Yes we can construct such an algorithm. The update is as follows: when joining stacks

of different sizes, pick the smallest one, but carry as extra information the size of the

largest one to be used when checking for overflow.

Note that if we just picked the smaller one and used that, we would not prevent

stack overflows at runtime.

If we just picked the largest one and made the “extra” values into dummy values by

giving them the “top” type, we might not prevent underflows when using

instructions such as pop().

 This limitation is not essential. If we have two states {[head1, x], [head2]} where

head1 and head2 are stacks of the same size, then we can’t access x.

