
Concepts of Object-Oriented Programming
AS 2016

Exercise 11
Ownernship Types, Non-null Types, Initialization Types

December 9, 2016

Task 1
Annotate the following program with appropriate ownership type modifiers (according to the
topological ownership system) in order to maximize the buffer, the producer, and the consumer
encapsulation:

class Producer {
int[] buf;
int n;
Consumer con;
Producer()
{
buf = new int[10];

}
void produce(int x)
{
buf[n] = x;
n = (n+1)
% buf.length;

}
}

class Consumer {
int[] buf;
int n;
Producer pro;
Consumer(Producer p)
{
buf = p.buf;
pro = p;
p.con = this;

}
int consume()
{
n = (n+1)
% buf.length;
return buf[n];

}
}

class Context {
Producer p;
Consumer c;

Context(){
p = new Producer();
c = new Consumer(p);
}

public void run() {
for(int i=-5; i<=5;

++i){
p.produce(i);
if(i%2 == 0)
c.consume();

}
}

}

solution

class Producer {
rep int[] buf;
int n;
peer Consumer con;
Producer()
{
buf = new rep int

[10];
}
void produce(int x)
{
buf[n] = x;
n = (n+1)
% buf.length;

}
}

class Consumer {
any int[] buf;
int n;
peer Producer pro;
Consumer(peer

Producer p)
{
buf = p.buf;
pro = p;
p.con = this;
}
int consume()
{
n = (n+1)
% buf.length;

return buf[n];
}

}

class Context {
rep Producer p;
rep Consumer c;

Context(){
p = new rep Producer

();
c = new rep Consumer

(p);
}

public void run() {
for(int i=-5; i<=5;

++i){
p.produce(i);
if(i%2 == 0)
c.consume();

}
}
}

You might be tempted to annotate con in Producer and pro in Consumer as any — in
general, this would even allow one modification less (in the topological system): of an any

receiver, only an any field can be modified, whereas of a peer receiver, both a peer and
an any field can be modified. However, we intuitively understand “maximizing encapsula-
tion“ in the topological system as “increasing the depth of nested ownership contexts“ and
“reducing the number of (non-rep) edges/pointers between different contexts“. Hence, peer
is the better choice here because it potentially reduces the number of such inter-context
edges.

Task 2
[From a previous exam]

The topological ownership system guarantees the following property: If a reference a.f to an
object b is of ownership type rep C, then object a is the owner of b. Moreover, each object
has at most one owner.

The topological ownership system has a weakness: it does not support ownership transfer, which
is desirable in many situations. Let us try to remedy this situation. Consider the following
incomplete definition of a class T:
class T {
public rep U f, g;
...

}

and the following program P , which, in addition to the field assignments, implicitly also changes
the owner of object e2.g from e2 to e1:
// implicitly: e2.g.owner = e1;
e1.f = e2.g;
e2.g = null;

where e1, e2 are two non-null objects of type T.

A) The code P is not allowed in the topological ownership system. Which rule disallows it?

solution

Assuming e1 is not syntactically equal to this, then e1.f must be lost and can therefore
not be assigned to.

B) Write a code snippet C, such that executing C;P is guaranteed to break the property
described in the first paragraph of this task, after P has finished executing. Do not rely on any
specific implementation of class U (but you may assume the existence of a constructor without
parameters). You may also add constructors to class T.

Note that

• You can assume that P is accepted by the compiler

• All the code that you write must respect the topological ownership system. P is the only
code that breaks the rules.

• You may not use reflection in your solution.

• You may not use P anywhere in the code that you write.

solution

Add the following constructor to T:
T() {

f = new rep U();
g = f;

}

Now use the following code C:
e1 = new peer T();
e2 = new peer T();

The invariant is broken after C;P , because e1.f has owner e1, but the rep field f of a
different object (e2) points to it.

Task 3
The Ownership type system allows the following ownership modifiers: peer, rep, self, lost
, and any - to structure the object store and to restrict how references can be passed and
used. We want to extend the Ownership type system by adding one more modifier down. This
modifier is introduced to denote references to objects in the same context as this or in the
context (transitively) owned by an object in the same context as this.

A) Redraw the subtype relation diagram below to include the newly introduced type of the
universe type system.

any T

lost T

rep Tpeer Tself T

solution

any T

lost T

down T

rep Tpeer Tself T

B) Define the most specific (in terms of the context information it conveys) viewpoint adapta-
tion function I by filling the table below (for a combination Te I Tf the modifier Te specifies
the row, and the modifier Tf the column of the table used).

