
Concepts of

Object-Oriented Programming

Peter Müller

Chair of Programming Methodology

Autumn Semester 2017

2

History of Programming Languages

1. Introduction

1950s

1960s

1970s

1980s

1990s

2000s

Imperative Object-OrientedDeclarative

• Algol 60

• Simula 67

Cobol •

• Prolog• Pascal

• LISP

• Smalltalk 80

• Modula-2

• Fortran I

Scheme •

Java •

• PL/I

• C++Common LISP •

C •

• Ada 83

• C#

• Basic

Smalltalk •

• Haskell

• SML

• ML

• Eiffel

Oberon •• Modula-3

• JavaScript

GUIs

Internet

Networks

Software

Crisis

Peter Müller – Concepts of Object-Oriented Programming

Python •
• Ruby

Scala •

Caml •

Multi-Core

F# •

3

1. Introduction

1.1 Requirements

1.2 Core Concepts

1.3 Language Concepts

1.4 Course Organization

1.5 Language Design

1.1 Introduction

Peter Müller – Concepts of Object-Oriented Programming

41.1 Introduction – Requirements

New Requirements in SW-Technology

Distributed

Programming

GUIsComputation

as Simulation

Reuse
Extendibility

and

Adaptability

Adaptable

Standard

FunctionalityDescribing

Dynamic System

Behavior

Running

Simulations

Modeling

Entities of the

Real World

Distribution

of Data and

CodeCommunication

Concurrency

Documented

Interfaces

Quality

Peter Müller – Concepts of Object-Oriented Programming

5

Example: Reusing Imperative Programs

▪ Scenario: University Administration System

- Models students and professors

- Stores one record for each student and each professor in

a repository

- Procedure printAll prints all records in the repository

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

6

An Implementation in C

typedef struct {

char *name;

char *room;

char *institute;

} Professor;

typedef struct {

char *name;

int regNum;

} Student;

void printStudent(Student *s)

{ … }

void printProf(Professor *p)

{ … }

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

7

An Implementation in C (cont’d)

typedef struct {

enum { STU,PROF } kind;

union {

Student *s;

Professor *p;

} u;

} Person;

typedef Person **List;

void printAll(List l) {

int i;

for (i=0; l[i] != NULL; i++)

switch (l[i] -> kind) {

case STU:

printStudent(l[i] -> u.s);

break;

case PROF:

printProf(l[i] -> u.p);

break;

}

}

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

8

Extending and Adapting the Program

▪ Scenario: University Administration System

- Models students and professors

- Stores one record for each student and each professor in

a repository

- Procedure printAll prints all records in the repository

▪ Extension: Add assistants to system

- Add record and print function for assistants

- Reuse old code for repository and printing

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

9

Step 1: Add Record and Print Function

typedef struct {

char *name;

char *room;

char *institute;

} Professor;

typedef struct {

char *name;

int regNum;

} Student;

void printStudent(Student *s)

{ … }

void printProf(Professor *p)

{ … }

1.1 Introduction – Requirements

typedef struct {

char *name;

char PhD_student; /* ‘y‘, ‘n‘ */

} Assistant;

void printAssi(Assistant *a)

{ … }

Peter Müller – Concepts of Object-Oriented Programming

10

Step 2: Reuse Code for Repository

typedef struct {

enum { STU,PROF } kind;

union {

Student *s;

Professor *p;

} u;

} Person;

typedef Person **List;

void printAll(List l) {

int i;

for (i=0; l[i] != NULL; i++)

switch (l[i] -> kind) {

case STU:

printStudent(l[i] -> u.s);

break;

case PROF:

printProf(l[i] -> u.p);

break;

}

}

1.1 Introduction – Requirements

,ASSI

Assistant *a;

case ASSI:

printAssi(l[i] -> u.a);

break;

