
Concepts of Object-Oriented Programming
AS 2013

Exercise 10
Readonly and Ownership Types

November 29, 2013

Task 1
The intuition behind a pure method is that its execution effects are not observable by the client.
This essentially means that the result of any other method call or field read inside client code
would not be affected by a pure method execution. One way to formalize this property is to
require that the execution of a pure method does not change the program heap.

• Provide proof obligations that guarantee the purity of a method, according to this re-
quirement. Can you define an analogous notion for constructors?

• Class Set represents a set of integers. Method Set allLessThan(int bound) (in class
Set) returns a freshly-allocated instance of class Set that contains all elements of the
original set that are smaller than bound.

– Even though the method allLessThan does not change the behavior of other meth-
ods, it is not pure, according to our definition. Why?

– How can the provided definition of purity be relaxed to allow declaration of the
method allLessThan as pure, without violating the intuition above?

– Provide proof obligations that guarantee purity of a method according to your re-
laxed definition.

– Can you define an analogous notion for constructors?

Task 2
Consider how we might extend readonly types to handle arrays. For an array of primitive types,
one might want to declare that the array elements cannot be changed, using a declaration such
as:
readonly int[] x;

which, similarly to the rules for accessing fields of objects, would forbid an update such as
x[2] = 2; // error - x is declared with a readonly type

• Should there be a subtyping relationship (in either direction) between types readwrite
int[] and readonly int[]?

For arrays of reference types, there are two reasonable questions to consider for readonly typing.
Firstly, just as for an array of primitive types, whether or not the array reference can be used
for modifications. Secondly, whether the array elements can be used for modifications.
y[1] = y[2]; // is this allowed?
y[1].f = y[2].f; // is this allowed?



In order to express all possibilities, consider having two readonly/readwrite modifiers for
an array type - the first to denote access to the array reference itself, and the second to denote
access to the objects stored in its elements, e.g., readonly readonly T[] y; is the most
restrictive possibility.

Consider what the semantics of readonly readwrite T[] y; could be. There are two rea-
sonable choices here, depending on whether we regard accesses of the form y[1].f as accesses
which go first via the array y, and then to the element y[1], or consider them as accesses
directly to y[1] (in a sense “skipping” y, and hence ignoring the first modifier).

• For each of these two possible semantics, consider the following:

– Do all four combinations of modifiers express something different from one another?

– What subtyping relationships (if any) would be reasonable between the four possible
variants of a T[] type?

• In the light of these questions, which of the two semantics seems the best choice?

Task 3
In this question assume no type-casts or static variables or fields are used.

The C++ language supports the constmodifier for types, which tries to model a weak readonly
type system.

• The C++ type system does not ensure transitive readonly structures as the system shown
in class. Show which typing rules could be changed and how to ensure transitivity (con-
sider both pointers and references). Does this ensure that x.f is not modified in the
method m?

class C{
public: int f = 0;

}

void m(const C& x){...}

• Considering the changes in the previous section, show an example where the method n

does modify x.f. Is this a problem?
void n(const C& x, C& y){...}

• The mutable modifier is used in C++ to denote a field that can be mutated also in
const objects - meaning that its value does not affect the client visible behaviour of
the object (such as caching the results of a time consuming calculation) - consider the
following code:
class List{

...

public:
///ensures result >= 0
int length()const{...}

///requires index >= 0 && index <length()
int at(int index) const {

if (index == lastSearch)
return lastSearchResult;

else
{

int result = atHelper(index);
lastSearch = index;



lastSearchResult = result;
return result;

}
}

private:
int atHelper(int index) const{...} //Time consuming
mutable int lastSearch=-1;
mutable int lastSearchResult=0;

}

In this section assume that the const modifier is transitive for both pointers and refer-
ences. We try to prove correctness of the at method by showing that we get the same
result regardless of the values of lastSearch and lastSearchResult. However, this
requires a stronger class invariant - give such an invariant, assuming that atHelper is
pure (and does not modify even mutable fields).

Task 4
Annotate the following program with appropriate ownership type modifiers to maximize the
buffer, the producer, and the consumer encapsulation:

class Producer {
int[] buf;
int n;
Consumer con;
Producer()
{
buf = new int[10];

}
void produce(int x)
{
buf[n] = x;
n = (n+1)
% buf.length;

}
}

class Consumer {
int[] buf;
int n;
Producer pro;
Consumer(Producer p)
{
buf = p.buf;
pro = p;
p.con = this;

}
int consume()
{
n = (n+1)
% buf.length;
return buf[n];

}
}

class Context {
Producer p;
Consumer c;

Context(){
p = new Producer();
c = new Consumer(p);
}

public void run() {
for(int i=-5; i<=5;

++i){
p.produce(i);
if(i%2 == 0)
c.consume();

}
}

}

Task 5
The Ownership type system allows the following ownership modifiers: peer, rep, self, lost
, and any - to structure the object store and to restrict how references can be passed and
used. We want to extend the Ownership type system by adding one more modifier down. This
modifier is introduced to denote references to objects in the same context as this or in the
context (transitively) owned by an object in the same context as this.

(a) Redraw the subtype relation diagram below to include the newly introduced type of the
universe type system.

any T

lost T

rep Tpeer Tself T



(b) Define the most specific (in terms of the context information it conveys) viewpoint adap-
tation function I by filling the table below (for a combination Te I Tf the modifier Te

specifies the row, and the modifier Tf the column of the table used).

Recall that the viewpoint adaptation function I is used, in particular, to determine the
owner of an object referenced by a field access. More exactly, if the ownership modifier of
e is Te and the ownership modifier of a field f is Tf , then the ownership modifier assigned
to the field access e.f is determined as Te I Tf . Note that this applies to field updates
as well as field reads.

I peer rep any down

self

peer

rep

lost

any

down

(c) Assuming that you only need to enforce the topological constraints of the type system ,
how should the field update rule from lecture 7 slide 40 be adapted to the system extended
with the down modifier? Do you need to make any changes?

You might like to consider the following example code, in assessing your answers to (b) and
(c):
public class Node{

rep Node c;
down Node d;

public void foo() {
this.d.d = this; // does this/should this type-check?
this.c.d = this.d; // does this/should this type-check?

}
}