Recall that the viewpoint adaptation function I is used, in particular, to determine the owner
of an object referenced by a field access. More exactly, if the ownership modifier of e is Te and
the ownership modifier of a field f is Tf , then the ownership modifier assigned to the field
access e.f is determined as Te I Tf . Note that this applies to field updates as well as field
reads.
I peer rep any down

self

peer

rep

lost

any

down

solution

Here is the table that defines the viewpoint adaptation as describing the most precise
information possible about where such a reference may belong in the heap topology:
I peer rep any down

self peer rep any down

peer peer down any down

rep rep down any down

lost lost lost any lost

any lost lost any lost

down down down any down

Note that in the table above we over-approximate entries, in cases where we cannot de-
scribe precisely what we want. For example, repIrep can be down, because down over-
approximates the objects which can actually be stored in such a field. Note that this is a
true approximation - repIrep is not allowed to store all objects which can be referred to
via down, only some of them. This means that in C we need to add extra restrictions on
field assignment in the cases where we use down to over-approximate in this way; otherwise
the examples in part D would type-check, which would not be safe.

If we relax the requirement to have a most specific viewpoint adaptation function, we can
take an alternative approach which does not allow this kind of over-approximation; the
modifier chosen could reflect precisely the requirements for a reference to be allowed to
be stored in such a location, and thus avoid the need for extra requirements on the field
assignment rule. Here is the table in this approach:

I peer rep any down

self peer rep any down

peer peer lost any down

rep rep lost any lost

lost lost lost any lost

any lost lost any lost

down lost lost any lost

In this case, perhaps surprisingly, cases such as repIrep and downIdown result in lost.
This is because, choosing the answer down is not restrictive enough. In general, we have
no way to express what is safe to assign to the down field of a rep receiver (down from our
viewpoint includes objects above the rep, which should not be included), and similarly for
a down receiver. As you can see, this second approach is not very flexible; only rep and
peer objects can ever be typed as down (via subtyping).

C) Assuming that you only need to enforce the topological constraints of the type system, how
should the field update rule from lecture 6 slide 64 be adapted to the system extended with the
down modifier? Do you need to make any changes?

solution

With the first (most precise) variant of the viewpoint adaptation function from B we need
to require that the result of the viewpoint adaptation is not down, except in the special
case of the receiver being self or peer, and the field type being down (in these cases,
the down result expresses precisely what is safe to assign to the location; it is not an over-
approximation).

With the second (avoiding over-approximation) variant of the viewpoint adaptation function
from B, we do not need to make any changes to the field assignment rule, to guarantee the
topological constraints of the type system.

D) In writing your answers for B and C consider the following example:

public class Node{
rep Node c;
down Node d;

public void foo() {
this.d.d = this; // should this line typecheck?
this.c.d = this.d; // should this line typecheck?

}
}

Do your solutions disallow all invalid assignments?

solution

The example code shows two cases where the field updates should not be allowed, because
we would allow a down field to point upwards (to this) in the ownership topology, and in
the second, because we would allow a down field to point to some object which is considered
down from the viewpoint of this, but not necessarily from the viewpoint of this.c.

Both would be disallowed by the solutions above.

Task 4
Assume the topological ownership framework taught in the course. Suppose that we want to
create a class SortedLinkedList, with the internal invariant that the values stored in the
nodes are sorted in ascending order.
package SortedLinkedList;
public class SortedLinkedList {

private rep Node head;

/// invariant head != null ==> head.sorted()
...

}
private class Node {

protected peer Node next;
protected int value;

/// pure
boolean sorted() {
return next!=null ==> value < next.value && next.sorted()

}
}

Suppose that all methods in SortedLinkedList are guaranteed to preserve the invariant of
the class.

Furthermore, suppose that we want to create iterators for such lists (defined in the same
package):
public class LinkedListIterator { private any Node current_item; ... }

A) Why is the field current_item annotated as any? What drawbacks would the other
possible annotations have?

solution

If current_item were annotated as rep, then the owner of the node it refers to is the
iterator itself. In this case, the iterator cannot iterate over a SortedLinkedList object l,
because l also owns its nodes. The ownership topology allows at most one owner per object.

If current_item were annotated as peer, then, assuming that current_item has a list
owner l, the owner of the iterator must also be l. This may be OK in topological ownership.
However, if we add “owners as modifiers”, the iterator’s methods that traverse l cannot be
called directly from an object outside l, which defeats the purpose of iterators.

B) We want the following features:

(i) the invariant of a SortedLinkedList object is guaranteed to hold in any program, except
when one of its methods executes

(ii) LinkedListIterator is a modifying iterator, i.e., it may change the value of the object
it is pointing to

We can’t have both features. Depending on whether or not we impose the “owners as modifiers”
discipline, we can have either (i) or (ii). Argue why this is the case.

solution

If we don’t have “owners as modifiers”, an object may get hold of an any reference to a node
of the list, modify its value field, and break the invariant: (i) is not achieved.

