
Concepts of

Object-Oriented Programming

Peter Müller

Chair of Programming Methodology

Autumn Semester 2017

2

Peter Müller – Concepts of Object-Oriented Programming

Object Structures

▪ Objects are the building blocks of object-oriented

programming

▪ However, interesting abstractions are almost

always provided by sets of cooperating objects

▪ Definition:

An object structure is a set of objects that are

connected via references

6. Object Structures and Aliasing

3

Peter Müller – Concepts of Object-Oriented Programming

Example 1: Array-Based Lists

class ArrayList {

private int[] array;

private int next;

public void add(int i) {

if (next==array.length) resize();

array[next] = i;

next++;

}

public void setElems(int[] ia)

{ … }

…

}

array:

next:

list

…

length:

0:

array

…

1:

2:

6. Object Structures and Aliasing

4

Peter Müller – Concepts of Object-Oriented Programming

Example 2: Doubly-Linked Lists

header:

3size:

LinkedList

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

ObjectObject Object

next:

2nextIndex:

ListItr

6. Object Structures and Aliasing

5

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing

6.3 Readonly Types

6.4 Ownership Types

6. Object Structures and Aliasing

6

Peter Müller – Concepts of Object-Oriented Programming

Alias

▪ Definition:

A name that has been assumed temporarily
[WordNet, Princeton University]

6.1 Object Structures and Aliasing – Aliasing

7

Peter Müller – Concepts of Object-Oriented Programming

Aliasing in Procedural Programming

▪ var-parameters are

passed by reference

(call by name)

▪ Modification of a var-

parameter is

observable by caller

▪ Aliasing: Several

variables (here: p, q)

refer to same memory

location

▪ Aliasing can lead to

unexpected side-effects

program aliasTest

procedure assign(var p: int, var q: int);

begin

p := 25;

end;

begin

var x: int := 1;

assign(x, x);

end

end.

{ p = 1  q = 1 }

p := 25;

{ p = 25  q = 25 }

{ x = 25 }

6.1 Object Structures and Aliasing – Aliasing

8

Peter Müller – Concepts of Object-Oriented Programming

Aliasing in Object-Oriented Programming

▪ Definition:

An object o is aliased if two or more variables hold

references to o.

▪ Variables can be

- Fields of objects (instance variables)

- Static fields (global variables)

- Local variables of method executions, including this

- Formal parameters of method executions

- Results of method invocations or other expressions

6.1 Object Structures and Aliasing – Aliasing

9

Peter Müller – Concepts of Object-Oriented Programming

Static Aliasing

▪ Definition:

An alias is static if all

involved variables are

fields of objects or

static fields.

▪ Static aliasing occurs in

the heap memory

array:

next:

list1

array:

next:

list2

array

list1.array[0] = 1;

list2.array[0] = -1;

System.out.println(list1.array[0]);

6.1 Object Structures and Aliasing – Aliasing

10

Peter Müller – Concepts of Object-Oriented Programming

Dynamic Aliasing

▪ Definition:

An alias is dynamic

if it is not static.

▪ Dynamic aliasing

involves stack-

allocated variables

array:

next:

list1

array

int[] ia = list1.array;

list1.array[0] = 1;

ia[0] = -1;

System.out.println(list1.array[0]);

6.1 Object Structures and Aliasing – Aliasing

11

Peter Müller – Concepts of Object-Oriented Programming

Intended Aliasing: Efficiency

▪ In OO-programming,

data structures are

usually not copied

when passed or

modified

▪ Aliasing and

destructive updates

make OO-programming

efficient

class SList {

SList next;

Object elem;

SList rest() { return next; }

void set(Object e) { elem = e; }

}

void foo(SList slist) {

SList rest = slist.rest();

rest.set(“Hello”); }

SList SList SListSList

restslist

6.1 Object Structures and Aliasing – Aliasing

12

Peter Müller – Concepts of Object-Oriented Programming

Intended Aliasing: Sharing

▪ Aliasing is a direct

consequence of object

identity

▪ Objects have state that

can be modified

▪ Objects have to be

shared to make

modifications of state

effective

3

LinkedList

Entry

Entry Entry Entry

2

ListItr

6.1 Object Structures and Aliasing – Aliasing

13

Peter Müller – Concepts of Object-Oriented Programming

Unintended Aliasing: Capturing

▪ Capturing occurs when

objects are passed to a

data structure and then

stored by the data

structure

▪ Capturing often occurs in

constructors (e.g.,

streams in Java)