Peter Müller – Concepts of Object-Oriented Programming

11

Reuse in Imperative Languages

▪ No explicit language support for extension and

adaptation

▪ Adaptation usually requires modification of reused

code

▪ Copy-and-paste reuse

- Code duplication

- Difficult to maintain

- Error-prone

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

121.1 Introduction – Requirements

New Requirements in SW-Technology

Distributed

Programming

GUIsComputation

as Simulation

Reuse
Extendibility

and

Adaptability

Adaptable

Standard

FunctionalityDescribing

Dynamic System

Behavior

Running

Simulations

Modeling

Entities of the

Real World

Distribution

of Data and

CodeCommunication

Concurrency

Documented

Interfaces

Quality

Peter Müller – Concepts of Object-Oriented Programming

13

Cooperating Program Parts

with Well-Defined Interfaces

Highly

Dynamic

Execution Model

Classification and

Specialization

Correctness

1.1 Introduction – Requirements

Core Requirements

Extendibility

and

Adaptability

Adaptable

Standard

FunctionalityDescribing

Dynamic System

Behavior

Running

Simulations

Modeling

Entities of the

Real World

Distribution

of Data and

CodeCommunication

Concurrency

Documented

Interfaces

Quality

Peter Müller – Concepts of Object-Oriented Programming

14

From Requirements to Concepts

What are the concepts of a programming paradigm

▪ That structure programs into cooperating program

parts with well-defined interfaces?

▪ That are able to express classification and

specialization of program parts without modifying

reused code?

▪ That enable the dynamic adaptation of program

behavior?

▪ That facilitate the development of correct

programs?

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

15

1. Introduction

1.1 Requirements

1.2 Core Concepts

1.3 Language Concepts

1.4 Course Organization

1.5 Language Design

1.2 Introduction

Peter Müller – Concepts of Object-Oriented Programming

16

Peter Müller – Concepts of Object-Oriented Programming

Object Model: The Philosophy

1.2 Introduction – Core Concepts

“The basic philosophy underlying object-oriented

programming is to make the programs as far as

possible reflect that part of the reality they are going

to treat. It is then often easier to understand and to

get an overview of what is described in programs.

The reason is that human beings from the outset are

used to and trained in the perception of what is going

on in the real world. The closer it is possible to use

this way of thinking in programming, the easier it is to

write and understand programs.“

[Object-oriented Programming in the BETA Programming Language]

17

The Object Model

▪ A software system is a set of cooperating objects

▪ Objects have state and processing ability

▪ Objects exchange messages

a1:

a2:

obj1

m(p1,p2) {..}

m1() {..}

m2(p) {..}

a:

obj2

m(p1,p2) {..}

n(p,r) {..}

obj2 . m(“COOP”,1)

1.2 Introduction – Core Concepts

Peter Müller – Concepts of Object-Oriented Programming

18

Peter Müller – Concepts of Object-Oriented Programming

Characteristics of Objects

1.2 Introduction – Core Concepts

▪ Objects have

- State

- Identity

- Lifecycle

- Location

- Behavior

▪ Compared to imperative programming,

- Objects lead to a different program structure

- Objects lead to a different execution model

19

Peter Müller – Concepts of Object-Oriented Programming

Variant 2: sharingVariant 1: copying

Object Identity: Example

1.2 Introduction – Core Concepts

▪ Consider

r = l.rest(); r.set(4711); int i = l.next.get();

n:

obj1

1e:

n:

obj2

2e:

nulln:

obj3

3e:
n:

obj1

1e:

n:

obj2

2e:

nulln:

obj3

3e:

l

n:

obj4

2e:

nulln:

obj5

3e:

r

l

r

4711e:

4711e:

20

f1:

f2:

obj1

m(p1,p2) {..}

m1() {..}

m2(p) {..}

h1(p,q) {..}

h2(r) {..}

h3() {..}

hf1:

hf2:

hf3:

f1:

f2:

obj1

m(p1,p2) {..}

m1() {..}

m2(p) {..}

Interfaces and Encapsulation

▪ Objects have well-defined

interfaces

- Publicly accessible fields

- Publicly accessible methods

▪ Implementation is hidden

behind interface

- Encapsulation

- Information hiding

▪ Interfaces are the basis for

describing behavior

1.2 Introduction – Core Concepts

Peter Müller – Concepts of Object-Oriented Programming

21

Classification and Polymorphism

▪ Classification:

Hierarchical structuring

of objects

▪ Objects belong to

different classes

simultaneously

▪ Substitution principle:

Subtype objects can be

used wherever supertype

objects are expected

1.2 Introduction – Core Concepts

Person

Assistant ProfessorStudent

Bachelor

Student

Master

Student

PhD

Student

Peter Müller – Concepts of Object-Oriented Programming

22

Peter Müller – Concepts of Object-Oriented Programming

Classification of Vertebrates

1.2 Introduction – Core Concepts

Vertebrate

Fish Amphibian Reptile BirdMammal

Whale ArtiodactylPrimate …

Arrows represent

the “is-a” relation

23

Peter Müller – Concepts of Object-Oriented Programming

Polymorphism

▪ Definition of Polymorphism:

