
Concepts of Object-Oriented Programming
AS 2016

Exercise 8
Parametric polymorphism

November 18, 2016

Task 1
Consider the following Scala classes:
class A
class B extends A
class P1[+T]
class P2[T <: A]

What are the possible instantiations of P1 and P2? What is the difference between P1[A]

and P2[A] from the perspective of a client? Provide an example to show which class is more
restrictive.

solution

Class P1 can be instantiated with any type, while P2 has to be instantiated with subtypes
of A.
val x : P1[AnyRef] //correct
val y : P2[AnyRef] //wrong: AnyRef is not a subtype of A

Furthermore, class P1 is covariant in its argument:
val x : P1[A]=new P1[B] //correct
val y : P2[A]=new P2[B] //wrong: found P2[B], required P2[A]

Task 2
Implement a list in Java or C# with two methods:
public void add(int i, Object el)
public Object get(int i)

Implement the list and discuss the advantages and the limitations of the three different ap-
proaches below.

A) Implement the list using only one class without generics.

solution
public class List {

Object[] elements;
public void add(int i, Object el) {elements[i]=el;}
public Object get(int i) {return elements[i];}

}



Advantages: short implementation.

Limits: the type of the method result of get is Object. When using such a class, usually
we have to dynamically cast the values returned by this method.

B) Implement the list using one abstract class/interface and then (some) subclasses that
implement it for different types.

solution
public interface List {

public void add(int i, Object el);
public Object get(int i);

}

public class IntList implements List {
Integer[] elements;

public void add(int i, Object el) {elements[i]=(Integer) el;}

public Integer get(int i) {return elements[i];}
}

Advantages: method get returns an Integer, thus we do not need dynamic casting of the
values returned by this method.

Limits: in Java, we have the same limits like before, and in addition code duplication and
additional type castings and checks in method add. Moreover, we do not have behavioural
subtyping, since method add in IntList may not respect the expected contracts in List.
In particular, if we invoke it passing an object that is not an instance of Integer, the
runtime environment would raise an exception and the element would not be added to our
list.

C) Implement the list using generic types.

solution
public class List<T> {

T[] elements;
public void add(int i, T el) {elements[i]=el;}
public T get(int i) {return elements[i];}

}

Advantages: short implementation, statically type safe.

Limits: nothing! :) we have only advantages...

Task 3 Wildcards (from a previous exam)
Consider the following Java code:
class Car<T> {

private List<? extends T> passengers;

public Car(List<? extends T> passengers) {
this.passengers = passengers;

}
}



Remember that List<E> in Java contains a method addAll with the following signature:
boolean addAll(Collection<? extends E> c)

Method addAll adds all elements of the given collection c to the receiver list and returns true
if the receiver list was modified.

A) We want to add a method to Car<T> that takes a list of passengers p to board the car.
After the method is executed, the field passengers should refer to a list containing both the
previous elements and the elements of p.
public void board(List<? extends T> p)

The following implementation is rejected by the compiler:
public void board(List<? extends T> p) {

this.passengers.addAll(p);
}

Assume the body of board is exempted from the type checker. Provide code that calls board
and inserts a string into a list of integers. Your code has to type-check.

solution
List<Integer> list1 = new LinkedList<>();
Car<Object> car = new Car<>(list1);
List<String> list2 = new LinkedList<>();
list2.add("");
car.board(list2);

B) Give a new implementation of board (without modifying its signature) that implements
the expected functionality and type-checks.

solution
public void board(List<? extends T> passengers) {

List<T> b = new LinkedList<>();
b.addAll(this.passengers);
b.addAll(passengers);
this.passengers = b;

}

C) We now want to add a method to class Car<T> that transfers all passengers from this car
to a given car. Fill in the blank to achieve the least restrictive but correct implementation.
public void transferPassengers(Car<__________> other) {

other.board(this.passengers);
}

solution
? super T

Task 4
Consider the following Java method:



String concatenate(List<?> list) {
String result="";
String separator="";
if(list instanceof List<String>) {

result="String:";
separator=" ";

}
else if(list instanceof List<Integer>) {

result="Integers:";
separator="+";

}
for(Object el : list)

result=result+separator+el.toString();
return result;

}

A) This program is rejected by the Java compiler. Why?

solution

The Oracle and the Open JDK compilers both produce these short errors:

illegal generic type for instanceof
illegal generic type for instanceof

The Eclipse compiler tries to be more helpful:

Cannot perform instanceof check against parameterized type
List<String>. Use the form List<?> instead since further
generic type information will be erased at runtime

Cannot perform instanceof check against parameterized type
List<Integer>. Use the form List<?> instead since further
generic type information will be erased at runtime

This happens because of type erasure in Java.

