
Concepts of  
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2016

Peter Müller – Concepts of Object-Oriented Programming

2

Object Structures

▪ Objects are the building blocks of object-oriented
programming

▪ However, interesting abstractions are almost always
provided by sets of cooperating objects

▪ Definition: 
An object structure is a set of objects that are
connected via references

6. Object Structures and Aliasing

Peter Müller – Concepts of Object-Oriented Programming

3

Example 1: Array-Based Lists
class ArrayList {
 private int[] array;
 private int next;

 public void add(int i) {
 if (next==array.length) resize();
 array[next] = i;
 next++;
 }

 public void setElems(int[] ia)
 { … }

 …
}

array:
next:

list

…

length:
0:

array

…

1:
2:

6. Object Structures and Aliasing

Peter Müller – Concepts of Object-Oriented Programming

4

Example 2: Doubly-Linked Lists

header:
3size:

LinkedList

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

ObjectObject Object

next:
2nextIndex:

ListItr

6. Object Structures and Aliasing

Peter Müller – Concepts of Object-Oriented Programming

5

6. Object Structures and Aliasing

6.1 Aliasing
6.2 Problems of Aliasing
6.3 Readonly Types
6.4 Ownership Types

6. Object Structures and Aliasing

Peter Müller – Concepts of Object-Oriented Programming

6

Alias

▪ Definition: 
A name that has been assumed temporarily

[WordNet, Princeton University]

6.1 Object Structures and Aliasing – Aliasing

Peter Müller – Concepts of Object-Oriented Programming

7

Aliasing in Procedural Programming

▪ var-parameters are
passed by reference
(call by name)

▪ Modification of a var-
parameter is observable
by caller

▪ Aliasing: Several
variables (here: p, q)
refer to same memory
location

▪ Aliasing can lead to
unexpected side-effects

program aliasTest
procedure assign(var p: int, var q: int);
begin

 p := 25;

end;
 begin
 var x: int := 1;
 assign(x, x);

 end
end.

{ p = 1 ∧ q = 1 }
p := 25;
{ p = 25 ∧ q = 25 }

{ x = 25 }

6.1 Object Structures and Aliasing – Aliasing

Peter Müller – Concepts of Object-Oriented Programming

8

Aliasing in Object-Oriented Programming

▪ Definition: 
An object o is aliased if two or more variables hold
references to o.

▪ Variables can be
- Fields of objects (instance variables)
- Static fields (global variables)
- Local variables of method executions, including this
- Formal parameters of method executions
- Results of method invocations or other expressions

6.1 Object Structures and Aliasing – Aliasing

Peter Müller – Concepts of Object-Oriented Programming

9

Static Aliasing

▪ Definition: 
An alias is static if all
involved variables are
fields of objects or static
fields.

▪ Static aliasing occurs in
the heap memory

array:
next:

list1

array:
next:

list2

array

list1.array[0] = 1;
list2.array[0] = -1;
System.out.println(list1.array[0]);

6.1 Object Structures and Aliasing – Aliasing

Peter Müller – Concepts of Object-Oriented Programming

10

Dynamic Aliasing

▪ Definition: 
An alias is dynamic if
it is not static.

▪ Dynamic aliasing
involves stack-
allocated variables

array:
next:

list1

array

int[] ia = list1.array;
list1.array[0] = 1;
ia[0] = -1;
System.out.println(list1.array[0]);

6.1 Object Structures and Aliasing – Aliasing

Peter Müller – Concepts of Object-Oriented Programming

11

Intended Aliasing: Efficiency

▪ In OO-programming,
data structures are
usually not copied when
passed or modified

▪ Aliasing and destructive
updates make OO-
programming efficient

class SList {
 SList next;
 Object elem;

 SList rest() { return next; }

 void set(Object e) { elem = e; }
}

void foo(SList slist) {
 SList rest = slist.rest();
 rest.set(“Hello”); }

SList SList SListSList

restslist

6.1 Object Structures and Aliasing – Aliasing

Peter Müller – Concepts of Object-Oriented Programming

12

Intended Aliasing: Sharing

▪ Aliasing is a direct
consequence of object
identity

▪ Objects have state that
can be modified

▪ Objects have to be
shared to make
modifications of state
effective

3

LinkedList

Entry

Entry Entry Entry

2

ListItr

6.1 Object Structures and Aliasing – Aliasing

Peter Müller – Concepts of Object-Oriented Programming

13

Unintended Aliasing: Capturing

▪ Capturing occurs when
objects are passed to a
data structure and then
stored by the data
structure

