
Concepts of Object-Oriented Programming
AS 2016

Exercise 13
Self-Study Exercise Sheet

NOTE: This exercise sheet will not be discussed in an exercise session. We publish
it now together with the solution to allow you to better prepare for the final exam.
If you have any questions regarding this sheet, please consult your assistant.

Subtyping and Behavioral Subtyping

Task 1
Consider the class X and its only method foo where ZZZ is placeholder for a class name:
class X {

/// requires x>0 ∧ (¬∃ i,j: int | 2 ≤ i,j ≤ x ∧ i*j=x)
/// ensures result>0 ∧ result % 2 = 0
int foo(int x){ return (new ZZZ()).foo(x); }

}

Which of the four classes below could be substituted for ZZZ such that no contracts will be
violated?
(a) class A {

/// requires x≥0
/// ensures result = x+1
int foo(int x) {...} }

(b) class B {
/// requires true
/// ensures result%2 = 0
int foo(int x) {...} }

(c) class C {
/// requires x%2 = 1
/// ensures result = x+1
int foo(int x) {...} }

(d) class D {
/// requires true
/// ensures result = x*(x+1)
int foo(int x) {...} }



Inheritance, Dynamic Method Binding, Multiple Inheritance, and Linearization

Task 2
Consider the following Java classes and interfaces:
public interface IA { IA g(IA x); }

public interface IB extends IA { IB g(IA x); IA g(IB x); }

public interface IC extends IA { IC g(IB x); }

class B implements IB
{

public IB g(IA x){System.out.print("B1");return null;}
public IC g(IB x){System.out.print("B2");return null;}

}

class C implements IC
{

public IC g(IA x){System.out.print("C1");return null;}
public C g(IB x){System.out.print("C2");return null;}

}

class Main{
public static void main(String[] args) {

B b = new B();
C c = new C();
IA a1 = b;
IA a2 = c;

IA r1 = a1.g(a2);
IA r2 = a2.g(b);
IC r3 = b.g(b);
IA r4 = c.g(a2);
C r5 = c.g(b);

}
}

What is the output of the execution of the Main.main method? Explain your answer.



Parametric Polymorphism

Task 3
Consider the following generic Java class:
class Generic<T>
{

<U> void m1(List<? extends T> a, List<? super U> b, U c) {...};
<U> void m2(List<? super T> a, List<? extends U> b, U c) {...};
<U> void m3(List<? super U> a, List<U> b) {...};

}

Which of the method signatures of this class can be rewritten by using only generic method
arguments instead of wildcards?

(a) Only m1

(b) Only m2

(c) Only m1 and m2

(d) Only m1 and m3

(e) Only m2 and m3

(f) None of them

Task 4
Consider the following Java definitions:
class A{}
class B extends A{}
class L<F extends A>{}

And the following code that uses these definitions:
void f(L<? extends A> l1, L<? extends A> l2){}

<T extends A> void g(L<T> l1, L<T> l2){}

Which method can accept more input types than the other?

(a) f can accept more inputs than g

(b) g can accept more inputs than f

(c) f and g can accept the same set of input types

(d) Each can accept some input the other cannot



Bytecode Verification

Task 5
Assume two Java classes A and B and assume that B is a subclass of A. Consider the following
byte code:
0: aload_1
1: astore_2
2: goto 0

and assume that the input to the initial node of this code is ([],[A,A,B]), where the first list
indicates the contents of the stack and the second list indicates the contents of the registers.

After running the bytecode type inference algorithm, what is the inferred input to the initial
node?

(a) ([],[A,A,A])

(b) ([],[A,A,B])

(c) ([],[A,B,B])

(d) Nothing is inferred – the type inference does not terminate

(e) Nothing is inferred – the type inference rejects the program



Information Hiding and Encapsulation

Task 6
Suppose that we have a language with the information hiding rules of Java, but with structural
subtyping. What should be the subtyping relations between the following three classes?
class A {int foo();}
class B {protected int foo();}
class C {public int foo();}

Task 7
Consider the class Hour, defined as follows:
public class Hour {

protected int h=0;
/// invariant h>=0 && h<24

public void set(int h) {
if(h>=0 && h<24) this.h=h;

}
}

What is the external interface of Hour?

Can we extend the code, without changing the class, so that the invariant is broken? If yes,
provide an example, and propose how to fix the class.



