
Concepts of Object-Oriented Programming
AS 2015

Exercise 8
Parametric polymorphism

November 13, 2015

Task 1
Implement a list in Java or C# with two methods:
public void add(int i, Object el)
public Object get(int i)

Implement the list and discuss the advantages and the limitations of the three different ap-
proaches below.

A) Implement the list using only one class without generics.

solution
public class List {

Object[] elements;
public void add(int i, Object el) {elements[i]=el;}
public Object get(int i) {return elements[i];}

}

Advantages: short implementation.

Limits: the type of the method result of get is Object. When using such a class, usually
we have to dynamically cast the values returned by this method.

B) Implement the list using one abstract class/interface and then (some) subclasses that
implement it for different types.

solution
public interface List {

public void add(int i, Object el);
public Object get(int i);

}

public class IntList implements List {
Integer[] elements;

public void add(int i, Object el) {elements[i]=(Integer) el;}

public Integer get(int i) {return elements[i];}
}

Advantages: method get returns an Integer, thus we do not need dynamic casting of the
values returned by this method.



Limits: in Java, we have the same limits like before, and in addition code duplication and
additional type castings and checks in method add. Moreover, we do not have behavioural
subtyping, since method add in IntList may not respect the expected contracts in List.
In particular, if we invoke it passing an object that is not an instance of Integer, the
runtime environment would raise an exception and the element would not be added to our
list.

C) Implement the list using generic types.

solution
public class List<T> {

T[] elements;
public void add(int i, T el) {elements[i]=el;}
public T get(int i) {return elements[i];}

}

Advantages: short implementation, statically type safe.

Limits: nothing! :) we have only advantages...

Task 2
Consider the following Java method:
String concatenate(List<?> list) {

String result="";
String separator="";
if(list instanceof List<String>) {

result="String:";
separator=" ";

}
else if(list instanceof List<Integer>) {

result="Integers:";
separator="+";

}
for(Object el : list)

result=result+separator+el.toString();
return result;

}

A) This program is rejected by the Java compiler. Why?

solution

The Oracle and the Open JDK compilers both produce these short errors:

illegal generic type for instanceof
illegal generic type for instanceof

The Eclipse compiler tries to be more helpful:

Cannot perform instanceof check against parameterized type
List<String>. Use the form List<?> instead since further
generic type information will be erased at runtime



Cannot perform instanceof check against parameterized type
List<Integer>. Use the form List<?> instead since further
generic type information will be erased at runtime

This happens because of type erasure in Java.

B) Using the advice given by the Eclipse Java compiler (replace List<...> with List<?>),
rewrite and compile the program. What are the results of executing the method passing each
of the following:

• A list of strings containing only one element "word"?

• A list of Integers containing only one element Integer(1)?

• A list of Objects containing only one element (initialized by new Object())?

solution

First of all, we follow the output of the compiler, and so we rewrite the method to:
String concatenate(List<?> list) {

String result="";
String separator="";
if(list instanceof List<?>) {

result="String:";
separator=" ";

}
else if(list instanceof List<?>) {

result="Integers:";
separator="+";

}
for(Object el : list)

result=result+separator+el.toString();
return result;

}

The Java compiler will compile this program without any warning. The output of the
method is obviously:

String: word
String: 1
String: java.lang.Object@3e25a5

C) Is this behaviour consistent with what you would expect from the initial program? If not,
how can you fix it?

solution

No, in the original program we expected:

String: word
Integers:+1
java.lang.Object@3e25a5

We can fix it in the following way:



String concatenate(List<?> list) {
String result="";
String separator="";
if(list.size() >= 1 )

if(list.get(0) instanceof String) {
result="Strings:";
separator=" ";

}
else if(list.get(0) instanceof Integer) {

result="Integers:";
separator="+";

}
for(Object el : list)

result=result+separator+el.toString();
return result;

}

But this requires to have at least one element in the list. Moreover, there is no guarantee
that if the first element is, for example, a string, that this is not a list of Objects.

D) What would happen if you tried to implement the different cases using method overloading
instead of just one method. Why is this the case?

solution

If we introduce separate methods which differ only by the generic types of their arguments,
we get compile-time errors such as:

Method concatenate(List<? extends Object>) has the same
erasure concatenate(List<E>) as another method in type C

This restriction is imposed to ensure that when choosing which of the overloaded method
definitions to call, we always have a “best fit”. Java class files do however include generic ver-
sions of the method signatures in the class (to enable separate compilation and type-checking
of generic code). For this reason, it might seem surprising that we cannot disambiguate
between these different overloaded methods, since at compile-time the type information is
all available. However, Java also supports raw types - versions of generic classes in which
no type parameter is provided (e.g., List for a List<X> class). These are supported for
backwards compatibility with pre-generics Java code. For this reason, we need to consider
the possibility that a client calling our method provides an argument of raw type List. In
this case, we would not be able to choose between our different method overloads.

E) What happens if you compile and execute the initial program in C#? Why?

solution

The program is compiled and we obtain the expected results (“String: word”, “Integers:+1”,
“...”), since in C# there is no type erasure and the information about generics is preserved
at runtime.

