
Concepts of Object-Oriented Programming
AS 2016

Exercise 10
Aliasing, Readonly Types and Ownership Types

December 2, 2016

Task 1
[From a previous exam]

In answering this task, do not use reflection, inheritance, and static fields or methods.

This task is concerned with reasoning about non-modification in a modular setting in the
presence of aliasing.

Consider the following code:
package cell;
public class Cell {

///ensures get()==newValue
public Cell(int newValue){value=newValue;}

///ensures get()==newValue
public void set(int newValue){value=newValue;}
///pure
public int get(){return value;}
private int value;

}

package client;
import cell.*;
class Client{

///requires c1!=null
///requires c2!=null
void setCells(Cell c1, Cell c2) {

c1.set(1);
c2.set(2);
assert(c1.get() == 1);

}

void setCellsClient() {
Cell c1 = new Cell(5);
Cell c2 = new Cell(5);
setCells(c1,c2);

}
}

The objective of this task is to make sure that the assertion in the method setCells does not
fail, using modular reasoning. The potential problem is that of determining whether the call
c2.set(2) can affect the return value of c1.get().

A) Modify the second line in method setCellsClient (the initialization of c2) so that the
assertion in method setCells fails. The precondition of setCells must still be satisfied by
the modified version.



solution
void setCellsClient() {

Cell c1 = new Cell(5);
Cell c2 = c1;
setCells(c1,c2);

}

B)Add a precondition to setCells that will make the call from your version of setCellsClient
illegal. The precondition should be such that the original call is legal. Remember that the
precondition can only refer to the arguments of the method and to public fields and methods.

solution
///requires c1!=c2;
void setCells(Cell c1, Cell c2)
...

C) We now add a clone method to the Cell class:

///ensures result != null
///ensures result != this
///ensures result.get()==get()
///ensures get()==old(get())
public Cell clone() { return new Cell(value); }

We also add to the client the methods left and right, which use the clone method:

void left() {
Cell c1 = new Cell(5);
Cell c2 = c1.clone();
setCells(c1,c2);

}

void right() {
Cell c1 = new Cell(5);
Cell c2a = new Cell(5);
Cell c2 = c2a.clone();
setCells(c1,c2);

}

Modify only the Cell class so that a call to left causes the assertion in setCells to fail,
while a call to right does not cause the assertion to fail. You can add private and default
access members and methods to the Cell class and add private classes to the cell package,
and also modify the implementation of existing methods, but not change the public interface
in any way. Your implementations must satisfy the existing contracts, including the one from
task B.

solution
package cell;
class Cell{

///ensures get()==newValue
public Cell(int newValue){value = new CellInt(newValue);}

///ensures result != null
///ensures result != this
///ensures result.get()==get()
///ensures get()==old(get())
public Cell clone(){return new Cell(value);}

///ensures get()==newValue
public void set(int newValue){value.set(newValue);}
///pure



public int get(){return value.get();};

private Cell(CellInt ci){value = ci;}

private CellInt value;
}

private class CellInt{
CellInt(int newValue){ value = newValue;}
int get(){ return value; }
void set(int newValue){ value = newValue; }
private int value;

}

The clone method now creates a new Cell that shares the representation (the CellInt),
and so modifying the cloned or original Cell also modifies the other.

D) Strengthen the precondition of the method setCells so that, with your modified Cell,
the call from left would fail the precondition check, while the call from the method right

would satisfy the precondition.

You can use the concept of the reach of an object, where, for an object x, reach(x) is defined
as the the set of objects which are reachable from x — the set of objects which can be described
by an access path x.f1.f2. ... .fn for some n and some sequence of field names f1..fn
(we do not consider arrays in this task). All fields are considered, regardless whether they are
public or private. You can also use set operations in your precondition.

Remember that the precondition of a method can refer only to the this object and the method’s
arguments, dereferencing of public fields, and call public pure methods.

solution
///requires reach(c1) disjoint reach(c2);
void setCells(Cell c1, Cell c2)
...

Now the reach of the arguments c1 and c2 are disjoint, so modifying one cannot affect the
other in any way.

E) In order to prove the correctness of the body of the methods left and right, when
setCells has the stronger precondition from section D, we would have to strengthen the
postcondition of the clonemethod of class Cell. Write a stronger postcondition to the method
Cell.clone so that the bodies of the methods left and right can be proven modularly —
i.e., without knowing the implementation of the clone method and other private details of the
class Cell.

solution
///ensures result != null
///ensures reach(result) disjoint reach(this)
///ensures result.get()==get()
///ensures get()==old(get())
public Cell clone(){return new Cell(value);}

Strengthening the postcondition of Cell.clone like that has the following consequences:



• The implementation of Cell.clone from subtask C) can no longer be verified since
it does not guarantee the new postcondition (the reach sets won’t be disjoined)

• The bodies of the methods left and right should therefore verify (modularly), and
indeed will: Cell.clone’s stronger postcondition now establishes the precondition
of setCells

Task 2
[From a previous exam]

In the readonly/readwrite type system, which of the following assignments is not type
correct?