The quality of being able to assume different forms
[Merriam-Webster Dictionary]

▪ In the context of programming:

A program part is polymorphic if it can be used for

objects of several classes

1.2 Introduction – Core Concepts

24

Peter Müller – Concepts of Object-Oriented Programming

Subtype Polymorphism

▪ Subtype polymorphism is a direct consequence of

the substitution principle

- Program parts working with supertype objects work as

well with subtype objects

- Example: printAll can print objects of class Person,

Student, Professor, etc.

▪ Other forms of polymorphism (not core concepts)

- Parametric polymorphism (generic types)

- Ad-hoc polymorphism (method overloading)

1.2 Introduction – Core Concepts

25

Peter Müller – Concepts of Object-Oriented Programming

Parametric Polymorphism: Example

▪ Parametric
polymorphism uses
type parameters

▪ One implementation
can be used for
different types

▪ Type mismatches can
be detected at compile
time

1.2 Introduction – Core Concepts

class List<G> {

G[] elems;

void append(G p) { … }

}

List<String> myList;

myList = new List<String>();

myList.append(“String”);

myList.append(myList);

26

Peter Müller – Concepts of Object-Oriented Programming

Ad-hoc Polymorphism: Example

▪ Ad-hoc polymorphism
allows several methods
with the same name but
different arguments

▪ Also called overloading

▪ No semantic concept:
can be modeled by
renaming easily

1.2 Introduction – Core Concepts

class Any {

void foo(Polar p) { … }

void foo(Coord c) { … }

}

x.foo(new Coord(5, 10));

27

Peter Müller – Concepts of Object-Oriented Programming

Specialization

▪ Definition of Specialization:

Adding specific properties to an object or refining a

concept by adding further characteristics.

▪ Start from general objects or types

▪ Extend these objects and their implementations

(add properties)

▪ Requirement: Behavior of specialized objects is

compliant to behavior of more general objects

▪ Program parts that work for the more general

objects work as well for specialized objects

1.2 Introduction – Core Concepts

28

Peter Müller – Concepts of Object-Oriented Programming

class Person {

Stringname;

…

void print() {

System.out.println(name);

}

}

Example: Specialization

▪ Develop implementation

for type Person

▪ Specialize it

1.2 Introduction – Core Concepts

29

Peter Müller – Concepts of Object-Oriented Programming

Example: Specialization (cont’d)

1.2 Introduction – Core Concepts

class Student extends Person {

int regNum;

…

void print() {

super.print();

System.out.println(regNum);

}

}

class Professor extends Person {

String room;

…

void print() {

super.print();

System.out.println(room);

}

}

▪ Inheritance of

- Fields

- Methods

▪ Methods can be

overridden in

subclasses

30

Highly

Dynamic

Execution Model

Highly

Dynamic

Execution Model

 Active objects

 Message passing

Classification and

Specialization

Correctness

 Interfaces

 Encapsulation

 Simple, powerful concepts

Cooperating Program Parts

with Well-Defined Interfaces

Cooperating Program Parts

with Well-Defined Interfaces

 Objects (data + code)

 Interfaces

 Encapsulation

1.2 Introduction – Core Concepts

Meeting the Requirements

Extendibility

and

Adaptability

Adaptable

Standard

Functionality
Modeling

Entities of the

Real World

Describing

Dynamic System

BehaviorRunning

Simulations

Concurrency

Communication

Distribution

of Data and

Code

Documented

Interfaces

Quality

 Classification, subtyping

 Polymorphism

 Substitution principle

Peter Müller – Concepts of Object-Oriented Programming

31

Core Concepts: Summary

▪ Core concepts of the OO-paradigm

- Object model

- Interfaces and encapsulation

- Classification and polymorphism

▪ Core concepts are abstract concepts to meet the

new requirements

▪ To apply the core concepts we need ways to

express them in programs

▪ Language concepts enable and facilitate the

application of the core concepts

1.2 Introduction – Core Concepts

Peter Müller – Concepts of Object-Oriented Programming

32

1. Introduction

1.1 Requirements

1.2 Core Concepts

1.3 Language Concepts

1.4 Course Organization

1.5 Language Design

1.3 Introduction

Peter Müller – Concepts of Object-Oriented Programming

33

Example: Dynamic Method Binding

▪ Classification and

polymorphism

- Algorithms that work with

supertype objects can be

used with subtype objects

1.3 Introduction – Language Concepts

void printAll(Person[] l) {

for (int i=0; l[i] != null; i++)

l[i] . print();