Task 3
Consider the following Java method:



public void add(Object value, List<?> list) {
list.add(value);

}

The Java compiler rejects this program, with the following message:

The method add(capture#1-of ?) in the type List<capture#1-of ?> is not
applicable for the arguments (Object)

A) Explain why we obtain such an error.

solution

We do not have any relation between the wildcard of List, and the types of the values that
we are going to store.

B) Fix the program by using a generic type for the parameter of method add and constraining
the wildcard appropriately.

solution
public <V> void add(V value, List<? super V> list) {

list.add(value);
}

We have to use a lower bound constraint because we want the argument of list.add to
be a supertype of V, otherwise we cannot pass it as a parameter.

C) We can use the following alternative signature for add:

public <V> void add(V value, List<V> list)

Is this solution more restricted than the one obtained using the wildcard?

solution

This method has exactly the same constraints of the ones obtained using a wildcard. In
fact, the type of value can be a subtype of the type parameter of list, since it is a method
argument. In practice, this means that the generic type of list is supertype of the type of
value. For instance, consider the following program.
List<Object> list =...
add("x", list);

This program is accepted because strings are subtype of objects, thus V=Object is inferred
by the type checker.

D) Consider the following methods:

public <V> void addAllX(List<V> v, List<? super V> l) {
for(V el : v) l.add(el);

}
public <V> void addAllY(List<V> v, List<V> l) {

for(V el : v) l.add(el);
}

Method addAllX is less restrictive than addAllY. Provide an example to prove this claim.



solution
List<String> list = new ArrayList();
List<Object> list2 = new ArrayList();
addAllX(list, list2);
addAllY(list, list2);

The call to addAllX is accepted by the compiler, while the one to addAllY is rejected,
since it requires that the parametric type of List is exactly String. This happens because
of invariance on type parameters in Java, so V has to be String, but the generic type of
list2 is Object.

Task 4 Wildcards
This is an extended version of a previous exam question.

Consider the following Java code:

interface Food {}
interface Grass extends Food {}
interface Meat extends Food{}

abstract class Animal<F extends Food> implements Meat{
abstract void eat(F food);
F getLunchBag(){ return lunchBag; };
F lunchBag;

}

final class Sheep extends Animal<Grass>{ void eat(Grass f){} }
final class Wolf extends Animal<Meat> { void eat(Meat f){} }

class Cage { //You are allowed to modify this class
Cage(Animal<?> animal){ this.animal = animal; }
Animal<?> getAnimal() { return animal; }
Animal<?> animal;

}

class Zoo{
void feedAnimal(Cage cage){ /*code given in each section*/ }
<F extends Food>void feed(F food, Animal<F> animal){animal.eat(food);}

void manage(){ /*your code here*/ }
}

Clearly a Wolf can eat a Sheep but not the other way around. In the following subtasks we
explore if relaxing some of the Java type rules can lead to a situation where a Sheep can eat
a Wolf - that is, the method eat is called on an object of the dynamic type Sheep with an
argument object of the dynamic type Wolf. All the code you give in the answers to the following
sections is in the same package as the code above, and must type check in standard Java. The
top method that is called in all sections is Zoo.manage. You can assume that method call
arguments are evaluated left to right, and that the program is sequential. You are not allowed
to use reflection, raw types, or type-casts.

A) Assume the following body of Zoo.feedAnimal(Cage cage), which is rejected by the
Java type checker:
{ feed(cage.getAnimal().lunchBag,cage.getAnimal()); }



Make a Sheep eat a Wolf assuming the body of feedAnimal is exempted from the type checker.
Show all necessary code. You are only allowed to change the Cage class and provide the body
of the Zoo.manage method.

solution
class Cage{

...
Animal<?> getAnimal() {

if (animal!=null) return animal;
else{

animal = new Sheep();
Wolf wolf = new Wolf();
wolf.lunchBag=wolf;
return wolf;

}
}

}
class Zoo{

...
void manage(){

feedAnimal(new Cage(null));
}}

B) Assume the following body of Zoo.feedAnimal(Cage cage), which is rejected by the
Java type checker:
{feed(cage.animal.getLunchBag(),cage.animal);}

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type
checker? If so, show all necessary code, otherwise explain why not. You are only allowed to
change the Cage class, provide the body of the Zoo.manage method, and add new classes.

solution
class Fox extends Animal<Meat>{

Fox(){}
void eat(Meat m){}
Wolf getLunchBox(){ cage.animal=new Sheep();return new Wolf(); }
Cage cage;

}
class Zoo{

...
void manage(){

Fox fox = new Fox();
Cage cage = new Cage(fox);
fox.cage=cage;
feedAnimal(cage);

}
}

C) Answer the question in the previous section, assuming the field Cage.animal is final.
Explain your answer. Reminder: Java’s final fields can be assigned to only in the constructor
of the class that declares them.

solution

Here we cannot make a sheep eat a wolf.



The reason is that cage.animal evaluates to the same value in both expressions cage

.animal and cage.animal.getLunchBox() and so type safety is not broken and the
Sheep can only be fed with Grass, which the Wolf is not.

