
Concepts of Object-Oriented Programming
AS 2014

Exercise 9
Information hiding, encapsulation and object structures

November 21, 2014

Task 1
Java allows an object of a class C to access the private fields of other objects declared in C.
Discuss the resulting level of information hiding, its advantages and limitations, and provide
some examples.

What is the policy concerning the visibility of protected fields of other objects?

solution

Limitation: we cannot check the consistency of an object considering only the current
instance.
public class Foo {

private int a=0; /// invariant a>=0
public Foo broken() {

Foo result=new Foo();
result.a=-1;
return result;

}
}

Advantage: we can access the internal structure of other objects of the same class. Note
that we already know their internal structure, since it is exactly the same as that of the
current object.
public class List {

private Object el;
private List next;

public removeSecondElement() {this.next=this.next.next;}
}

Similarly to private fields, an object can access protected fields of other objects of the same
type. However there are some restrictions. Consider the code below:
public class A {

protected int x;
}
public class B extends A {

public void foo() { this.x = 2; } // OK
public void bar(B b) { b.x = 2; } // OK
public void foobar(A a) { a.x = 2; } // Does not compile

}

The foo method compiles without errors - an object has access to its own protected fields.
bar also compiles - an object has access to private and protected fields of other objects of

the same type. However, as we see from foobar, an object does not have access to the
protected fields of another object of a supertype. If this were allowed it would be possible
to break the internal state of an arbitrary class by simply inheriting from it:
public class A {

protected int x;
}
public final class B extends A {

/// invariant x==0
public B() { this.x = 0 };

}

public class MaliciousClass extends A {
public void foo(A a) {a.x = 42;}
public void evil() {

B b = new B();
foo(b);
// The invariant of b would now be broken if
// method foo could be compiled.

}
}

Note that in the examples above we assume that all classes are in different packages.

Task 2
Consider the following Java code:
file A.java:
package p;
public class A {}

file B.java:
package p;
class B extends A {public int x;}

file C.java:
package p;
public class C extends B { //1

public B get(){...} //2
public void set(B d){...} //3

}

file client.java:
package client;
import p.*;
class Client
void f(){

C c = new C();

c.set(c.get()); //4
c.set(c); //5

A a = c.get(); //6
a = c; //7
c.x=1; //8

}
void g(C c){
c.get().x=1; //9

}

The code of f is accepted by the Java compiler, while g is rejected.

A) What seems inconsistent with information hiding in this code? Which lines would you
expect the compiler to reject? Could allowing this still be useful in some cases?

solution

The code has a package access class B in the public interface. We would expect the compiler
to complain about that. This could, however, prove useful, for example (disregarding the
inheritance) if C was a LinkedList class and B a ListNode - we might want to let the
client get Nodes, but not be able to do anything with them except pass them directly back
to the list (e.g. as a search result used to remove an element). Also, we might use class B
as an abstract implementation class inherited by several public classes, that is not exposed
to the client. We would expect the compiler to reject all numbered lines except numbers 1,
and perhaps also number 7 - as explained in the last section.

B) Does this problem exist in C++? C#? Scala? If not explain which line the respective
compiler would complain about.

solution

• C++ does not have access modifiers for classes, and private inheritance does not allow
upcasting, so this problem does not directly exist.

However, if we look at inner classes, C++ behaves likes Java except that the method
g is accepted - this lets us access a public field of a private class. Not that line 8
accesses a public field of a public class - class C exposes x to clients.

• C# requires all types mentioned in a method signature to have at least the visibility
of the method (for access modifiers for classes they would have to be inner classes,
as namespaces only support public members), and similarly for inheritance - so the
problem is prevented

• Scala allows the set method but not the get method and not the inheritance - so
set would only be callable from inside the package (or with null)- not very useful

C) Suggest a rule the Java compiler could enforce in order to be more consistent with infor-
mation hiding - the rule should reject all marked lines.

solution

We could require that:

• For inheritance, the superclass (and interfaces) must be at least as visible as the
inheriting class

• For method signatures, all types mentioned in the signature must be at least as visible
as the method being declared

D) Now suppose we wanted to support also lines 1 and 7 (could you suggest why this might
be useful?) how can we relax our new rule to allow this?

solution

We could relax the inheritance rule, and allow an annotation of the sort C extends* A

that would mean to the client that C can be assigned to A but does not mention B and does
not state the length of the inheritance path. This could be useful, for example, if B was an
abstract private class with some implemented methods, inherited by several public classes
(that should be subtypes of A) that use its method implementations, but we didn’t want to
expose B as it is an implementation detail.

