
Concepts of Object-Oriented Programming
AS 2013

Exercise 9
Information hiding, encapsulation and object structures

November 22, 2013

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1
Suppose that the following Java classes are part of a package, to which an external user cannot
add classes.
public abstract class BankAccount {

... boolean importantCustomer=false;

... int amount=0;

... final int maxDebit=1000;

/// invariant amount >= -maxDebit &&
/// !importantCustomer => amount>=0 &&
/// importantCustomer <=> this instanceof RichCustomer

... void deposit(int amount);

... void withdraw(int amount);
}

public final class PoorCustomer extends BankAccount {
... void deposit(int amount) {

if(amount>=0)
this.amount+=amount;

}
... void withdraw(int amount) {

if(amount<=this.amount)
this.amount-=amount;

}
}

public final class RichCustomer extends BankAccount {
public RichCustomer() {importantCustomer=true;}
... void deposit(int amount) {

if(this.amount+amount >= -maxDebit)
this.amount+=amount;

}
... void withdraw(int amount) {

if(-maxDebit<=this.amount-amount)
this.amount-=amount;

}
}

Provide the most permissive access modifiers for each field and method, such that the class
invariant cannot be broken from outside the package. Assume that no integer over/underflow
occurs.

In Scala, a class can be declared as sealed. That means that the class can be extended only
by classes written in the same .scala file. Suppose that the class BankAccount is declared as
sealed, and PoorCustomer and RichCustomer are part of the same scala file. Does this allow
you to choose more permissive access modifiers?

Task 2
C++ developers often talk about binary and source compatibility. Assume we have some class
C and we make a change to it so that, now we have a newer version of the class C’:

• If all clients of C work just as well with C’ without even recompiling the clients,
then C and C’ are binary compatible.

• If all clients of C work just as well with C’ without modifying the clients, but after
recompiling them, then C and C’ are source compatible.

• If clients of C may need source code adjustments to work with C’, then C and C’ are not
compatible.

Well encapsulated C++ classes have a much higher chance to be binary compatible with many
modifications. This is desirable, since it makes it possible to update the classes without breaking
clients.

Consider the following C++ class:

// Point.h
class Point {

private:
int x_,y_;

public:
Point(int x, int y);
int x();
int y();

};

// Point.cpp
#include "Point.h"
Point::Point(int x, int y)

: x_{x}, y_{y} {}
int Point::x() { return x_;}
int Point::y() { return y_;}

And the following client of that class:
// Client.cpp
#include <iostream>
#include "Point.h"

int main() {
Point points[3] = {{1,2},{3,4},{5,6}};
for(auto p : points) std::cout << p.x() << p.y();
return 0;

}

The main function allocates three objects of type Point on the stack. Since main allocates
the memory, it needs to know precisely how much space an object of type Point takes. This
illustrates the fact that in C++, the memory layout of objects (also known as the object model)
is part of the public interface of a class. Knowing this, and without modifying the client in any
way, do the following:

• Find two different ways to add something to the private part of Point, such that the new
code is not binary compatible with the client, but it is still source compatible. For both
cases write only the new code and provide a brief explanation why this breaks the client.

• Describe a better design of Point that will make the class more encapsulated. Your design
should allow you to implement at least one of the changes above in a binary compatible
way.

Hint: If you want to experiment, you can use the following to compile the Point class and the
main function separately:

• Point on Windows:
g++ -std=c++11 -shared -fPIC -Wl,--export-all-symbols
-o libpoint.so Point.cpp

• Point on Linux:
g++ -std=c++11 -shared -fPIC -o libpoint.so Point.cpp

• Client:
g++ -std=c++11 -L. -Wl,-rpath,’.’ Client.cpp -o client -lpoint

Task 3
The following Java classes, all part of the security package, were written by an unexperienced
programmer and contain a number of issues:
package security;

public class User {
public String name;
public String password;
public User(String name, String password) {

this.name = name;
this.password = password;

}
}

public class LoginException extends RuntimeException {
public User problemUser;
public LoginException(String message, User problemUser) {

super(message);
this.problemUser = problemUser;

