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Exercise 5 
 

 

Inheritance and Multiple Inheritance 
 

1)  

a)  

i.    In the Matrix class: 
Matrix add(Matrix m) { 

  if(m instanceof SparseMatrix) { 

    // semi-efficient implementation 

  } else { 

    // old implementation 

  } 

} 

 

In the SparseMatrix class: 

Matrix add(Matrix m) { 

  if(m instanceof SparseMatrix) { 

    // efficient implementation 

  } else { 

    // semi-efficient implementation 

  } 

} 

 

ii.  In the Matrix class: 
Matrix add(Matrix m) { 

  return m.addMatrix(this); 

} 

Matrix addMatrix(Matrix m) { 

  // old implementation 

} 

Matrix addSparseMatrix(SparseMatrix m) { 

  // semi-efficient implementation 

} 

 

In the SparseMatrix class: 

Matrix add(Matrix m) { 

  return m.addSparseMatrix(this); 

} 

Matrix addMatrix(Matrix m) { 

  // semi-efficient implementation 

} 

SparseMatrix addSparseMatrix(SparseMatrix m) { 

  // efficient implementation 

} 
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iii. In the Matrix class: 

Matrix add(Matrix m) { 

  // old implementation 

} 

Matrix add(SparseMatrix m) { 

  // semi-efficient implementation 

} 

 

In the SparseMatrix class: 
SparseMatrix add(Matrix m) { 

  // semi-efficient implementation 

} 

SparseMatrix add(SparseMatrix m) { 

  // efficient implementation 

} 

 

Note that, in all approaches, the implementer does not have to write the semi-

efficient implementation twice.  For example, the method 

SparseMatrix.addMatrix in the Visitor pattern can be implemented as 

follows: 

 
Matrix addMatrix(Matrix m) { 

  m.addSparseMatrix(this); 

} 

 

This solution applies to commutative operations, such as the addition of matrices.  

We cannot do that for the multiply operation. 

 

b) The last approach is probably the simplest and most intuitive. 

 

c) For the first and last approaches, all that would be lost is the potential extra efficiency 

when adding a SparseMatrix to a Matrix. However, for the second approach 

(Visitor pattern) it’s essential to be able to add the extra methods to the superclass, in 

order to make the second dispatch possible. Whatever the approach to binary 

methods, if the add method in Matrix had been written using direct field accesses 

on its argument (rather than calls to get()) then it will need to be rewritten anyway 

when the subclass is added. 

 

2)  

a) The receiver can be immediately returned from such a call. We could 

overload: 
 Matrix add(ZeroMatrix m) { 

  return this; 

}  

However, in a language like Java, which does static dispatch re: argument 

types, this will not have the desired effect when a ZeroMatrix instance has 

a less specific static type. 
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b)  

i. In the Matrix class: 

Matrix add(Matrix m) { 

  if(m instanceof ZeroMatrix) { 
    return this; 

  } else if(m instanceof SparseMatrix) { 

    // semi-efficient implementation 

  } else { 

    // old implementation 

  } 

} 

In the SparseMatrix class: 

Matrix add(Matrix m) { 

  if(m instanceof ZeroMatrix) { 

    return this; 

  } else if(m instanceof SparseMatrix) { 

    // efficient implementation 

  } else { 

    // semi-efficient implementation 

  } 

} 

In the ZeroMatrix class: 

Matrix add(Matrix m) { 

  return m; 

} 

 

ii.  In the Matrix class: 

Matrix add(Matrix m) { 

  return m.addMatrix(this); 

} 

Matrix addMatrix(Matrix m) { 

  // old implementation 

} 

Matrix addSparseMatrix(SparseMatrix m) { 

  // semi-efficient implementation 

} 

 

In the SparseMatrix class: 

Matrix add(Matrix m) { 

  return m.addSparseMatrix(this); 

} 

Matrix addMatrix(Matrix m) { 

  // semi-efficient implementation 

} 

SparseMatrix addSparseMatrix(SparseMatrix m) { 

  // efficient implementation 

} 

 

In the ZeroMatrix class: 
Matrix add(Matrix m) { 

  return m; 
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} 

Matrix addMatrix(Matrix m) { 

  return m; 

} 

SparseMatrix addSparseMatrix(SparseMatrix m) { 

  return m; 

} 

 

 

iii. In the Matrix class: 

Matrix add(Matrix m) { 

  // old implementation 

} 

Matrix add(SparseMatrix m) { 

  // semi-efficient implementation 

} 

Matrix add(ZeroMatrix m) { 

  return this; 

} 

In the SparseMatrix class: 

SparseMatrix add(Matrix m) { 

  // semi-efficient implementation 

}  

SparseMatrix add(SparseMatrix m) { 

  // efficient implementation 

}  

SparseMatrix add(ZeroMatrix m) { 

  return this; 

} 

In the ZeroMatrix class: 

Matrix add(Matrix m) { 

  return m; 

}  

SparseMatrix add(SparseMatrix m) { 

  return m; 

} 

ZeroMatrix add(ZeroMatrix m) { 

  return this; 

} 

 

c) We are forced to require specific implementations for many more cases than 

we originally thought of, in order to ensure that there is always a most-specific 

fit for any pair of receiver and argument type. The definitions in bold above 

are the extra ones added for this reason. 