If we do have “owners as modifiers”, then the iterator may not modify the value of the node
it is pointing at, because it holds an any reference to it: (ii) is not achieved.

C) The fact that (i) and (ii) cannot both hold together is not surprising. A modifying iterator
can break the invariant of the list it is iterating over. However, the “owners as modifiers”
discipline may disallow harmless designs. Write a benign class (perhaps a restricted modifying
iterator), which would not break the invariant of any object of SortedLinkedList, but still
does not compile under “owners-as modifiers”.

solution

We could have an iterator that performs the requested modification iff this does not violate
the invariant:
public class LinkedListIterator {

private any Node f;

... // some non-modifying methods

public void modifyCarefully(int x) {
if(f.value <= x && (f.next == null || x < f.next.value))

f.value = x;
// benign but does not type check under "owners as modifiers"

}
}

Task 5
[From a previous exam]

This question is about extending the non-null type system to handle arrays (ignoring initializa-
tion). Array types can have two type modifiers, declaring independently the nullity expectations
for the array itself and the array elements. For any array type T[] the corresponding variants
are T?[]?, T?[]!, T![]?, T![]! (the first modifier applies to the type of objects stored in the
array, while the second modifier concerns the reference to the array object itself).

Assuming that we want to guarantee a statically sound approach to subtyping (that is, we
want to enforce safety at compile time, without using runtime checks), explain whether or not
the following subtype relations are safe. For each relation you consider unsafe, provide a code
snippet illustrating that allowing such a subtype relationship would break the safety guarantees
of the type system. For these unsafe cases, explain also what runtime checks could be made to
restore safety.

• T?[]! <: T?[]?

• T![]! <: T![]?

• T![]? <: T?[]?

• T![]! <: T?[]!

solution

• T?[]! <: T?[]? - Safe

• T![]! <: T![]? - Safe

• T![]? <: T?[]? - Unsafe
Object![]? x = new Object![1]?;
Object?[]? y = x;
if(y!=null) y[0]=null;
if(x!=null) x[0].toString();

• T![]! <: T?[]! - Unsafe
Object![]! x = new Object![1]!;
Object?[]! y = x;
y[0]=null;
x[0].toString();

In both the last two cases, we need to check at runtime if a value stored in an array
with dynamic non-null type for the elements stored in the array is not the null value.
Alternatively, we can check at runtime if a value read from an array with dynamic non-null
type is not the null value.

Task 6
[From a previous exam]

Consider these two different implementations of a cyclic list that use the construction type
system taught in the course. The type system rejects both of these implementations:

1 class Node {
2 Node! next; // cyclic
3 Node? copy;
4 int value;
5
6 Node(int x)
7 {
8 next = this;
9 value = x;
10 }
11
12 Node(Node! other)
13 {
14 value = other.value;
15 other.copy = this;
16
17 if(other.next == other)
18 next = this;
19 else
20 next = new Node(other, other.next);
21 }
22
23 Node(Node! first, Node! other)
24 {
25 value = other.value;
26 other.copy = this;
27
28 if(other.next == first)
29 next = other.next.copy;
30 else
31 next = new Node(first, other.next);
32 }
33 }

1 class Node {
2 Node! next; // cyclic
3 Node? original;
4 int value;
5
6 Node(int x)
7 {
8 next = this;
9 value = x;

10 }
11
12 Node(Node! other)
13 {
14 value = other.value;
15 original = other;
16
17 if(other.next == other)
18 next = this;
19 else
20 new Node(this, this, other.next);
21 }
22
23 Node(free Node! first,
24 free Node! prev, Node! other)
25 {
26 value = other.value;
27 original = other;
28 prev.next = this;
29
30 if(other.next == first.original)
31 next = first;
32 else
33 new Node(first, this, other.next);
34 }
35 }

The constructors are used to clone an existing list. In both cases we establish a link between
a node and its clone.

A) Are there lines of code where we are trying to incorrectly assign to a field of a committed
object? If so, in which implementation (left or right) and on which lines?

solution

left : 15, 26

B) If we allowed these implementations to run, is it possible that a committed object would
become not locally initialized, while a constructor is executing? If so, in which implementation
(left or right) and on which line is there an assignment where this happens?

solution

It is not possible for a committed object to become not locally initialized.

C) If we allowed these implementations to run, is it possible that a committed object would
become not transitively initialized, while a constructor is executing? If so, in which implemen-
tation (left or right) and on which line is there an assignment where this happens?

solution

left : 15, 26

D) Without changing the constructor signatures in any way, which two lines of the implemen-
tation on the right can you change and how, so that it typechecks in the construction type
system and achieves the expected result? Write the line numbers and the new content of the
lines.

solution
20: next = new Node(this, this, other.next);
33: next = new Node(first, this, other.next);