▪ Problem: Alias can be

used to by-pass interface

of data structure

array:

next:

list1

array

class ArrayList {

private int[] array;

private int next;

public void setElems(int[] ia)

{ array = ia; next = ia.length; }

…

}

6.1 Object Structures and Aliasing – Aliasing

14

Peter Müller – Concepts of Object-Oriented Programming

Unintended Aliasing: Leaking

▪ Leaking occurs when

data structure pass a

reference to an object,

which is supposed to be

internal to the outside

▪ Leaking often happens

by mistake

▪ Problem: Alias can be

used to by-pass

interface of data

structure

array:

next:

list1

array

class ArrayList {

private int[] array;

private int next;

public int[] getElems()

{ return array; }

…

}

6.1 Object Structures and Aliasing – Aliasing

15

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing

6.3 Readonly Types

6.4 Ownership Types

6. Object Structures and Aliasing

16

Peter Müller – Concepts of Object-Oriented Programming

Observation

▪ Many well-established techniques of object-

oriented programming work for individual objects,

but not for object structures in the presence of

aliasing

▪ “The big lie of object-oriented programming is that

objects provide encapsulation” [Hogg, 1991]

▪ Examples

- Information hiding and exchanging implementations

- Encapsulation and consistency

6.2 Object Structures and Aliasing – Problems of Aliasing

17

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations

▪ Interface including contract remains unchanged

class ArrayList {

private int[] array;

private int next;

// requires ia != null

// ensures i. 0<=i<ia.length:

// isElem(old(ia[i]))

public void setElems(int[] ia)

{ array = ia; next = ia.length; }

…

}

class ArrayList {

private Entry header;

// requires ia != null

// ensures i. 0<=i<ia.length:

// isElem(old(ia[i]))

public void setElems(int[] ia)

{ … /* create Entry for each

element */ }

…

}

6.2 Object Structures and Aliasing – Problems of Aliasing

18

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

▪ Aliases can be used

to by-pass interface

▪ Observable behavior

is changed!

int foo(ArrayList list) {

int[] ia = new int[3];

list.setElems(ia);

ia[0] = -1;

return list.getFirst();

}

list
3

array

0
0
0

ia

list

Entry

Entry

0

Entry

0

Entry

0

3

array

0
0
0

ia

-1

-1

6.2 Object Structures and Aliasing – Problems of Aliasing

19

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures

▪ Consistency of object

structures depends on

fields of several objects

▪ Invariants are usually

specified as part of the

contract of those objects

that represent the

interface of the object

structure

class ArrayList {

private int[] array;

private int next;

// invariant array != null &&

// 0<=next<=array.length &&

// i.0<=i<next: array[i] >= 0

public void add(int i) { … }

public void setElems(int[] ia)

{ … }

…

}

6.2 Object Structures and Aliasing – Problems of Aliasing

20

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures (cont’d)

▪ Aliases can be used to

violate invariant

▪ Making all fields private is

not sufficient to

encapsulate internal state

int foo(ArrayList list) { // invariant of list holds

int[] ia = new int[3];

list.setElems(ia); // invariant of list holds

ia[0] = -1; // invariant of list violated

}

list

3

array

0
0
0

ia

-1

6.2 Object Structures and Aliasing – Problems of Aliasing

21

System

Security Breach in Java 1.1.1

Class

IdentityIdentity[]

Identity

Identity
Identity[]

class Malicious {

void bad() {

Identity[] s;

Identity trusted = java.Security…;

s = Malicious.class.getSigners();

s[0] = trusted;

/* abuse privilege */

}

}
Identity[] getSigners()

{ return signers; }

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

22

Problem Analysis

▪ Difficult to prevent

- Information hiding:

not applicable to arrays

- Restriction of Identity

objects: not effective

- Secure information flow:

read access permitted

- Run-time checks:

too expensive
System

Class

IdentityIdentity[]

Identity

Identity
Identity[]

