
Concepts of Object-Oriented Programming
AS 2016

Exercise 4
Behavioral Subtyping and Inheritance

October 21, 2016

Task 1
Investigate the behavior of the following Java code:
interface I {};

class C {};

public class E2_1
{

public static void main(String [] argv)
{

C c = new C();
I i = (I) c;

}
}

Try to compile it. If it compiles, try to execute it. What happens? Why?

Task 2
Consider the example in Slide 58 of the lecture 2:
class Number {

int n;

/// requires true
/// ensures n == p
void set(int p) { n = p; }

}

class UndoNaturalNumber extends Number {
int undo;

/// requires 0 < p
/// ensures n == p && undo == old(n)
void set(int p) { undo = n; n = p; }

/// requires true
/// ensures n == undo && undo == old(undo)
void reset() { n = undo; }

}

where the invariants have been removed. Class UndoNaturalNumber is not a behavioral sub-
type of NaturalNumber. One solution is to use specification inheritance. What are the effective
pre/post-conditions of method UndoNaturalNumber.set according to the rules of Slides 68
and 72?

Task 3 Behavioral Subtyping
Assume the following types in Java:
enum Shift {DayShift, NightShift, SpecialShift}

interface PostalWorker {
boolean sick();

///ensures sick()
void catchDisease();

///requires when == SpecialShift || when == DayShift
///requires !sick()
int work(Shift when);

}

interface Bartender {
boolean sick();

///ensures sick()
void catchDisease();

///requires when == SpecialShift || when == NightShift
///requires !sick()
int work(Shift when);

}

The work() method can be called in order to request that the corresponding person work the
requested shift. The value returned by work() is the average hourly wage that was earned
during the working shift including tips.

A) Now we introduce another interface:

interface HardWorker extends PostalWorker, Bartender {
///requires true
int work(Shift when);

}

Assuming the improved rule for specification inheritance discussed in the course, what is the
effective precondition of the work() method of the HardWorker interface?

B) Now we add postconditions to all work() methods. Everything else remains as before.

interface PostalWorker {
...
///ensures result ≥ 15 && result ≤ 25
int work(Shift when);

}

interface Bartender {
...
///ensures result ≥ 20 && result ≤ 30
int work(Shift when);

}

interface HardWorker extends PostalWorker, Bartender {
...
///ensures result ≥ 25 && result ≤ 50
int work(Shift when);

}

Assuming the improved rules for specification inheritance, what is the effective postcondition
of the work() method of HardWorker?

C) Consider the following code:

///requires worker != null
///requires !worker.sick()
int foo(HardWorker worker) {

return worker.work(Shift.SpecialShift);
}

What is the range of possible return values of the foo() method?

D) Change the body of method foo() such that it calls the work() method of worker in a
way that makes it possible for this call to return 50.

Task 4
Consider the following Java method and its pre- and postcondition, where [0..n) denotes a
right-open interval that includes 0 but excludes n (reminder: final parameters cannot be
assigned to):

/// requires 0 < n ∧ xs 6= null ∧ 2*n < xs.length
/// ensures ∀ i ∈ [0..n) :: xs[2*i] 6= 0
void foo(final int n, final int[] xs)

Assume that method foo is overridden in a subclass, and that we do not use specification in-
heritance. Which of the following pre- and postconditions would not be allowed if the subclass
should be a behavioral subtype?

(a) requires 0 < n ∧ xs 6= null ∧ 2*n < xs.length
ensures ∀ i ∈ [0..n) :: xs[2*i] ≥ n

(b) requires 0 < n ∧ xs 6= null
ensures ∀ i ∈ [0..n) :: xs[2*i] ≥ i

(c) requires 0 ≤ n ∧ xs 6= null ∧ 2*n ≤ xs.length
ensures ∀ i ∈ [0..n) :: xs[2*i] ≥ i+n

(d) requires 0 ≤ n ∧ xs 6= null ∧ 2*n ≤ xs.length
ensures ∀ i ∈ [0..n) :: xs[2*i] ≥ n

(e) All of the above would be allowed

Task 5
Consider two classes Stack and Queue, implementing the standard LIFO/FIFO data struc-
tures, both of which have methods with the following signatures:
void push(Object o);
Object pop();
bool isEmpty();
int size();
void reverse();

A) Despite having identical signatures, these two classes cannot be behavioral subtypes of one
another. Why not?

B) When implementing these two classes, is there any possibility of code reuse? If so, give
details.

C) Describe at least one way of reusing the code in one class by the other - which programming
language features are needed for this to work?

Task 6
Suppose that we have a database, for which we want an “automated key generation” feature.
This means that each time the user inserts a new tuple, a unique key is automatically generated
for the tuple by the system. An obvious way to do that is to write a counter, which increments
by 1 the value that it returns each time it is called. The method that generates a new key is
called generate.

A) Write a Java class IncCounter and an accompanying specification for such a counter.

B) Annotate the following Java class with specifications and show that it is not a behavioural
subtype of IncCounter.
class DecCounter
{
int key;
DecCounter () { key = 0; }
int generate () { return key--; }

}

C) Write an abstract class GenerateUniqueKey together with a specification, such that both
IncCounter and DecCounter are behavioural subtypes of
GenerateUniqueKey. In the specification, you may use helper methods and fields.

