
Concepts of Object-Oriented Programming
AS 2016

Exercise 12
Initialization

December 16, 2016

Task 1
Consider a Java class Vector, representing a 2 dimensional vector:
public class Vector {

public Number! x; // Remark: Number is a super-interface for
public Number! y; // Integer, Double, etc.

public Vector (Number! x, Number! y) {
this.x = x;
this.y = y;

}
}

Suppose that we add a subclass Vector3D which has a third Number field z and a new method
volume():
public class Vector3D extends Vector {

public Number! z;

double volume() {
return x.doubleValue()*y.doubleValue()*z.doubleValue();

}
}

Which of the following method definitions compile (assuming that the data-flow analysis for
non-null types doesn’t consider the semantics of instanceof)? Which would always run safely
(if compiled without typechecking)? Explain your answers.

A)

double getVolume1(Vector? c) {
if(c instanceof Vector3D) {

return c.volume();
} else { return 0.0; }

}

solution

getVolume1 won’t compile for two reasons - Java will complain that c is of (class) type
Vector for which method volume is not defined, and a non-null type checker would com-
plain that it cannot determine that c is non-null when the call is made. However, the
program would run safely - the if-condition not only guarantees that the method is defined
for the call, but implicitly that the expression c is non-null when the call is made (because
Java defined that (null instanceof T) always evaluates to false.

B)

double getVolume2(Vector? c) {
if(c instanceof Vector3D) {

return ((!) c).volume();
} else { return 0.0; }

}

solution

getVolume2 won’t compile for the first reason above - Java will complain. The code would
still be safe.

C)

double getVolume3(Vector? c) {
if(c instanceof Vector3D) {

return ((Vector3D!) c).volume();
} else { return 0.0; }

}

solution

getVolume3 will compile - the cast satisfies all the necessary constraints to be checked.
The code will still be safe (in particular, the cast always succeeds).

D)

double getVolume4(Vector? c) {
if(c!=null && (c instanceof Vector3D)) {

return c.volume();
} else { return 0.0; }

}

solution

getVolume4 won’t compile for the first reason above - Java will complain. The code would
be safe though. Note that the non-null type checker won’t complain in either case, because
of the new if-condition.

E)

double getVolume5(Vector? c) {
if(c!=null && (c instanceof Vector3D)) {

return ((!) c).volume();
} else { return 0.0; }

}

solution

getVolume5 won’t compile, but is safe for the same reasons as getVolume4.

F)

double getVolume6(Vector? c) {
if(c!=null && (c instanceof Vector3D)) {

return ((Vector3D!) c).volume();
} else { return 0.0; }

}

solution

getVolume6 will compile and run safely.

Task 2
Consider the following abstract class, representing a node of a singly-linked list:
public abstract class ListNode<X> {

public abstract void setItem(X x);
public abstract X getItem();
public abstract ListNode<X> getNext();

}

Consider now the following implementation using a simple (acyclic) list:
public class AcyclicListNode<X> extends ListNode<X> {

protected X item;
protected AcyclicListNode<X> next;

public AcyclicListNode<X> (X item) {
this.item = item;
this.next = null;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public AcyclicListNode<X> getNext() { return next; }

}

In this implementation, suppose that an empty list is represented simply by a null reference.
Suppose that a further design intention of this implementation is that each node is guaranteed
to store an X object in its item field.

A) Annotate the class AcyclicListNode<X> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from the
Construction Types system (free or unc annotations).

solution

(Side note: the interaction of generic types and non-null types, e.g., the interpretation of a
type X! if X can be instantiated with types that themselves include non-nullity expectations,
is beyond the scope of the course, but in case you are worried, you can assume that the
explicitly visible annotation ! overrides any annotation in the instantiation for X, i.e., X!
can still be safely assumed to always store a non-null value) The following class definitions
express the design expectations:
public class AcyclicListNode<X> extends ListNode<X> {

protected X! item;
protected AcyclicListNode<X>? next;

public AcyclicListNode<X> (X! item) {
this.item = item;

}

public void setItem(X! x) { item = x; }
public X! getItem() { return item; }
public AcyclicListNode<X>? getNext() { return next; }

}

B) Now consider an alternative implementation using a cyclic list:

public class CyclicListNode<X> extends ListNode<X> {
protected X item;
protected CyclicListNode<X> next;

public CyclicListNode<X> (X item) {
this.item = item;
this.next = this;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public CyclicListNode<X> getNext() { return next; }

}

In this implementation, the design intention is that every node will always have a next object
in the list (sometimes itself). In this design, we choose to represent an empty list by a single
node whose next field points to itself, but whose item field is null. All non-empty lists will
be represented using only nodes whose item fields are non-null.

