
Concepts of Object-Oriented Programming
AS 2017

Exercise 11
Ownership Types and Non-null Types

December 8, 2017

Task 1
Consider the following method signatures:
peer Object foo(any String el);
peer Object foo(rep String el);
rep Object foo(any String el);
any Object foo(peer String el);
rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other.

Task 2
[From a previous exam]

Consider the following declarations:
class A
{

rep B first;
rep B second;

}
class B
{

any A obj;
peer B sibling;

}

Which of the following programs are allowed in the topological ownership system? For any
program that is accepted in the topological system, is it also accepted in the owner-as-modifier
system? Assume that none of the objects involved are null. Briefly explain each of your
answers.
Program 1 Program 2 Program 3 Program 4
rep B b;
...
b = b.sibling;

peer A a; rep B b;
...
a = b.obj;

any A a;
...
a.first.obj = a;

peer A a;
...
a.first = a.first;

Task 3
Annotate the following program with appropriate ownership type modifiers (according to the
topological ownership system) in order to maximize the buffer, the producer, and the con-
sumer encapsulation. This means that the modifiers you choose should increase the depth of
nested ownership context and reduce the number of (non-rep) edges/pointers between different
contexts.



class Producer {
int[] buf;
int n;
Consumer con;
Producer()
{
buf = new int[10];

}
void produce(int x)
{
buf[n] = x;
n = (n+1)
% buf.length;

}
}

class Consumer {
int[] buf;
int n;
Producer pro;
Consumer(Producer p)
{
buf = p.buf;
pro = p;
p.con = this;

}
int consume()
{
n = (n+1)
% buf.length;
return buf[n];

}
}

class Context {
Producer p;
Consumer c;

Context() {
p = new Producer();
c = new Consumer(p);
}

public void run() {
for(int i=-5; i<=5;

++i) {
p.produce(i);
if(i%2 == 0)
c.consume();

}
}

}

Task 4
Assume the topological ownership framework taught in the course. Suppose that we want to
create a class SortedLinkedList, with the internal invariant that the values stored in the
nodes are sorted in ascending order.
package SortedLinkedList;
public class SortedLinkedList {

private rep Node head;

/// invariant head != null ==> head.sorted()
...

}
private class Node {

protected peer Node next;
protected int value;

/// pure
boolean sorted() {
return next!=null ==> value < next.value && next.sorted()

}
}

Suppose that all the methods in SortedLinkedList are guaranteed to preserve the invariant
of the class.

Furthermore, suppose that we want to create iterators for such lists (defined in the same
package):
public class LinkedListIterator { private any Node current_item; ... }

A) Why is the field current_item annotated as any? What drawbacks would the other
possible annotations have?

B) We would like to have the following features:

(i) the invariant of a SortedLinkedList object is guaranteed to hold in any program, except
when one of its methods executes

(ii) LinkedListIterator is a modifying iterator, i.e., it may change the value of the object
it is pointing to



We can’t have both features. Depending on whether or not we impose the “owners as modifiers”
discipline, we can have either (i) or (ii). Argue why this is the case.

C) The fact that (i) and (ii) cannot both hold together is not surprising. A modifying iterator
can break the invariant of the list it is iterating over. However, the “owners as modifiers”
discipline may disallow harmless designs. Write a benign class (perhaps a restricted modifying
iterator), which would not break the invariant of any object of SortedLinkedList, but still
does not compile under “owners-as modifiers”.

Task 5
[From a previous exam]

The topological ownership system guarantees the following property: If a reference a.f to an
object b is of ownership type rep C, then the object a is the owner of b. Moreover, each object
has at most one owner.

The topological ownership system has a weakness: it does not support ownership transfer, which
is desirable in many situations. Let us try to remedy this situation. Consider the following
incomplete definition of a class T:
class T {
public rep U f, g;
...

}

and the following program P , which, in addition to the field assignments, implicitly also changes
the owner of object e2.g from e2 to e1:
// implicitly: e2.g.owner = e1;
e1.f = e2.g;
e2.g = null;

where e1, e2 are two non-null objects of type T.

A) The code P is not allowed in the topological ownership system. Which rule disallows it?

B) Write a code snippet C, such that executing C;P is guaranteed to break the property
described in the first paragraph of this task, after P has finished executing. Do not rely on any
specific implementation of class U (but you may assume the existence of a constructor without
parameters). You may also add constructors to class T.

Note that:

• you can assume that P is accepted by the compiler.

• all the code that you write must respect the topological ownership system. P is the only
code that breaks the rules.

• you may not use reflection in your solution.

• you may not use P anywhere in the code that you write.

Task 6
The ownership type system allows the following ownership modifiers: peer, rep, self, lost
and any - to structure the object store and to restrict how references can be passed and used. We
want to extend the ownership type system by adding one more modifier down. This modifier
is introduced to denote references to objects in the same context as this or in the context
(transitively) owned by an object in the same context as this.



A) Redraw the subtype relation diagram below to include the newly introduced type of the
universe type system.

any T

lost T

rep Tpeer Tself T

B) Consider the following example:

public class Node{
rep Node c;
down Node d;

public void foo() {
this.d.d = this; // should this line typecheck?
this.c.d = this.d; // should this line typecheck?

}
}

Which of the assignments above should be allowed by the type system? Why?

C) Starting from the example from Task B, define the most specific (in terms of the context
information it conveys) viewpoint adaptation function I by filling the table below (for a com-
bination Te I Tf the modifier Te specifies the row, and the modifier Tf the column of the table
used).

Recall that the viewpoint adaptation function I is used, in particular, to determine the owner
of an object referenced by a field access. More exactly, if the ownership modifier of e is Te and
the ownership modifier of a field f is Tf , then the ownership modifier assigned to the field
access e.f is determined as Te I Tf . Note that this applies to field updates as well as field
reads.
I peer rep any down

self

peer

rep

lost

any

down

D) Assuming that you only need to enforce the topological constraints of the type system, how
should the field update rule from lecture 6 slide 64 be adapted to the system extended with the
down modifier? Do you need to make any changes?

Task 7
[From a previous exam]

This question is about extending the non-null type system to handle arrays (ignoring initializa-
tion). Array types can have two type modifiers, declaring independently the nullity expectations
for the array itself and the array elements. For any array type T[] the corresponding variants



are T?[]?, T?[]!, T![]?, T![]! (the first modifier applies to the type of objects stored in the
array, while the second modifier concerns the reference to the array object itself).

Assuming that we want to guarantee a statically sound approach to subtyping (that is, we
want to enforce safety at compile time, without using runtime checks), explain whether or not
the following subtype relations are safe. For each relation you consider unsafe, provide a code
snippet illustrating that allowing such a subtype relationship would break the safety guarantees
of the type system. For these unsafe cases, explain also what runtime checks could be made to
restore safety.

• T?[]! <: T?[]?

• T![]! <: T![]?

• T![]? <: T?[]?

• T![]! <: T?[]!


