
Concepts of Object-Oriented Programming
AS 2017

Exercise 8
Parametric polymorphism

November 17, 2017

Task 1
Implement a list in Java or C# with two methods:
public void add(int i, Object el)
public Object get(int i)

Implement the list and discuss the advantages and the limitations of the three different ap-
proaches below.

A) Implement the list using only one class without generics.

B) Implement the list using one abstract class/interface and then (some) subclasses that
implement it for different types.

C) Implement the list using generic types.

Task 2
(from a previous exam)

Consider the following Java program, which is rejected by the Java compiler:
class Logger<T> {

public void log(T t) {
System.out.println(t.loggerString());

}
}

A) If the code above were allowed to compile without errors, what could go wrong? To answer,
write a brief code sample that uses Logger in a way which causes a failure at runtime.

B) How can we fix the class Logger so that it compiles, while preserving its functionality? You
should not modify the method log, but otherwise can change or add any code. Your solution
should include all details required to check that Logger is a valid Java class.

C) Assume that class Logger has been fixed to resolve the problem from point A. Let A and
B be two classes such that A is a supertype of B and Logger<A> and Logger<B> are valid
instantiations. Consider the following method:
void foo(Logger<A> logA) {
Logger<B> logB = logA;
logB.log(new B());

}



The Java compiler rejects this code. Is the code safe? That is, if it were allowed to compile,
would it run without failure?

D) Suppose we relax the Java type system rules to allow contravariant generics.

• Will the method foo compile now?

• What are two situations that will require dynamic checks in order to enable contravariant
generics in a language, without limiting what a developer can write in a generic class?

Task 3
Consider the following Scala classes:
class A
class B extends A
class P1[+T]
class P2[T <: A]

What are the possible instantiations of P1 and P2? What is the difference between P1[A]

and P2[A] from the perspective of a client? Provide an example to show which class is more
restrictive.

Task 4
(from a previous exam)

Consider the following Java code:
class Car<T> {

private List<? extends T> passengers;

public Car(List<? extends T> passengers) {
this.passengers = passengers;

}
}

Remember that List<E> in Java contains a method addAll with the following signature:
boolean addAll(Collection<? extends E> c)

Method addAll adds all elements of the given collection c to the receiver list and returns true
if the receiver list was modified.

A) We want to add a method to Car<T> that takes a list of passengers p to board the car.
After the method is executed, the field passengers should refer to a list containing both the
previous elements and the elements of p.
public void board(List<? extends T> p)

The following implementation is rejected by the compiler:
public void board(List<? extends T> p) {

this.passengers.addAll(p);
}

Assume the body of board is exempted from the type checker. Provide code that calls board
and inserts a string into a list of integers. Your code has to type-check.

B) Give a new implementation of board (without modifying its signature) that implements
the expected functionality and type-checks.



C) We now want to add a method to class Car<T> that transfers all passengers from this car
to a given car. Fill in the blank to achieve the least restrictive but correct implementation.
public void transferPassengers(Car<__________> other) {

other.board(this.passengers);
}

Task 5
Consider the following Java method:
public void add(Object value, List<?> list) {

list.add(value);
}

The Java compiler rejects this program, with the following message:

The method add(capture#1-of ?) in the type List<capture#1-of ?> is not
applicable for the arguments (Object)

A) Explain why we obtain such an error.

B) Fix the program by using a generic type for the parameter of method add and constraining
the wildcard appropriately.

C) We can use the following alternative signature for add:

public <V> void add(V value, List<V> list)

Is this solution more restricted than the one obtained using the wildcard?

D) Consider the following methods:

public <V> void addAllX(List<V> v, List<? super V> l) {
for(V el : v) l.add(el);

}
public <V> void addAllY(List<V> v, List<V> l) {

for(V el : v) l.add(el);
}

Method addAllX is less restrictive than addAllY. Provide an example to prove this claim.

Task 6
(from a previous exam)

A) Suppose we have a simple list interface in Java:

public interface List<T> {
public int length();
public T get(int i);
public void add(T element);

}

We want to implement a class that concatenates two lists while inserting a separator of some
type A between the two lists:



public class Concatenator<A> {
public void concatenate(A separator, List<A> from, List<A> to) {

to.add(separator);
for (int i = 0; i < from.length(); i++) {

to.add(from.get(i));
}

}
}

We are unsatisfied with our signature of the concatenate method because it too restrictive. In
the following subtasks, we change the signature of the concatenate method, without changing
its body, while making sure that the body still type-checks and that only instances of subtypes
of A can be passed as separators.

We will try to make the signature less restrictive in the following sense. A signature s1 of
concatenate is less restrictive than another signature s2 if the following holds: for all types
T1, T2, T3, if arguments of static type T1,List<T2>,List<T3> are accepted by s2, they are also
accepted by s1, but the same property does not hold in the opposite direction.

Do not use raw types (e.g. do not use List without a type variable). Do not use more than
one upper bound per generic variable (e.g. do not use X extends A & B).

A.1) Provide the least restrictive signature using wildcards but no additional type parameters.

A.2) Provide a signature that is less restrictive than the original signature, without using
wildcards, but with one extra type parameter to concatenate.

A.3) Provide the least restrictive signature without using wildcards, but using any number of
type parameters to concatenate.

B)Provide the least restrictive signature without using wildcards or additional type parameters.
For this subtask, assume that Java provides variance modifiers known from Scala. Besides
modifying the signature of concatenate, you may add interfaces and let existing interfaces
implement them.

C) In each the following subtasks (C.1-C.3), compare the restrictiveness of the given pair of
signatures from the previous subtasks (A.1-B). If one signature is less restrictive than the other,
provide an example of static types which are accepted by one but not the other signature.

For illustration, you can assume that we have three classes X,Y,Z with X <: Y <: Z, and
we are calling concatenate on a class of type Concatenator<Y>. An example which shows
differing restrictiveness then consists of a triple T1, T2, T3 ∈ {X,Y,Z}, such that arguments of
types T1,List<T2>,List<T3> is accepted by one, but not the other signature.

C.1) Compare solutions A.1 and A.3.

C.2) Compare solutions A.2 and A.3.

C.3) Compare solutions A.1 and B.