▪ Capturing often occurs in
constructors (e.g.,
streams in Java)

▪ Problem: Alias can be
used to by-pass interface
of data structure

array:
next:

list1

array

class ArrayList {
 private int[] array;
 private int next;

 public void setElems(int[] ia)
 { array = ia; next = ia.length; }

 …
}

6.1 Object Structures and Aliasing – Aliasing

Peter Müller – Concepts of Object-Oriented Programming

14

Unintended Aliasing: Leaking

▪ Leaking occurs when
data structure pass a
reference to an object,
which is supposed to be
internal to the outside

▪ Leaking often happens
by mistake

▪ Problem: Alias can be
used to by-pass
interface of data
structure

array:
next:

list1

array

class ArrayList {
 private int[] array;
 private int next;

 public int[] getElems()
 { return array; }

 …
}

6.1 Object Structures and Aliasing – Aliasing

Peter Müller – Concepts of Object-Oriented Programming

15

6. Object Structures and Aliasing

6.1 Aliasing
6.2 Problems of Aliasing
6.3 Readonly Types
6.4 Ownership Types

6. Object Structures and Aliasing

Peter Müller – Concepts of Object-Oriented Programming

16

Observation

▪ Many well-established techniques of object-oriented
programming work for individual objects, but not for
object structures in the presence of aliasing

▪ “The big lie of object-oriented programming is that
objects provide encapsulation” [Hogg, 1991]

▪ Examples
- Information hiding and exchanging implementations
- Encapsulation and consistency

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

17

Exchanging Implementations

▪ Interface including contract remains unchanged

class ArrayList {
 private int[] array;
 private int next;

 // requires ia != null
 // ensures ∀i. 0<=i<ia.length:
 // isElem(old(ia[i]))
 public void setElems(int[] ia)
 { array = ia; next = ia.length; }  

 …
}

class ArrayList {
 private Entry header;

 // requires ia != null
 // ensures ∀i. 0<=i<ia.length:
 // isElem(old(ia[i]))
 public void setElems(int[] ia)
 { … /* create Entry for each

 element */ }
 …
}

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

18

Exchanging Implementations (cont’d)

▪ Aliases can be used to
by-pass interface

▪ Observable behavior
is changed!

int foo(ArrayList list) {
 int[] ia = new int[3];
 list.setElems(ia);
 ia[0] = -1;
 return list.getFirst();
}

list
3

array

0
0
0

ia

list

Entry

Entry

0

Entry

0

Entry

0

3

array

0
0
0

ia

-1

-1

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

19

Consistency of Object Structures

▪ Consistency of object
structures depends on
fields of several objects

▪ Invariants are usually
specified as part of the
contract of those objects
that represent the
interface of the object
structure

class ArrayList {
 private int[] array;
 private int next;

 // invariant array != null &&
 // 0<=next<=array.length &&
 // ∀i.0<=i<next: array[i] >= 0

 public void add(int i) { … }

 public void setElems(int[] ia)
 { … }

 …
}

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

20

Consistency of Object Structures (cont’d)

▪ Aliases can be used to
violate invariant

▪ Making all fields private is
not sufficient to
encapsulate internal state

int foo(ArrayList list) { // invariant of list holds
 int[] ia = new int[3];
 list.setElems(ia); // invariant of list holds
 ia[0] = -1; // invariant of list violated
}

list

3

array

0
0
0

ia

-1

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

21

System

Security Breach in Java 1.1.1

Class

IdentityIdentity[]

Identity

Identity
Identity[]

class Malicious {

 void bad() {
 Identity[] s;
 Identity trusted = java.Security…;
 s = Malicious.class.getSigners();
 s[0] = trusted;
 /* abuse privilege */
 }

}
Identity[] getSigners()
 { return signers; }

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

22

Problem Analysis

▪ Difficult to prevent
- Information hiding:  

not applicable to arrays
- Restriction of Identity

objects: not effective
- Secure information flow:

read access permitted
- Run-time checks:  

too expensive
System

Class

IdentityIdentity[]

Identity

Identity
Identity[]