D) Assume the following body of Zoo.feedAnimal(Cage cage), which is rejected by the
Java type-checker:
{feed(cage.animal.lunchBag,cage.animal);}

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type-
checker? If so, show all necessary code, otherwise explain why not.

solution

This is safe as no methods are called during the evaluation of arguments, so cage.animal
cannot change.

E) Which of the above cases, that is safe in the sequential case, is unsafe in a multithreaded
program? For each such case, explain what can happen in the multithreaded case that cannot
in the sequential case.

solution

The version of feedAnimal in section D is unsafe as another thread might modify
Cage.animal between the evaluation of the two expressions.
The version in section C is safe.

F) The current Java rule for evaluating an expression (including a method call) with wildcard
typed arguments is to capture each wildcard in the arguments separately. Propose a more
lenient wildcard capture rule than current Java, that is typesafe and accept all the above cases
that you deem safe.
Hint: define "stable" paths that cannot be modified by calls.

solution

We could allow wildcard capture to happen only once per access path in the same statement
(rather than once per occurrence in the statement), if either

1. It includes no method calls and there are no method calls evaluated between any two
instances of the path (only in the sequential case).

2. It begins with a local variable and follows only final fields (no method calls) - works
also in the concurrent case.

Task 5
A C++ template class can inherit from its template argument:
template <typename T>
class SomeClass : public T { ... }



A) Using this technique and given the following class definition

class Cell {
public:

virtual void setVal(int x) { x_ = x; }
virtual int value() { return x_; }

private:
int x_{};

}

write two template classes that can be used as “mixins” for class Cell

• Doubling - doubles the value stored in the cell.

• Counting - counts the number of times the value of the cell was read.

Do not use multiple inheritance. It should be possible to use the classes like this:
auto c = new Doubling<Counting<Cell>>(); // instantiation
c->setVal(5);
c->value(); // returns 10
c->numRead(); // returns 1

solution
template <typename T>
class Doubling : public T {
public:

virtual void setVal(int x) override {
T::setVal(x * 2);

}
}

template <typename T>
class Counting : public T {
public:

virtual int value() override {
++numRead_;
return T::value();

}
int numRead() { return numRead_; }

private:
int numRead_{};

}

B) Describe how the instantiation above will look like.

solution

When the mix-ins are instantiated the following two classes will be generated:
class CountingCell : public Cell {
public:

virtual int value() override {
++numRead_;
return Cell::value();

}
int numRead() { return numRead_; }

private:
int numRead_{};

}



class DoublingCountingCell
: public CountingCell {

public:
virtual void setVal(int x) override {

CountingCell::setVal(x * 2);
}

}

C) How does this concept of mixins in C++ differ from Scala traits?

solution

While this concept is similar to Scala traits there are some notable differences. In Scala it
is possible to mix any number of traits in a class and use this in any location of the code
that requires the same class and a subset of the traits:
var x = new X with A with B with C with D
var x1: (X) = x // OK
var x2: (X with A) = x // OK
var x3: (X with B) = x // OK
var x4: (X with A with D with C) = x // OK

Using the proposed solution in C++ however is more restrictive, as there is no way to refer
to the class X with arbitrary mix-ins:
auto x = new D<C<B<A<X>>>>();
X* x1 = x; // OK
A<X>* x2 = x; // OK
B<X>* x3 = x; // Does not compile
C<D<A<X>>>* x4 = x; // Does not compile

This is particularly important for traits that introduce new methods like Counting.

numRead() since any client code that uses this new behavior would have to know exactly
how the trait was mixed-in.

Another problem of the C++ solution is object construction. If the base class does not
have a default constructor then the mix-ins should know to call the correct constructor and
provide appropriate parameters. An alternative here is for the mixin to just inherit the base
class constructors: using T::T; which will allow clients of the mixin to use all constructor
available in the base class. This works fine if the state of the mixin can be initialized with
default values.

A further difference to Scala is that in the C++ solution it is possible to include the same
“trait” more than once:
auto x = new Doubling<Doubling<X>>();
x->setVal(5);
x->value(); // returns 20

An advantage of the C++ solution is that we do not need to declare the base class that
the mix-ins extend. Thus it is possible to use them with different base classes as long they
have matching virtual methods.

D) Can the code above be implemented using Java generics? If yes, show how. If no, explain
why not.



solution

No, it is not possible to implement this with generics. The core reason for this is erasure. In
Java each class must have a known supertype. However if we could translate the code above
to Java and apply erasure, it will turn out that the supertype of Doubling and Counting

is Object which is clearly not what we want.

E) What if we used C# instead of Java, does anything change?

solution

The code cannot be implemented using C# generics either - the standard explicitly forbids
a generic class to inherit directly from a type argument. Although the type argument would
be known at run-time and it is theoretically possible to allow inheriting from it, that would
have complicated and slowed down the handling of generics by the C# virtual machine. The
reason is that unlike C++, in C# only a single class would be generated for all possible type
arguments and a lot of dynamic checks and method call adjustments would be required to
make this work. Thus in this case the designers of C# chose safety and efficiency at the
expense of expressiveness.