Task 3
The following Java classes, all part of the security package, were written by an unexperienced
programmer and contain a number of issues:
package security;

public class User {
public String name;
public String password;
public User(String name, String password) {

this.name = name;
this.password = password;

}
}

public class LoginException extends RuntimeException {
public User problemUser;
public LoginException(String message, User problemUser) {

super(message);
this.problemUser = problemUser;

}
}

public class Login {
private List<User> users = new LinkedList<User>();
public void registerUser(User u) {

if (u == null || u.name == null || u.password == null
|| u.name.isEmpty() || u.password.isEmpty()) return;

users.add(u);
}

// Returns true if the user ’u’ was successfully logged in.
// Otherwise returns false or throws an exception.
public boolean login(User u) throws LoginException {

if (u == null) return false;
User current = null;
try{

for(User registered : users) {
boolean nameEqual = registered.name.equals(u.name);
current = registered;

if (nameEqual) {
if (registered.password.equals(u.password))

return true;
}

if (nameEqual)
throw new LoginException("Invalid password for user",u);

}

return false;

}
catch(Exception e) {

throw new LoginException("Invalid user",current);
}

}
}

The malicious method is in a different package:
void malicious(Login l) { ... }

Assume the Login object that is passed into the method already has registered users.

A) Complete the body of the malicious method so that you manage to log-in as an already
existing user. You do not know any names or passwords of existing users. Do not use reflection.

solution

The body of the malicious method could look like:
void malicious(Login l) {

User u = new User("user","pass");
l.registerUser(u);
u.name = null;

try {
l.login(u);

}
catch(LoginException e) {

boolean success = l.login(e.problemUser);
//Logged in as the user that was registered before user u

}
}

B) Is it possible to fix the problem under the following restrictions? In each of these cases,
explain how you can prevent the malicious login or why it is not possible.

• only modifying the User class?
solution

• We could make both fields of User have the default (package) access:
public class User {
String name;
String password;
public User(String name, String password) {

this.name = name;
this.password = password;

}
}

Therefore, code outside the package will not be able to change existing User objects
and the malicious method could not cause the exception as before.

• only modifying the LoginException class?
solution

The LoginException class currently captures the value of the problematic user.
Instead it could create a new user that has the same name as problemUser but hides

the password.
public class LoginException extends RuntimeException {

public User problemUser;
public LoginException(String message, User problemUser) {

super(message);
this.problemUser = new User(problemUser.name, "****");

}
}

This way, even if an exception is thrown, that refers to the wrong user name, the
user’s password will not be leaked.

• only modifying the registerUser method?
solution

We can change the registerUser method so that it does not capture its argument:
public void registerUser(User u) {

if (u == null || u.name == null || u.password == null
|| u.name.isEmpty() || u.password.isEmpty()) return;

users.add(new User(u.name, u.password));
}

Now we would not be able to modify the internal structure of the Login class by
modifying the user we just registered in the malicious method.

• only modifying the body of the for loop inside the login method?
solution

This for loop actually contains a bug which allows the exploit to work. To fix it we
must move the assignment to the current variable to the beginning of the loop:
for(User registered : users) {

current = registered;
boolean nameEqual = registered.name.equals(u.name);

...
}

In the original code we were able to cause an exception regarding a particular user,
but report the previous user as an invalid, since current was not updated yet. This
is no longer the case.

Task 4
In answering this task, do not use reflection, inheritance, and static fields or methods.

This task is concerned with reasoning about non-modification in a modular setting in the
presence of aliasing.

