
Concepts of Object-Oriented Programming
AS 2014

Exercise 10
Readonly and Ownership Types

November 28, 2014

Task 1
Consider the following classes:
class A {

readwrite StringBuffer n1=...;
readonly StringBuffer n2=...;

}

class B {
readwrite A x;
readonly A y;
public B(readwrite A x, readonly A y) {

this.x=x;
this.y=y;

}
}

Check which programs typecheck and explain why they do or do not typecheck.

Program 1 Program 2
readwrite A obj=new A();
readonly B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.y.n1;

readwrite A obj=new A();
readwrite B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.y.n1;

Program 3 Program 4

readwrite A obj=new A();
readwrite B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.x.n1;

readonly A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B(obj, obj2);
readwrite StringBuffer v=obj3.y.n1;

Program 5 Program 6
readwrite A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B(obj, obj2);
readonly StringBuffer v=obj3.y.n1;

readwrite A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B(obj, obj2);
readonly StringBuffer v=obj3.y.n2;

solution

• Program 1 does not compile since obj2 is readonly, so obj2.y.n1 is readonly,
and we try to assign it to a readwrite variable.

• Program 2 does not compile since field y in B is readonly, so obj2.y.n1 is
readonly, and we try to assign it to a readwrite variable.

• Program 3 compiles! obj2 is readwrite, x is readwrite (so obj2.x is readwrite
), n1 is readwrite (so obj2.x.n1 is readwrite), and we assign obj2.x.n1 to a
readwrite variable.



• Program 4 does not compile since obj is readonly and it is passed to the constructor
of B as the first argument, while the constructor expects a readwrite variable.

• Program 5 compiles! We can always assign something to a readonly variable.

• Program 6 compiles! We can always assign something to a readonly variable.

In addition: for all the programs expect 4, the first argument passed to the constructor of B
is readwrite, and the second argument can be readwrite or readonly since a readonly
argument is expected.

Task 2
Consider how we might extend readonly types to handle arrays. For an array of primitive types,
one might want to declare that the array elements cannot be changed, using a declaration such
as:
readonly int[] x;

which, similarly to the rules for accessing fields of objects, would forbid an update such as
x[2] = 2; // error - x is declared with a readonly type

A) Should there be a subtyping relationship (in either direction) between types readwrite
int[] and readonly int[]?

solution

int[] readonly is more restrictive than readwrite int[] (fewer operations can be
performed with such a reference) so we could have readwrite int[] <: readonly

int[].

B) For arrays of reference types, there are two reasonable questions to consider for readonly
typing. Firstly, just as for an array of primitive types, whether or not the array reference can
be used for modifications. Secondly, whether the array elements can be used for modifications.
y[1] = y[2]; // is this allowed?
y[1].f = y[2].f; // is this allowed?

In order to express all possibilities, consider having two readonly/readwrite modifiers for
an array type - the first to denote access to the array reference itself, and the second to denote
access to the objects stored in its elements, e.g., readonly readonly T[] y; is the most
restrictive possibility.

Consider what the semantics of readwrite readonly T[] y; could be. There are two rea-
sonable choices here, depending on whether we regard accesses of the form y[1].f as accesses
which go first via the array y, and then to the element y[1], or consider them as accesses
directly to y[1] (in a sense “skipping” y, and hence ignoring the first modifier).

For each of these two possible semantics, consider the following:

• Do all four combinations of modifiers express something different from one another?

• What subtyping relationships (if any) would be reasonable between the four possible
variants of a T[] type?



solution

Considering y[1].f as an access which goes first via y, and then y[1], we would obtain
that:

• If the first modifier is readonly, all the accesses to elements of the array will be
treated as readonly, since the readonly modifier for the array will be considered
first. Therefore, the only interesting combinations are:

(a) readonly readonly

(b) readwrite readonly

(c) readwrite readwrite

Note: The same approach is adopted when we have a readonly object variable and
we access a readwrite field through it: the result would be readonly, since any
access via a readonly reference is readonly.

• (a) is more restricted than (b), and (b) is more restricted than (c). So the reasonable
subtyping relations are (c) <: (b) <: (a)

Considering y[1].f as a direct access, we would obtain that:

• All the four different combinations have different semantics. With respect to the
previous example, we would have that readonly readonly will allow only read
accesses both on the array and on the elements stored in it, while with readonly

readwrite we have that we cannot assign elements in the array but we can write
fields accessed via the array elements.

