
Concepts of Object-Oriented Programming
AS 2014

Exercise 11
Owner as Modifier, Non-null Types, Initialization Types

December 5, 2014

Task 1
Assume the topological ownership framework taught in the course. Suppose that we want to
create a class SortedLinkedList, with the internal invariant that the values stored in the
nodes are sorted in ascending order.
package SortedLinkedList;
public class SortedLinkedList {

private rep Node head;

/// invariant head != null ==> head.sorted()
...

}
private class Node {

protected peer Node next;
protected int value;

/// pure
boolean sorted() {
return next!=null ==> value < next.value && next.sorted()

}
}

Suppose that all methods in SortedLinkedList are guaranteed to preserve the invariant of
the class.

Furthermore, suppose that we want to create iterators for such lists (defined in the same
package):
public class LinkedListIterator { private any Node current_item; ... }

A) Why is the field current_item annotated as any? What drawbacks would the other
possible annotations have?

solution

If current_item were annotated as rep, then the owner of the node it refers to is the
iterator itself. In this case, the iterator cannot iterate over a SortedLinkedList object l,
because l also owns its nodes. The ownership topology allows at most one owner per object.

If current_item were annotated as peer, then, assuming that current_item has a list
owner l, the owner of the iterator must also be l. This may be OK in topological ownership.
However, if we add “owners as modifiers”, the iterator’s methods that traverse l cannot be
called directly from an object outside l, which defeats the purpose of iterators.

B) We want the following features:

(i) the invariant of a SortedLinkedList object is guaranteed to hold in any program, except
when one of its methods executes

(ii) LinkedListIterator is a modifying iterator, i.e., it may change the value of the object
it is pointing to

We can’t have both features. Depending on whether or not we impose the “owners as modifiers”
discipline, we can have either (i) or (ii). Argue why this is the case.

solution

If we don’t have “owners as modifiers”, an object may get hold of an any reference to a node
of the list, modify its value field, and break the invariant: (i) is not achieved.

If we do have “owners as modifiers”, then the iterator may not modify the value of the node
it is pointing at, because it holds an any reference to it: (ii) is not achieved.

C) The fact that (i) and (ii) cannot both hold together is not surprising. A modifying iterator
can break the invariant of the list it is iterating over. However, the “owners as modifiers”
discipline may disallow harmless designs. Write a benign class (perhaps a restricted modifying
iterator), which would not break the invariant of any object of SortedLinkedList, but still
does not compile under “owners-as modifiers”.

solution

We could have an iterator that performs the requested modification iff this does not violate
the invariant:
public class LinkedListIterator {

private any Node f;

... // some non-modifying methods

public void modifyCarefully(int x) {
if(f.value <= x && (f.next == null || x < f.next.value))

f.value = x;
// benign but does not type check under "owners as modifiers"

}
}

Task 2 Topological Ownership
(From a previous exam)

The topological ownership system guarantees the following property: If a reference a.f to an
object b is of ownership type rep C, then object a is the owner of b. Moreover, each object
has at most one owner.

The topological ownership system has a weakness: it does not support ownership transfer, which
is desirable in many situations. Let us try to remedy this situation. Consider the following
incomplete definition of a class T:
class T {
public rep U f, g;
...

}

and the following program P , which, in addition to the field assignments, implicitly also changes
the owner of object e2.g from e2 to e1:

// implicitly: e2.g.owner = e1;
e1.f = e2.g;
e2.g = null;

where e1, e2 are two non-null objects of type T.

A) The code P is not allowed in the topological ownership system. Which rule disallows it?

solution

In general e1.f can be lost and one cannot assign to a lost field.

B) Write a code snippet C, such that executing C;P is guaranteed to break the property
described in the first paragraph of this task, after P has finished executing. Do not rely on any
specific implementation of class U (but you may assume the existence of a constructor without
parameters). You may also add constructors to class T.

Note that

• You can assume that P is accepted by the compiler

• All the code that you write must respect the topological ownership system. P is the only
code that breaks the rules.

• You may not use reflection in your solution.

• You may not use P anywhere in the code that you write.

solution

Add the following constructor to T:
T() {

f = new rep U();
g = f;

}

Now use the following code C:
e1 = new peer T();
e2 = new peer T();

The invariant is broken after C;P , because e1.f has owner e1, but the rep field f of a
different object (e2) points to it.

Task 3
Consider a Java class Vector, representing a 2 dimensional vector:
public class Vector {

public Number x; // Remark: Number is a super-interface for
public Number y; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y = y;

}
}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:

public double vectorLength(Vector c) {
double x = c.x.doubleValue();
double y = c.y.doubleValue();
return Math.sqrt(x * x + y * y);

}

A) This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

solution

If c were null, the field dereferences c.x and c.y would generate exceptions. Furthermore,
if c.x were null then method call c.x.doubleValue() would generate an exception.
Similarly, if c.y were null.

