
Concepts of Object-Oriented Programming  

 

  

Exercise 12 
 

 

Construction Types and Initialisation 

 

16
th

 December 2011 
 

1. With non-null types, any class type T can be annotated to explicitly declare non-

nullity (T!) and possible-nullity (T?). In the Construction Types system, further 

variants of these types are introduced, for “free”, “committed” (the default), and 

“unclassified” (unc) types. These types are all treated differently by the type system 

taught in the lectures. 

 

 Explain at least one difference between the treatments of a reference of type T! and 

a reference of type T? , giving an illustrative example. 

 Explain at least one difference between the treatments of a reference of type free 

T! and a reference of type unc T! , giving an illustrative example. 

 Explain at least two differences between the treatments of a reference of type T! (a 

committed reference) and a reference of type unc T! , giving illustrative 

examples. 

 Explain at least three differences between the treatments of a reference of type T! 

and a reference of type free T! , giving illustrative examples. 

 

2. In the Construction Types system, a field assignment e1.f = e2 is permitted if the 

usual subtyping holds, and if, in addition either e1 has a free type, or e2 has a 

committed type.  

In particular (in terms of Construction Types), it is ok for an expression with committed 

type to be assigned to the field of an expression with committed type, and it is also ok 

for an expression of free type to be assigned to the field of an expression of free type. 

However, it is not permitted for an expression of unclassified type to be assigned to the 

field of an expression of unclassified type. Explain why not, giving an example of what 

would go wrong if we were to allow this. 

 

3. In the Construction Types system, when we read from the field of an expression of 

committed type, we obtain a reference of committed type, i.e., if e1 has a committed 

type then e1.f has a committed type. Similarly, if e1 has an unclassified type then 

e1.f has an unclassified type. However, if e1 has a free type then e1.f does not have a 

free type, but instead has an unclassified type. Explain why the alternative choice would 

be unsound (given the existing rules of the system), giving an example of what would 

go wrong. 

 



Concepts of Object-Oriented Programming  

 

  

4. Consider the following three classes (declared in the same package): 
public class Person { 

  Dog? dog;   // people might have a dog 

 

  public Person() { } 

} 

 

public class Dog { 

  Person! owner; // Dogs must have an owner 

  Bone! bone;    // Dogs must have a bone 

  String! breed; // Dogs must have a breed 

 

  public Dog(Person owner, String breed) {  

    this.owner = owner;  

    this.bone = new Bone(this);  

    this.breed = breed; 

  } 

} 

 

public class Bone { 

  Dog! dog;        // Bones must belong to a dog.. 

 

  public Bone(Dog toOwn) { 

    this.dog = toOwn; 

  } 

} 

 

• Annotate the code with non-null and Construction Type annotations where they are 

necessary. Explain why the code now type-checks according to Construction Types. 

• Could we provide constructors for classes Dog and Bone with no parameters? 

 

Now, suppose a (possibly mad) scientist wants to extend the implementations of these 

classes with some genetic engineering. Firstly, we want to be able to “clone” a bone. 

We can add the following method to class Bone to make a copy of an existing bone, 

and assign it to another Dog: 

 
  public Bone clone(Dog toOwn) { 

    return new Bone(toOwn); 

  } 

 

However, our scientist would like to go further, and be able to clone dogs. A cloned 

Dog should also have its bone cloned along with it, but may be assigned to a new 

owner: we add the following extra constructor and method to class Dog: 

 
 

 

 

 

 

 



Concepts of Object-Oriented Programming  

 

  

 

  Dog(Dog toClone, Person newOwner) {  

    this.owner = newOwner; 

    this.breed = toClone.breed;  

    this.bone = new Bone(this);  

  } 

 

  public Dog clone(Person toOwn) { 

    return new Dog(this, toOwn); 

  } 

 

However, our scientist would like to go still further, and be able to clone people. A 

cloned Person should also have its dog (if any) cloned along with it: we add the 

following extra constructor and method to class Person: 

 
  Person(Person toClone) { 

    Dog? d = toClone.dog; 

    if(d!=null) { 

      this.dog = new Dog(d, this); 

    }  

  } 

 

  public Person clone() { 

    return new Person(this); 

  } 

 

• Annotate this extra code with appropriate non-null and Construction Types 

annotations. You should guarantee that each of the  clone methods (which belong to 

the public interface) return a committed reference. You should ensure that your answers 

guarantee that all of the code type-checks – explain your choices. Hint: think carefully 

about how constructor calls are typed, and what happens if the constructors are called in 

more than one situation. 

 

 

5. (question from a previous exam) 

Consider the following Java class, partially annotated with non-null and Construction Types. 
The spaces marked with ■■■ are places where extra non-null and Construction annotations 
might be required. 
 
The class represents a binary tree, in which every node stores a numerical value, and has 
references to its parent (if any), left and right children (if any), and the root node of 
the tree to which it belongs. The root node of a tree also refers to itself via its own root field. 
 
The class provides three constructors. Constructor 1 is public, and creates a single, 
disconnected Node storing the specified value (i.e., it is a “tree” with just one node). 
Constructor 3 is also public, and is used for cloning an existing tree structure. Its 
implementation simply passes on the constructor call to Constructor 2 with suitably-

specified extra arguments.  Constructor 2 is not public, and is used to implement the 
copying of trees. It creates a deep copy of the tree structure rooted at toCopy, but with a 



Concepts of Object-Oriented Programming  

 

  

newly-specified parent and root for the new copy of the tree. This allows copies of one 

tree to be added as children to another existing tree, as in the copyToLeft method.  
 
public class Node { 

  Node? parent; 

  Node? left, right; 

  Number! value; 

  Node! root; 

 

  // Constructor 1 

  public Node(Number! value) { 

    this.value = value; 

    this.root = this; 

  } 

 

  // Constructor 2 

  Node(■■■■Node■■ toCopy, ■■■■Node■■ parent, ■■■■Node■■ root) { 

    Node? l = toCopy.left; 

    Node? r = toCopy.right; 

    if(l != null) { 

      ■■■■Node■■ leftCopy = new Node(l, this, root); 

      this.left = leftCopy; 

    } 

    if(r != null) { ... // analogous to left code..  

