
Concepts of Object-Oriented Programming
AS 2017

Exercise 6
Multiple Inheritance, Multiple Dispatch and Linearization

November 3, 2017

Task 1
(from a previous exam)

Consider the following C++ program:
class X {

public:
X(int p) : fx(p) {}
int fx;

};
class Y {

public:
Y(int p) : fy(p) {}
int fy;

};
class B : public virtual X,public Y {

public:
B(int p) : X(p-1),Y(p-2){}

};
class C : public virtual X,public Y {

public:
C(int p) : X(p+1),Y(p+1){}

};
class D : public B, public C {

public:
D(int p) : X(p-1), B(p-2), C(p+1){}

};

int main() {
D* d = new D(5);
B* b = d;
C* c = d;
std::cout << b->fx << b->fy

<< c->fx << c->fy;
return 0;

}

What is the output of running the program?

(a) 5555

(b) 2177

(c) CORRECT: 4147

(d) 7177

(e) 7777

(f) None of the above

Task 2
Consider the following C++ code:
class Person
{

Person *spouse;
string name;

public:
Person (string n) { name = n; spouse = nullptr; }

bool marry (Person *p)
{

if (p == this) return false;
spouse = p;
if (p) p->spouse = this;
return true;

}

Person *getSpouse () { return spouse; }
string getName () { return name; }

};

The method marry is supposed to ensure that a person cannot marry him-/herself. Without
changing the code above, create a new object that belongs to a subclass of Person and marry
it with itself.

Hint: use multiple inheritance. Explain exactly what happens.

solution

The following C++ code breaks the invariant:
class B : public Person
{ public: B (string n) : Person (n) {} };
class C : public Person
{ public: C (string n) : Person (n) {} };
class D : public B, public C
{ public: D (string n) : B(n), C(n) {} };

void marryMyself ()
{

D me ("Me");
B *b = &me;
C *c = &me;
b->marry (c);
if (b->getSpouse ()) cout << b->getSpouse ()->getName ();

}

The object me contains an object of class B and an object of class C. The addresses of these
objects are different and they are obtained using the assignments to b and c respectively.
During the call b->marry(c), the condition p == this compares these two addresses and
finds them not equal.

Task 3 (from a previous exam)
Consider the following Java classes:

class A {
public void foo (Object o) { System.out.println("A"); }

}

class B {
public void foo (String o) { System.out.println("B"); }

}

class C extends A {
public void foo (String s) { System.out.println("C"); }

}

class D extends B {
public void foo (Object o) { System.out.println("D"); }

}

class Main {
public static void main(String[] args) {

A a = new C(); a.foo("Java");
C c = new C(); c.foo("Java");
B b = new D(); b.foo("Java");
D d = new D(); d.foo("Java");

}
}

What is the output of the execution of the method main in class Main?

(a) The code will print A C B D

(b) CORRECT: The code will print A C B B

(c) The code will print C C B B

(d) The code will print C C B D

(e) None of the above

Task 4
Consider the following C# classes:
public class Matrix {

public virtual Matrix add(Matrix other) {
Console.WriteLine("Matrix/Matrix");
return null;

}
}

public class SparseMatrix : Matrix {
public virtual SparseMatrix add(SparseMatrix other) {

Console.WriteLine("SparseMatrix/SparseMatrix");
return null;

}
}

public class MainClass {
public static void Main(string[] args) {

Matrix m = new Matrix();
Matrix s = new SparseMatrix();
add(m,m);
add(m,s);

add(s,m);
add(s,s);

}

public static Matrix add(Matrix m1, Matrix m2) {
return m1.add(m2);

}
}

A) What is the output of this program? Please explain.

solution

The output is:

Matrix/Matrix
Matrix/Matrix
Matrix/Matrix
Matrix/Matrix

In each case, C# statically chooses a method variant based on the static type of the re-
ceiver. This is only add(Matrix other). Then at run-time, it will call the most-derived
override of this method. However, because C# method arguments are invariant, add(
SparseMatrix other) is not an override and we always end up calling the method from
Matrix.

