
Concepts of Object-Oriented Programming
AS 2016

Exercise 2
Types and Subtyping

October 7, 2016

Task 1
Show:

• A program that is rejected by a statically typed language but is executed without typing
errors in a dynamically typed language.

solution

Consider
if (x==x) y=1; else y=true;
y = y+1;

A usual static type system would reject this program, while the program would not
cause typing problems.

• A program that is rejected by a statically typed language and runs into a type error when
executed in a dynamically typed language.

solution

The static type system would reject the following program which would generate a
runtime type error:
void f(x) { return x+1 }
print(f(true))

Task 2
Suppose that we have a language with structural subtyping, contravariant parameter types and
covariant return types. Consider the following types:
class A { int m(int x){...}; }
class B { int m(int x){...}; int n(int x) {...}; }
class C { int n(int y){...}; int m(int x) {...}; }
class D { C m(A a) {...}; }
class E { C m(B b) {...}; }
class F { A m(B e) {...}; }
class G { B m(C e) {...}; }
class H { G m(D d, E e) {...}; }
class I { F m(E e, D d) {...}; }
class J { A a; }
class K { B b; }

Find all the subtyping relations among them. Assume that int has no subtype other than
itself.

solution

B=C <: A and D <: E = G <: F

No other subtyping relations exist, except the reflexive and transitive closure of the above.

Task 3
Consider the following Java program:
class B {

protected int get() {...}
}

class A extends B {
private int get() {...}

}

class C extends B {
public int get() {...}

}

When we compile it, we obtain the following error:

get() in A cannot override get() in B; attempting to
assign weaker access privileges; was protected

private int get() {...}
^

Explain why this is the behavior of the Java compiler.

solution

Class A restricts the accessibility of method get(), since it is protected in B and private
in A. This means that class A allows fewer behaviors than B, so it cannot be a subtype of
B. On the other hand, class C relaxes the accessibility level of method get(), so it allows
more behaviors than B, and this is allowed by the Java compiler.

In general, a class can be a subtype of another class if it assigns “weaker” accessibility
permissions that the ones of the superclass.

In Java, there are four different types of access modifiers for fields and methods:

• public: every class can access the element

• protected: only subclasses and classes in the same package can access the element

• default : only classes in the same package can access the element

• private: only this class can access the element

We can state that
public <: protected <: default <: private

where a <: b means that the accessibility level a is weaker than b, and that a subclass
can relax the accessibility level b with a.

Task 4
In C++ object aliasing is achieved using pointers and it is possible to have a pointer to a
pointer. Here is an example

class X {};

class Initializer {
public:

void init(X** x) {
*x = new X();

}
};

class Value {
private:

X* x = nullptr;
public:

Value(Initializer* i) {
i->init(&x); // The initializer object will set the value of x

}
};

How does the substitution principle apply to values of type pointer to pointer? Is it safe to
call methods that have the signature of init with a value of type pointer to pointer to a
subtype/supertype of X? Why?

solution

It is not safe to call methods with the signature of init with anything but a pointer to
pointer to X. A pointer to a pointer can be thought of as an array with one object. As we
know statically safe arrays are invariant. The code below illustrates what might go wrong
if the actual argument’s type were allowed to vary.
class SuperX {};
class X : public SuperX{public: int a;};
class SubX : public X{public: int b;};

class Initializer{
public:

virtual void init(X** x) {
*x = new X();

}
};

class Initializer2 : public Initializer{
public:

virtual void init(X** x) {
(*x)->a=5; // run time error if called from i->init(&super_x)

;
}

};

class Value {
private:

X* x = nullptr;
SuperX* super_x = new SuperX();
SubX* sub_x = nullptr;

public:
Value(Initializer* i) {

i->init(&x); // ok
i->init(&super_x); // wrong, if i is of type *Initializer2
i->init(&sub_x); // wrong, sub_x might get a value of type

X
sub_x->b = 5; // and so cause here a run time error

}
};

Task 5 Union Types
Assume a language with nominal subtyping, covariant return types and contravariant arguments
that allows types to be defined as a disjunction of other types, as in the following declarations:
String || Number get();
void set(String || Number newValue);

Such a type is called a union type and the different types that form the disjunction are its
components. Classes can be thought of as union types with just one component.

A type Sub is a subtype of another type Super, i.e. Sub <: Super, if for each component
Csub of Sub there exists a component Csup of Super such that Csub <: Csup. The usual nominal
subtyping rules apply for classes.

A) Consider the signatures of the four methods below, assuming that C <: B <: A (A, B, and
C are regular class types)
m1: B foo (B b)
m2: A foo (A || B ab)
m3: B || C foo (A a)
m4: A || B || C foo (C c)

Your task is to complete the table below. For each row and column, write ’yes’, if the method
at the left of the row could override the method at the top of the column. Otherwise write ’no’.

m1 m2 m3 m4
m1 yes
m2 yes
m3 yes
m4 yes

solution

Note that here A || B || C, A || B, and A can be considered to be identical types,
because C <: B <: A. Similarly B || C can also be considered identical to B.

m1 m2 m3 m4
m1 yes no no yes
m2 no yes no yes
m3 yes yes yes yes
m4 no no no yes

B) Assume that A, B, and Q are classes such that B <: A and Q is unrelated to A and B.
Consider this code fragment:
void foo(A || Q arg) { arg.bar(42); }

(i) Assume that the type checker admits method foo if all components of arg’s static type
have a method bar(int). Do we need any run-time checks in order to avoid run-time errors?
If so, what are they? Under what conditions could they be omitted?

solution

No run-time checks are necessary.

(ii) Assume that the type checker admits method foo if at least one component of arg’s static
type has a method bar(int). Do we need any run-time checks in order to avoid run-time
errors? If so, what are they? Under what conditions could they be omitted?

solution

We could do an additional static check that all components of the type of arg have a
method bar(int) and, if it fails, we need a dynamic check that the run-time type of arg
has bar(int).

Answer the questions from (i) and (ii) for the code fragment below.
void foo(A || B arg) { arg.bar(42); }

solution

(i) No run-time checks are necessary.
(ii) We can do a static check that A has bar(int). If it does, we do not need a run-time
check. Otherwise at run-time we need a check that the type of arg is B.

Task 6
As you have seen in the lectures, arrays are covariant in Java and C#. Because of this, each
array update requires a run-time type check. Another approach would have been to adopt
contravariant arrays. Does this solution require run-time type checks? If this is the case,
explain in which cases you need these run-time type checks and provide an example in which a
check would fail.

solution

Yes, contravariant arrays would require run-time type checks when reading values from the
array.

By the definition of contravariance, we have that S<:T implies T[]<:S[].
Therefore Object[]<:String[] since String<:Object. So we can pass an array of type
Object[] to a method that requires a String[] argument.
class C {

String foo(String[] a) {
return a[0];

}
}

void client(C c) {
Object[] arr = new Object[1];
arr[0] = new Object();
String s = c.foo(arr);

}