▪ Breach caused by unwanted alias
- Leaking of reference

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

23

Peter Müller – Concepts of Object-Oriented Programming

Other Problems with Aliasing

▪ Synchronization in concurrent

programs

- Monitor of each individual object

has to be locked to ensure

mutual exclusion

▪ Distributed programming

- For instance, parameter passing

for remote method invocation

▪ Optimizations

- For instance, object inlining is

not possible for aliased objects

6.2 Object Structures and Aliasing – Problems of Aliasing

24

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Java: LinkedList

▪ All fields are private

▪ Entry is a private inner class of LinkedList

- References are not passed out

- Subclasses cannot manipulate or leak Entry-objects

▪ ListItr is a private inner class of LinkedList

- Interface ListIterator provides controlled access to

ListItr-objects

- ListItr-objects are passed out, but in a controlled fashion

- Subclasses cannot manipulate or leak ListItr-objects

▪ Subclassing is severely restricted

6.2 Object Structures and Aliasing – Problems of Aliasing

25

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Java: String

▪ All fields are private

▪ References to internal

character-array are not

passed out

▪ Subclassing is prohibited

(final)

value:

…:

String

char[]

6.2 Object Structures and Aliasing – Problems of Aliasing

26

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing

6.3 Readonly Types

6.4 Ownership Types

6. Object Structures and Aliasing

27

Peter Müller – Concepts of Object-Oriented Programming

Object Structures Revisited

class Address … {

private String street;

private String city;

public String getStreet() { … }

public void setStreet(String s)

{ … }

public String getCity(){ … }

public void setCity(String s)

{ … }

…

}

addr:

peter

…
street:

city:

home

…

class Person {

private Address addr;

public Address getAddr()

{ return addr.clone(); }

public void setAddr(Address a)

{ addr = a.clone(); }

…

}

6.3 Object Structures and Aliasing – Readonly Types

28

Peter Müller – Concepts of Object-Oriented Programming

Drawbacks of Alias Prevention

▪ Aliases are helpful to

share side-effects

▪ Cloning objects is not

efficient

▪ In many cases, it suffices

to restrict access to

shared objects

▪ Common situation: grant

read access only

addr:

peter

…

street:

city:

home

…addr:

annette

…

prof7:

ETH

…

6.3 Object Structures and Aliasing – Readonly Types

29

Requirements for Readonly Access

▪ Mutable objects

- Some clients can mutate the

object, but others cannot

- Access restrictions apply to

references, not whole objects

▪ Prevent field updates

▪ Prevent calls of mutating

methods

▪ Transitivity

- Access restrictions extend to

references to sub-objects

Peter Müller – Concepts of Object-Oriented Programming

No:

Natel

…

street:

city:

home

…

phone:

addr:

peter

…

prof7:

ETH

…

6.3 Object Structures and Aliasing – Readonly Types

30

Peter Müller – Concepts of Object-Oriented Programming

interface ReadonlyAddress {

public String getStreet();

public String getCity();

}

Readonly Access via Supertypes

▪ Clients use only the methods in the interface

- Object remains mutable

- No field updates

- No mutating method in the interface

class Address

implements ReadonlyAddress … {

… /* as before */ }

class Person {

private Address addr;

public ReadonlyAddress

getAddr()

{ return addr; }

public void setAddr(Address a)

{ addr = a.clone(); }

… }

6.3 Object Structures and Aliasing – Readonly Types

31

Peter Müller – Concepts of Object-Oriented Programming

Limitations of Supertype Solution

▪ Reused classes

might not implement

a readonly interface

- See discussion of

structural subtyping

▪ Interfaces do not

support arrays,

fields, and non-public

methods

6.3 Object Structures and Aliasing – Readonly Types

class Address

implements ReadonlyAddress … {

…

private PhoneNo phone;

public PhoneNo getPhone()

{ return phone; } }

interface ReadonlyAddress {

…

public PhoneNo getPhone();

}

interface ReadonlyAddress {

…

public ReadonlyPhoneNo getPhone();

}

▪ Transitivity has to be encoded explicitly

- Requires sub-objects to implement readonly interface

32

Peter Müller – Concepts of Object-Oriented Programming

Supertype Solution is not Safe

▪ No checks that

methods in readonly

interface are actually

side-effect free

▪ Readwrite aliases can

occur, e.g., through

capturing

▪ Clients can use casts

to get full access

class Person {

private Address addr;

public ReadonlyAddress getAddr()

{ return addr; }

public void setAddr(Address a)

{ addr = a.clone(); }

…

}

void m(Person p) {

ReadonlyAddress ra = p.getAddr();

Address a = (Address) ra;

a.setCity(“Hagen”);