B)Without breaking modularity, change only the body of MainClass.add to make it possible
to always call the most specific add method from the matrix hierarchy.

solution

We could change MainClass to the following:
public static Matrix add(Matrix m1, Matrix m2)
{

return (m1 as dynamic).add(m2 as dynamic);
}

Now, the initial lookup for a method variant is also done at run-time, based not on the
static, but on the dynamic type of the receiver. Thus in the third and fourth case there
will be a choice between the two different add methods in class SparseMatrix. To also
enable a dynamic look-up of the most-specific method based on the argument types, we
additionally cast the argument as dynamic.

Task 5
Java 8 allows interface methods to have a default implementation directly in the interface.

A) What are some advantages of this feature?

solution

An advantage is obviously that default implementations can be reused in multiple classes.
Another advantage (and the main reason this feature is added to Java) is that default
method implementations will allow interface evolution. Without a default implementation,

adding new methods to an interface would break all existing classes that implement that
interface, since they do not contain an implementation for the new methods. The new
features removes this problem.

B) What could be some problems with this feature? How can they be resolved?

solution

A problem could be inheriting two default implementations of the same method from unre-
lated interfaces. In that case we will have to either choose which implementation we prefer
or write a new implementation that overrides both.

Another issue is that interfaces can now suffer from the fragile base class problem. Compared
to the usual issue with normal Java classes, this is even more dangerous for interfaces with
default methods, since these methods will mostly call other methods of the interface which
are overriden in implementing classes. A very restrictive solution here could be to prohibit
calls to other methods of the interface, within the implementation of default methods.
Alternatively we can “deal” with the problem just like Java deals with the issue in classes -
do nothing and rely on the programmer to be careful.

C) What problems of C++ multiple inheritance are avoided by this new design for Java
interfaces?

solution

We still avoid problems with correct initialization of fields of super types, since only one
super type (the extended class) can have fields, and we can directly call its constructor.
Furthermore there are no problems with field duplication as in non-virtual C++ inheritance.

D) Now suppose that, in addition to method implementations, Java also allowed interfaces
to define fields. Interfaces would not have constructors and interface fields would always be
initialized with a default value.

solution

This makes multiple inheritance in Java very similar to C++.

• What are some advantages of this feature?
solution

An advantage is that we can also reuse fields. This will enable more methods with
default implementations in interfaces which could increase code reuse and reduce the
effort required to create new classes.

• Given the restrictions above, are there any problems left with such an implementation of
multiple inheritance? If so what are they? Propose a solution for each problem you have
identified.

solution

These restrictions are somewhat similar to Scala traits, which also do not have spe-
cialized constructors (only a default constructor). In this way we manage to avoid

problems with initialization order. However a problem that still remains is: how many
copies of a field exist? In particular:

– A class might implement the same interface multiple times (for example by im-
plementing two different interfaces that are a subtype of the same interface). A
solution here might be to only have a single copy of the field (as in C++ virtual
inheritance).

– A class might implement two different interfaces that both declare the same field.
Here we could either restrict interfaces to defining only private fields (which are
invisible to the implementor), or we could require some disambiguation syntax
when accessing fields, similar to C++ or the proposed syntax for disambiguating
conflicting default methods in Java 8.

Task 6
Consider the following declarations in Scala:
class C
trait T extends C
trait U extends C
class D extends C

Find all the types that can be created with or without traits, as well as the subtype relations
between them.

solution

Let X ′, Y ′ be the two base classes from which we derive X and Y by mixing in traits. Let
A be the set of all traits mixed in to the first class and B the set of all traits mixed in to
the second class. The rule is as follows:

X <: Y if and only if X ′ <: Y ′ and A ⊇ B.

Note: The above rule applies in our example, but it is not a general rule for subtyping in the
presence of traits. Notice that D with T with U and D with U with T are equivalent
types (subtypes of each other)! Since, as we saw, they can describe different behavior, this
causes a subtle problem for behavioral subtyping!

Task 7
Consider the following Scala code:
class Cell
{

private var x:int = 0
def get() = { x }
def set(i:int) = { x=i }

}

trait Doubling extends Cell
{

override def set(i:int) = { super.set(2*i) }
}

trait Incrementing extends Cell

{
override def set(i:int) = { super.set(i+1) }

}

A) What is the difference between the following objects?

val a = new Cell
val b = new Cell with Incrementing
val c = new Cell with Incrementing with Doubling
val d = new Cell with Doubling with Incrementing

solution

Object a behaves like a normal cell. Object b is also a cell, but it increases the stored value
by 1. The interesting difference is between c and d. They are both cells. They have mixed
in exactly the same traits. However, calling set(i) has a different effect on them: it stores
2i+1 to the first one and 2(i+1) to the second one.