}
}

public class Login {
private List<User> users = new LinkedList<User>();
public void registerUser(User u) {

if (u == null || u.name == null || u.password == null
|| u.name.isEmpty() || u.password.isEmpty()) return;

users.add(u);
}

// Returns true if the user ’u’ was successfully logged in.
// Otherwise returns false or throws an exception.
public boolean login(User u) throws LoginException {

if (u == null) return false;
User current = null;
try{

for(User registered : users) {
boolean nameEqual = registered.name.equals(u.name);
current = registered;

if (nameEqual) {
if (registered.password.equals(u.password))

return true;
}

if (nameEqual)
throw new LoginException("Invalid password for user",u);

}

return false;
}
catch(Exception e) {

throw new LoginException("Invalid user",current);
}

}
}

The malicious method is in a different package:
void malicious(Login l) { ... }

Assume the Login object that is passed into the method already has registered users.

• Complete the body of the malicious method so that you manage to log-in as an already
existing user. You do not know any names or passwords of existing users. Do not use
reflection.

• Is it possible to fix the problem by:

– only modifying the User class?

– only modifying the LoginException class?

– only modifying the registerUser method?

– only modifying the body of the for loop inside the login method?

In each of these cases, explain how you can prevent the malicious login or why it is not
possible.

Task 4
In answering this task, do not use reflection, inheritance, and static fields or methods.

This task is concerned with reasoning about non-modification in a modular setting in the
presence of aliasing.

Consider the following code:
package cell;
class Cell {

///ensures get()==newValue
public Cell(int newValue){value=newValue;}

///ensures get()==newValue
public void set(int newValue){value=newValue;}
///pure
public int get(){return value;}
private int value;

}

package client;
import cell.*;
class Client{

///requires c1!=null
///requires c2!=null
void setCells(Cell c1, Cell c2) {

c1.set(1);
c2.set(2);
assert(c1.get() == 1);

}

void setCellsClient() {
Cell c1 = new Cell(5);
Cell c2 = new Cell(5);
setCells(c1,c2);

}
}

The objective of this task is to make sure that the assertion in the method setCells does not
fail, using modular reasoning. The potential problem is that of determining whether the call
c2.set(2) can affect the return value of c1.get().

(a) Modify the second line in method setCellsClient (the initialization of c2) so that the
assertion in method setCells fails. The precondition of setCells must still be satisfied
by the modified version.

(b) Add a precondition to setCells that will make the call from your version of setCellsClient
illegal. The precondition should be such that the original call is legal. Remember that
the precondition can only refer to the arguments of the method and to public fields and
methods.

(c) We now add a clone method to the Cell class:

///ensures result != null
///ensures result != this
///ensures result.get()==get()
///ensures get()==old(get())
public Cell clone() { return new Cell(value); }

We also add to the client the methods left and right, which use the clone method:

void left() {
Cell c1 = new Cell(5);
Cell c2 = c1.clone();
setCells(c1,c2);

}

void right() {
Cell c1 = new Cell(5);
Cell c2a = new Cell(5);
Cell c2 = c2a.clone();
setCells(c1,c2);

}

Modify only the Cell class so that a call to left causes the assertion in setCells to
fail, while a call to right does not cause the assertion to fail. You can add private and
default access members and methods to the Cell class and add private classes to the
cell package, and also modify the implementation of existing methods, but not change
the public interface in any way. Your implementations must satisfy the existing contracts,
including the one from task B.

(d) Strengthen the precondition of the method setCells so that, with your modified Cell,
the call from left would fail the precondition check, while the call from the method
right would satisfy the precondition.

You can use the concept of the reach of an object, where, for an object x, reach(x) is
defined as the the set of objects which are reachable from x — the set of objects which
can be described by an access path x.f1.f2.fn for some n and some sequence
of field names f1..fn (we do not consider arrays in this task). You can also use set
operations in your precondition.

Remember that the precondition of a method can refer only to the this object and the
method’s arguments, dereferencing of public fields, and call public pure methods.

(e) In order to prove the correctness of the body of the methods left and right, when

setCells has the stronger precondition from section D, we would have to strengthen the
postcondition of the clone method of class Cell. Write a stronger postcondition to the
method Cell.clone so that the bodies of the methods left and right can be proven
modularly — i.e., without knowing the implementation of the clone method and other
private details of the class Cell.

