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1. a) We need the following specifications: 

  
class SumVectors 

{ 

public Vector[] a=new Vector[0]; 

 

// invariant a≠null  ∧ ∀ v:a. v≠null 

 

public void insert(Vector vct) 

// requires vct≠null 
// ensures a.length=old(a).length+1 

// ensures ∀i:int. 0≤i<old(a).length ⇒  

//   a[i]=old(a)[i] 

// ensures a[old(a).length]=vct 

{ ... } 

 

public Vector sum() 

// ensures result.x = Σi=0
a.length-1

 a[i].x 

// ensures result.y = Σi=0
a.length-1

 a[i].y 

{ ... } 

} 

 

  b) We only need one invariant: 

 

sx=Σi=0
a.length-1

 a[i].x ∧ sy=Σi=0
a.length-1

 a[i].y 

 

 

2. a) The invariant of the class, apart from U, should also contain the following 

conjuncts: 

 theTree≠null ∧ ∃h:int. h≥0 ∧ theTree.length=2h+1-1 

This part of the invariant is assumed throughout the solution, and we will not refer to it 

again. 

 

The invariant U can be written as follows: 

  ∀i.0≤i<theTree.length/2⇒ 
   theTree[i] = theTree[2*i+1]+theTree[2*i+2] 

Note that the condition  0≤i<theTree.length/2 says that node i is not a leaf.  

Note also that “height” means the maximum distance of the root to the leaves (so a single 

node is a 0-height tree) 
 

 

b)  When addToLeaf is called on a leaf, a sequence of recursive calls to addToNode 

begins.  The first call adds a number s to the leaf, which temporarily breaks the 

invariant, because the parent of that leaf no longer holds the correct sum.  Each 
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subsequent call of addToNode corrects the sum of its current node, similarly making the 

sum of its parent (if there is one) outdated.  The calls to addToNode happen recursively 

all the way up from the leaf to the root, at which point the invariant is fixed. 

 

c) The precondition is as follows: either (i) the method addToNode is called on a leaf 

or (ii) the invariant must be broken exactly at the node on which we call addToNode.  In 

the latter case, the sum of the children of that node must be exactly s less than what it is 

supposed to be. 

 

d) We can dent the invariant in the following way:  Introduce a boolean array b.  For 

every non-leaf i, the flag b[i] is true if and only if the U has to hold at node i.  More 

formally, the dented version of the invariant is: 

 

 ∀i.0≤i<theTree.length/2 ∧ b[i]⇒ 
   theTree[i] = theTree[2*i+1]+theTree[2*i+2] 

 

where the field b is declared as follows: 

 
 bool[] b; 

 

This denting allows us to break U at any node in the tree, which makes the precondition 

described in (c) easily expressible. 

 

Remember that the invariant must also specify that b is not null, and that the size of b is 

equal to the number of non-leaf nodes in the tree. 

 

e) Here is the code together with the new field: 
  

final class CompleteBinaryTree 

{ 

 bool[] b; 

 private int[] theTree; 

 

 // invariant theTree≠null ∧ b≠null 
 // invariant 

  ∃h:int. h≥0 ∧ theTree.length=2h+1-1 

   ∧ b.length=2h-1 
 // invariant: as mentioned in (d) 

 

 

 public CompleteBinaryTree(int h) 

  // ensures ∀i.b[i] 

 { 

  theTree = new int[Math.pow(2,h+1)-1]; 

  for(int i=0; i<theTree.length; i++) 

   theTree[i]=0; 

  b = new bool[Math.pow(2,h)-1]; 

  for(int i=0; i<b.length; i++) b[i]=true; 

 } 
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 public void addToLeaf(int i, int s) 

  // requires 

   theTree.length/2 ≤ i < theTree.length 

  // requires ∀j.b[j] 

  // ensures theTree[i]=old(theTree[i+1])+s 

  // ensures ∀j.b[j] 

 { addToNode (i, s); } 

 

  private void addToNode(int i, int s) 

  // requires 0 ≤ i < theTree.length 

  // requires i<theTree.length/2⇒ 

    ¬b[i] ∧ 
    theTree[i]=theTree[2*i+1]+theTree[2*i+2]-s 

  // requires ∀j. i≠j⇒b[j] 

  // ensures theTree[i]=old(theTree[i+1])+s 

  // ensures ∀j.b[j] 

  { 

  theTree[i]+=s; 

  if(i<b.length) b[i]=true; 

  if (i>0) 

  { 

   b[(i-1)/2]=false; 

   addToNode((i-1)/2, s); 

  } 

 } 

} 

 

f) The claim is as follows: all methods preserve the dented invariant, and the 

public methods preserve the condition ∀j.b[j], which guarantees the 

undented invariant U. 

 