• The subtyping relations already pointed out still work. In addition we could have

(a) readonly readwrite <: readonly readonly

(b) readwrite readwrite <: readonly readwrite

C) In the light of these questions, which of the two semantics seems the best choice?

solution

The second solution is more expressive than the first one, since it allows the developer
to have more fine-grained control on the read and write accesses on arrays and on their
elements. Thus, the second choice seems to be the best. However, it should be carefully
considered whether such an approach (that would be different compared to the one adopted
for objects and field accesses) may confuse the developers, and eventually create safety
problems.

Task 3
Consider the following method signatures:
peer Object foo(any String el);
peer Object foo(rep String el);
rep Object foo(any String el);
any Object foo(peer String el);
rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other.



solution

The general typing rules are peer <: any and rep <: any since any is more restrictive
than rep and peer. Following these rules, we obtain that

• peer Object foo(any String el) overrides
any Object foo(peer String el)

• rep Object foo(any String el) overrides
rep Object foo(peer String el), that overrides
any Object foo(peer String el)

• peer Object foo(any String el) overrides
peer Object foo(rep String el)

Task 4
(The following question is taken from a previous exam) Consider the following declarations:
class A
{

rep B first;
rep B second;

}
class B
{

any A obj;
peer B sibling;

}

Which of the following programs are allowed in the topological ownership system? For any
program that is accepted in the topological system, is it also accepted in the owner-as-modifier
system? Assume that none of the objects involved are null. Briefly explain each of your
answers.
Program 1 Program 2 Program 3 Program 4
rep B b;
...
b = b.sibling;

peer A a; rep B b;
...
a = b.obj;

any A a;
...
a.first.obj = a;

peer A a;
...
a.first = a.first;

solution

• Program 1 is accepted in both systems.

• Program 2 is not accepted in the topological system (and neither in the owner-as-
modifier system). It attempts the assignment of an any reference to a peer reference.
peer is not a super-type of any.

• Program 3 is accepted in the topological system (it assigns any to any). However,
it assigns to the field of a lost reference, which means that it is not accepted in the
owner-as-modifier system.

• Program 4 is not accepted in the topological system (and neither in the owner-as-
modifier system), because it assigns to a lost location.

Task 5
Consider the typing rules for a field update e1.f = e2 (lecture 6, slide 64)



A) Consider two particular cases: e2 is typed with the ownership modifier any, or e2 is typed
with the ownership modifier lost.

Suppose that e2 refers to an object (i.e., not null). Is there a difference between the information
that these two modifiers convey about where this object is located in the heap topology of
ownership trees?

Can you find an example (by choosing the ownership modifiers for e1 and f) when a field
assignment would be typeable in one of the two cases (of e2 being any or lost) but not the
other? Explain briefly why this is the case.

solution

There is no difference between the information that these two modifiers convey about where
this object is located in the heap topology; something referred to by either any or lost
could have any owner. There is no example where we could use lost and not any as the
type for e2 or vice versa; in fact, the only time either would be acceptable is if the field f

was typed with the any modifier.

B)Suppose instead that e1 is typed with ownership modifier τ(e1) and f has ownership modifier
τ(f). We consider two different cases: τ(e1) I τ(f) is the modifier any, or τ(e1) I τ(f) is the
modifier lost.

Is there a difference between the information that these two modifiers convey about topological
requirements associated with the location e1.f (i.e., what needs to be guaranteed before an
object can be validly assigned to this location)?

Can you find an example (by choosing the ownership modifier for e2) when a field assignment
would be typeable in one of the two cases (of τ(e1) I τ(f) being any or lost) but not the
other? Explain briefly why this is the case.

solution

In the case where τ(e1) I τ(f) is the modifier any, this indicates that there are no re-
quirements that need to be satisfied in order for such a field update to preserve topological
information. On the other hand, if τ(e1) I τ(f) is the modifier lost, then this indicates
that there are requirements that need to be satisfied, but that the type system is not able
to describe them precisely (for example, we assign to the rep field of a rep reference; there
is no ownership modifier to describe the requirements here). For this reason, such field
updates are never allowed.