▪ Breach caused by unwanted alias
- Leaking of reference

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

23

Other Problems with Aliasing

▪ Synchronization in concurrent
programs
- Monitor of each individual object

has to be locked to ensure
mutual exclusion

▪ Distributed programming
- For instance, parameter passing

for remote method invocation
▪ Optimizations

- For instance, object inlining is not
possible for aliased objects

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

24

Alias Control in Java: LinkedList

▪ All fields are private
▪ Entry is a private inner class of LinkedList

- References are not passed out
- Subclasses cannot manipulate or leak Entry-objects

▪ ListItr is a private inner class of LinkedList
- Interface ListIterator provides controlled access to  

ListItr-objects
- ListItr-objects are passed out, but in a controlled fashion
- Subclasses cannot manipulate or leak ListItr-objects

▪ Subclassing is severely restricted

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

25

Alias Control in Java: String

▪ All fields are private

▪ References to internal
character-array are not
passed out

▪ Subclassing is prohibited
(final)

value:
…:

String

char[]

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

26

6. Object Structures and Aliasing

6.1 Aliasing
6.2 Problems of Aliasing
6.3 Readonly Types
6.4 Ownership Types

6. Object Structures and Aliasing

27

Peter Müller – Concepts of Object-Oriented Programming

Object Structures Revisited
class Address … {
 private String street;
 private String city;

 public String getStreet() { … }
 public void setStreet(String s)
 { … }

 public String getCity() { … }
 public void setCity(String s)
 { … }
 …
}

addr:

peter

…
street:

city:

home

…

class Person {
 private Address addr;
 public Address getAddr()
 { return addr.clone(); }
 public void setAddr(Address a)
 { addr = a.clone(); }
 …
}

6.3 Object Structures and Aliasing – Readonly Types

28

Peter Müller – Concepts of Object-Oriented Programming

Drawbacks of Alias Prevention
� Aliases are helpful to

share side-effects
� Cloning objects is not

efficient

� In many cases, it suffices
to restrict access to
shared objects

� Common situation: grant
read access only

addr:

peter

…
street:

city:

home

… addr:

annette

…

prof7:

ETH

…

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

29

Requirements for Readonly Access

▪ Mutable objects
- Some clients can mutate the

object, but others cannot
- Access restrictions apply to

references, not whole objects
▪ Prevent field updates
▪ Prevent calls of mutating

methods
▪ Transitivity

- Access restrictions extend to
references to sub-objects

No:

Natel

…

street:
city:

home

…

phone:

addr:

peter

…

prof7:

ETH

…

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

30

interface ReadonlyAddress {
 public String getStreet();
 public String getCity();
}

Readonly Access via Supertypes

▪ Clients use only the methods in the interface
- Object remains mutable
- No field updates
- No mutating method in the interface

class Address  
 implements ReadonlyAddress … {
… /* as before */ }

class Person {
 private Address addr;

 public ReadonlyAddress getAddr(
)

 { return addr; }

 public void setAddr(Address a)
 { addr = a.clone(); }

 … }

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

31

Limitations of Supertype Solution

▪ Reused classes might
not implement a
readonly interface
- See discussion of

structural subtyping
▪ Interfaces do not

support arrays, fields,
and non-public
methods

6.3 Object Structures and Aliasing – Readonly Types

class Address  
 implements ReadonlyAddress … {

 …
 private PhoneNo phone;
 public PhoneNo getPhone()
 { return phone; } }

interface ReadonlyAddress {
 …
 public PhoneNo getPhone();
}

interface ReadonlyAddress {
 …
 public ReadonlyPhoneNo getPhone();
}

▪ Transitivity has to be encoded explicitly
- Requires sub-objects to implement readonly interface

Peter Müller – Concepts of Object-Oriented Programming

32

Supertype Solution is not Safe

▪ No checks that
methods in readonly
interface are actually
side-effect free

▪ Readwrite aliases can
occur, e.g., through
capturing

▪ Clients can use casts
to get full access

class Person {
 private Address addr;

 public ReadonlyAddress getAddr()
 { return addr; }

 public void setAddr(Address a)
 { addr = a.clone(); }

 …
}

void m(Person p) {
 ReadonlyAddress ra =

p.getAddr();
 Address a = (Address) ra;
 a.setCity(“Hagen”);
}

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

33

Readonly Access in Eiffel

▪ Better support for fields
- Readonly supertype can contain getters
- Field updates only on “this” object