Aliasing, Readonly Types, and Ownership Types

Task 8
Consider the following class definitions in the context of the read-only type system taught in
the course:
class C {

public D f;
void foo(readonly C other) {...}

}

class D { E g; }

class E {}

Let a and b be non-null references of type C. Which of the following statements is true:

(a) The call a.foo(b) is guaranteed not to change the value of b.f, but may change the
value of b.f.g

(b) The call a.foo(b) is guaranteed not to change the value of b.f and neither the value of
b.f.g

(c) The assignment other.f.g = new E(); may appear in the code of foo

(d) None of the above is correct

Task 9
In the following question we do not consider the owners-as-modifiers discipline. We are only
concerned with the topology of the ownership type system.

Consider the assignment:
o.f = p.g;

and assume that o.f and p.g have the same static type.

A) The assignment is forbidden if o.f has ownership modifier lost. Show an example to
demonstrate why we need this rule to preserve the topological invariant.

B) If the ownership modifier of o.f is any, then what are the requirements for the assignment
to be legal?

C) If o.f has ownership modifier lost can we upcast o.f to an any reference and make the
assignment legal? Why (not)?



Non-null Types and Initialization

Task 10
Consider a Java class Vector, representing a 2 dimensional vector:
public class Vector {

public Number x; // Remark: Number is a super-interface for
public Number y; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y = y;

}
}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:
public double vectorLength(Vector c) {

double x = c.x.doubleValue();
double y = c.y.doubleValue();
return Math.sqrt(x * x + y * y);

}

A) This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

B) Add a pre-condition for the method, specifying what is required to be safe.

C) Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary pre-condition?

D) Suppose that you are also allowed to upgrade the class Vector to include reasonable non-
null type annotations. How does this affect your previous answer? Do these changes to the
class seem reasonable?

Task 11
Consider the following three classes (declared in the same package):
public class Person {

Dog? dog; // people might have a dog

public Person() { }
}

public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(Person owner, String breed) {
this.owner = owner;
this.bone = new Bone(this);
this.breed = breed;

}
}



public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone(Dog toOwn) {
this.dog = toOwn;

}
}

A)Annotate the code with non-null and construction type annotations where they are necessary.
Explain why the code now type-checks according to construction types.

B) Could we provide constructors for classes Dog and Bone with no parameters?

C) Now, suppose a (possibly mad) scientist wants to extend the implementations of these
classes with some genetic engineering. Firstly, we want to be able to “clone” a bone. We can
add the following method to class Bone to make a copy of an existing bone, and assign it to
another Dog:
public Bone clone(Dog toOwn) {

return new Bone(toOwn);
}

However, our scientist would like to go further, and be able to clone dogs. A cloned Dog should
also have its bone cloned along with it, but may be assigned to a new owner: we add the
following extra constructor and method to class Dog:
Dog(Dog toClone, Person newOwner) {

this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone(this);

}

public Dog clone(Person toOwn) {
return new Dog(this, toOwn);

}

However, our scientist would like to go still further, and be able to clone people. A cloned
Person should also have its dog (if any) cloned along with it: we add the following extra
constructor and method to class Person:
Person(Person toClone) {

Dog? d = toClone.dog;
if(d!=null) {

this.dog = new Dog(d, this);
}

}

public Person clone() {
return new Person(this);

}

Annotate this extra code with appropriate non-null and construction types annotations. You
should guarantee that each of the clone methods (which belong to the public interface) return
a committed reference. You should ensure that your answers guarantee that all of the code
type-checks - explain your choices.

Hint: think carefully about how constructor calls are typed, and what happens if the construc-
tors are called in more than one situation.



Reflection

Task 12
Which of the following is the defining characteristic of reflection?

(a) It allows for much simpler code

(b) It enables more flexibility

(c) It allows a program to observe and modify its own structure and behavior

(d) It is not statically safe

(e) It may hurt performance

(f) None of the above

Task 13
Consider the following Java code
LinkedList<String> xs = new LinkedList<String>();
xs.add("A"); xs.add("B"); xs.add("C");

Class<?> c = xs.getClass();
Method remove = c.getMethod("remove");
xs.add(remove.invoke(xs));

which uses the following methods of class LinkedList<E>
public E remove()
public boolean add(E e)

Which of the following statements is true? The invocation of . . .

(a) c.getMethod("remove") is rejected by the compiler

(b) c.getMethod("remove") raises an exception (at run time)

(c) remove.invoke(xs) is rejected by the compiler

(d) remove.invoke(xs) raises an exception (at run time)

(e) xs.add(...) is rejected by the compiler

(f) xs.add(...) raises an exception (at run time)


