
Concepts of Object-Oriented Programming
AS 2014

Exercise 10
Readonly and Ownership Types

November 28, 2014

Task 1
Consider the following classes:
class A {

readwrite StringBuffer n1=...;
readonly StringBuffer n2=...;

}

class B {
readwrite A x;
readonly A y;
public B(readwrite A x, readonly A y) {

this.x=x;
this.y=y;

}
}

Check which programs typecheck and explain why they do or do not typecheck.

Program 1 Program 2
readwrite A obj=new A();
readonly B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.y.n1;

readwrite A obj=new A();
readwrite B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.y.n1;

Program 3 Program 4

readwrite A obj=new A();
readwrite B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.x.n1;

readonly A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B(obj, obj2);
readwrite StringBuffer v=obj3.y.n1;

Program 5 Program 6
readwrite A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B(obj, obj2);
readonly StringBuffer v=obj3.y.n1;

readwrite A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B(obj, obj2);
readonly StringBuffer v=obj3.y.n2;

Task 2
Consider how we might extend readonly types to handle arrays. For an array of primitive types,
one might want to declare that the array elements cannot be changed, using a declaration such
as:
readonly int[] x;

which, similarly to the rules for accessing fields of objects, would forbid an update such as
x[2] = 2; // error - x is declared with a readonly type



A) Should there be a subtyping relationship (in either direction) between types readwrite
int[] and readonly int[]?

B) For arrays of reference types, there are two reasonable questions to consider for readonly
typing. Firstly, just as for an array of primitive types, whether or not the array reference can
be used for modifications. Secondly, whether the array elements can be used for modifications.
y[1] = y[2]; // is this allowed?
y[1].f = y[2].f; // is this allowed?

In order to express all possibilities, consider having two readonly/readwrite modifiers for
an array type - the first to denote access to the array reference itself, and the second to denote
access to the objects stored in its elements, e.g., readonly readonly T[] y; is the most
restrictive possibility.

Consider what the semantics of readwrite readonly T[] y; could be. There are two rea-
sonable choices here, depending on whether we regard accesses of the form y[1].f as accesses
which go first via the array y, and then to the element y[1], or consider them as accesses
directly to y[1] (in a sense “skipping” y, and hence ignoring the first modifier).

For each of these two possible semantics, consider the following:

• Do all four combinations of modifiers express something different from one another?

• What subtyping relationships (if any) would be reasonable between the four possible
variants of a T[] type?

C) In the light of these questions, which of the two semantics seems the best choice?

Task 3
Consider the following method signatures:
peer Object foo(any String el);
peer Object foo(rep String el);
rep Object foo(any String el);
any Object foo(peer String el);
rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other.

Task 4
(The following question is taken from a previous exam) Consider the following declarations:
class A
{

rep B first;
rep B second;

}
class B
{

any A obj;
peer B sibling;

}

Which of the following programs are allowed in the topological ownership system? For any
program that is accepted in the topological system, is it also accepted in the owner-as-modifier
system? Assume that none of the objects involved are null. Briefly explain each of your
answers.



Program 1 Program 2 Program 3 Program 4
rep B b;
...
b = b.sibling;

peer A a; rep B b;
...
a = b.obj;

any A a;
...
a.first.obj = a;

peer A a;
...
a.first = a.first;

Task 5
Consider the typing rules for a field update e1.f = e2 (lecture 6, slide 64)

A) Consider two particular cases: e2 is typed with the ownership modifier any, or e2 is typed
with the ownership modifier lost.

Suppose that e2 refers to an object (i.e., not null). Is there a difference between the information
that these two modifiers convey about where this object is located in the heap topology of
ownership trees?

Can you find an example (by choosing the ownership modifiers for e1 and f) when a field
assignment would be typeable in one of the two cases (of e2 being any or lost) but not the
other? Explain briefly why this is the case.

B)Suppose instead that e1 is typed with ownership modifier τ(e1) and f has ownership modifier
τ(f). We consider two different cases: τ(e1) I τ(f) is the modifier any, or τ(e1) I τ(f) is the
modifier lost.

Is there a difference between the information that these two modifiers convey about topological
requirements associated with the location e1.f (i.e., what needs to be guaranteed before an
object can be validly assigned to this location)?

Can you find an example (by choosing the ownership modifier for e2) when a field assignment
would be typeable in one of the two cases (of τ(e1) I τ(f) being any or lost) but not the
other? Explain briefly why this is the case.

Task 6
The Ownership type system allows the following ownership modifiers: peer, rep, self, lost
, and any - to structure the object store and to restrict how references can be passed and
used. We want to extend the Ownership type system by adding one more modifier down. This
modifier is introduced to denote references to objects in the same context as this or in the
context (transitively) owned by an object in the same context as this.

A) Redraw the subtype relation diagram below to include the newly introduced type of the
universe type system.

any T

lost T

rep Tpeer Tself T

B) Define the most specific (in terms of the context information it conveys) viewpoint adapta-
tion function I by filling the table below (for a combination Te I Tf the modifier Te specifies
the row, and the modifier Tf the column of the table used).



Recall that the viewpoint adaptation function I is used, in particular, to determine the owner
of an object referenced by a field access. More exactly, if the ownership modifier of e is Te and
the ownership modifier of a field f is Tf , then the ownership modifier assigned to the field
access e.f is determined as Te I Tf . Note that this applies to field updates as well as field
reads.
I peer rep any down

self

peer

rep

lost

any

down

C) Assuming that you only need to enforce the topological constraints of the type system ,
how should the field update rule from lecture 6 slide 64 be adapted to the system extended
with the down modifier? Do you need to make any changes?

D) In writing your answers for B and C consider the following example:

public class Node{
rep Node c;
down Node d;

public void foo() {
this.d.d = this; // should this line typecheck?
this.c.d = this.d; // should this line typecheck?

}
}

Do your solutions disallow all invalid assignments?