▪ Command-query separation
- Distinction between mutating and inspector methods
- But queries are not checked to be side-effect free

▪ Other problems as before
- Reused classes, transitivity, arrays, aliasing, downcasts

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

34

Readonly Access in C++: const Pointers

▪ C++ supports readonly
pointers
- No field updates
- No mutator calls

class Address {
 string city;

public:
 string getCity(void)
 { return city; }
 void setCity(string s)
 { city = s; }
};

class Person {
 Address* addr;

public:
 const Address* getAddr()
 { return addr; }

 void setAddr(Address a)
 { /* clone */ }

};C++ C++

void m(Person* p) {
 const Address* a = p->getAddr();
 a->setCity(“Hagen”);
 cout << a->getCity();
} C++Compile-time

error
Compile-time

errors

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

35

Readonly Access in C++: const Functions

▪ const functions must not
modify their receiver
object

class Address {
 string city;

public:
 string getCity(void) const
 { return city; }
 void setCity(string s)
 { city = s; }
};

class Person {
 Address* addr;

public:
 const Address* getAddr()
 { return addr; }

 void setAddr(Address a)
 { /* clone */ }

};C++ C++

void m(Person* p) {
 const Address* a = p->getAddr();
 a->setCity(“Hagen”);
 cout << a->getCity();
} C++Compile-time

errorCall of const
function allowed

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

36

It wouldn’t be C++ …

▪ const-ness can be cast
away
- No run-time check

class Address {
 string city;

public:
 string getCity(void) const
 { return city; }
 void setCity(string s) const {
 Address* me = (Address*) this;
 me->city = s;
} };

class Person {
 Address* addr;

public:
 const Address* getAddr()
 { return addr; }

 void setAddr(Address a)
 { /* clone */ }

};

C++ C++

void m(Person* p) {
 const Address* a = p->getAddr();
 a->setCity(“Hagen”);
}

C++

Call of const
function allowed

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

37

It wouldn’t be C++ … (cont’d)

▪ const-ness can be cast
away
- No run-time check

class Address {
 string city;

public:
 string getCity(void) const
 { return city; }
 void setCity(string s)
 { city = s; }
};

class Person {
 Address* addr;

public:
 const Address* getAddr()
 { return addr; }

 void setAddr(Address a)
 { /* clone */ }

};C++ C++

void m(Person* p) {
 const Address* a = p->getAddr();
 Address* ma = (Address*) a;
 ma->setCity(“Hagen”);
} C++

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

38

class Phone {
public:
 int number;
};

Readonly Access in C++: Transitivity

▪ const pointers are not
transitive

▪ const-ness of sub-
objects has to be
indicated explicitly

class Address {
 string city;
 Phone* phone;

public:
 Phone* getPhone(void) const
 { return phone; }
…
};

C++

C++

void m(Person* p) {
 const Address* a = p->getAddr();
 Phone* p = a->getPhone();
 p->number = 2331…;
}

C++

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

39

Transitivity (cont’d)

class Address {
 string city;
 Phone* phone;

public:
 const Phone* getPhone(void) const {
 phone->number = 2331 …;
 return phone;
 }
 …
};

C++

const functions may
modify objects other

than the receiver

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

40

Readonly Access in C++: Discussion

Pros
▪ const pointers provide

readonly pointers to
mutable objects
- Prevent field updates
- Prevent calls of non-

const functions
▪ Work for library classes
▪ Support for arrays,

fields, and non-public
methods

Cons
▪ const-ness is not

transitive

▪ const pointers are
unsafe
- Explicit casts

▪ Readwrite aliases can
occur

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

41

Pure Methods

▪ Tag side-effect free
methods as pure

▪ Pure methods
- Must not contain field

update
- Must not invoke non-pure

methods
- Must not create objects
- Can be overridden only

by pure methods

class Address {
 private String street;
 private String city;
 public pure String getStreet()
 { … }
 public void setStreet(String s)
 { … }
 public pure String getCity()
 { … }
 public void setCity(String s)
 { … }
 …
}