The extra requirement seems somewhat annoying for this example, 

particularly since in all cases where an ambiguity would otherwise arise, the 

choice of implementation does not intuitively affect the actual result. For 

example, if we erased the bold definitions, then for a ZeroMatrix receiver 

and ZeroMatrix argument we would have to choose between the 

ZeroMatrix-Matrix implementation, and the Matrix-ZeroMatrix 

implementation. However, both of these return the non-zero matrix. On the 
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other hand, consider the case when we have a SparseMatrix receiver and a 

ZeroMatrix argument. In this case, we have to choose between the 

Matrix-ZeroMatrix implementation and the SparseMatrix-

SparseMatrix implementation. But it is not completely obvious that the 

latter would work correctly for a ZeroMatrix argument, depending on its 

implementation (how much it depended on the appropriate fields from 

SparseMatrix being used/initialised as expected).  

 

d)  In the light of this, there seems to be less to choose between the last two 

approaches. One further observation though is that in the case of multiple 

dispatch, although the superclass has been modified, it is only for an 

improvement in efficiency – if it were essential that the superclass were 

unchanged then the Matrix-ZeroMatrix implementation could be 

omitted from the code above, and everything would work out fine. The other 

approaches depend upon being able to modify the superclass, which may not 

always be acceptable in practice. 

 

e)  The second approach (Visitor pattern) doesn’t require any changes to the 

existing classes. The other two approaches would have to relinquish the extra 

efficiency possible when the argument is a zero matrix (but could still be 

efficient when the receiver was a zero matrix). 

 

 

 

 

3) The following C++ code breaks the invariant: 

 
class B : public Person 

{ public: B (string n) : Person (n) {} }; 

class C : public Person 

{ public: C (string n) : Person (n) {} }; 

class D : public B, public C 

{ public: D (string n) : B(n), C(n) {} }; 

 

 

void marryMyself () 

{ 

 D me ("Me"); 

 B *b = &me; 

 C *c = &me; 

 b->marry (c); 

 if (b->getSpouse ()) cout << b->getSpouse ()->getName (); 

} 

 

The object me contains an object of class B and an object of class C.  The addresses of these 

objects are different and they are obtained using the assignments to b and c respectively.  

During the call b->marry (c), the condition p == this compares these two addresses 

and finds them not equal. 
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4) The following code breaks the invariant: 
 

class Girl : virtual public Person 

{ 

public: Girl () : Person (true) {} 

// diamonds are a girl's best friend 

}; 

 

class GirlProgrammer : public Girl, public Programmer 

{ 

public: GirlProgrammer () : 

Person (true), Girl (), Programmer () {} 

}; 

 

void oops () 

{ 

 GirlProgrammer gp; 

} 

 

Following the rules of C++ virtual inheritance, the call of the constructor Person (true) 

in class GirlProgrammer bypasses the corresponding call Person (false) in class 

Programmer, breaking the invariant. 

 

5) Here are the three requested classes: 

 
class Queue 

{ 

 int[] contents; 

 int size; 

 

public: 

 Queue() { contents = new int[100]; size = 0; } 

 void enqueue(int x) {…} 

 int dequeue() {…} 

 int getSize() { return size; } 

}; 

 

class SumQueue : virtual public Queue 

{ 

 int sum; 

 

public: 

 SumQueue() : Queue() { sum = 0; } 

  

 void enqueue(int x) 

 { 

  sum+=x; 

  Queue::enqueue(x); 
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 } 

 

 int dequeue() 

 { 

  int r = Queue::dequeue(); 

  sum-=r; 

  return r; 

 } 

 

 int getSum() { return sum; } 

}; 

 

class ProductQueue : virtual public Queue {…}; 

 

class SuperQueue : public ProductQueue, SumQueue 

{ 

public: 

 SuperQueue() 

  : public Queue(), ProductQueue(), SumQueue() {} 

 

 void enqueue(int x) 

 { 

  ProductQueue::enqueue(x); 

  SumQueue::enqueue(x); 

 } 

 

 int dequeue() 

 { 

  int r = ProductQueue::dequeue(); 

  SumQueue::dequeue(); 

  return r; 

 } 

}; 

 

One obvious problem is that the enqueue and dequeue methods of the superclass are 

called twice.  An item is enqueued and dequeued twice.  Interestingly, this behaves exactly 

like a queue, but the capacity is half of the capacity of the original and the getSize 

method reports the correct size multiplied by 2. 

 We can use traits and linearization to ensure that the enqueue/dequeue methods are 

called only once.  Here is the relevant Scala code: 

 
class Queue 

{ 

 … 

 def enqueue(x:int) = {…} 

 def dequeue():int = {…} 

} 

 

trait Sum extends Queue 

{ 

 var sum:int = 0 
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 override def enqueue(x:int) =  

  { sum+=x; super.enqueue(x) } 

 override def dequeue():int = 

  { var x = super.dequeue; sum=sum-x; x } 

} 

 

trait Prod extends Queue 

{ 

 var count:int = 1 

 override def enqueue(x:int) = 

  { prod*=x; super.enqueue(x) } 

 override def dequeue():int = 

  { var x = super.dequeue; prod=prod/x; x } 

  // side remark: this assumes no zeros in the queue! 

} 

 

Now, an object of Queue with Sum with Prod has both functionalities, but calls each 

underlying enqueue/dequeue method only once.  The problems of the multiple inheritance 

solution do not appear here. 


