
Concepts of Object-Oriented Programming

Exercise 12 Solutions

16
th

 December 2011

1.

For all examples below, let us suppose that class T has the following field declarations:
T! f;

T? g;

 If x is a reference of type T! then x.f is a permitted field read (without any if-

checks/dataflow analysis), but if x is a reference of type T? then it is not.

Also, x can only be assigned to the f field of an object in the former case and not

the latter (T! is a subtype of T? but not vice versa).

 Suppose y is a reference of type free T!. If x is also a reference of type free

T! then x.f = y; is a permitted field update, but if x is a reference of type unc

T! then it is not.

Also, free T! is a subtype of unc T! but not vice versa.

 If x is a reference of type T! then x.f.f is a permitted field read, since x.f

also has the type T!. But if x is a reference of type unc T! then it is not

permitted, since x.f has the type unc T?.

If y is a further reference of type unc T! then y.f = x is allowed when x

has the type T! but not when x has the type unc T!.

Also, T! is a subtype of unc T! but not vice versa.

Furthermore, a constructor call new C(x) will be given a committed type if x is

committed, but instead a free type if x is unclassified.

 If x is a reference of type T! then x.f.f is a permitted field read, since x.f

also has the type T!. But if x is a reference of type free T! then it is not

permitted, since x.f has the type unc T?.

If y is a further reference of type unc T! then y.f = x is allowed when x

has the type T! but not when x has the type free T!.

Similarly, x.f = y is allowed when x has the type free T! but not when x

has the type T!.

Furthermore, a constructor call new C(x) will be given a committed type if x is

committed, but instead a free type if x free.

2. Because unclassified references are supertypes of the corresponding free and

committed references, then if we were to allow this, we might “disguise” the assignment

of a free reference to the fields of a committed reference. For example, the following

code would then type-check, which is not sound:
public class C {

 C! f, g;

 public C(C! x) { // x is committed, this is free

 unc C! y = x; // cast committed to unclassified - ok

 unc C! z = this; // cast free to unclassified - ok

 y.f = z; // assign unc to field of unc (?)

 this.g = x.f.g; // what happens here?

 this.f = this;

 }

}

3. Because anything (in terms of Construction Type annotation) can be stored in the

fields of a free reference, when we read something back out of such a field we cannot

Concepts of Object-Oriented Programming

make any guarantees about what is stored there. In particular, it is possible to store a

committed reference in the field of a free reference, and if we could then read it back as

free, this would be unsound. For example, the following code would type-check:
public class C {

 C! f, g;

 public C(C! x) { // x is committed, this is free

 this.f = x; // assigning free to committed - ok

 this.f.f = this; // this.f free(?), so this would be ok

 this.g = x.f.g; // what happens here?

 }

}

4. Here are the annotations for the first version of the code:
public class Person {

 Dog? dog; // people might have a dog

 public Person() { }

}

public class Dog {

 Person! owner; // Dogs must have an owner

 Bone! bone; // Dogs must have a bone

 String! breed; // Dogs must have a breed

 public Dog(unc Person ! owner, unc String ! breed) {

 this.owner = owner;

 this.bone = new Bone(this);

 this.breed = breed;

 }

}

public class Bone {

 Dog! dog; // Bones must belong to a dog..

 public Bone(unc Dog ! toOwn) {

 this.dog = toOwn;

 }

}

Note that we choose the parameter to the construction of Bone to be unclassified – since

it is public then it probably should be callable with a committed parameter from client

code, but it is also called inside the body of the constructor of Dog, with a free

parameter. Note that the returned reference from these two kinds of call will be different

– committed in the former case, and free in the latter. For the Dog constructor, we can

also choose to make the parameters unclassified. Although in this case we do not

directly need to permit “free” arguments being passed to the constructor, we may as

well be as permissive as possible. In general, if it is possible to type a constructor body

using “unclassified” argument types then this should be the preferred choice of

signature as it is the most permissive. Note that the same does not apply for method

signatures, since any overriding method definitions are then also be forced to cope with

unclassified arguments, which may be much less convenient than using committed ones.

It isn’t reasonable to have constructors for Dog and Bone without parameters, since we

need some way of initialising their non-null fields. Although it would be possible to do

Concepts of Object-Oriented Programming

this by calling e.g., the Person constructor from the Dog constructor, this doesn’t seem

very intuitive (nor would it be easy to establish the intuitive invariants of the code – that

a Dog’s owner refers back to the same Dog, etc.). In particular, if all of the constructors

need to take no parameters, they would need to call each other infinitely. This is

because, we can’t set up a cyclic object structure without some kind of mutual

initialisation (in this case we can only build an infinite object structure to satisfy the

non-null requirements of all the objects).

