
Concepts of Object-Oriented Programming

Exercise 2

Types and Subtyping

1. The right answer is 5 (F <: E).

C <: B does not hold since C does not contain method void m1(). For the same

reason C <: A does not hold.

The subtyping relations we have between the classes A, B, C, and D are:
D <: B <:A

D <: C

E <: G does not hold since the argument of method foo in E (of type D) is not a

subtype of the one in G (of type C).

G <: F does not hold since the return type of method foo in class G (type B) is not a

subtype of the one in F (type D).

2. B=C <: A

 D <: E = G <: F

No other subtyping relations exist, except the reflexive and transitive closure of the

above.

3. Yes, contravariant arrays would require run-time type checks when reading values

from the array. We would need run-time type checks when reading from arrays.

By definition of contravariance, we have that S<:T then T[]<:S[].

Then Object[]<:String[] since String<:Object. So we can pass an array of

type Object[] to a method that requires a String[] argument.

class C {

 String foo(String[] a) {

 return a[0];

 }

}

void client(C c) {

 Object[] arr = new Object[1];

 arr[0] = new Object();

 String s = c.foo(arr);

}

4. Class A restricts the accessibility of method get, since it is protected in B and

private in A. This means that class A allows fewer behaviors than B, so it cannot be a

subtype of B. On the other hand, class C relaxes the accessibility level of method get,

so it allows more behaviors than B, and this is allowed by the Java compiler.

In general, a class can be subtype of another class if it assigns “weaker” accessibility

Concepts of Object-Oriented Programming

permissions that the ones of the superclass.

In Java, there are four different types of access modifiers for fields and methods:

 public: every class can access the element

 protected: only subclasses and classes in the same package can access the

element

 default: only classes in the same package can access the element

 private: only this class can access the element

We can state that

public <: protected <: default <: private

where a <: b means that the accessibility level a is weaker than b, and that a subclass

can relax the accessibility level b with a.

5. “in” parameters – contravariant. “out” parameters covariant. The rest invariant.

Notice that the answer depends on whether a type refers to a value that can be read

and/or written by the method. This means that “in out” and “ref” behave similarly as far

as the present question is concerned.

6. The code tries to override a non-existing method. The new method has type

ColoredPoint->bool and the old method has type Point->bool. Since C#

classes are invariant in the method parameter types, the new method cannot override the

old one. This is reasonable, because the requirement that ColoredPoint is a

subclass of Point entails the following substitution principle: every object of

ColoredPoint should be useable wherever a point is expected. The substitution

principle is not respected whenever a ColoredPoint c is compared to a Point p,

as in c.isEqual(p).

Eiffel would allow the overriding due to its covariance policy. This allows the program

to compile. It allows Point objects to be compared to Point objects and

ColoredPoint objects to ColoredPoint objects. However, the unsoundness

above will remain. Eiffel will try to catch this statically by forbidding all calls that

would potentially compare objects coming from two different classes. This forbids too

much. Also, it does not respect the substitution principle of subtyping.

If we removed the override keyword, the program would compile. Due to

overloading, ColoredPoint will be a subtype of Point, supporting two different

methods:
 boolean isEqual (Point)

 boolean isEqual (ColoredPoint)

In Java the same thing would happen. However, a Java programmer used to dynamic

dispatch will find the following program surprising:
 void f ()

 {

 ColoredPoint p,q;

p = new ColoredPoint ();

 p.x = 1; p.y = 2; p.color = 3;

Concepts of Object-Oriented Programming

q = new ColoredPoint ();

q.x = 1; q.y = 2; q.color = 4;

boolean b1 = p.isEqual (q); // b1 == false

boolean b2 = g (p, q); // b2 == true

 }

 boolean g (ColoredPoint pp, Point qq)

 {

 return pp.isEqual (qq); // returns true

 }

If we don’t want ColoredPoint to be a subtype of Point, we are free to ignore the

comparison between the two. However, a language with only subclassing, like Java or

C#, will force us to rewrite all the members that could have been reused (in this

example, these are only x,y, but in general, this may be a huge rewriting). Languages

that decouple subtyping from inheritance, like C++ and Eiffel, do not have this problem.