Annotate the class CyclicListNode<X> with appropriate non-null type annotations to ex-
press these design intentions as far as possible. You do not need any annotations from the
Construction Types system (free or unc annotations).

solution
public class CyclicListNode<X> extends ListNode<X> {

protected X? item;
protected CyclicListNode<X>! next;

public CyclicListNode<X> (X? item) {
this.item = item;
this.next = this; // default - maybe changed later

}

public void setItem(X? x) { item = x; }
public X? getItem() { return item; }
public CyclicListNode<X>! getNext() { return next; }

}

Note that we may decide to pass a non-null reference to setItem.

C) Now consider how to annotate the method signatures in ListNode<X> so that both im-
plementations can be accommodated. Your solution should be compatible with the usual
co/contra-variance rules for subclass method signatures.

solution

We have to pick suitable method signatures so that the implementing methods have valid
overriding signatures in both classes above. This typically means strengthening the argu-
ment types and weakening the return types:
public abstract class ListNode<X> {

public abstract void setItem(X! x);
public abstract X? getItem();
public abstract ListNode<X>? getNext();

}

Task 3
In the Construction Types system, when we read from the field of an expression of committed
type, we obtain a reference of committed type, i.e., if e1 has a committed type then e1.f

has a committed type. Similarly, if e1 has an unclassified type then e1.f has an unclassified
type. However, if e1 has a free type then e1.f does not have a free type, but instead has an
unclassified type. Explain why the alternative choice would be unsound (given the existing
rules of the system), giving an example of what would go wrong.

solution

Because anything (in terms of Construction Type annotation) can be stored in the fields
of a free reference, when we read something back out of such a field we cannot make any
guarantees about what is stored there. In particular, it is possible to store a committed
reference in the field of a free reference, and if we could then read it back as free, this would
be unsound. For example, the following code would type-check:
public class C {

C! f, g;
public C(C! x) { // x is committed, this is free

this.f = x; // assigning committed to free- ok
((free C!) this.f).f = this; // this.f is free- ok
this.g = x.f.g; // what happens here?

}
public C() { f = this; g = this; }

}

void client()
{

C! c = new C(new C());
c=c.g.g; //Null pointer exception

}

We need the cast in the second line of the constructor, since otherwise the typesystem
will complain about this.f possibly being null. This could be resolved by improving the
dataflow analysis to allow tracking of the values of this fields (it only tracks values of local
variables according to the slides).

Task 4
With non-null types, any class type T can be annotated to explicitly declare non-nullity (T!)
and possible-nullity (T?). In the Construction Types system, further variants of these types are
introduced, for “free”, “committed” (the default), and “unclassified” (unc) types. These types
are all treated differently by the type system taught in the lectures.

A) Explain at least one difference between the treatments of a reference of type T! and a
reference of type T? , giving an illustrative example.

solution

For all solutions below, let us suppose that class T has the following field declarations:
T! f;
T? g;

If x is a reference of type T! then x.f is a permitted field read (without any if-checks
/dataflow analysis), but if x is a reference of type T? then it is not.

Also, x can only be assigned to the f field of an object in the former case and not the latter
(T! is a subtype of T? but not vice versa).

B) Explain at least one difference between the treatments of a reference of type free T! and
a reference of type unc T! , giving an illustrative example.

solution

Suppose y is a reference of type free T!. If x is also a reference of type free T! then
x.f = y; is a permitted field update, but if x is a reference of type unc T! then it is not.

Also, free T! is a subtype of unc T! but not vice versa.