}

6.3 Object Structures and Aliasing – Readonly Types

33

Readonly Access in Eiffel

▪ Better support for fields

- Readonly supertype can contain getters

- Field updates only on “this” object

▪ Command-query separation

- Distinction between mutating and inspector methods

- But queries are not checked to be side-effect free

▪ Other problems as before

- Reused classes, transitivity, arrays, aliasing, downcasts

Peter Müller – Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing – Readonly Types

34

Readonly Access in C++: const Pointers

▪ C++ supports readonly

pointers

- No field updates

- No mutator calls

Peter Müller – Concepts of Object-Oriented Programming

class Address {

string city;

public:

string getCity(void)

{ return city; }

void setCity(string s)

{ city = s; }

};

class Person {

Address* addr;

public:

const Address* getAddr()

{ return addr; }

void setAddr(Address a)

{ /* clone */ }

};C++ C++

void m(Person* p) {

const Address* a = p->getAddr();

a->setCity(“Hagen”);

cout << a->getCity();

} C++Compile-time

error

Compile-time

errors

6.3 Object Structures and Aliasing – Readonly Types

35

Readonly Access in C++: const Functions

▪ const functions must

not modify their receiver

object

Peter Müller – Concepts of Object-Oriented Programming

class Address {

string city;

public:

string getCity(void) const

{ return city; }

void setCity(string s)

{ city = s; }

};

class Person {

Address* addr;

public:

const Address* getAddr()

{ return addr; }

void setAddr(Address a)

{ /* clone */ }

};C++ C++

void m(Person* p) {

const Address* a = p->getAddr();

a->setCity(“Hagen”);

cout << a->getCity();

} C++Compile-time

error
Call of const

function allowed

6.3 Object Structures and Aliasing – Readonly Types

36

It wouldn’t be C++ …

▪ const-ness can be cast

away

- No run-time check

Peter Müller – Concepts of Object-Oriented Programming

class Address {

string city;

public:

string getCity(void) const

{ return city; }

void setCity(string s) const {

Address* me = (Address*) this;

me->city = s;

} };

class Person {

Address* addr;

public:

const Address* getAddr()

{ return addr; }

void setAddr(Address a)

{ /* clone */ }

};

C++ C++

void m(Person* p) {

const Address* a = p->getAddr();

a->setCity(“Hagen”);

}

C++

Call of const

function allowed

6.3 Object Structures and Aliasing – Readonly Types

37

It wouldn’t be C++ … (cont’d)

▪ const-ness can be cast

away

- No run-time check

Peter Müller – Concepts of Object-Oriented Programming

class Address {

string city;

public:

string getCity(void) const

{ return city; }

void setCity(string s)

{ city = s; }

};

class Person {

Address* addr;

public:

const Address* getAddr()

{ return addr; }

void setAddr(Address a)

{ /* clone */ }

};C++ C++

void m(Person* p) {

const Address* a = p->getAddr();

Address* ma = (Address*) a;

ma->setCity(“Hagen”);

} C++

6.3 Object Structures and Aliasing – Readonly Types

38

class Phone {

public:

int number;

};

Readonly Access in C++: Transitivity

▪ const pointers are not

transitive

▪ const-ness of sub-

objects has to be

indicated explicitly

Peter Müller – Concepts of Object-Oriented Programming

class Address {

string city;

Phone* phone;

public:

Phone* getPhone(void) const

{ return phone; }

…

};

C++

C++

void m(Person* p) {

const Address* a = p->getAddr();

Phone* p = a->getPhone();

p->number = 2331…;

}
C++

6.3 Object Structures and Aliasing – Readonly Types

39

Transitivity (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Address {

string city;

Phone* phone;

public:

const Phone* getPhone(void) const {

phone->number = 2331 …;

return phone;

}

…

};
C++

const functions may

modify objects other

than the receiver

6.3 Object Structures and Aliasing – Readonly Types

40

Readonly Access in C++: Discussion

Pros

▪ const pointers provide

readonly pointers to

mutable objects

- Prevent field updates

- Prevent calls of non-

const functions

▪ Work for library classes

▪ Support arrays, fields,

and non-public

methods

Cons

▪ const-ness is not

transitive

▪ const pointers are

unsafe

- Explicit casts

▪ Readwrite aliases can

occur

Peter Müller – Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing – Readonly Types