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

42

Types

▪ Each class or interface T
introduces two types

▪ Readwrite type rw T
- Denoted by T in programs

▪ Readonly type ro T
- Denoted by readonly T in

programs

class Person {
 private Address addr;

 public readonly Address 
 getAddr() { … }

 …
}

class Person {
 private Address addr;

 public ReadonlyAddress  
 getAddr() { return addr; }

 public void setAddr(Address a)
 { addr = a.clone(); }

 … }

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

43

Subtype Relation

▪ Subtyping among readwrite
and readonly types is
defined as in Java
- S extends or implements T ⇒

rw S <: rw T
- S extends or implements T ⇒

ro S <: ro T
▪ Readwrite types are

subtypes of corresponding
readonly types
- rw T <: ro T

class T { … }

class S extends T { … }

S rwS = …
T rwT = …
readonly S roS = …
readonly T roT = …

rwT = rwS;
roT = roS;
roT = rwT;

rwT = roT;

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

44

class Address {
 …
 private int[] phone;
 public int[] getPhone() { … }
}

Type Rules: Transitive Readonly

▪ Accessing a value of a
readonly type or through
a readonly type should
yield a readonly value

Person p = …
readonly Address a;
a = p.getAddr();

int[] ph = a.getPhone();

class Person {
 private Address addr;

 public readonly Address 
 getAddr() { return addr; }

 …
}

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

45

Type Rules: Transitive Readonly (cont’d)

► rw T ro T

rw S rw T ro T

ro S ro T ro T

Person p = …
readonly Address a;
a = p.getAddr();

int[] ph = a.getPhone();

ro Address rw int[]►

ro int[]

▪ The type of
- A field access
- An array access
- A method invocation

 is determined by the
type combinator ►

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

46

Type Rules: Transitive Readonly (cont’d)

► rw T ro T

rw S rw T ro T

ro S ro T ro T

Person p = …
readonly Address a;
a = p.getAddr();

readonly int[] ph = a.getPhone();

ro Address rw int[]►

ro int[]

▪ The type of
- A field access
- An array access
- A method invocation

 is determined by the
type combinator ►

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

47

Type Rules: Readonly Access

▪ Expressions of readonly
types must not occur as
receiver of
- a field update
- an array update
- an invocation of a non-pure

method

▪ Readonly types must not be
cast to readwrite types

readonly Address roa;
roa.street = “Rämistrasse”;
roa.phone[0] = 41;
roa.setCity(“Hagen”);

readonly Address roa;
Address a = (Address) roa;

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

48

Discussion

▪ Readonly types enable safe sharing of objects
▪ Very similar to const pointers in C++, but:

- Transitive
- No casts to readwrite types

▪ All rules for pure methods and readonly types can
be checked statically by a compiler

▪ Readwrite aliases can still occur, e.g., by capturing

6.3 Object Structures and Aliasing – Readonly Types

Peter Müller – Concepts of Object-Oriented Programming

49

6. Object Structures and Aliasing

6.1 Aliasing
6.2 Problems of Aliasing
6.3 Readonly Types
6.4 Ownership Types

6. Object Structures and Aliasing

Peter Müller – Concepts of Object-Oriented Programming

50

Object Topologies

▪ Read-write aliases
can still occur, e.g.,
by capturing or
leaking

▪ We need to
distinguish “internal”
references from other
references

class Person {
 private Address addr;
 private Company employer;
 public readonly Address getAddr()
 { return addr; }
 public void setAddr(Address a)
 { addr = a.clone(); }

 public Company getEmployer()
 { return employer; }
 public void setEmployer(Company c)
 { employer = c; }
 …
}

6.4 Object Structures and Aliasing – Ownership Types

51

Peter Müller – Concepts of Object-Oriented Programming

Roles in Object Structures
� Interface objects that are

used to access the
structure

� Internal representation
of the object structure
- Must not be exposed to

clients
� Arguments of the object

structure
- Must not be modified

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Ownership Types

52

Peter Müller – Concepts of Object-Oriented Programming

Ownership Model
� Each object has zero

or one owner objects
� The set of objects

with the same owner
is called a context

� The ownership
relation is acyclic

� The heap is
structured into a
forest of ownership
trees

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Ownership Types Owner of
Entry objects

