
Concepts of Object-Oriented Programming

Exercise 4

Inheritance, and more Inheritance

1.

 The intended behaviour is that a Stack is first-in-first-out, while a Queue

is last-in-first-out. Therefore, it is impossible that both the pop and push

methods can have similar behaviours across the two classes, and so neither class

can be a behavioural subtype of the other.

 Depending on the internal representation, either the pop()or the push()

method (but not both) could be re-used, from one implementation to the other.

For example, if one implements a Queue by pushing to the end of a linked list,

and popping from the beginning, then a Stack could be implemented either by

pushing on the beginning of the list and reusing the pop() method, or by

reusing the push() method and popping from the end of the list. Furthermore,

it’s likely that the isEmpty(), size() and reverse() methods could all

be reused.

 Any mechanism which allows code reuse without subtyping, e.g., private

inheritance in C++. In principle, aggregation could be employed, but the

“common class” would be rather strange (e.g., a list which could only grow, and

only at one end). Traits might also provide a solution to this problem, but again,

identifying a fragment of the implementation to abstract out might not be

natural. One could argue that this kind of code reuse binds the implementations

too closely together, when it might be that one or other class wants to evolve

independently (e.g., given some other desired methods, we want to change the

underlying implementation of one class in a way which isn’t helpful for the

other). However, the ability to reuse a large number of common methods seems

tempting.

2.

 Code reuse is not going to be possible (at least for the primitive operations), since

the two classes will use different internal representations of the data.

 So long as the internal representation (fields) cannot be observed, then they should

ideally behave as subtypes, since ultimately all of the operations should produce

the same answers. In particular, the difference in the implementations cannot be

observed by get() calls. This seems intuitively to be correct also, since sparse

matrices are a special case of matrices.

However, unless the specifications of the methods are written abstractly, then it

will be hard to technically justify behavioural subtyping (e.g., if the specification

of set()in Matrix is written in terms of the array used to store the data, then

the specification of set()in SparseMatrix will not be able to satisfy the

requirements of behavioural subtyping).

 If we make them subtypes then we can nicely handle the appropriate

implementations of the add and multiply methods in the various cases. On the

other hand, a SparseMatrix object will inherit a useless copy of the fields used

in Matrix – this means an overhead in memory and initialisation time (since by

default the superclass constructor will still be called). This can also lead to subtle

bugs (see next question).

Concepts of Object-Oriented Programming

 An interface (or abstract class) could alternatively be defined, which both classes

implement (or subclass). This eliminates the redundant overlap between fields

used in the two classes. However, if client code has already been written in terms

of the class Matrix then adding the interface will not avoid any problems for this

client code (this is a good reason to always provide interfaces rather than class

definitions, to clients!).

3.

 In the case of the code
 m.entries[i][j] = 4;

 if(m.get(i,j)!= 4) { // crash }

if m turns out to reference a SparseMatrix object, then because the method call

to get() will be dynamically dispatched, it will refer to the fields used for the

internal representation of SparseMatrix, and not the entries array.

Therefore, there is no reason to expect the if-condition to be true. Making the

fields private avoids this problem arising in client code, but it can still occur in

other methods of Matrix if there is a mixture of direct field accesses and

(dynamically dispatched) method calls.

 Similarly to the previous part, if we retain any method implementations from the

Matrix class then these are likely to refer to the fields used for internal

representation of the superclass and not the subclass, which are unlikely to contain

meaningful values.

 Any extra methods that we add to Matrix will suffer the same difficulty – because

they will typically refer to the entries array, they will not operate correctly on

SparseMatrix objects. The only exception is a method which is implemented

entirely in terms of previously-defined methods (no field accesses).

4.

 The code will print B1 C1 C1 – the method definition is resolved in terms of the

static type of the argument, but the dynamic type of the receiver. Note that this

means that it is possible to have two aliases of the same object, and receive

different results when passing them as parameter to a method of the same name

(note however that, this is not really passing them to the same method – it is better

to think of method overloads as definitions of two different methods in the class).

