
Concepts of Object-Oriented Programming
AS 2014

Exercise 9
Information hiding, encapsulation and object structures

November 21, 2014

Task 1
Java allows an object of a class C to access the private fields of other objects declared in C.
Discuss the resulting level of information hiding, its advantages and limitations, and provide
some examples.

What is the policy concerning the visibility of protected fields of other objects?

Task 2
Consider the following Java code:
file A.java:
package p;
public class A {}

file B.java:
package p;
class B extends A {public int x;}

file C.java:
package p;
public class C extends B { //1

public B get(){...} //2
public void set(B d){...} //3

}

file client.java:
package client;
import p.*;
class Client
void f(){

C c = new C();

c.set(c.get()); //4
c.set(c); //5

A a = c.get(); //6
a = c; //7
c.x=1; //8

}
void g(C c){
c.get().x=1; //9

}

The code of f is accepted by the Java compiler, while g is rejected.

A) What seems inconsistent with information hiding in this code? Which lines would you
expect the compiler to reject? Could allowing this still be useful in some cases?

B) Does this problem exist in C++? C#? Scala? If not explain which line the respective
compiler would complain about.

C) Suggest a rule the Java compiler could enforce in order to be more consistent with infor-
mation hiding - the rule should reject all marked lines.

D) Now suppose we wanted to support also lines 1 and 7 (could you suggest why this might
be useful?) how can we relax our new rule to allow this?

Task 3
The following Java classes, all part of the security package, were written by an unexperienced
programmer and contain a number of issues:
package security;

public class User {
public String name;
public String password;
public User(String name, String password) {

this.name = name;
this.password = password;

}
}

public class LoginException extends RuntimeException {
public User problemUser;
public LoginException(String message, User problemUser) {

super(message);
this.problemUser = problemUser;

}
}

public class Login {
private List<User> users = new LinkedList<User>();
public void registerUser(User u) {

if (u == null || u.name == null || u.password == null
|| u.name.isEmpty() || u.password.isEmpty()) return;

users.add(u);
}

// Returns true if the user ’u’ was successfully logged in.
// Otherwise returns false or throws an exception.
public boolean login(User u) throws LoginException {

if (u == null) return false;
User current = null;
try{

for(User registered : users) {
boolean nameEqual = registered.name.equals(u.name);
current = registered;

if (nameEqual) {
if (registered.password.equals(u.password))

return true;
}

if (nameEqual)

throw new LoginException("Invalid password for user",u);
}

return false;
}
catch(Exception e) {

throw new LoginException("Invalid user",current);
}

}
}

The malicious method is in a different package:
void malicious(Login l) { ... }

Assume the Login object that is passed into the method already has registered users.

A) Complete the body of the malicious method so that you manage to log-in as an already
existing user. You do not know any names or passwords of existing users. Do not use reflection.

B) Is it possible to fix the problem under the following restrictions? In each of these cases,
explain how you can prevent the malicious login or why it is not possible.

• only modifying the User class?

• only modifying the LoginException class?

• only modifying the registerUser method?

• only modifying the body of the for loop inside the login method?

Task 4
In answering this task, do not use reflection, inheritance, and static fields or methods.

This task is concerned with reasoning about non-modification in a modular setting in the
presence of aliasing.

Consider the following code:
package cell;
class Cell {

///ensures get()==newValue
public Cell(int newValue){value=newValue;}

///ensures get()==newValue
public void set(int newValue){value=newValue;}
///pure
public int get(){return value;}
private int value;

}

package client;
import cell.*;
class Client{

///requires c1!=null
///requires c2!=null
void setCells(Cell c1, Cell c2) {

c1.set(1);
c2.set(2);
assert(c1.get() == 1);

}

void setCellsClient() {
Cell c1 = new Cell(5);
Cell c2 = new Cell(5);
setCells(c1,c2);

}
}

The objective of this task is to make sure that the assertion in the method setCells does not
fail, using modular reasoning. The potential problem is that of determining whether the call
c2.set(2) can affect the return value of c1.get().

A) Modify the second line in method setCellsClient (the initialization of c2) so that the
assertion in method setCells fails. The precondition of setCells must still be satisfied by
the modified version.

B)Add a precondition to setCells that will make the call from your version of setCellsClient
illegal. The precondition should be such that the original call is legal. Remember that the
precondition can only refer to the arguments of the method and to public fields and methods.

C) We now add a clone method to the Cell class:

///ensures result != null
///ensures result != this
///ensures result.get()==get()
///ensures get()==old(get())
public Cell clone() { return new Cell(value); }

We also add to the client the methods left and right, which use the clone method:

void left() {
Cell c1 = new Cell(5);
Cell c2 = c1.clone();
setCells(c1,c2);

}

void right() {
Cell c1 = new Cell(5);
Cell c2a = new Cell(5);
Cell c2 = c2a.clone();
setCells(c1,c2);

}

Modify only the Cell class so that a call to left causes the assertion in setCells to fail,
while a call to right does not cause the assertion to fail. You can add private and default
access members and methods to the Cell class and add private classes to the cell package,
and also modify the implementation of existing methods, but not change the public interface
in any way. Your implementations must satisfy the existing contracts, including the one from
task B.

D) Strengthen the precondition of the method setCells so that, with your modified Cell,
the call from left would fail the precondition check, while the call from the method right

would satisfy the precondition.

You can use the concept of the reach of an object, where, for an object x, reach(x) is defined
as the the set of objects which are reachable from x — the set of objects which can be described
by an access path x.f1.f2.fn for some n and some sequence of field names f1..fn
(we do not consider arrays in this task). All fields are considered, regardless whether they are
public or private. You can also use set operations in your precondition.

Remember that the precondition of a method can refer only to the this object and the method’s
arguments, dereferencing of public fields, and call public pure methods.

E) In order to prove the correctness of the body of the methods left and right, when
setCells has the stronger precondition from section D, we would have to strengthen the
postcondition of the clonemethod of class Cell. Write a stronger postcondition to the method
Cell.clone so that the bodies of the methods left and right can be proven modularly —
i.e., without knowing the implementation of the clone method and other private details of the
class Cell.