Context of
objects owned

by list head

Dictionary

53

Peter Müller – Concepts of Object-Oriented Programming

OwnershipTypes
� We use types to express

ownership information

� peer types for objects in
the same context as this

� rep types for
representation objects in
the context owned by this

� any types for argument

objects in any context

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Ownership Types

rep
reference

peer
reference

any
reference

Peter Müller – Concepts of Object-Oriented Programming

54

Example

class LinkedList {
 private rep Entry header;
 …

}

class Entry {
 private any Object element;
 private peer Entry previous, next;

 …
}

6.4 Object Structures and Aliasing – Ownership Types

A list owns
its nodes

Lists store
elements with

arbitrary owners

All nodes have
the same owner

Peter Müller – Concepts of Object-Oriented Programming

55

Type Safety

▪ Run-time type information consists of
- The class of each object
- The owner of each object

▪ Type invariant: the static ownership information of
an expression e reflects the run-time owner of the
object o referenced by e’s value
- If e has type rep T then o’s owner is this
- If e has type peer T then o’s owner is the owner of this
- If e has type any T then o’s owner is arbitrary

An existential
type

6.4 Object Structures and Aliasing – Ownership Types

Peter Müller – Concepts of Object-Oriented Programming

56

Subtyping and Casts

▪ For types with identical
ownership modifier, subtyping
is defined as in Java
- rep S <: rep T
- peer S <: peer T
- any S <: any T

▪ rep types and peer types are
subtypes of corresponding any
types
- rep T <: any T
- peer T <: any T

class T { … }

class S extends T { … }

peer T peerT = …
any T anyT = …
rep S repS = …
rep T repT = …

repT = repS;
anyT = repT;
peerT = (peer T) anyT;
repT = (rep T) anyT;

repT = peerT;
peerT = repT;
repT = anyT;

6.4 Object Structures and Aliasing – Ownership Types

Run-time
error

Run-time
checks

Peter Müller – Concepts of Object-Oriented Programming

57

Example (cont’d)

class LinkedList {
 private rep Entry header;

 public void add(any Object o) {
 rep Entry newE = new rep Entry(o, header, header.previous);
 …
 }
}

class Entry {
 private any Object element;
 private peer Entry previous, next;

 public Entry(any Object o, peer Entry p, peer Entry n) { … }
}

6.4 Object Structures and Aliasing – Ownership Types

Ownership information is
relative to this reference

(viewpoint)

Ownership information is
relative to this reference

(viewpoint)

58

Viewpoint Adaptation: Example 1

peer ► peer = peer

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

Entry Entry Entry

List

59

Viewpoint Adaptation: Example 2

rep ► peer = rep

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

List

Entry Entry Entry

Peter Müller – Concepts of Object-Oriented Programming

60

Viewpoint Adaptation

► peer T rep T any T

peer S peer T ? any T

rep S rep T ? any T

any S ? ? any T

6.4 Object Structures and Aliasing – Ownership Types

v = e.f;

e.f = v;

τ(e) ► τ(f) <: τ(v)

τ(v) <: τ(e) ► τ(f)

61

Read vs. Write Access

any Address a = joe.addr;

class Person {
 public rep Address addr;
 public peer Person spouse;

 …
}

peer Person joe, jill;

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

joe.spouse = jill;

this

joe

jill

joe.addr = new rep Address();joe.addr = new rep Address();

62

The lost Modifier

▪ Some ownership
relations cannot be
expressed in the type
system

▪ Internal modifier lost for
fixed, but unknown owner

▪ Reading locations with
lost ownership is allowed

▪ Updating locations with
lost ownership is unsafe

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

any Address a = joe.addr;

class Person {
 public rep Address addr;
 public peer Person spouse;

 …
}

peer Person joe, jill;

joe.spouse = jill;

joe.addr = new rep Address();

lost Address

lost Address

Peter Müller – Concepts of Object-Oriented Programming

63

The lost Modifier: Details
► peer T rep T any T

peer S peer T lost T any T

rep S rep T lost T any T

any S lost T lost T any T

lost S lost T lost T any T

6.4 Object Structures and Aliasing – Ownership Types

▪ Subtyping
- rep T <: lost T
- peer T <: lost T
- lost T <: any T

Another
existential type

Peter Müller – Concepts of Object-Oriented Programming

64

Type Rules: Field Access

▪ The field read

 is correctly typed if
- e is correctly typed
- τ(e) ► τ(f) <: τ(v)

v = e.f;

▪ The field write

 is correctly typed if
- e is correctly typed
- τ(v) <: τ(e) ► τ(f)
- τ(e) ► τ(f) does not

have lost modifier

e.f = v;

