
Concepts of Object-Oriented Programming

Exercise 3

Behavioural Subtyping

October 14
th

, 2011

In-class Assessment: A subset of the questions from this sheet will be used for the in-

class assessment. No notes are allowed during the assessment.

1. Let SortedArray be a Java class, which supports a single private field A. The field

A must be a sorted (in increasing order) array of integers with no duplicates. The

following is a method for the insertion of a value into the array:

 void insert (int x)

 {

 int[] B = new int[A.length+1];

 int i = 0;

 while (i<A.length && A[i]<x)

 {

 B[i]=A[i];

 i++;

 }

 B[i]=x;

 while (i<A.length)

 {

 B[i+1]=A[i];

 i++;

 }

 A=B;

 }

 Write an appropriate invariant for the class, as well as a pre- and postcondition for the

method insert. In your answers, you may use the logical quantifiers ∀and ∃.

2.

a. Consider a Java class SortedArrayEvens, which is like SortedArray of

Q.1, but with the extra restriction that all numbers in A must be even. Is

SortedArrayEvens a behavioural subtype of SortedArray?

b. If not, then change the precondition of SortedArray.insert to make

SortedArrayEvens a behavioural subtype of SortedArray, assuming that there

is no problem with the rest of the methods. Do you see any problems with this solution?

c. Assume that, apart from the constructor, there are no mutating methods, i.e., methods

that change the state, like insert. Can SortedArrayEvens now be a subtype of

SortedArray?

Concepts of Object-Oriented Programming

d. Consider a class NoDupArray of unsorted arrays with no duplicates that has an

insert method. Adapt the specifications of Q.1 for that class. Could NoDupArray

be a behavioural supertype of SortedArray? Why?

3. Let C be a class with an integer field x and a method m. Let m have

(a) Precondition x>0

(b) Postcondition x<1

 Suppose now that there is a class D with an integer field x and a method m. In which

of the following cases does the specification of m in D permit D to be a behavioural

subtype of C?

 Pre x>0 Post x<-1

 Pre x>0 Post x<2

 Pre x>-1 Post x<1

 Pre x>2 Post x<1

 Pre x>-4 Post x<-old(x)*old(x)

 Pre true Post false

4. Consider the example of behavioural subtyping in Slide 59.

 class Super

 {

 // requires p == p*p

 // ensures p < result

 int foo(int p) { … }

 };

 class Sub extends Super

 {

 // requires p == 0 || p == 1

 // ensures result == 2

 int foo(int p) { … }

 }

 Suppose that we try to prove this behavioural subtyping. According to our

requirements, the precondition of foo in the superclass should be stronger than that in

the subclass:

 p==p*p ==> p==0 || p==1 (1)

and its postcondition in the subclass should be stronger than that in the superclass:

 result==2 ==> p<result (2)

Formula (1) is a theorem, but Formula (2) is not!

 What is wrong here? Is Sub a behavioural subtype of Super?

 If not, then exhibit an example of an implementation of foo in Sub that violates the

contract of Super.

 If yes, then formulas (1) and (2) are too strong to prove the behavioural subtyping.

Propose weaker rules for the proof of behavioural subtyping, to circumvent this

problem.

Concepts of Object-Oriented Programming

5. Suppose that we have a database, for which we want an “automated key generation”

feature. This means that each time the user inserts a new tuple, a unique key is

automatically generated for the tuple by the system. An obvious way to do that is to

write a counter, which increments by 1 the value that it returns each time it is called.

The method that generates a new key is called generate.

(a) Write a Java class IncCounter and an accompanying specification for

such a counter.

(b) Annotate the following Java class with specifications and show that it is not

a behavioural subtype of IncCounter.

class DecCounter

{

 int key;

 DecCounter () { key = 0; }

 int generate () { return key--; }

}

(c) (Harder) Write an abstract class GenerateUniqueKey together with a

specification, such that both IncCounter and DecCounter are behavioural

subtypes of GenerateUniqueKey. In the specification, you may use helper

methods and fields.