}

▪ Dynamic binding:

Method implementation is

selected at runtime,

depending on the type of

the receiver object

- Subclass objects are

specialized

Person

Assistant ProfessorStudent

Bachelor

Student

Master

Student

PhD

Student

Peter Müller – Concepts of Object-Oriented Programming

34

OO-Concepts and Imperative Languages

▪ What we have seen so far

- New concepts are needed to meet new requirements

- Core concepts serve this purpose

- Language concepts are needed to express core

concepts in programs

▪ Open questions

- Why do we need OO-programming languages?

- Can’t we use the language concepts as guidelines when

writing imperative programs?

▪ Let’s do an experiment …

- Writing object-oriented programs in C

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming

35

Types and Objects

▪ Declare types typedef char* String;

typedef struct sPerson Person;

1.3 Introduction – Language Concepts

struct sPerson {

String name;

};

void (*print)(Person*);

String (*lastName)(Person*);

▪ Declare records with

- Fields

- Methods

(function pointers)

Peter Müller – Concepts of Object-Oriented Programming

36

Methods and Constructors

▪ Define constructors Person *PersonC(String n) {

Person *this = (Person *)
malloc(sizeof(Person));

this -> name = n;

this -> print = printPerson;

this -> lastName = LN_Person;

return this;

}

1.3 Introduction – Language Concepts

▪ Define methods void printPerson(Person *this) {

printf(“Name: %s\n“, this->name);

}

String LN_Person(Person *this)

{ … }

Peter Müller – Concepts of Object-Oriented Programming

37

▪ Use constructors,

fields, and methods

Person *p;

p = PersonC(“Tony Hoare“);

p->name = p->lastName(p);

p->print(p);

Using the “Object”

1.3 Introduction – Language Concepts

struct sPerson {

String name;

void (*print)(Person*);

String (*lastName)(Person*);

};

▪ Declaration

Peter Müller – Concepts of Object-Oriented Programming

38

Inheritance and Specialization

typedef struct sStudent Student;

struct sStudent {

String name;

void (*print)(Student*);

String (*lastName)(Student*);

int regNum;

};

1.3 Introduction – Language Concepts

void printStudent(Student *this) {

printf(“Name: %s\n“, this->name);

printf(“No: %d\n“, this->regNum);

}

▪ Copy code

▪ Adapt function

signatures

▪ Define specialized

methods

Peter Müller – Concepts of Object-Oriented Programming

39

Inheritance and Specialization (cont’d)

1.3 Introduction – Language Concepts

Student *StudentC(String n, int r) {

Student *this = (Student *)

malloc(sizeof(Student));

this -> name = n;

this -> print = printStudent;

this -> lastName =

(String (*)(Student*)) LN_Person;

this -> regNum = r;

return this;

}

▪ Reuse LN_Person for

Student

▪ View Student as

Person (cast)

Peter Müller – Concepts of Object-Oriented Programming

40

Student *s;

Person *p;

s = StudentC(“Susan Roberts“, 0);

p = (Person *) s;

p -> name = p -> lastName(p);

p -> print(p);

Subclassing and Dynamic Binding

1.3 Introduction – Language Concepts

▪ Student has all fields

and methods of Person

▪ Casts are necessary

void printAll(Person **l) {

int i;

for (i=0; l[i] != NULL; i++)

l[i] -> print(l[i]);

}

▪ Array l can contain

Person and Student

objects

▪ Methods are selected

dynamically

Peter Müller – Concepts of Object-Oriented Programming

41

Discussion of the C Solution: Pros

▪ We can express objects, fields, methods,

constructors, and dynamic method binding

▪ By imitating OO-programming, the union in Person

and the switch statement in printAll became

dispensable

▪ The behavior of reused code (Person, printAll) can

be adapted (to introduce Student) without changing

the implementation

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming

42

Discussion of the C Solution: Cons

▪ Inheritance has to be replaced by code duplication

▪ Subtyping can be simulated, but it requires

- Casts, which is not type safe

- Same memory layout of super and subclasses

(same fields and function pointers in same order), which

is extremely error-prone

▪ Appropriate language support is needed to apply

object-oriented concepts

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming

43

A Java Solution

class Person {

String name;

void print() {

System.out.println(“Name: “ +

name);

