
Concepts of Object-Oriented Programming

Exercise 6

Traits and Bytecode verification

November 4
th

1) Consider the following Scala code:

class Cell

{

 private var x:int = 0

 def get() = { x }

 def set(i:int) = { x=i }

}

trait Doubling extends Cell

{

 override def set(i:int) = { super.set(2*i) }

}

trait Incrementing extends Cell

{

 override def set(i:int) = { super.set(i+1) }

}

 What is the difference between the following objects?
 val a = new Cell

 val b = new Cell with Incrementing

 val c = new Cell with Incrementing with Doubling

 val d = new Cell with Doubling with Incrementing

 We use the following code to implement a cell that stores the argument of the set

method multiplied by four:
val e = new Cell with Doubling with Doubling

Why doesn’t it work? What does it do? How can we make it work?

 (Harder) Find a modularity problem in the above, or a similar, situation. Hint: a

client that gets given a class C does not necessarily know if a trait T has been mixed

in that class.

2) Assume all the definitions of the previous exercise. Assume that Cell has the

invariant that x is always even. Furthermore, consider a Scala method
 foo(x: Cell with Doubling with Incrementing) {…}

 During the execution of foo, if we assume that all subclasses of Cell respect

behavioural subtyping, then are we allowed to conclude that x.get() always

returns an even number?

 We propose the following solution to support traits together with behavioral

subtyping:

Concepts of Object-Oriented Programming

Assume C is a class with specification S. Each time we create a new trait T that

extends C, we must ensure that C with T also satisfies S.

 Show a counterexample that demonstrates that this approach does not work

3) Consider the following type hierarchy:

Suppose that the method f of class E has the following signature:
 A f(boolean b1, boolean b2);

and three local variables x, y, z. It is known that the initial state is
 ([], [E,boolean,boolean,C1,C2,A])

The maximal stack size is equal to 1.

The method f has the following body:

 0: iload_1

 1: ifeq 22

 4: iload_2

 5: ifeq 12

 8: aload_3

 9: goto 14

 12: aload_4

 14: astore_3

 15: aload_5

 17: astore_4

 19: goto 0

 22: aload_3

 23: areturn

 Verify that the program is type safe.

 Provide the minimal type information that enables verification of the bytecode

without a fixpoint computation.

Note: In this example, ifeq x pops an integer from the stack and jumps to line x if the integer

is equal to zero.

4) Consider the following code:

interface IFace {

 void m();

}

class Cl1 implements IFace {

 public void m() { System.out.println("Cl1.m"); }

A

B

C1 C2

Concepts of Object-Oriented Programming

}

class Cl2 implements IFace {

 public void m() { System.out.println("Cl2.m"); }

}

public class Test1 {

 public static void main(String[] args) {

 xxx(true);

 xxx(false);

 }

 public static void xxx(boolean param) {

 IFace iface = null;

 if(param) { iface = new Cl1();}

else { iface = new Cl2(); }

 iface.m(); }}

 What type will be calculated for the variable iface of the method xxx during the

bytecode verification?

 When can we decide that iface.m() is safe to call? During bytecode verification,

or execution?

 What if IFace was a class instead of an interface? What if it was an abstract class?

5) The bytecode type inference algorithm rejects a verified program if there are different

stack sizes for input values of a join point.

 Provide a bytecode program that is rejected because of this limitation but that does not

cause runtime errors.

 Is it possible to construct a bytecode verification algorithm that avoids this limitation?

If yes, then provide an updated algorithm. If no, then show that it can’t be done.

 How serious is this restriction from a pragmatic perspective?

