
Concepts of Object-Oriented Programming
AS 2016

Exercise 9
Information Hiding and Encapsulation

November 25, 2016

Task 1
Suppose that the following Java classes are part of a package, to which an external user cannot
add classes.

public abstract class BankAccount {
... boolean importantCustomer=false;
... int amount=0;
... final int maxDebit=1000;

/// invariant amount >= -maxDebit &&
/// !importantCustomer => amount>=0 &&
/// importantCustomer <=> this instanceof RichCustomer

... void deposit(int amount);

... void withdraw(int amount);
}

public final class PoorCustomer extends BankAccount {
... void deposit(int amount) {

if(amount>=0)
this.amount+=amount;

}
... void withdraw(int amount) {

if(amount<=this.amount)
this.amount-=amount;

}
}

public final class RichCustomer extends BankAccount {
public RichCustomer() {importantCustomer=true;}
... void deposit(int amount) {

if(this.amount+amount >= -maxDebit)
this.amount+=amount;

}
... void withdraw(int amount) {

if(-maxDebit<=this.amount-amount)
this.amount-=amount;

}
}

Provide the most permissive access modifiers for each field and method, such that the class
invariant cannot be broken from outside the package. Assume that no integer over/underflow
occurs.

In Scala, a class can be declared as sealed. That means that the class can be extended only
by classes written in the same .scala file. Suppose that the class BankAccount is declared

as sealed, and PoorCustomer and RichCustomer are part of the same .scala file. Does this
allow you to choose more permissive access modifiers?

Task 2
From a previous exam

Consider the following Java program consisting of two packages:
1 package A;
2
3 public abstract class Person {
4 _______ int tickets = 0;
5 _______ final int maxTickets = 3;
6
7 /// invariant 0 <= tickets <= maxTickets
8
9 _______ abstract void buy(int t);
10 }
11
12 public class Buyer extends Person {
13 _______ void inc(int t) {
14 if (this.tickets+t <= this.maxTickets) this.tickets += t;
15 }
16 _______ void buy(int t) { if (t >= 0) inc(t); }
17 }
18
19
20
21 package B;
22 import A.*;
23
24 public class SmartBuyer extends Buyer {
25 _______ void inc(int t) { this.tickets += t; }
26 }
27
28 public class Main {
29 public static void main(String args[]) {
30 Buyer b = new SmartBuyer();
31 b.buy(9);
32 }
33 }

A) Provide the most restrictive access modifiers for the fields tickets and maxTickets and
the methods inc() and buy() such that the program is still accepted by the compiler.

B) With respect to the access modifiers that you provided in part A, add code to the class
SmartBuyer such that the execution of the main() method of the class Main breaks the
invariant of the class Person.

Task 3
Consider the following Java code:
package p;

public final class List {
///invariant 1: The list starting at head is acyclic
///invariant 2: The list starting at head is non-decreasing

public void prepend(int x){
if (head==null || x <= head.getValue())

head = new Node(x,head);
}

public Node getHead(){ return head; }
public Node head = null;

}

public final class Node {
Node(int x, Node n) {

value = x;
next = n;

}

public Node getNext(){ return next; }
public int getValue(){ return value; }
private Node next;
private int value;

}

Assuming that we cannot modify the classes List and Node, we would like to see whether or
not the invariants can be broken, either by adding classes to package p, or by clients outside of
package p. Assume reflection is not used at all.

A) Can invariant 1 be broken by adding clients outside of package p? If yes, show code, that
when run ends in a state in which the invariant is broken; if not explain why.

B) Can invariant 1 be broken by adding classes to package p? If yes, show code, that when
run ends in a state in which the invariant is broken; if not explain why.

C) Can invariant 2 be broken by adding clients outside of package p? If yes, show code, that
when run ends in a state in which the invariant is broken; if not explain why.

D) Can invariant 2 be broken by adding classes to package p? If yes, show code, that when
run ends in a state in which the invariant is broken; if not explain why.

