Concepts of Object-Oriented Programming

ETH

Exercise 3

Behavioral Subtyping

class sortedArray{

int[] A;

invariant A # null;

invariant V i:int | 0 £ 1 A i < A.length -1
= A[1] < A[i+1];

requires V i:int | 0 £ 1 A i1 < A.length
= x # A[i1];
ensures A.length = old(A.length) + 1;
ensures 4 i0:int | (0 £ 10 A 10 < A.length)
A (VY 1:int | 0 £ 1 A1l <K 10 =
Ali] = old(A[il]))
A (V 1:int | 10 < 1 A i1 < A.length

= A[i] = old(A[i-11))
A A[10] = x;
void insert (int x){...}

}

Here is another way to express the last ensures clause. First of all we need to introduce
an auxiliary predicate contains:

contains (L, x) = 3 j:int | 0<j A j<L.length A L[j]=x
Using this predicate we can express the desired property as:
ensures V i:int | contains (A, 1) <

i=x v contains (old(ad), i)

a.The two classes have no behavioural subtyping relation. The invariant of
SortedArrayEven Is stronger than that of SortedArray, because it includes
an extra conjunct:
V i:int | 0 £ 1 A 1 < A.length -1 = A[i] % 2 ==
However, using insert with an odd parameter now breaks the invariant.

b.If we want to use SortedArrayEven as a behavioural subtype of SortedArray,
then we can strengthen the precondition of SortedArray.insert, by
conjoining x%$2 == 0 toit. This however is not what SortedArray is meant to
do.

c. The problem disappears if we forbid mutating methods: there is now no way for a
method to break the stronger invariant.

d. The specification for NoDupArray is as follows:

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Concepts of Object-Oriented Programming

class NoDupArray({

int[] A;
invariant A # null;
invariant V i,Jj:int |
0 £ i A i<J A j< A.length = A[i] # A[]];

requires V i:int | 0 £ 1 A i < A.length
= x # A[i];
ensures A.length = old(A.length) + 1;
ensures V i:int |
contains (A, 1) < 1=x v contains (old(A), 1)
void insert (int x){...}

}

This class is a behavioural supertype of SortedArray. The reason that the mutator
method insert does not pose a problem here is that its contract does not break the
invariant of the subclass.

3.
Presuper= Présup PoStsup=> POStsuper Behavioral subtyping
@) Yes Yes Yes
(b) Yes No No
(©) Yes Yes Yes
(d) No Yes No
(e) Yes Yes Yes
() Yes Yes Yes

4. The proposed example violates the behavioral subtyping rules that we currently have.
Nevertheless class B can be used in any context where class A can be used. The source
of this mismatch is that we ignore preconditions when checking post-conditions. So if
we want to check that a class Sub is a behavioral subtype of a class Super it is enough
to check that for each inherited method m:

o) Presuper=> Présup
o old(Presuper) A POStsus = POStsyper

We can see that the new rules are satisfied for classes A and B (we assume that p is an in-
parameter — this means that o1d (p) is equal to p):

. p==p*p = p==0 || p==

o result==2 §&& p==p*p = p<result

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Concepts of Object-Oriented Programming

class IncCounter

}

{

int key;
IncCounter () { key = 0; }

//ensures key == old(key)+1l && result == old(key)
int generate () { return key++; }

b. The postcondition for generate is

and
IncCounter.generate.

The abstract parent class can be declared using a helper pure method
boolean used (int). Informally, the meaning of the helper method is:

x has been used as a key before = used (x)

C.

key == old(key)-1 && result == old(key)

it is easy to see that it does not refine the postcondition of

Furthermore, the correctness of the class relies on the property that once a
number is used, it never becomes unused again. This can be expressed with a
two-state history constraint.

The definitions of the classes follow:

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

abstract class GenerateUniqueKey

{

abstract boolean used (int) ;

//constraint Vx:int | old(used(x)) = used(x)
//ensures !old(used(result)) && used(result)
abstract int generate ();
}
class IncCounter // .. and similarly for DecCounter
{
int key;
IncCounter () { key = 0; }

boolean used (int x)
{ return x < key; }

//ensures key == old(key)+1l && result == old(key)
int generate () { return key++; }