There is no reasonable answer for the method to return if it encounters null values - any
attempt to deal with these cases would have to return some arbitrary value, since the
question the method is meant to answer is undefined in these cases.

B) Add a pre-condition for the method, specifying what is required to be safe.

solution

requires: c 6=null ∧ c.x6=null ∧ c.y6=null

C) Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary pre-condition?

solution

public double vectorLength(Vector! c)

would make the following pre-condition sufficient:

requires: c.x6=null ∧ c.y6=null

D) Suppose that you are also allowed to upgrade the class Vector to include reasonable non-
null type annotations. How does this affect your previous answer? Do these changes to the
class seem reasonable?

solution

By changing the types of the fields x and y to be Number! we could guarantee that no
pre-condition would be required. This seems a reasonable change, since a null Vector

doesn’t seem to be meaningful anyway.

Task 4
(From a previous exam)

This question is about extending the non-null type system to handle arrays (ignoring initializa-
tion). Array types can have two type modifiers, declaring independently the nullity expectations
for the array itself and the array elements. For any array type T[] the corresponding variants
are T?[]?, T?[]!, T![]?, T![]! (the first modifier applies to the type of objects stored in the
array, while the second modifier concerns the reference to the array object itself).

Assuming that we want to guarantee a statically sound approach to subtyping (that is, we
want to enforce safety at compile time, without using runtime checks), explain whether or not
the following subtype relations are safe. For each relation you consider unsafe, provide a code
snippet illustrating that allowing such a subtype relationship would break the safety guarantees
of the type system. For these unsafe cases, explain also what runtime checks could be made to
restore safety.

• T?[]! <: T?[]?

• T![]! <: T![]?

• T![]? <: T?[]?

• T![]! <: T?[]!

solution

• T?[]! <: T?[]? - Safe

• T![]! <: T![]? - Safe

• T![]? <: T?[]? - Unsafe
Object![]? x = new Object![1]?;
Object?[]? y = x;
if(y!=null) y[0]=null;
if(x!=null) x[0].toString();

• T![]! <: T?[]! - Unsafe
Object![]! x = new Object![1]!;
Object?[]! y = x;
y[0]=null;
x[0].toString();

In both the last two cases, we need to check at runtime if a value stored in an array
with dynamic non-null type for the elements stored in the array is not the null value.
Alternatively, we can check at runtime if a value read from an array with dynamic non-null
type is not the null value.

Task 5 Cloning a Cyclic List
(From a previous exam)

Consider these two different implementations of a cyclic list that use the construction type
system taught in the course. The type system rejects both of these implementations:

1 class Node {
2 Node! next; // cyclic
3 Node? copy;
4 int value;
5
6 Node(int x)
7 {
8 next = this;
9 value = x;
10 }
11
12 Node(Node! other)
13 {
14 value = other.value;
15 other.copy = this;
16
17 if(other.next == other)
18 next = this;
19 else
20 next = new Node(other, other.next);
21 }
22
23 Node(Node! first, Node! other)
24 {
25 value = other.value;
26 other.copy = this;
27
28 if(other.next == first)
29 next = other.next.copy;
30 else
31 next = new Node(first, other.next);
32 }
33 }

1 class Node {
2 Node! next; // cyclic
3 Node? original;
4 int value;
5
6 Node(int x)
7 {
8 next = this;
9 value = x;

10 }
11
12 Node(Node! other)
13 {
14 value = other.value;
15 original = other;
16
17 if(other.next == other)
18 next = this;
19 else
20 new Node(this, this, other.next);
21 }
22
23 Node(free Node! first,
24 free Node! prev, Node! other)
25 {
26 value = other.value;
27 original = other;
28 prev.next = this;
29
30 if(other.next == first.original)
31 next = first;
32 else
33 new Node(first, this, other.next);
34 }
35 }

The constructors are used to clone an existing list. In both cases we establish a link between
a node and its clone.

A) Are there lines of code where we are trying to incorrectly assign to a field of a committed
object? If so, in which implementation (left or right) and on which lines?

solution

left : 15, 26

B) If we allowed these implementations to run, is it possible that a committed object would
become not locally initialized, while a constructor is executing? If so, in which implementation
(left or right) and on which line is there an assignment where this happens?

solution

It is not possible for a committed object to become not locally initialized.

C) If we allowed these implementations to run, is it possible that a committed object would
become not transitively initialized, while a constructor is executing? If so, in which implemen-
tation (left or right) and on which line is there an assignment where this happens?

solution

left : 15, 26

D) Without changing the constructor signatures in any way, which two lines of the implemen-
tation on the right can you change and how, so that it typechecks in the construction type
system and achieves the expected result? Write the line numbers and the new content of the
lines.

solution
20: next = new Node(this, this, other.next);
33: next = new Node(first, this, other.next);