41

Peter Müller – Concepts of Object-Oriented Programming

Pure Methods

▪ Tag side-effect free

methods as pure

▪ Pure methods

- Must not contain field

update

- Must not invoke non-

pure methods

- Must not create objects

- Can be overridden only

by pure methods

class Address {

private String street;

private String city;

public pure String getStreet()

{ … }

public void setStreet(String s)

{ … }

public pure String getCity()

{ … }

public void setCity(String s)

{ … }

…

}

6.3 Object Structures and Aliasing – Readonly Types

42

Peter Müller – Concepts of Object-Oriented Programming

Types

▪ Each class or interface T

introduces two types

▪ Readwrite type rw T

- Denoted by T in programs

▪ Readonly type ro T

- Denoted by readonly T in

programs

class Person {

private Address addr;

public readonly Address

getAddr() { … }

…

}

class Person {

private Address addr;

public ReadonlyAddress

getAddr() { return addr; }

public void setAddr(Address a)

{ addr = a.clone(); }

… }

6.3 Object Structures and Aliasing – Readonly Types

43

Peter Müller – Concepts of Object-Oriented Programming

Subtype Relation

▪ Subtyping among readwrite

and readonly types is

defined as in Java

- S extends or implements T 

rw S <: rw T

- S extends or implements T 

ro S <: ro T

▪ Readwrite types are

subtypes of corresponding

readonly types

- rw T <: ro T

class T { … }

class S extends T { … }

S rwS = …

T rwT = …

readonly S roS = …

readonly T roT = …

rwT = rwS;

roT = roS;

roT = rwT;

rwT = roT;

6.3 Object Structures and Aliasing – Readonly Types

44

Peter Müller – Concepts of Object-Oriented Programming

class Address {

…

private int[] phone;

public int[] getPhone() { … }

}

Type Rules: Transitive Readonly

▪ Accessing a value of a

readonly type or

through a readonly type

should yield a readonly

value

Person p = …

readonly Address a;

a = p.getAddr();

int[] ph = a.getPhone();

class Person {

private Address addr;

public readonly Address

getAddr() { return addr; }

…

}

6.3 Object Structures and Aliasing – Readonly Types

45

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Transitive Readonly (cont’d)

► rw T ro T

rw S rw T ro T

ro S ro T ro T

Person p = …

readonly Address a;

a = p.getAddr();

int[] ph = a.getPhone();

ro Address rw int[]►

ro int[]

▪ The type of
- A field access

- An array access

- A method invocation

is determined by the
type combinator ►

6.3 Object Structures and Aliasing – Readonly Types

46

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Transitive Readonly (cont’d)

► rw T ro T

rw S rw T ro T

ro S ro T ro T

Person p = …

readonly Address a;

a = p.getAddr();

readonly int[] ph = a.getPhone();

ro Address rw int[]►

ro int[]

▪ The type of
- A field access

- An array access

- A method invocation

is determined by the
type combinator ►

6.3 Object Structures and Aliasing – Readonly Types

47

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Readonly Access

▪ Expressions of readonly

types must not occur as

receiver of

- a field update

- an array update

- an invocation of a non-pure

method

▪ Readonly types must not

be cast to readwrite types

readonly Address roa;

roa.street = “Rämistrasse”;

roa.phone[0] = 41;

roa.setCity(“Hagen”);

readonly Address roa;

Address a = (Address) roa;

6.3 Object Structures and Aliasing – Readonly Types

48

Peter Müller – Concepts of Object-Oriented Programming

Discussion

▪ Readonly types enable safe sharing of objects

▪ Very similar to const pointers in C++, but:

- Transitive

- No casts to readwrite types

- Stricter definition of pure methods

▪ All rules for pure methods and readonly types can

be checked statically by a compiler

▪ Readwrite aliases can still occur, e.g., by capturing

6.3 Object Structures and Aliasing – Readonly Types

49

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing

6.3 Readonly Types

6.4 Ownership Types

6. Object Structures and Aliasing

50

Object Topologies

▪ Read-write aliases

can still occur, e.g.,

by capturing or

leaking

▪ We need to

distinguish “internal”

references from

other references

Peter Müller – Concepts of Object-Oriented Programming

class Person {

private Address addr;

private Company employer;

public readonly Address getAddr()

{ return addr; }

public void setAddr(Address a)

{ addr = a.clone(); }

public Company getEmployer()