Task 4
Consider the following Java code:
public class Hour {

public int h=0;
}

public class Time {
private Hour hour=new Hour();
private int m=0;
/// invariant hour.h>=0 && hour.h<24

public void setHour(int h) {
if(h>=0 && h<24) this.hour.h=h;

}

public Hour getHour() {return hour;}
}

A) Provide an example that breaks the invariant of Time without changing the code above
and without using reflection.

B) There are two immediate ways to fix the problem. In one of them, signatures of methods
are modified, while in the other they are not. What are these ways of fixing the problem?

C)Clearly, we would prefer to keep the signatures the same as before. Are there any drawbacks
to this approach?

D) Would it be possible to introduce an interface with no mutator methods and use it to solve
the problem? Explain how this approach would look and whether there would still be a way to
break the invariant.

Task 5
Consider the following Java programs:

Program 1 Program 2 Program 3 Program 4
package A1;
public class X {
int x;

}

package A1;
public class X {
protected int x;

}

package A1;
public class X {
private int x;
}

package A1;
public class X {
protected int x;
}

package A2;
import A1.X;
class Y extends X
{

int f(X v) {
return v.x;

}
}

package A2;
import A1.X;
class Y extends X
{

int f(X v) {
return v.x;

}
}

package A2;
import A1.X;
class Y extends X
{

int f(X v) {
return v.x;

}
}

package A2;
import A1.X;
class Y extends X
{

int f() {
return this.x;
}

}

Only one of these programs compiles. Which one? Why are the other programs rejected?

Task 6
Data structures often intentionally share aliases. For instance, consider the following Java class:
class ArrayList<T> {

private T[] elements=...;
private int lastEl=0;
public T get(int i) {return elements[i];}
public int size() {return lastEl;}
public void add(T el) {elements[lastEl++]=el;}

}

Imagine that this class is extended as follows
class Coordinates {

int x, y;
public Coordinates(int xx, int yy) {x=xx; y=yy;}

}

class CList extends ArrayList<Coordinates> {
/// invariant ∀ i:int | 0 ≤ i ∧ i < size() ⇒ get(i).x > get(i).y
public void add(Coordinates el) {

if(el.x>el.y) super.add(el);
}

}

A) Write a program that breaks the invariant of CList.

B) How can we fix this problem?

C) Is it possible to fix it without allocating new objects (either directly or indirectly), that is,
without consuming additional memory? What new problems might arise from your changes?

D) Discuss the benefits and the drawbacks of using alias sharing in data structures.

Task 7
The following Java classes, all part of the security package, were written by an unexperienced
programmer and contain a number of issues:
package security;

public class User {
public String name;
public String password;
public User(String name, String password) {

this.name = name;
this.password = password;

}
}

public class LoginException extends RuntimeException {
public User problemUser;
public LoginException(String message, User problemUser) {

super(message);
this.problemUser = problemUser;

}
}

public class Login {
private List<User> users = new LinkedList<User>();
public void registerUser(User u) {

if (u == null || u.name == null || u.password == null
|| u.name.isEmpty() || u.password.isEmpty()) return;

users.add(u);
}

// Returns true if the user ’u’ was successfully logged in.
// Otherwise returns false or throws an exception.
public boolean login(User u) throws LoginException {

if (u == null) return false;
User current = null;
try{

for(User registered : users) {
boolean nameEqual = registered.name.equals(u.name);
current = registered;

if (nameEqual) {
if (registered.password.equals(u.password))

return true;
}

if (nameEqual)
throw new LoginException("Invalid password for user",u);

}

return false;
}
catch(Exception e) {

throw new LoginException("Invalid user",current);
}

}
}

The malicious method is in a different package:
void malicious(Login l) { ... }

Assume the Login object that is passed into the method already has registered users.

A) Complete the body of the malicious method so that you manage to log-in as an already
existing user. You do not know any names or passwords of existing users. Do not use reflection.

B) Is it possible to fix the problem under the following restrictions? In each of these cases,
explain how you can prevent the malicious login or why it is not possible.

• only modifying the User class?

• only modifying the LoginException class?

• only modifying the registerUser method?

• only modifying the body of the for loop inside the login method?