B) Using the advice given by the Eclipse Java compiler (replace List<...> with List<?>),
rewrite and compile the program. What are the results of executing the method passing each
of the following:

• A list of strings containing only one element "word"?

• A list of Integers containing only one element Integer(1)?

• A list of Objects containing only one element (initialized by new Object())?

solution

First of all, we follow the output of the compiler, and so we rewrite the method to:
String concatenate(List<?> list) {

String result="";
String separator="";
if(list instanceof List<?>) {

result="String:";
separator=" ";



}
else if(list instanceof List<?>) {

result="Integers:";
separator="+";

}
for(Object el : list)

result=result+separator+el.toString();
return result;

}

The Java compiler will compile this program without any warning. The output of the
method is obviously:

String: word
String: 1
String: java.lang.Object@3e25a5

C) Is this behaviour consistent with what you would expect from the initial program? If not,
how can you fix it?

solution

No, in the original program we expected:

String: word
Integers:+1
java.lang.Object@3e25a5

We can fix it in the following way:
String concatenate(List<?> list) {

String result="";
String separator="";
if(list.size() >= 1 )

if(list.get(0) instanceof String) {
result="Strings:";
separator=" ";

}
else if(list.get(0) instanceof Integer) {

result="Integers:";
separator="+";

}
for(Object el : list)

result=result+separator+el.toString();
return result;

}

But this requires to have at least one element in the list. Moreover, there is no guarantee
that if the first element is, for example, a string, that this is not a list of Objects.

D) What would happen if you tried to implement the different cases using method overloading
instead of just one method. Why is this the case?



solution

If we introduce separate methods which differ only by the generic types of their arguments,
we get compile-time errors such as:

Method concatenate(List<? extends Object>) has the same
erasure concatenate(List<E>) as another method in type C

This restriction is imposed to ensure that when choosing which of the overloaded method
definitions to call, we always have a “best fit”. Java class files do however include generic ver-
sions of the method signatures in the class (to enable separate compilation and type-checking
of generic code). For this reason, it might seem surprising that we cannot disambiguate
between these different overloaded methods, since at compile-time the type information is
all available. However, Java also supports raw types - versions of generic classes in which
no type parameter is provided (e.g., List for a List<X> class). These are supported for
backwards compatibility with pre-generics Java code. For this reason, we need to consider
the possibility that a client calling our method provides an argument of raw type List. In
this case, we would not be able to choose between our different method overloads.

E) What happens if you compile and execute the initial program in C# ? Why?

Assume that we replace the wildcard by a method type parameter T to make it work in C#.

solution

The program is compiled and we obtain the expected results (“String: word”, “Integers:+1”,
“...”), since in C# there is no type erasure and the information about generics is preserved
at runtime.

Task 5
Consider the following Java method:
public void add(Object value, List<?> list) {

list.add(value);
}

The Java compiler rejects this program, with the following message:

The method add(capture#1-of ?) in the type List<capture#1-of ?> is not
applicable for the arguments (Object)

A) Explain why we obtain such an error.

solution

We do not have any relation between the wildcard of List, and the types of the values that
we are going to store.

B) Fix the program by using a generic type for the parameter of method add and constraining
the wildcard appropriately.



solution
public <V> void add(V value, List<? super V> list) {

list.add(value);
}

We have to use a lower bound constraint because we want the argument of list.add to
be a supertype of V, otherwise we cannot pass it as a parameter.