1. x=y; where x is readonly and y is readwrite

2. x=y.f; where x is readwrite, variable y is readonly and field f is readwrite

3. x=y.f; where x is readwrite, variable y is readwrite and field f is readwrite

4. x=y.f; where x is readonly, variable y is readwrite and field f is readwrite

solution

Number 2 is not allowed - it casts from a readonly reference to a readwrite reference.

Task 3
Consider the following classes:

class A {
readwrite StringBuffer n1=...;
readonly StringBuffer n2=...;

}

class B {
readwrite A x;
readonly A y;
public B(readwrite A x, readonly A y) {

this.x=x;
this.y=y;

}
}

Check which programs typecheck and explain why they do or do not typecheck.



Program 1 Program 2
readwrite A obj=new A();
readonly B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.y.n1;

readwrite A obj=new A();
readwrite B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.y.n1;

Program 3 Program 4

readwrite A obj=new A();
readwrite B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.x.n1;

readonly A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B(obj, obj2);
readwrite StringBuffer v=obj3.y.n1;

Program 5 Program 6
readwrite A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B(obj, obj2);
readonly StringBuffer v=obj3.y.n1;

readwrite A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B(obj, obj2);
readonly StringBuffer v=obj3.y.n2;

solution

• Program 1 does not compile since obj2 is readonly, so obj2.y.n1 is readonly,
and we try to assign it to a readwrite variable.

• Program 2 does not compile since field y in B is readonly, so obj2.y.n1 is
readonly, and we try to assign it to a readwrite variable.

• Program 3 compiles! obj2 is readwrite, x is readwrite (so obj2.x is readwrite
), n1 is readwrite (so obj2.x.n1 is readwrite), and we assign obj2.x.n1 to a
readwrite variable.

• Program 4 does not compile since obj is readonly and it is passed to the constructor
of B as the first argument, while the constructor expects a readwrite variable.

• Program 5 compiles! We can always assign something to a readonly variable.

• Program 6 compiles! We can always assign something to a readonly variable.

In addition: for all the programs expect 4, the first argument passed to the constructor of B
is readwrite, and the second argument can be readwrite or readonly since a readonly
argument is expected.

Task 4
In this question assume no type-casts or static variables or fields are used.

The C++ language supports the constmodifier for types, which tries to model a weak readonly
type system.

A) The C++ type system does not ensure transitive readonly structures as the system shown
in class. Informally explain which typing rule could be changed and how to ensure transitivity.
Your rule should make sure that in the following example, the assignment to t.b->a fails.
class T {

public:
int a;
T* b;
T() {

a = 0;
b = this;

}
};

int main()



{
const T t;
t.a = 5; // Fails in standard C++
t.b->a = 5; // Works in standard C++

}

solution

The problem is that t.b is a constant pointer T * const, not a constant pointer to a
constant T const * const. The change that is needed is in the typing of field dereference
- so that dereferencing a pointer field of a const type gives a pointer/reference to const

. This would prevent main from modifying t.a through t.b as transitive constness is
ensured.

B) Considering the changes in the previous part, show an example where the method n does
modify x.f. Is this a problem?

void n(const T& x, T& y){...}

solution

n can modify x.f through aliasing - for example:
void g()
{

T& c = *new T();
assert(c.f==0);
n(c,c);
assert(c.f==0); //fails

}

void n(const T& x, T& y){
y.f=1;

}

This is not a problem, as the only guarantee the system gives is that no modification is
done through const objects.

C) The mutable modifier is used in C++ to denote a field that can be mutated also in const

methods - meaning that its value does not affect the client visible behaviour of the object (such
as caching the results of a time consuming calculation) - consider the following code:
class List{

...

public:
///ensures result >= 0
int length()const{...}

///requires index >= 0 && index <length()
int at(int index) const {

if (index == lastSearch)
return lastSearchResult;

else
{

int result = atHelper(index);
lastSearch = index;
lastSearchResult = result;
return result;



}
}

private:
int atHelper(int index) const{...} //Time consuming
mutable int lastSearch=-1;
mutable int lastSearchResult=0;

}

In this part assume that the const modifier is transitive for both pointers and references. We
try to prove correctness of the at method by showing that we get the same result regardless
of the values of lastSearch and lastSearchResult. However, this requires a stronger class
invariant - give such an invariant, assuming that atHelper is pure (and does not modify even
mutable fields).

solution

We could add the class invariant: lastSearch>=0 ==> (lastSearch<length() &&

lastSearchResult == atHelper(lastSearch)).

Task 5
Consider how we might extend readonly types to handle arrays. For an array of primitive types,
one might want to declare that the array elements cannot be changed, using a declaration such
as:
readonly int[] x;

which, similarly to the rules for accessing fields of objects, would forbid an update such as
x[2] = 2; // error - x is declared with a readonly type

A) Should there be a subtyping relationship (in either direction) between types readwrite
int[] and readonly int[]?

solution

readonly int[] is more restrictive than readwrite int[] (fewer operations can be
performed with such a reference) so we could have readwrite int[] <: readonly

int[].