}

StringlastName() { … }

Person(String n) { name = n; }

}

class Student extends Person {

int regNum;

void print() {

super.print();

System.out.println(“No: “ +

regNum);

}

Student(String n, int i) {

super(n);

regNum = i;

}

}

1.3 Introduction – Language Concepts

void printAll(Person[] l) {

for (int i=0; l[i] != null; i++)

l[i].print();

}

Peter Müller – Concepts of Object-Oriented Programming

44

Discussion of the Java Solution

▪ The Java solution uses

- Inheritance to avoid code duplication

- Subtyping to express classification

- Overriding to specialize methods

- Dynamic binding to adapt reused algorithms

▪ Java supports the OO-language concepts

▪ The Java solution is

- Simpler and smaller

- Easier to maintain (no duplicate code)

- Type safe

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming

45

Concepts: Summary

1.3 Introduction – Language Concepts

Cooperating

Program Parts

with Interfaces

Highly Dynamic

Execution

Model

Classification

and

Specialization

Correctness

Requirement

Object Model

Classification and

Polymorphism

Interfaces and

Encapsulation

Core Concept

Inheritance

Classes

Etc.

Subtyping

Dynamic

Binding

Language

Concept

Inheritance

w/o Subtyping

Multiple

Inheritance

Single

Inheritance

Language

Constructs

Etc.

Peter Müller – Concepts of Object-Oriented Programming

46

1. Introduction

1.1 Requirements

1.2 Core Concepts

1.3 Language Concepts

1.4 Course Organization

1.5 Language Design

1.4 Introduction

Peter Müller – Concepts of Object-Oriented Programming

47

After this Course, you should be able

▪ To understand the core and language concepts

▪ To understand language design trade-offs

▪ To compare OO-languages

▪ To learn new languages faster

▪ To apply language concepts and constructs

correctly

▪ To write better object-oriented programs

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

48

Approach

▪ We discuss the

- Concepts of

as opposed to implementations, etc.

- Object-Oriented

as opposed to imperative, declarative

- Programming

as opposed to analysis, design, etc.

▪ We study and compare solutions in different

languages such as C++, C#, Eiffel, Java, Python,

and Scala
- Java is used for most examples and exercises

▪ We look at code and analyze programs

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

49

Course Outline

2. Types and Subtyping

3. Inheritance

4. Static Safety

5. Parametric Polymorphism

6. Object Structures and Aliasing

7. Extended Typing

8. Object and Class Initialization

9. Object Consistency

10.Reflection

11.Higher-Order Features

1.4 Introduction – Course Organization

Highly Dynamic

Execution Model

Cooperating

Program Parts

Classification and

Specialization

Correctness

Peter Müller – Concepts of Object-Oriented Programming

50

Exams

▪ Mid-term exam

- Written (1 hour)

- 30% of the overall grade

- Friday, November 10, 11:15 – 12:15

- No registration required

▪ End-term exam

- Written (2 hours)

- 70% of the overall grade

- Thursday, December 21, 9:15 – 11:15

- Registration required

▪ Exams will be closed-book

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

51

Course Infrastructure

▪ Web page:

www.pm.inf.ethz.ch/education/courses/COOP.html

▪ Slides will be available on the web page two days

before the lecture

- Exercise assignments and solutions are published on

Friday

▪ Responsible assistant:

Marco Eilers

marco.eilers@inf.ethz.ch

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

52

Exercise Sessions

▪ Friday, starting September 29

▪ Alexandra Bugariu : 8:15 – 10:00 CHN D42

- Last name A – L

▪ Caterina Urban: 8:15 – 10:00 CAB G57

- Last name M – Z

▪ Lucas Brutschy: 10:15 – 12:00 CHN D42

- Last name A – L

▪ Marco Eilers: 10:15 – 12:00 CAB G57

- Last name M – Z

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

53

1. Introduction

1.1 Requirements

1.2 Core Concepts

1.3 Language Concepts

1.4 Course Organization

1.5 Language Design

1.5 Introduction

Peter Müller – Concepts of Object-Oriented Programming

54

What is a Good OO-Language?

▪ One that many people use?

- No!

(Or do you think JavaScript

is a good language?)

▪ One that makes programmers productive?

