
Concepts of Object-Oriented Programming

Exercise 9

Aliasing, encapsulation of object structures, read only types

1) The invariant can be broken by exploiting the fact that CList captures and stores

Coordinates objects.

CList list=new CList();

Coordinates c=new Coordinates(2, 1);

list.add(c);

c.x=0;

We can fix CList quite easily: we need to clone the Coordinates element before

storing it.

 public void add(Coordinates el) {

 if(el.x>el.y) super.add((Coordinates) el.clone());

 }

The limit of such an approach is that we create a copy of all the elements stored in the list.

On the other hand, it is not possible to make sure the invariant is preserved without creating

objects that are only in the current CList object. The main benefit of using alias sharing in

data structures is to minimize the consumption of memory. In addition, we may want to

share aliases on data structures, for instance, in order to further update the content of an

element in a list. The main drawback is that alias sharing does not allow us to reason locally

on the values stored in the data structure, since the object may have been stored by the

program that added elements, and so it may modify the content of the elements after they

were stored.

A possible solution would be to have readonly fields in class Coordinates. This would

ensure that the invariant cannot be broken, but it requires the allocation of new objects each

time we want to modify the fields. For instance, the following code:

Coordinates c=new Coordinates(2, 1);

c.x=0;

should be re-written to

Coordinates c=new Coordinates(2, 1);

c=new Coordinates(0,1);

which allocates a new object even though this is not necessary (since the object pointed by

c is not shared, and so changing its fields cannot break the invariants of other objects).

2) We have to introduce a ReadonlyHour interface, let Hour extend it, and impose

on class Time to return a ReadonlyHour.

public interface ReadonlyHour {

 public int getHour();

}

Concepts of Object-Oriented Programming

public class Hour implements ReadonlyHour {

 public int h=0;

 public int getHour() {return h;}

}

public class Time {

 private Hour hour;

 private int m=0;

 //invariant hour.h>=0 && hour.h<24

 Time (Hour hour) { this.hour = hour; }

 public void setHour(int h) {

 if(h>=0 && h<24) this.hour.h=h;

 }

 public ReadonlyHour getHour() {return hour;}

}

This solution is unsatisfactory, because we need to be able to assign to h, which makes it

possible for outsiders to also assign to h. For example: (a) the constructor of Time takes an

hour object as a parameter. This remains as an Hour object on the side of the client, which

can change h. (b) The client can downcast a ReadOnlyHour reference to Hour.

3)

We can violate the claim by changing the target object this passing through the field

spouse, for instance with spouse->spouse->money=0;

In order to do that, we have to suppose that the current object was initialized passing a value

different from null as second argument of the constructor.

4)

 A method is pure if and only if:

(1) It does not contain field updates

(2) It does not invoke non-pure methods

(3) It does not create objects

We cannot reasonably provide an analogous notion for constructors, since a constructor call

is guaranteed to modify the heap.



o Method allLessThan is not pure because it allocates new objects.

Furthermore, it must either make field updates or call non-pure methods in order to add

all the elements that are less than the given bound to the set returned by allLessThan.

Nonetheless, it seems likely it does not change the behavior of other methods, and we

would like to consider it as pure.

o We need to allow “pure” methods to allocate new objects, and to perform

modifications on those newly-allocated objects. In this case, we say that the method is

“weakly pure”

o We shall use the readonly type system - a method is “weakly pure”, if:

(1) All its arguments are readonly

(2) The receiver is treated as readonly – we can annotate as in C++:

Concepts of Object-Oriented Programming

Set allLessThan(int bound) readonly{

Set result = new Set();

for (readonly Node n = head;n!=null;n=n.next)

if (n.val<bound)

result.append(n.val);

return result;

}

We assume the set is implemented as a linked list.

We can access this.head as readonly as this is readonly.

The disadvantage here is that we cannot store read/write references to our arguments

(e.g. we could not have that the new Set includes a read/write pointer to the old one, or

it has read/write access to members if it did not clone them).

o For constructors, we can make the same requirements except that the this pointer can

be read/write (but again could not store read/write pointers to arguments).

5) The general rules are:

 readwrite T <: readonly T

 when we access a field/method, we take the upper bound of the

readonly/readwrite modifiers.

Program 1: it does not compile since obj2 is readonly, so obj2.y.n1 is readonly,

and we try to assign it to a readwrite variable.

Program 2: it does not compile since field y in B is readonly, so obj2.y.n1 is

readonly, and we try to assign it to a readwrite variable.

Program 3: it compiles! obj2 is readwrite, x is readwrite (so obj2.x is

readwrite), n1 is readwrite (so obj2.x.n1 is readwrite), and we assign

obj2.x.n1 to a readwrite variable.

Program 4: it does not compile since obj is readonly and it is passed to the constructor

of B as first argument, while the constructor expects a readwrite variable.

Program 5: it compiles! We can always assign something to a readonly variable.

Program 6: it compiles! We can always assign something to a readonly variable.

In addition: for all the programs expect 4, the first argument passed to the constructor of B

is readwrite, and the second argument can be readwrite or readonly since a

readonly argument is expected.