▪ Analogous rules for method invocations
- Argument passing is analogous to field write
- Result passing is analogous to field read

6.4 Object Structures and Aliasing – Ownership Types

65

The self Modifier

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

class Person {
 public rep Address addr;
 public peer Person spouse;

 …
}

peer Person joe;

this

joe

joe.addr = new rep Address();

this.addr = new rep Address();

▪ Internal modifier self only for the this literal

Peter Müller – Concepts of Object-Oriented Programming

66

The self Modifier: Details
6.4 Object Structures and Aliasing – Ownership Types

v = e.f;

e.f = v;

τ(e) ► τ(f) <: τ(v)

τ(v) <: τ(e) ► τ(f)
τ(e) ► τ(f) does not
have lost modifier ▪ Subtyping

- self T <: peer T

► peer T rep T any T

peer S peer T lost T any T

rep S rep T lost T any T

any S lost T lost T any T

lost S lost T lost T any T

self S peer T rep T any T

Peter Müller – Concepts of Object-Oriented Programming

67

Example: Sharing

▪ Different Person objects
have different Address
objects
- No unwanted sharing

class Person {
 public rep Address addr;

 …
}

this

joe

6.4 Object Structures and Aliasing – Ownership Types

Peter Müller – Concepts of Object-Oriented Programming

68

Example: Internal vs. External Objects

class Person {
 private rep Address addr;

 public rep Address getAddr() {
 return addr;
 }

 public void setAddr(rep Address a) {
 addr = a;
 }

 public void setAddr(any Address a) {
 addr = new rep Address(a);
 }
}

Clients receive a
lost-reference

Cannot be called
by clients

Cloning
necessary

Address is part of
Person’s internal
represenations

6.4 Object Structures and Aliasing – Ownership Types

Peter Müller – Concepts of Object-Oriented Programming

69

Internal vs. External Objects (cont’d)

class Person {
 private any Company employer;

 public any Company getEmployer() {
 return employer;
 }

 public void setEmployer(any Company c) {
 employer = c;
 }
}

Can be called
by clients

Company is shared
between many
Person objects

6.4 Object Structures and Aliasing – Ownership Types

70

Owner-as-Modifier Discipline

▪ Based on the topological type system we can
strengthen encapsulation with extra restrictions
- Prevent modifications of internal objects
- Treat any and lost as readonly types
- Treat self, peer, and rep as readwrite types

▪ Additional rules enforce owner-as-modifier
- Field write e.f = v is valid only if τ(e) is self,

peer, or rep

- Method call e.m(…) is valid only if τ(e) is self,
peer, or rep, or called method is pure

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

71

Owner-as-Modifier Discipline (cont’d)

▪ A method may modify only objects directly or
indirectly owned by the owner of the current this
object

o

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

this

Peter Müller – Concepts of Object-Oriented Programming

72

Internal vs. External Objects Revisited

class Person {
 private rep Address addr;
 private any Company employer;

 public rep Address getAddr() { return addr; }

 public void setAddr(any Address a) {
 addr = new rep Address(a);
 }

 public any Company getEmployer() { return employer; }

 public void setEmployer(any Company c) { employer = c; }
}

Company is shared;
cannot be modified

Clients receive
(transitive) readonly

reference
Accidental capturing

is prevented

6.4 Object Structures and Aliasing – Ownership Types

Peter Müller – Concepts of Object-Oriented Programming

73

Achievements

▪ rep and any types enable
encapsulation of whole
object structures

▪ Encapsulation cannot be
violated by subclasses,
via casts, etc.

▪ The technique fully
supports subclassing
- In contrast to solutions with

private inner or final
classes, etc.

class ArrayList {
 protected rep int[] array;
 private int next;

 …
}

class MyList extends ArrayList {
 public peer int[] leak() {
 return array;
 }
}

6.4 Object Structures and Aliasing – Ownership Types

Peter Müller – Concepts of Object-Oriented Programming

74

Exchanging Implementations

▪ Interface including contract remains unchanged

class ArrayList {
 private int[] array;
 private int next;

 // requires ia != null
 // ensures ∀i. 0<=i<ia.length:
 // isElem(old(ia[i]))
 public void setElems(int[] ia)
 { array = ia; next = ia.length; }  