{ return employer; }

public void setEmployer(Company c)

{ employer = c; }

…

}

6.4 Object Structures and Aliasing – Ownership Types

51

Peter Müller – Concepts of Object-Oriented Programming

Roles in Object Structures

▪ Interface objects that are

used to access the

structure

▪ Internal representation

of the object structure

- Must not be exposed to

clients

▪ Arguments of the object

structure

- Must not be modified

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Ownership Types

52

Peter Müller – Concepts of Object-Oriented Programming

Ownership Model

▪ Each object has zero

or one owner objects

▪ The set of objects

with the same owner

is called a context

▪ The ownership

relation is acyclic

▪ The heap is

structured into a

forest of ownership

trees

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Ownership Types
Owner of

Entry objects

Context of

objects owned

by list head

Dictionary

53

Peter Müller – Concepts of Object-Oriented Programming

OwnershipTypes

▪ We use types to express
ownership information

▪ peer types for objects in
the same context as this

▪ rep types for
representation objects in
the context owned by this

▪ any types for argument
objects in any context

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Ownership Types

rep

reference

peer

reference

any

reference

54

Example

Peter Müller – Concepts of Object-Oriented Programming

class LinkedList {

private rep Entry header;

…

}

class Entry {

private any Object element;

private peer Entry previous, next;

…

}

6.4 Object Structures and Aliasing – Ownership Types

A list owns

its nodes
Lists store

elements with

arbitrary owners

All nodes have

the same owner

55

Type Safety

▪ Run-time type information consists of

- The class of each object

- The owner of each object

▪ Type invariant: the static ownership information of

an expression e reflects the run-time owner of the

object o referenced by e’s value

- If e has type rep T then o’s owner is this

- If e has type peer T then o’s owner is the owner of this

- If e has type any T then o’s owner is arbitrary

Peter Müller – Concepts of Object-Oriented Programming

An existential

type

6.4 Object Structures and Aliasing – Ownership Types

56

Peter Müller – Concepts of Object-Oriented Programming

Subtyping and Casts

▪ For types with identical

ownership modifier, subtyping

is defined as in Java

- rep S <: rep T

- peer S <: peer T

- any S <: any T

▪ rep types and peer types are

subtypes of corresponding

any types

- rep T <: any T

- peer T <: any T

class T { … }

class S extends T { … }

peer T peerT = …

any T anyT = …

rep S repS = …

rep T repT = …

repT = repS;

anyT = repT;

peerT = (peer T) anyT;

repT = (rep T) anyT;

repT = peerT;

peerT = repT;

repT = anyT;

6.4 Object Structures and Aliasing – Ownership Types

Run-time

error

Run-time

checks

57

Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class LinkedList {

private rep Entry header;

public void add(any Object o) {

rep Entry newE = new rep Entry(o, header, header.previous);

…

}

}

class Entry {

private any Object element;

private peer Entry previous, next;

public Entry(any Object o, peer Entry p, peer Entry n) { … }

}

6.4 Object Structures and Aliasing – Ownership Types

Ownership information

is relative to this

reference (viewpoint)

Ownership information

is relative to this

reference (viewpoint)

58

Viewpoint Adaptation: Example 1

peer ► peer = peer

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

EntryEntry Entry

List

59

Viewpoint Adaptation: Example 2

rep ► peer = rep

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

List

EntryEntry Entry

60

Viewpoint Adaptation

Peter Müller – Concepts of Object-Oriented Programming

► peer T rep T any T

peer S peer T ? any T

rep S rep T ? any T

any S ? ? any T

6.4 Object Structures and Aliasing – Ownership Types

v = e.f;

e.f = v;

(e) ► (f) <: (v)

(v) <: (e) ► (f)

61

Read vs. Write Access

any Address a = joe.addr;

class Person {

public rep Address addr;

public peer Person spouse;

…

}

peer Person joe, jill;

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

joe.spouse = jill;

this

joe

jill

joe.addr = new rep Address();joe.addr = new rep Address();

62

The lost Modifier

▪ Some ownership

relations cannot be

expressed in the type

system

▪ Internal modifier lost for

fixed, but unknown

owner

▪ Reading locations with

lost ownership is allowed

▪ Updating locations with

lost ownership is unsafe

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

any Address a = joe.addr;

class Person {

public rep Address addr;

public peer Person spouse;