If e2 is any reference with an appropriate class type (it doesn’t make a difference what the
ownership modifier is), then the field update e1.f = e2 will be allowed when τ(e1) I τ(f)

is the modifier any, and disallowed if τ(e1) I τ(f) is the modifier lost.

Task 6
The Ownership type system allows the following ownership modifiers: peer, rep, self, lost
, and any - to structure the object store and to restrict how references can be passed and
used. We want to extend the Ownership type system by adding one more modifier down. This
modifier is introduced to denote references to objects in the same context as this or in the
context (transitively) owned by an object in the same context as this.

A) Redraw the subtype relation diagram below to include the newly introduced type of the
universe type system.



any T

lost T

rep Tpeer Tself T

solution

any T

lost T

down T

rep Tpeer Tself T

B) Define the most specific (in terms of the context information it conveys) viewpoint adapta-
tion function I by filling the table below (for a combination Te I Tf the modifier Te specifies
the row, and the modifier Tf the column of the table used).

Recall that the viewpoint adaptation function I is used, in particular, to determine the owner
of an object referenced by a field access. More exactly, if the ownership modifier of e is Te and
the ownership modifier of a field f is Tf , then the ownership modifier assigned to the field
access e.f is determined as Te I Tf . Note that this applies to field updates as well as field
reads.
I peer rep any down

self

peer

rep

lost

any

down

solution

Here is the table that defines the viewpoint adaptation as describing the most precise
information possible about where such a reference may belong in the heap topology:
I peer rep any down

self peer rep any down

peer peer down any down

rep rep down any down

lost lost lost any lost

any lost lost any lost

down down down any down

Note that in the table above we over-approximate entries, in cases where we cannot de-
scribe precisely what we want. For example, repIrep can be down, because down over-



approximates the objects which can actually be stored in such a field. Note that this is a
true approximation - repIrep is not allowed to store all objects which can be referred to
via down, only some of them. This means that in C we need to add extra restrictions on
field assignment in the cases where we use down to over-approximate in this way; otherwise
the examples in part D would type-check, which would not be safe.

If we relax the requirement to have a most specific viewpoint adaptation function, we can
take an alternative approach which does not allow this kind of over-approximation; the
modifier chosen could reflect precisely the requirements for a reference to be allowed to
be stored in such a location, and thus avoid the need for extra requirements on the field
assignment rule. Here is the table in this approach:

I peer rep any down

self peer rep any down

peer peer lost any down

rep rep lost any lost

lost lost lost any lost

any lost lost any lost

down lost lost any lost

In this case, perhaps surprisingly, cases such as repIrep and downIdown result in lost.
This is because, choosing the answer down is not restrictive enough. In general, we have
no way to express what is safe to assign to the down field of a rep receiver (down from our
viewpoint includes objects above the rep, which should not be included), and similarly for
a down receiver. As you can see, this second approach is not very flexible; only rep and
peer objects can ever be typed as down (via subtyping).

C) Assuming that you only need to enforce the topological constraints of the type system, how
should the field update rule from lecture 6 slide 64 be adapted to the system extended with the
down modifier? Do you need to make any changes?

solution

With the first (most precise) variant of the viewpoint adaptation function from B we need
to require that the result of the viewpoint adaptation is not down, except in the special
case of the receiver being self or peer, and the field type being down (in these cases,
the down result expresses precisely what is safe to assign to the location; it is not an over-
approximation).

With the second (avoiding over-approximation) variant of the viewpoint adaptation function
from B, we do not need to make any changes to the field assignment rule, to guarantee the
topological constraints of the type system.

D) In writing your answers for B and C consider the following example:

public class Node{
rep Node c;
down Node d;

public void foo() {
this.d.d = this; // should this line typecheck?
this.c.d = this.d; // should this line typecheck?

}
}



Do your solutions disallow all invalid assignments?

solution

The example code shows two cases where the field updates should not be allowed, because
we would allow a down field to point upwards (to this) in the ownership topology, and in
the second, because we would allow a down field to point to some object which is considered
down from the viewpoint of this, but not necessarily from the viewpoint of this.c.

Both would be disallowed by the solutions above.