- No! (Or would you feel good if the Airbus flight controller

was written in Python?)

▪ A good language should resolve design trade-offs

in a way suitable for its application domain

Peter Müller – Concepts of Object-Oriented Programming

1.5 Introduction- Language Design

55

Design Goals: Simplicity

▪ Syntax and semantics

can easily be

understood by users

and implementers of

the language

▪ But not small number

of constructs

▪ Simple languages:

BASIC, Pascal, C

▪ It took over 10 years to

find out that the Java 5

type system (generics)

is not decidable (and

unsound)

Peter Müller – Concepts of Object-Oriented Programming

factorial (i: INTEGER): INTEGER

require 0 <= i

once

if i <= 1 then Result := 1

else

Result := i

Result := Result * factorial (i – 1)

end

end Eiffel

1.5 Introduction- Language Design

56

Design Goals: Expressiveness

▪ Language can (easily)

express complex

processes and

structures

▪ Expressive languages:

C#, Scala, Python

▪ Often conflicting with

simplicity

Peter Müller – Concepts of Object-Oriented Programming

Expr

UnOp BinOp Number

def simplify(expr: Expr): Expr =

expr match {

case UnOp(“–“, UnOp("–“,e)) => e

case BinOp("+", e, Number(0)) => e

case BinOp(“*", e, Number(1)) => e

case _ => expr

}
Scala

1.5 Introduction- Language Design

57

Design Goals: (Static) Safety

▪ Language discourages

errors and allows

errors to be discovered

and reported, ideally at

compile time

▪ Safe languages: Java,

C#, Scala

▪ Often conflicting with

expressiveness and

performance

Peter Müller – Concepts of Object-Oriented Programming

l = []

l.append(7)

foo(l, 5)

List<Integer> l;

l = new ArrayList<Integer>();

l.add(7);

foo(l, 5);

List<Integer> l;

l = new ArrayList<Integer>();

l.add(7);

foo(l, “5“);

l = []

l.append(7)

foo(l, “5“)

int foo(List<Integer> l, int i) {

if (l.get(0) != i) return i / 5;

else return 0;

}

Java

def foo(l, i):

if l[0] != i: return i / 5

else: return 0

Python

1.5 Introduction- Language Design

58

Design Goals: Modularity

▪ Language allows

modules to be

compiled separately

▪ Modular languages:

Java, C#, Scala

▪ Often conflicting with

expressiveness and

performance

Peter Müller – Concepts of Object-Oriented Programming

#include <stdio.h>

int main(int argc, char* argv[]) {

printf(“%d\n", bar(5, 7));

printf(“%d\n", bar());

return 0;

}

Client.o: …

undefined reference to `_bar'

int foo(int p) {

return p;

}

C

1.5 Introduction- Language Design

59

C++ arrays

Java arrays

Design Goals: Performance

▪ Programs written in the

language can be

executed efficiently

▪ Efficient languages:

C, C++, Fortran

▪ Often conflicting with

safety, productivity, and

simplicity

▪ Sequence of memory

locations

▪ Access is simple look-up

(only 2-5 machine

instructions)

Peter Müller – Concepts of Object-Oriented Programming

▪ Sequence of memory

locations plus length

▪ Access is look-up plus

bound-check

1.5 Introduction- Language Design

60

Design Goals: Productivity

▪ Language leads to

low costs of writing

programs

▪ Closely related to

expressiveness

▪ Languages for high

productivity:

Visual Basic, Python

▪ Often conflicting with

static safety

Peter Müller – Concepts of Object-Oriented Programming

def qsort(lst):

if len(lst) <= 1:

return lst

pivot = lst.pop(0)

greater_eq = \

qsort([i for i in lst if i >= pivot])

lesser = \

qsort([i for i in lst if i < pivot])

return lesser + [pivot] + greater_eq

Python

1.5 Introduction- Language Design

61

Design Goals: Backwards Compatibility

▪ Newer language

versions work and

interface with programs

in older versions

▪ Backwards compatible

languages: Java, C

▪ Often in conflict with

simplicity, performance,

and expressiveness

Peter Müller – Concepts of Object-Oriented Programming

class Client {

static void main(String[] args) {

Tuple t = new Tuple();

t.set("Hello", new Client());

}

}

class Tuple<T> {

T first; T second;

void set(T first, T second) {

this.first = first;

this.second = second;

}

}

Java

1.5 Introduction- Language Design