    } 

    this.parent = parent; 

    this.root = root; 

    this.value = toCopy.value; 

  } 

 

  // Constructor 3 

  public Node(Node! toCopy) { 

    this(toCopy, null, this); // invoke Constructor 2 

  } 

 

  public void copyToLeft(Node! toCopy) { 

    ■■■■Node■■ copy = new Node(toCopy, this, this.root); 

    this.left = copy;  

  } 

} 

 

In all of the following questions, when we refer to a “type”, we mean a static type, including 

any appropriate non-null and Construction Types annotations. Recall that if no Construction 

Type is annotated, the default meaning is “committed”. 

 

In the Construction Types system, a new expression is always given a non-null type. In 

addition, the expression is typed as “committed” if all of the arguments to the new expression 

have “committed” types, and the expression is typed as “free” otherwise. 

 



Concepts of Object-Oriented Programming  

 

  

 

Consider the method copyToLeft(), whose code is repeated here: 

 

public void copyToLeft(Node! toCopy) { 

  ■■■■Node■■ copy = new Node(toCopy, this, this.root); 

  this.left = copy;  

} 

 

 What is the type of the expression this.root inside the body of the method 

copyToLeft()?  Briefly explain your answer. 

 

 

 Choose appropriate non-null and Construction Type annotations for the local 

variable  copy , by adding annotations if necessary in the spaces marked below: 

 

 
_____Node___ copy = new Node(toCopy, this, this.root); 

 

 

 Given your choice of type annotations, justify that this assignment statement is 

permitted by the rules of the Construction Types system. 

 

 

 Given your choice of type annotations, justify that the subsequent field 

assignment     

 
    this.left = copy;  

 

is also permitted by the rules of the Construction Types system. 

 

 

Now consider the second constructor (labelled Constructor 2). 

Constructor 2 is called in three different places in the provided code: in its 

own body, in the body of Constructor 3 (using the explicit constructor call 

this(...)) , and in the body of the addToLeft method.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Concepts of Object-Oriented Programming  

 

  

 Considering these three calls of the constructor, and the actual code inside the 

body of the constructor (copied below), choose appropriate non-null and 

Construction Types annotations for the parameters of the constructor, by adding 

annotations if necessary in the spaces marked below. Justify why each of your 

choices is necessary. 

 
// Constructor 2 

 
Node(____Node__ toCopy, ____Node__ parent, ____Node__ 

root) { 

              Node? l = toCopy.left; 

              Node? r = toCopy.right; 

    if(l != null) { 

      ■■■■Node■■ leftCopy = new Node(l, this, root); 

      this.left = leftCopy; 

    } 

    if(r != null) { ... // similar  

    } 

    this.parent = parent; 

    this.root = root; 

    this.value = toCopy.value; 

} 

 

 

 

 

 

 Choose appropriate non-null and Construction Type annotations for the local 

variable  leftCopy , by adding annotations if necessary in the spaces marked 

below. Briefly explain your choices.  

 
_____Node___ leftCopy = new Node(toCopy.left, this, root); 

 

 

 Justify clearly that each of the following three field assignments from the end of 

the body of Constructor 2 are permitted by the Construction Types 

system, given your previous answers.  

 
this.parent = parent; 

 

this.root = root; 

 

this.value = toCopy.value; 

 

 

6. The Java approach to static (class) initialisation is to permit static blocks, defining 

code to be executed when the class is initialised. A class begins its initialisation 

immediately after it is loaded, which can be triggered by various criteria (see slide 62 of 

lecture 8.3). The C# approach is similar. Because the static block can contain 

unrestricted Java code, it is possible that executing a static block triggers the loading 



Concepts of Object-Oriented Programming  

 

  

of other classes. In this case, execution of the current static block will be postponed, 

and the static block for the new class executed first. The exception to this rule is that 

if initialisation for the new class has already been started, the “trigger” is ignored (to 

avoid cycles), and the previous class continues with its initialisation. 

 

Bearing in mind this semantics, consider the following questions: 

 One criterion to trigger the loading of a class is an access to a static field or method 

of the class. Given this criterion, is it safe for the code in the body of a static 

method to assume that that code of the class’ static block has already been 

executed (i.e., class initialisation has already taken place)? 

 Another criterion to trigger class initialisation is an attempt to create a new instance 

of a class. Given this criterion, is it safe for the code in the body of a constructor 

to assume that the class initialisation has already taken place? What about code in 

the body of instance methods of the class? 

 A further triggering criterion is that initialisation of a superclass will be triggered by 

an attempt to initialise a subclass. Given this criterion, is it safe for code in the 

static block of the subclass to assume that the superclass initialisation has 

already taken place? What about code in the bodies of instance methods in the 

subclass? 

 

7. Consider the following Java classes:  

 
public class A { 

  public static final int value = B.value + 1; 

} 

 

public class B { 

  public static final int value = C.value + 1; 

}  

 
public class C { 

  public static final int value = A.value + 1; 

}  

 

Will these classes compile? If not, how could we modify them so that they do? 

 

What would the output of running the following program be? 
 

public class Program { 

 

  public static void main(String[] args) { 

    System.out.println(A.value); 

    System.out.println(B.value); 

    System.out.println(C.value); 

  } 

} 

 

In what ways can you change the output of the program by reordering the statements?  

 


