
Concepts of Object-Oriented Programming

Exercise 10

Readonly and Ownership Types

2
nd

 December

1. (The following multiple choice question is taken from a previous exam)

In the readonly/readwrite type system, which of the following assignments is not type
correct?

1. x=y; where x is readonly and y is readwrite

2. x=y.f; where x is readwrite, variable y is readonly and field f is readwrite

3. x=y.f; where x is readwrite, variable y is readwrite and field f is readwrite

4. x=y.f; where x is readonly, variable y is readwrite and field f is readwrite

2. Consider the following method signatures:

peer Object foo(any String el);

peer Object foo(rep String el);

rep Object foo(any String el);

any Object foo(peer String el);

rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other.

3. Annotate the following program with appropriate ownership type modifiers to maximize the

buffer, the producer, and the consumer encapsulation:

4. Consider the typing rules for a field update e1.f = e2 (lecture 7, slide 40)

a) Consider two particular cases : e2 is typed with the ownership modifier any, or e2 is

typed with the ownership modifier lost.

Suppose that e2 refers to an object (i.e., not null). Is there a difference between the

information that these two modifiers convey about where this object is located in the

class Producer {

 int[] buf;

 int n;

 Consumer con;

 Producer() {

 buf = new int[10];

 }

 void produce(int x) {

 buf[n] = x;

 n = (n+1) % buf.length;

 }

}

class Consumer {

 int[] buf;

 int n;

 Producer pro;

 Consumer(Producer p) {

 buf = p.buf;

 pro = p;

 p.con = this;

 }

 int consume() {

 n = (n+1) % buf.length;

 return buf[n];

 }

}

class Context {

 Producer p;

 Consumer c;

 Context(){

 p = new Producer();

 c = new Consumer(p);

 }

 public void run() {

 for(int i=-5; i <=5; ++i){

 p.produce(i);

 if(i%2 == 0)

 c.consume();

 }

 }

}

Concepts of Object-Oriented Programming

heap topology of ownership trees?

Can you find an example (by choosing the ownership modifiers for e1 and f) when a

field assignment would be typeable in one of the two cases (of e2 being any or lost) but

not the other? Explain briefly why this is the case.

b) Suppose instead that e1 is typed with ownership modifier τ(e1) and f has ownership

modifier τ (f). We consider two different cases: τ(e1) ► τ (f) is the modifier any, or

τ(e1) ► τ (f) is the modifier lost.

Is there a difference between the information that these two modifiers convey about

topological requirements associated with the location e1.f (i.e., what needs to be

guaranteed before an object can be validly assigned to this location)?

Can you find an example (by choosing the ownership modifier for e2) when a field

assignment would be typeable in one of the two cases (of τ(e1) ► τ (f) being any or

lost) but not the other? Explain briefly why this is the case.

c) Considering your answers above, explain why it makes sense that rep►rep is lost and

not any. You may want to show an example.

5. (The following question is taken from a previous exam)

Consider the following declarations:
class A

{

 rep B first;

 rep B second;

}

class B

{

 any A obj;

 peer B sibling;

}

Which of the following programs are allowed in the topological ownership system? For

any program that is accepted in the topological system, is it also accepted in the owner-

as-modifier system? Assume that none of the objects involved are null. Briefly explain

each of your answers.

Program (1)

rep B b;

…

b = b.sibling;

Program (2)

peer A a; rep B b;

…

a = b.obj;

Program (3)

any A a;

…

a.first.obj = a;

Program (4)

peer A a;

…

a.first = a.first;

Concepts of Object-Oriented Programming

6. The Ownership type system allows the following ownership modifiers: peer, rep, self, lost,

and any - to structure the object store and to restrict how references can be passed and used.

We want to extend the Ownership type system by adding one more modifier down. This

modifier is introduced to denote references to objects in the same context as this or in the

context (transitively) owned by an object in the same context as this.

a) Redraw the subtype relation diagram below to include the newly introduced type of the

universe type system.

b) Define the most specific (in terms of the context information it conveys) viewpoint

adaptation function ►by filling the table below (for a combination Te►Tf the modifier

Te specifies the row, and the modifier Tf the column of the table used).

Recall that the viewpoint adaptation function ► is used, in particular, to determine

the owner of an object referenced by a field access. More exactly, if the ownership

modifier of e is Te and the ownership modifier of a field f is Tf , then the ownership

modifier assigned to the field access e.f is determined as Te►Tf. Note that this

applies to field updates as well as field reads.

► peer rep any down

self

peer

rep

lost

any

down

c) Assuming that you only need to enforce the topological constraints of the type system

(you do not need the owner-as-modifier property), how should the field update rule

from lecture 7 slide 40 be adapted to the system extended with the down modifier. Do

you need to make any changes? You might like to consider the following example code,

in assessing your answers to b) and c):

public class Node{

 rep Node c;

 down Node d;

 public void foo() {

 this.d.d = this; // does this/should this type-check?

 this.c.d = this.d; // does this/should this type-check?

 }

 }

any T

peer T rep T

lost T

self T

Concepts of Object-Oriented Programming

7. (Harder!) Consider the following code:

a. Try annotating the code of the List with appropriate ownership annotations. You

should find a problem – explain it. Does this indicate an aliasing issue in the code?

b. Can you think of a way to extend/modify the ownership type system to allow for

this example to be typed? You might like to consider:

i. What kind of topological property would you like to describe?

ii. What rules do you need to preserve this property? Think about both field

reads and field writes.

iii. How does your approach relate to the existing modifiers (rep,peer etc)? Can

you suggest rules for subtyping and casting?

public class List{

 rep Node head;

 public void addFirst(int x) {

 head = new Node(x,head);

 }

 public List clone(){

 return new List(this);

 }

 private List(List other){

 head = null;

 Node p = null;

 for (Node n=other.head;n!=null;n=n.next){

 Node h = new Node(n.val,null);

 if (p!=null) {

 p.next=h;

 } else {

 head = h;

 }

 p = h;

 }

 }

 private class Node{

 Node next;

 int val;

 Node(int val, Node next){

 this.next = next;

 this.val = val;

 }

 }

}

class Client{

rep List list;

 void f(any List list){

 this.list = list.clone();

 this.list.addFirst(42);

 }

}