 …
}

class ArrayList {
 private Entry header;

 // requires ia != null
 // ensures ∀i. 0<=i<ia.length:
 // isElem(old(ia[i]))
 public void setElems(int[] ia)
 { … /* create Entry for each

 element */ }
 …
}

6.3 Object Structures and Aliasing – Problems of Aliasing

75

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

class ArrayList {
 private rep int[] array;
 private int next;

 // requires ia != null
 // ensures ∀i. 0<=i<ia.length:
 // isElem(old(ia[i]))
 public void
 setElems(any int[] ia)
 { System.arraycopy(…);
 next = ia.length; }
 …
}

class ArrayList {
 private rep Entry header;

 // requires ia != null
 // ensures ∀i. 0<=i<ia.length:
 // isElem(old(ia[i]))
 public void
 setElems(any int[] ia)
 { … /* create Entry for each

 element */ }
 …
}

6.4 Object Structures and Aliasing – Ownership Types

Accidental capturing
is prevented

76

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

class ArrayList {
 private rep int[] array;
 private int next;

 public any int[] getElems()
 { return array; }
 …
}

class ArrayList {
 private rep Entry header;

 public void any int[] getElems()
 { /* create new array */ }
 …
}

6.4 Object Structures and Aliasing – Ownership Types

Leaking is still
possible

peer ArrayList list = new peer ArrayList();
list.prepend(0);
any int[] ia = list.getElems();
list.prepend(1);
assert ia[0] == 1;

▪ Observable
behavior is
changed

Peter Müller – Concepts of Object-Oriented Programming

77

Consistency of Object Structures

▪ Consistency of object
structures depends on
fields of several objects

▪ Invariants are usually
specified as part of the
contract of those objects
that represent the
interface of the object
structure

class ArrayList {
 private int[] array;
 private int next;

 // invariant array != null &&
 // 0<=next<=array.length &&
 // ∀i.0<=i<next: array[i] >= 0

 public void add(int i) { … }

 public void setElems(int[] ia)
 { … }

 …
}

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

78

Invariants for Object Structures

▪ The invariant of object o
may depend on
- Encapsulated fields of o
- Fields of objects

(transitively) owned by o

▪ Interface objects have
full control over their rep-
objects

class ArrayList {
 private rep int[] array;
 private int next;

 // invariant array != null &&
 // 0<=next<=array.length &&
 // ∀i.0<=i<next: array[i] >= 0

 public void add(int i) { … }

 public void setElems 
 (any int[] ia) { … }

 …
}

6.4 Object Structures and Aliasing – Ownership Types

Peter Müller – Concepts of Object-Oriented Programming

79

System

Security Breach in Java 1.1.1

Class

IdentityIdentity[]

Identity

Identity
Identity[]

class Malicious {

 void bad() {
 Identity[] s;
 Identity trusted = java.Security…;
 s = Malicious.class.getSigners();
 s[0] = trusted;
 /* abuse privilege */
 }

}
Identity[] getSigners()
 { return signers; }

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

80

System

Security Breach in Java 1.1.1 (cont’d)

Class

IdentityIdentity[]

Identity

Identity
Identity[]

class Malicious {

 void bad() {
 any Identity[] s;
 Identity trusted = java.Security…;
 s = Malicious.class.getSigners();
 s[0] = trusted;
 }

}

rep Identity[] getSigners()
 { return signers; }

rep Identity[] signers;

6.4 Object Structures and Aliasing – Ownership Types

Peter Müller – Concepts of Object-Oriented Programming

81

Ownership Types: Discussion

▪ Ownership types express heap topologies and
enforce encapsulation

▪ Owner-as-modifier is helpful to control side effects
- Maintain object invariants
- Prevent unwanted modifications

▪ Other applications also need restrictions of read
access
- Exchange of implementations
- Thread synchronization

6.4 Object Structures and Aliasing – Ownership Types

Peter Müller – Concepts of Object-Oriented Programming

82

References

▪ Werner Dietl and Peter Müller: Universes: Lightweight
Ownership for JML. Journal of Object Technology, 2005

▪ Werner Dietl, Sophia Drossopoulou, and Peter Müller:
Separating Ownership Topology and Encapsulation with
Generic Universe Types. ACM Trans. Program. Lang. Syst.,
2011

6. Object Structures and Aliasing

