
Concepts of Object-Oriented Programming
AS 2016

Exercise 6
Multiple Inheritance, Multiple Dispatch and Linearization

November 4, 2016

Task 1
Consider the following C++ program:
class X {

public:
X(int p) : fx(p) {}
int fx;

};
class Y {

public:
Y(int p) : fy(p) {}
int fy;

};
class B : public virtual X,public Y {

public:
B(int p) : X(p-1),Y(p-2){}

};
class C : public virtual X,public Y {

public:
C(int p) : X(p+1),Y(p+1){}

};
class D : public B, public C {

public:
D(int p) : X(p-1), B(p-2), C(p+1){}

};

int main() {
D* d = new D(5);
B* b = d;
C* c = d;
std::cout << b->fx << b->fy

<< c->fx << c->fy;
return 0;

}

What is the output of running the program?

(a) 5555

(b) 2177

(c) 4147

(d) 7177

(e) 7777

(f) None of the above



Task 2
Consider the following C++ code:
class Person
{

Person *spouse;
string name;

public:
Person (string n) { name = n; spouse = nullptr; }

bool marry (Person *p)
{

if (p == this) return false;
spouse = p;
if (p) p->spouse = this;
return true;

}

Person *getSpouse () { return spouse; }
string getName () { return name; }

};

The method marry is supposed to ensure that a person cannot marry him-/herself. Without
changing the code above, create a new object that belongs to a subclass of Person and marry
it with itself.

Hint: use multiple inheritance. Explain exactly what happens.

Task 3 (from a previous exam)
Consider the following Java classes:
class A {

public void foo (Object o) { System.out.println("A"); }
}

class B {
public void foo (String o) { System.out.println("B"); }

}

class C extends A {
public void foo (String s) { System.out.println("C"); }

}

class D extends B {
public void foo (Object o) { System.out.println("D"); }

}

class Main {
public static void main(String[] args) {

A a = new C(); a.foo("Java");
C c = new C(); c.foo("Java");
B b = new D(); b.foo("Java");
D d = new D(); d.foo("Java");

}
}

What is the output of the execution of the method main in class Main?

(a) The code will print A C B D



(b) The code will print A C B B

(c) The code will print C C B B

(d) The code will print C C B D

(e) None of the above

Task 4
Consider the following C# classes:
public class Matrix {

public virtual Matrix add(Matrix other) {
Console.WriteLine("Matrix/Matrix");
return null;

}
}

public class SparseMatrix : Matrix {
public virtual SparseMatrix add(SparseMatrix other) {

Console.WriteLine("SparseMatrix/SparseMatrix");
return null;

}
}

public class MainClass {
public static void Main(string[] args) {

Matrix m = new Matrix();
Matrix s = new SparseMatrix();
add(m,m);
add(m,s);
add(s,m);
add(s,s);

}

public static Matrix add(Matrix m1, Matrix m2) {
return m1.add(m2);

}
}

A) What is the output of this program? Please explain.

B) Without breaking modularity, change only the body of MainClass.add to make it possible
to always call the most specific add method from the matrix hierarchy.

Task 5
Java 8 allows interface methods to have a default implementation directly in the interface.

A) What are some advantages of this feature?

B) What could be some problems with this feature? How can they be resolved?

C) What problems of C++ multiple inheritance are avoided by this new design for Java
interfaces?



D) Now suppose that, in addition to method implementations, Java also allowed interfaces
to define fields. Interfaces would not have constructors and interface fields would always be
initialized with a default value.

• What are some advantages of this feature?

• Given the restrictions above, are there any problems left with such an implementation of
multiple inheritance? If so what are they? Propose a solution for each problem you have
identified.

Task 6
Consider the following declarations in Scala:
class C
trait T extends C
trait U extends C
class D extends C

Find all the types that can be created with or without traits, as well as the subtype relations
between them.

Task 7
Consider the following Scala code:
class Cell
{

private var x:int = 0
def get() = { x }
def set(i:int) = { x=i }

}

trait Doubling extends Cell
{

override def set(i:int) = { super.set(2*i) }
}

trait Incrementing extends Cell
{

override def set(i:int) = { super.set(i+1) }
}

A) What is the difference between the following objects?

val a = new Cell
val b = new Cell with Incrementing
val c = new Cell with Incrementing with Doubling
val d = new Cell with Doubling with Incrementing

B) We use the following code to implement a cell that stores the argument of the set method
multiplied by four:
val e = new Cell with Doubling with Doubling

Why doesn’t it work? What does it do? How can we make it work?

C) Find a modularity problem in the above, or a similar, situation. Hint: a client that gets
given a class C does not necessarily know if a trait T has been mixed in that class.



D) We propose the following solution to support traits together with behavioral subtyping:
Assume C is a class with specification S. Each time we create a new trait T that extends C, we
must ensure that C with T also satisfies S.
Show a counterexample that demonstrates that this approach does not work.

Task 8
Consider the following Scala code:
class A { def bar() = "" }
trait B extends A { override def bar() = super.bar()+"B" }
trait C extends B { override def bar() = super.bar()+"C" }
trait D extends B { override def bar() = super.bar()+"D" }

object Main {
def main()
{

foo(new A with D with C with B())
}
def foo(x:A with D)
{

println(x.bar())
}

}

What would be the output of the call Main.main()?

(a) BDB

(b) BBDBC

(c) BBCBD

(d) DB

(e) BDC

(f) BCD

(g) None of the above

Task 9 (from a previous exam)
Consider a language with Java-like syntax and with multiple inheritance. Overriding follows
a linearization order which, in this task, proceeds left to right within the subclass declaration,
expanding superclasses depth first and skipping repeated classes. For example, consider the
following classes:
class A {

public void foo() { System.out.println("A"); }
}

class B extends A { }

class C extends A {
public void foo() { System.out.println("C"); }

}

class X extends B, C { }

class Y extends C, B { }



The linearization order for X is X, B, A, C. Thus calling foo() on an instance of X prints “A”.
The linearization order for Y is Y, C, A, B. Thus calling foo() on an instance of Y prints “C”.

A) Consider the following class Z:

class Z extends Y, X { }

What is the linearization order for Z?

B) We now add a method qux to X:

class X extends B, C {
public void qux() { bar(); }

}

• Add a method bar to either A, B, or C such that calling qux() on an instance of X prints
“A” and calling bar() on an instance of C prints “C”. Do not use casts or type checks.

Hint. Any dynamically bound method call is resolved searching from the dynamic type
of the receiver in the linearization order.

• What happens in your solution when calling bar() on an instance of B?

C) With respect to your solution from part B, we now modify the method foo in C as follows:

public void foo() { bar(); }

• What happens when calling qux() on an instance of X?

• What happens when calling bar() on an instance of C?