Consider the following code:
package cell;
class Cell {

///ensures get()==newValue
public Cell(int newValue){value=newValue;}

///ensures get()==newValue

public void set(int newValue){value=newValue;}
///pure
public int get(){return value;}
private int value;

}

package client;
import cell.*;
class Client{

///requires c1!=null
///requires c2!=null
void setCells(Cell c1, Cell c2) {

c1.set(1);
c2.set(2);
assert(c1.get() == 1);

}

void setCellsClient() {
Cell c1 = new Cell(5);
Cell c2 = new Cell(5);
setCells(c1,c2);

}
}

The objective of this task is to make sure that the assertion in the method setCells does not
fail, using modular reasoning. The potential problem is that of determining whether the call
c2.set(2) can affect the return value of c1.get().

A) Modify the second line in method setCellsClient (the initialization of c2) so that the
assertion in method setCells fails. The precondition of setCells must still be satisfied by
the modified version.

solution
void setCellsClient() {

Cell c1 = new Cell(5);
Cell c2 = c1;
setCells(c1,c2);

}

B)Add a precondition to setCells that will make the call from your version of setCellsClient
illegal. The precondition should be such that the original call is legal. Remember that the
precondition can only refer to the arguments of the method and to public fields and methods.

solution
///requires c1!=c2;
void setCells(Cell c1, Cell c2)
...

C) We now add a clone method to the Cell class:

///ensures result != null
///ensures result != this
///ensures result.get()==get()
///ensures get()==old(get())
public Cell clone() { return new Cell(value); }

We also add to the client the methods left and right, which use the clone method:

void left() {
Cell c1 = new Cell(5);
Cell c2 = c1.clone();
setCells(c1,c2);

}

void right() {
Cell c1 = new Cell(5);
Cell c2a = new Cell(5);
Cell c2 = c2a.clone();
setCells(c1,c2);

}

Modify only the Cell class so that a call to left causes the assertion in setCells to fail,
while a call to right does not cause the assertion to fail. You can add private and default
access members and methods to the Cell class and add private classes to the cell package,
and also modify the implementation of existing methods, but not change the public interface
in any way. Your implementations must satisfy the existing contracts, including the one from
task B.

solution
package cell;
class Cell{

///ensures get()==newValue
public Cell(int newValue){value = new CellInt(newValue);}

///ensures result != null
///ensures result != this
///ensures result.get()==get()
///ensures get()==old(get())
public Cell clone(){return new Cell(value);}

///ensures get()==newValue
public void set(int newValue){value.set(newValue);}
///pure
public int get(){return value.get();};

private Cell(CellInt ci){value = ci;}

private CellInt value;
}

private class CellInt{
CellInt(int newValue){ value = newValue;}
int get(){ return value; }
void set(int newValue){ value = newValue; }
private int value;

}

The clone method now creates a new Cell that shares the representation (the CellInt),
and so modifying the cloned or original Cell also modifies the other.

D) Strengthen the precondition of the method setCells so that, with your modified Cell,
the call from left would fail the precondition check, while the call from the method right

would satisfy the precondition.

You can use the concept of the reach of an object, where, for an object x, reach(x) is defined
as the the set of objects which are reachable from x — the set of objects which can be described
by an access path x.f1.f2.fn for some n and some sequence of field names f1..fn
(we do not consider arrays in this task). All fields are considered, regardless whether they are
public or private. You can also use set operations in your precondition.

Remember that the precondition of a method can refer only to the this object and the method’s
arguments, dereferencing of public fields, and call public pure methods.

solution
///requires reach(c1) disjoint reach(c2);
void setCells(Cell c1, Cell c2)
...

Now the reach of the arguments c1 and c2 are disjoint, so modifying one cannot affect the
other in any way.

E) In order to prove the correctness of the body of the methods left and right, when
setCells has the stronger precondition from section D, we would have to strengthen the
postcondition of the clonemethod of class Cell. Write a stronger postcondition to the method
Cell.clone so that the bodies of the methods left and right can be proven modularly —
i.e., without knowing the implementation of the clone method and other private details of the
class Cell.

solution
///ensures result != null
///ensures reach(result) disjoint reach(this)
///ensures result.get()==get()
///ensures get()==old(get())
public Cell clone(){return new Cell(value);}