C) We can use the following alternative signature for add:

public <V> void add(V value, List<V> list)

Is this solution more restricted than the one obtained using the wildcard?

solution

This method has exactly the same constraints of the ones obtained using a wildcard. In
fact, the type of value can be a subtype of the type parameter of list, since it is a method
argument. In practice, this means that the generic type of list is supertype of the type of
value. For instance, consider the following program.
List<Object> list =...
add("x", list);

This program is accepted because strings are subtype of objects, thus V=Object is inferred
by the type checker.

D) Consider the following methods:

public <V> void addAllX(List<V> v, List<? super V> l) {
for(V el : v) l.add(el);

}
public <V> void addAllY(List<V> v, List<V> l) {

for(V el : v) l.add(el);
}

Method addAllX is less restrictive than addAllY. Provide an example to prove this claim.

solution
List<String> list = new ArrayList();
List<Object> list2 = new ArrayList();
addAllX(list, list2);
addAllY(list, list2);

The call to addAllX is accepted by the compiler, while the one to addAllY is rejected,
since it requires that the parametric type of List is exactly String. This happens because
of invariance on type parameters in Java, so V has to be String, but the generic type of
list2 is Object.

Task 6
A C++ template class can inherit from its template argument:
template <typename T>
class SomeClass : public T { ... }



A) Using this technique and given the following class definition

class Cell {
public:

virtual void setVal(int x) { x_ = x; }
virtual int value() { return x_; }

private:
int x_{};

}

write two template classes that can be used as “mixins” for class Cell

• Doubling - doubles the value stored in the cell.

• Counting - counts the number of times the value of the cell was read.

Do not use multiple inheritance. It should be possible to use the classes like this:
auto c = new Doubling<Counting<Cell>>(); // instantiation
c->setVal(5);
c->value(); // returns 10
c->numRead(); // returns 1

solution
template <typename T>
class Doubling : public T {
public:

virtual void setVal(int x) override {
T::setVal(x * 2);

}
}

template <typename T>
class Counting : public T {
public:

virtual int value() override {
++numRead_;
return T::value();

}
int numRead() { return numRead_; }

private:
int numRead_{};

}

B) Describe how the instantiation above will look like.

solution

When the mix-ins are instantiated the following two classes will be generated:
class CountingCell : public Cell {
public:

virtual int value() override {
++numRead_;
return Cell::value();

}
int numRead() { return numRead_; }

private:
int numRead_{};

}



class DoublingCountingCell
: public CountingCell {

public:
virtual void setVal(int x) override {

CountingCell::setVal(x * 2);
}

}

C) How does this concept of mixins in C++ differ from Scala traits?

solution

While this concept is similar to Scala traits there are some notable differences. In Scala it
is possible to mix any number of traits in a class and use this in any location of the code
that requires the same class and a subset of the traits:
var x = new X with A with B with C with D
var x1: (X) = x // OK
var x2: (X with A) = x // OK
var x3: (X with B) = x // OK
var x4: (X with A with D with C) = x // OK

Using the proposed solution in C++ however is more restrictive, as there is no way to refer
to the class X with arbitrary mix-ins:
auto x = new D<C<B<A<X>>>>();
X* x1 = x; // OK
A<X>* x2 = x; // OK
B<X>* x3 = x; // Does not compile
C<D<A<X>>>* x4 = x; // Does not compile

This is particularly important for traits that introduce new methods like Counting.

numRead() since any client code that uses this new behavior would have to know exactly
how the trait was mixed-in.

Another problem of the C++ solution is object construction. If the base class does not
have a default constructor then the mix-ins should know to call the correct constructor and
provide appropriate parameters. An alternative here is for the mixin to just inherit the base
class constructors: using T::T; which will allow clients of the mixin to use all constructor
available in the base class. This works fine if the state of the mixin can be initialized with
default values.

A further difference to Scala is that in the C++ solution it is possible to include the same
“trait” more than once:
auto x = new Doubling<Doubling<X>>();
x->setVal(5);
x->value(); // returns 20

An advantage of the C++ solution is that we do not need to declare the base class that
the mix-ins extend. Thus it is possible to use them with different base classes as long they
have matching virtual methods.