B) We use the following code to implement a cell that stores the argument of the set method
multiplied by four:
val e = new Cell with Doubling with Doubling

Why doesn’t it work? What does it do? How can we make it work?

solution

Trait Doubling will not get mixed in twice, as perhaps the programmer would expect.
Scala rejects this statically.

The problem can be bypassed in an ugly way, by creating a new trait Doubling2 that
behaves exactly like Doubling and then introducing e = new Cell with Doubling

with Doubling2. Here is our first try:
trait Doubling2 extends Doubling
val e = new Cell with Doubling with Doubling2

The code passes through, but dynamically e behaves as if it were a Cell with Doubling.
Scala lets the code go through, because Doubling2 may introduce new functionalities, but
refuses to include Doubling twice in the linearization.

Our last try, the ugliest of all, but the one which will finally work, is to create a whole new
trait from scratch, reusing nothing:
trait Doubling3 extends Cell
{

override def set(i:int) = { super.set(2*i) }
}
val e = new Cell with Doubling with Doubling3

And now e.set quadruples its argument as expected.

C) Find a modularity problem in the above, or a similar, situation. Hint: a client that gets
given a class C does not necessarily know if a trait T has been mixed in that class.

solution

A problem is that a method that accepts Cell with Doubling with Incrementing as
an argument could also be passed a class of the type Cell with Incrementing with

Doubling - so what it can actually assume about its inputs is less than would be expected.

D) We propose the following solution to support traits together with behavioral subtyping:
Assume C is a class with specification S. Each time we create a new trait T that extends C, we
must ensure that C with T also satisfies S.
Show a counterexample that demonstrates that this approach does not work.

solution

Consider the following example:
class C
{

var x:int;
def foo() = {} //ensures true

}
trait T1 extends C
{

override foo() = { x=x+1 } //ensures x>old(x)
}
trait T2 extends C
{

override foo() = { x=x-1 } //ensures x<old(x)
}

Both C with T1 and C with T2 are behavioral subtypes of C. But C with T1 with T2

is not a behavioral subtype of C with T1.

Task 8
(from a previous exam)

Consider the following Scala code:
class A { def bar() = "" }
trait B extends A { override def bar() = super.bar()+"B" }
trait C extends B { override def bar() = super.bar()+"C" }
trait D extends B { override def bar() = super.bar()+"D" }

object Main {
def main()
{

foo(new A with D with C with B())
}
def foo(x:A with D)
{

println(x.bar())
}

}

What would be the output of the call Main.main()?

(a) BDB

(b) BBDBC

(c) BBCBD

(d) DB

(e) CORRECT: BDC

(f) BCD

(g) None of the above

Task 9 (from a previous exam)
Consider the following C++ code (recall that default constructors, i.e., constructors without
arguments, do not need to be called explicitly in C++):
class A {

public:
A(int i) { std::cout << "A" << i; }
A() { std::cout << "A1"; }
virtual int get() { ... }

};

class B: MODIFIER A {
public:

B(int i) : A(i) { std::cout << "B" << i; }
};

class C: MODIFIER A {
public:

C(int i) : A(i) { std::cout << "C" << i; }
};
class D: public B, public C {

public:
D(int i) : B(i + 10), C(i + 20) { std::cout << "D" << i; }

};

Now assume that MODIFIER is replaced by public.

A) Why does the following client code not compile?

void client()
{

D* d = new D(5);
std::cout << d->get();

}

solution

The call d->get() is ambiguous because class D inherits two versions of A (and therefore
of get()), one from B and one from C.

B) Add a method to one of the classes so that client compiles.

solution

We can resolve the ambiguity by overriding get in class D, for example to return B::get()

or any other integer value. The resulting code looks as follows:
class D: public B, public C {

public:
...

virtual int get() { return B::get(); }
};

C) What is the output resulting from the call new D(5) in method client?

solution

The code outputs “A15 B15 A25 C25 D5” (without whitespace).

D) Now, assume that MODIFIER is replaced by public virtual.

What is the new output resulting from the call new D(5) in method client?

solution

The code outputs “A1 B15 C25 D5” (without whitespace).