…

}

peer Person joe, jill;

joe.spouse = jill;

joe.addr = new rep Address();

lost Address

lost Address

63

The lost Modifier: Details

Peter Müller – Concepts of Object-Oriented Programming

► peer T rep T any T

peer S peer T lost T any T

rep S rep T lost T any T

any S lost T lost T any T

lost S lost T lost T any T

6.4 Object Structures and Aliasing – Ownership Types

▪ Subtyping

- rep T <: lost T

- peer T <: lost T

- lost T <: any T

Another

existential type

64

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Field Access

▪ The field read

is correctly typed if

- e is correctly typed

- (e) ► (f) <: (v)

v = e.f;

▪ The field write

is correctly typed if

- e is correctly typed

- (v) <: (e) ► (f)

- (e) ► (f) does not

have lost modifier

e.f = v;

▪ Analogous rules for method invocations

- Argument passing is analogous to field write

- Result passing is analogous to field read

6.4 Object Structures and Aliasing – Ownership Types

65

The self Modifier

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

class Person {

public rep Address addr;

public peer Person spouse;

…

}

peer Person joe;

this

joe

joe.addr = new rep Address();

this.addr = new rep Address();

▪ Internal modifier self only for the this literal

66

The self Modifier: Details

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

v = e.f;

e.f = v;

(e) ► (f) <: (v)

(v) <: (e) ► (f)

(e) ► (f) does not

have lost modifier
▪ Subtyping

- self T <: peer T

► peer T rep T any T

peer S peer T lost T any T

rep S rep T lost T any T

any S lost T lost T any T

lost S lost T lost T any T

self S peer T rep T any T

67

Example: Sharing

▪ Different Person objects

have different Address

objects

- No unwanted sharing

Peter Müller – Concepts of Object-Oriented Programming

class Person {

public rep Address addr;

…

}

this

joe

6.4 Object Structures and Aliasing – Ownership Types

68

Example: Internal vs. External Objects

Peter Müller – Concepts of Object-Oriented Programming

class Person {

private rep Address addr;

public rep Address getAddr() {

return addr;

}

public void setAddr(rep Address a) {

addr = a;

}

public void setAddr(any Address a) {

addr = new rep Address(a);

}

}

Clients receive a

lost-reference

Cannot be called

by clients

Cloning

necessary

Address is part of

Person’s internal

represenations

6.4 Object Structures and Aliasing – Ownership Types

69

Internal vs. External Objects (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Person {

private any Company employer;

public any Company getEmployer() {

return employer;

}

public void setEmployer(any Company c) {

employer = c;

}

}

Can be called

by clients

Company is shared

between many

Person objects

6.4 Object Structures and Aliasing – Ownership Types

70

Owner-as-Modifier Discipline

▪ Based on the ownership type system we can

strengthen encapsulation with extra restrictions

- Prevent modifications of internal objects

- Treat any and lost as readonly types

- Treat self, peer, and rep as readwrite types

▪ Additional rules enforce owner-as-modifier

- Field write e.f = v is valid only if (e) is self,

peer, or rep

- Method call e.m(…) is valid only if (e) is self,

peer, or rep, or called method is pure

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

71

Owner-as-Modifier Discipline (cont’d)

▪ A method may modify only objects directly or

indirectly owned by the owner of the current this

object

o

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

this

72

Internal vs. External Objects Revisited

Peter Müller – Concepts of Object-Oriented Programming

class Person {

private rep Address addr;

private any Company employer;

public rep Address getAddr() { return addr; }

public void setAddr(any Address a) {

addr = new rep Address(a);

}

public any Company getEmployer() { return employer; }

public void setEmployer(any Company c) { employer = c; }

}

Company is shared;

cannot be modified

Clients receive

(transitive)

readonly reference

Accidental capturing

is prevented

6.4 Object Structures and Aliasing – Ownership Types

73

Peter Müller – Concepts of Object-Oriented Programming

Achievements

▪ rep and any types enable

encapsulation of whole

object structures

▪ Encapsulation cannot be

violated by subclasses,

via casts, etc.