Here is the fully annotated code for the cloning case:

public class Person {

 Dog? dog; // people might have a dog

 public Person() { }

 Person(Person! toClone) {

 Dog d? = toClone.dog;

 if(d != null) {

 this.dog = new Dog(d, this);

 }

 }

 public Person clone() {

 return new Person(this);

 }

}

public class Dog {

 Person! owner; // Dogs must have an owner

 Bone! bone; // Dogs must have a bone

 String! breed; // Dogs must have a breed

 public Dog(unc Person ! owner, unc String ! breed) {

 this.owner = owner;

 this.bone = new Bone(this);

 this.breed = breed;

 }

 Dog(Dog! toClone, unc Person! newOwner) {

 this.owner = newOwner;

 this.breed = toClone.breed;

 this.bone = new Bone(this);

 }

 public Dog clone(Person! toOwn) {

 return new Dog(this, toOwn);

 }

}

public class Bone {

 Dog! dog; // Bones must belong to a dog..

 public Bone(unc Dog ! toOwn) {

 this.dog = toOwn;

 }

Concepts of Object-Oriented Programming

 public Bone clone(Dog! toOwn) {

 return new Bone(toOwn);

 }

}

Note that all parameters to the new constructors and methods need to have non-null type

annotations, since they are each either dereferenced, used to initialise non-null-declared

fields or passed on as further parameters to calls that require non-null parameters.

The toClone parameter of the new constructor of Person needs to be a committed

parameter, otherwise when we dereference toClone.dog we will obtain a an

unclassified value, which will not be suitable to use as a parameter for the new Dog

constructor.

The toClone parameter of the new constructor of Dog needs to be a committed

parameter, since when a field is read from it, we need to obtain a result with a non-null

type. However, the newOwner parameter of the new constructor of Dog needs to be an

unclassified parameter. This is because this parameter is sometimes supplied from a free

reference (in the new constructor of Person), and sometimes from a committed

reference (in the clone method of Dog).

For similar reasons, the toOwn parameter of the constructor of Bone needs to be an

unclassified parameter (as was suggested for the previous part of the question). This is

because this parameter is sometimes supplied from a free reference (in the new

constructor of Dog), and sometimes from a committed reference (in the clone method of

Bone).

This is an important usage of the unclassified types in the Construction Types system –

they are useful for constructors which get called sometimes with free and sometimes

with committed parameters. Recall that the type of a new expression is determined from

the static types of the actual parameters at a particular call, and not from the formal

parameters in the constructor signature. For example, in the clone method of the Bone

class, the new expression new Bone(toOwn) is given a committed type because the

actual parameter toOwn has a static type which is committed, despite the fact that the

constructor argument type is declared as unclassified in its signature. This means that

the same constructor can produce committed/free results depending on the particular

arguments provided in each call (new expression). In particular, the return type of the

clone method can be a committed reference, as required in the question (the same

applies to all of the clone methods in the code, since they each call constructors with

only committed arguments).

5.

 The expression is typed as Node !. We are reading from the field of a (non-null)

committed reference and the declared type of the field has a non-null annotation.

 Node ?/! copy = new Node(toCopy, this, this.root);

(either non-null or possibly-null are ok here).

 The new expression gets a committed type since every argument has a committed type.

Concepts of Object-Oriented Programming

 For the field update, in terms of Construction types, a committed reference can always

be assigned to a field.

 // Constructor 2

Node(Node! toCopy, unc Node? parent, unc Node! root)

Making toCopy committed is necessary because we need toCopy.value to have a non-

null type.

Making toCopy non-null is necessary because we dereference toCopy in the body of the

constructor.

Making parent unclassified is necessary because we call the constructor both with free and

committed second arguments.

Making parent possibly-null is necessary because we call the constructor with a null

argument in one case.

Making root unclassified is necessary because we call the constructor with both free and

committed third arguments.

Making root non-null is necessary because we assign root to a non-null declared field (root)

of this.

 free/unc Node ?/! leftCopy = new Node(l, this, root);

The type of the new expression is free Node!, because not all of its arguments are

committed (this is free). We can choose either free or unclassified, and either possibly-

null or non-null here.

 this.parent = parent; is ok because “this” is free (and “left” is declared

possibly null) and we can assign anything to the fields of free references

this.root = root; is ok because “this” is free and “root” is declared non-null

while the argument “root” is also non-null

this.value = toCopy.value; is ok because “this” is free. Also, toCopy is

committed non-null , and value is declared non-null and so toCopy.value is non-null,

and so can be assigned to a non-null field.

6.

 No – here is an example (consider calling B.bar()when A hasn’t been loaded):

public class A { public class B {

 public static B b; public B() {

 public static int x; A.foo();

 }

 static {

 b = new B(); public static int bar() {

 x = 1; return A.x;

 } }

 }

 public static void foo() {

Concepts of Object-Oriented Programming

 assert x > 0; // safe?

 }

}

 No – here is an example (consider calling B.bar()when A hasn’t been loaded):

public class A { public class B {

 public static B b; public B() {

 public static int x; A temp = new A();

 }

 static {

 b = new B(); public static int bar() {

 x = 1; return A.x;

 } }

 }

 public A() {

 assert x > 0; // safe?

 }

}

 No – here is an example (consider calling A.foo()when neither class is loaded):

public class A { public class B extends A {

 public static B b; static {

 public static int x; assert A.x > 0; //safe?

 }

 static {

 b = new B(); public void bar() {

 b.bar(); assert A.x > 0; //safe?

 x = 1; }

 } }

 public static void foo(){}

}

7. The classes will compile.

When the program is run, the output will be:
3

2

1

This is because, starting to initialise A causes B to start being initialised which causes C

to start being initialised (at which point Java realises A has already started initialisation

and just carries on initialising C). When C.value gets assigned, A.value still

contains the default value 0

The class we first mention will always get loaded first, and so complete initialisation

last. By changing the order of the second two classes, we can vary the output between

the one above, and:

Concepts of Object-Oriented Programming

3

1

2