B) For arrays of reference types, there are two reasonable questions to consider for readonly
typing. Firstly, just as for an array of primitive types, whether or not the array reference can
be used for modifications. Secondly, whether the array elements can be used for modifications.
y[1] = y[2]; // is this allowed?
y[1].f = y[2].f; // is this allowed?

In order to express all possibilities, consider having two readonly/readwrite modifiers for
an array type - the first to denote access to the array reference itself, and the second to denote
access to the objects stored in its elements, e.g., readonly readonly T[] y; is the most
restrictive possibility.

Consider what the semantics of readwrite readonly T[] y; could be. There are two rea-
sonable choices here, depending on whether we regard accesses of the form y[1].f as accesses
which go first via the array y, and then to the element y[1], or consider them as accesses
directly to y[1] (in a sense “skipping” y, and hence ignoring the first modifier).

For each of these two possible semantics, consider the following:



• Do all four combinations of modifiers express something different from one another?

• What subtyping relationships (if any) would be reasonable between the four possible
variants of a T[] type?

solution

Considering y[1].f as an access which goes first via y, and then y[1], we would obtain
that:

• If the first modifier is readonly, all the accesses to elements of the array will be
treated as readonly, since the readonly modifier for the array will be considered
first. Therefore, the only interesting combinations are:

(a) readonly readonly

(b) readwrite readonly

(c) readwrite readwrite

Note: The same approach is adopted when we have a readonly object variable and
we access a readwrite field through it: the result would be readonly, since any
access via a readonly reference is readonly.

• The reasonable subtyping relations are (b) <: (a) and (c) <: (a). The case (b) <: (a)
corresponds to invariant array typing. The (c) <: (a) case corresponds to covariant
array typing but it is sound since the array type in (a) is readonly and, thus, an
array element type only appears in covariant position (e.g., v := a[i]).

Note that the relation (c) <: (b) would also correspond to covariant array typing
but that it would not be sound since it would indirectly allow casting a readonly

reference to a readwrite reference:

class P { String n; }

class C {
void client(readonly P p) {

readwrite readwrite P[] w = new P[1];
readwrite readonly P[] r = w;
r[0] = p;
w[0].n = "...";

}
}

Considering y[1].f as a direct access, we would obtain that:

• All the four different combinations have different semantics. With respect to the
previous example, we would have that readonly readonly will allow only read
accesses both on the array and on the elements stored in it, while with readonly

readwrite we have that we cannot assign elements in the array but we can write
fields accessed via the array elements.

• The subtyping relations already pointed out still work. In addition we could have

(a) readonly readwrite <: readonly readonly

(b) readwrite readwrite <: readonly readwrite

C) In the light of these questions, which of the two semantics seems the best choice?



solution

The second solution is more expressive than the first one, since it allows the developer
to have more fine-grained control on the read and write accesses on arrays and on their
elements. Thus, the second choice seems to be the best. However, it should be carefully
considered whether such an approach (that would be different compared to the one adopted
for objects and field accesses) may confuse the developers, and eventually create safety
problems.

Task 6
Consider the following method signatures:
peer Object foo(any String el);
peer Object foo(rep String el);
rep Object foo(any String el);
any Object foo(peer String el);
rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other.

solution

The general typing rules are peer <: any and rep <: any since any is more restrictive
than rep and peer. Following these rules, we obtain that

• peer Object foo(any String el) overrides
any Object foo(peer String el)

• rep Object foo(any String el) overrides
rep Object foo(peer String el), that overrides
any Object foo(peer String el)

• peer Object foo(any String el) overrides
peer Object foo(rep String el)

Task 7
[From a previous exam]

Consider the following declarations:
class A
{

rep B first;
rep B second;

}
class B
{

any A obj;
peer B sibling;

}

Which of the following programs are allowed in the topological ownership system? For any
program that is accepted in the topological system, is it also accepted in the owner-as-modifier
system? Assume that none of the objects involved are null. Briefly explain each of your
answers.



Program 1 Program 2 Program 3 Program 4
rep B b;
...
b = b.sibling;

peer A a; rep B b;
...
a = b.obj;

any A a;
...
a.first.obj = a;

peer A a;
...
a.first = a.first;

solution

• Program 1 is accepted in both systems.

• Program 2 is not accepted in the topological system (and neither in the owner-as-
modifier system). It attempts the assignment of an any reference to a peer reference.
peer is not a super-type of any.

• Program 3 is accepted in the topological system (it assigns any to any). However,
it assigns to the field of a lost reference, which means that it is not accepted in the
owner-as-modifier system.

• Program 4 is not accepted in the topological system (and neither in the owner-as-
modifier system), because it assigns to a lost location.