▪ The technique fully

supports subclassing

- In contrast to solutions with

private inner or final

classes, etc.

class ArrayList {

protected rep int[] array;

private int next;

…

}

class MyList extends ArrayList {

public peer int[] leak() {

return array;

}

}

6.4 Object Structures and Aliasing – Ownership Types

74

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations

▪ Interface including contract remains unchanged

class ArrayList {

private int[] array;

private int next;

// requires ia != null

// ensures i. 0<=i<ia.length:

// isElem(old(ia[i]))

public void setElems(int[] ia)

{ array = ia; next = ia.length; }

…

}

class ArrayList {

private Entry header;

// requires ia != null

// ensures i. 0<=i<ia.length:

// isElem(old(ia[i]))

public void setElems(int[] ia)

{ … /* create Entry for each

element */ }

…

}

6.3 Object Structures and Aliasing – Problems of Aliasing

75

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

class ArrayList {

private rep int[] array;

private int next;

// requires ia != null

// ensures i. 0<=i<ia.length:

// isElem(old(ia[i]))

public void

setElems(any int[] ia)

{ System.arraycopy(…);

next = ia.length; }

…

}

class ArrayList {

private rep Entry header;

// requires ia != null

// ensures i. 0<=i<ia.length:

// isElem(old(ia[i]))

public void

setElems(any int[] ia)

{ … /* create Entry for each

element */ }

…

}

6.4 Object Structures and Aliasing – Ownership Types

Accidental capturing

is prevented

76

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

class ArrayList {

private rep int[] array;

private int next;

public any int[] getElems()

{ return array; }

…

}

class ArrayList {

private rep Entry header;

public void any int[] getElems()

{ /* create new array */ }

…

}

6.4 Object Structures and Aliasing – Ownership Types

Leaking is still

possible

peer ArrayList list = new peer ArrayList();

list.prepend(0);

any int[] ia = list.getElems();

list.prepend(1);

assert ia[0] == 1;

▪ Observable

behavior is

changed

77

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures

▪ Consistency of object

structures depends on

fields of several objects

▪ Invariants are usually

specified as part of the

contract of those objects

that represent the

interface of the object

structure

class ArrayList {

private int[] array;

private int next;

// invariant array != null &&

// 0<=next<=array.length &&

// i.0<=i<next: array[i] >= 0

public void add(int i) { … }

public void setElems(int[] ia)

{ … }

…

}

6.3 Object Structures and Aliasing – Problems of Aliasing

78

Peter Müller – Concepts of Object-Oriented Programming

Invariants for Object Structures

▪ The invariant of object o

may depend on

- Encapsulated fields of o

- Fields of objects

(transitively) owned by o

▪ Interface objects have

full control over their

rep-objects

class ArrayList {

private rep int[] array;

private int next;

// invariant array != null &&

// 0<=next<=array.length &&

// i.0<=i<next: array[i] >= 0

public void add(int i) { … }

public void setElems

(any int[] ia) { … }

…

}

6.4 Object Structures and Aliasing – Ownership Types

79

System

Security Breach in Java 1.1.1

Class

IdentityIdentity[]

Identity

Identity
Identity[]

class Malicious {

void bad() {

Identity[] s;

Identity trusted = java.Security…;

s = Malicious.class.getSigners();

s[0] = trusted;

/* abuse privilege */

}

}
Identity[] getSigners()

{ return signers; }

Peter Müller – Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing – Problems of Aliasing

80

System

Security Breach in Java 1.1.1 (cont’d)

Class

IdentityIdentity[]

Identity

Identity
Identity[]

class Malicious {

void bad() {

any Identity[] s;

Identity trusted = java.Security…;

s = Malicious.class.getSigners();

s[0] = trusted;

}

}

rep Identity[] getSigners()

{ return signers; }

Peter Müller – Concepts of Object-Oriented Programming

rep Identity[] signers;

6.4 Object Structures and Aliasing – Ownership Types

81

Peter Müller – Concepts of Object-Oriented Programming

Ownership Types: Discussion

▪ Ownership types express heap topologies and

enforce encapsulation

▪ Owner-as-modifier is helpful to control side effects

- Maintain object invariants

- Prevent unwanted modifications

▪ Other applications also need restrictions of read

access

- Exchange of implementations

- Thread synchronization

6.4 Object Structures and Aliasing – Ownership Types

82

References

▪ Werner Dietl and Peter Müller: Universes: Lightweight

Ownership for JML. Journal of Object Technology, 2005

▪ Werner Dietl, Sophia Drossopoulou, and Peter Müller:

Separating Ownership Topology and Encapsulation with

Generic Universe Types. ACM Trans. Program. Lang. Syst.,

2011

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