C) Explain at least two differences between the treatments of a reference of type T! (a com-
mitted reference) and a reference of type unc T! , giving illustrative examples.

solution

If x is a reference of type T! then x.f.f is a permitted field read, since x.f also has the
type T!. But if x is a reference of type unc T! then it is not permitted, since x.f has the
type unc T?.

If y is a further reference of type unc T! then y.f = x is allowed when x has the type T!
but not when x has the type unc T!.

Also, T! is a subtype of unc T! but not vice versa.

Furthermore, a constructor call new C(x) will be given a committed type if x is committed,
but instead a free type if x is unclassified.

D) Explain at least three differences between the treatments of a reference of type T! and a
reference of type free T!, giving illustrative examples.

solution

If x is a reference of type T! then x.f.f is a permitted field read, since x.f also has the
type T!. But if x is a reference of type free T! then it is not permitted, since x.f has the
type unc T?.

If y is a further reference of type unc T! then y.f = x is allowed when x has the type T!
but not when x has the type free T!.

Similarly, x.f = y is allowed when x has the type free T! but not when x has the type
T!.

Furthermore, a constructor call new C(x) will be given a committed type if x is committed,
but instead a free type if x is free.

Task 5
(From a previous exam)

Consider the following code in a Java-like language enriched with the non-null types system of
the course:
class Node
{

int depth;
public Node! parent;
public Node! left;
public Node! right;

Node(int d)
{ ... }

...
}

The constructor shown above, when invoked with a positive integer, as in
new Node(d)

must create a complete binary tree (type Node!) of depth d containing exactly 2d+1 − 1 nodes.
The root node has depth 0. The depth field of every node in the constructed tree must be
initialized to the depth of that node in the tree. The parent field of the root node should point
to the root node itself. Similarly the left and right fields of leaf nodes should point to the
leaf nodes themselves.

A) Write the body of the constructor. You may introduce other constructors and methods.
Make sure that you adhere to the rules of the non-null types system including construction
types.

solution

Here is a possible implementation
Node(int d)
{

depth = 0;
parent = this;
if(d == 0) {

left=this;
right=this;

} else {
left = new Node(d, 1, this);
right = new Node(d, 1, this);

}
}

Node(int goal, int d, free Node! p) // can be unc Node!
{

depth = d;
parent = p;
if(d == goal) {

left=this;
right=this;

} else {
left = new Node(goal, d+1, this);
right = new Node(goal, d+1, this);

}
}

The body of the first constructor could be replaced by a call to this(d,0,this), assuming
the definite assignment rule correctly determines that calling another constructor guarantees
that all fields are assigned (in that other constructor). This question is, however, not
addressed in the lecture, so the above solution is the "safe" solution.

B) Consider the following method:

void foo(unc Node! o)
{

unc Node! x = new Node(2);
free Node! y = new Node(2);
Node! z = new Node(2);
o.right = new Node(2);

}

Which of these assignments would typecheck? Explain.

solution

The type of new Node(2) is committed. This can be shown trivially, because no references
are passed to the constructor.

From the assignments to local variables, the second one is not allowed because it violates
the subtyping rules. The other two are allowed.

The fourth assignment is allowed. By the rules for assignments to fields, we know that a
committed reference can be assigned to non-null fields of unclassified, free and committed
objects.

Task 6
Consider the following Java classes:
public class A {

public static final int value = B.value + 1;
}

public class B {
public static final int value = C.value + 1;

}

public class C {
public static final int value = A.value + 1;

}

A) Will these classes compile? If not, how could we modify them so that they do?

solution

The classes will compile.

B) What would the output of running the following program be?

public class Program {
public static void main(String[] args) {

System.out.println(A.value);
System.out.println(B.value);
System.out.println(C.value);

}
}

solution

When the program is run, the output will be:

3
2
1

This is because, starting to initialize A causes B to start being initialized which causes C
to start being initialized (at which point Java realizes A has already started initialization
and just carries on initializing C). When C.value gets assigned, A.value still contains the
default value 0.

C) In what ways can you change the output of the program by reordering the statements?

solution

The class we first mention will always get loaded first, and so complete initialization last.
By changing the order of the second two classes, we can vary the output between the one
above, and:
3
1
2

