
Concepts of Object-Oriented Programming
AS 2014

Exercise 7
Bytecode Verification

self-study exercise sheet

NOTE: There will not be a regular exercise session on 7 November, and you will
take the midterm exam instead. Therefore this exercise sheet will not be discussed
in an exercise session. We publish it now together with the solution to allow you
to better prepare for the midterm. If you have any questions regarding this sheet,
please consult your assistant.

Task 1
The method f of class E has the following signature:

void f();

and one local variable v. The maximal stack size is equal to 1.

It has the following body:
0: iconst 5
1: istore 1
2: aload 0
3: astore 1
4: iload 1
5: iconst 1
6: iadd
7: istore 1
8: return

Can the provided byte code be verified? If so then verify it, otherwise explain which line of the
code causes the problem and why.

Task 2
Consider the following type hierarchy:

A

B

C1 C2

Suppose that the method f of class E has the following signature:
A f(boolean b1, boolean b2);

and there are three local variables x, y, z. It is known that the initial state is:
([], [E,boolean,boolean,C1,C2,A])

The maximal stack size is equal to 1.

The method f has the following body:

0: iload 1
1: ifeq 22
4: iload 2
5: ifeq 12
8: aload 3
9: goto 14
12: aload 4
14: astore 3
15: aload 5
17: astore 4
19: goto 0
22: aload 3
23: areturn

• Verify that the program is type safe.

• Provide the minimal type information that enables verification of the bytecode without
a fixpoint computation.

Note: In this example, ifeq x pops an integer from the stack and jumps to line x if the integer
is equal to zero.

Task 3
Consider the following Java code:
interface IFace {

void m();
}
class Cl1 implements IFace {

public void m() { System.out.println("Cl1.m"); }
}
class Cl2 implements IFace {

public void m() { System.out.println("Cl2.m"); }
}
public class Test1 {

public static void main(String[] args) {
xxx(true);
xxx(false);

}
public static void xxx(boolean param) {

IFace iface = null;
if(param) { iface = new Cl1();}
else { iface = new Cl2(); }
iface.m();

}
}

• What type will be calculated for the variable iface of the method xxx during the byte-
code verification?

• When can we decide that iface.m() is safe to call? During bytecode verification, or
execution?

• What if IFace was a class instead of an interface? What if it was an abstract class?

Task 4
The bytecode type inference algorithm rejects a verified program if there are different stack
sizes for input values of a join point.

• Provide a bytecode program that is rejected because of this limitation but that does not
cause runtime errors.

• Is it possible to construct a bytecode verification algorithm that avoids this limitation?
If yes, then provide an updated algorithm. If no, then show that it can’t be done.

• How serious is this restriction from a pragmatic perspective?

