
Concepts of Object-Oriented Programming
AS 2017

Exercise 8
Parametric polymorphism

November 17, 2017

Task 1
Implement a list in Java or C# with two methods:
public void add(int i, Object el)
public Object get(int i)

Implement the list and discuss the advantages and the limitations of the three different ap-
proaches below.

A) Implement the list using only one class without generics.

solution
public class List {

Object[] elements;
public void add(int i, Object el) {elements[i]=el;}
public Object get(int i) {return elements[i];}

}

Advantages: short implementation.

Limitations: the type of the method result of get is Object. When using such a class,
usually we have to dynamically cast the values returned by this method.

B) Implement the list using one abstract class/interface and then (some) subclasses that
implement it for different types.

solution
public interface List {

public void add(int i, Object el);
public Object get(int i);

}

public class IntList implements List {
Integer[] elements;

public void add(int i, Object el) {elements[i]=(Integer) el;}

public Integer get(int i) {return elements[i];}
}

Advantages: method get returns an Integer, thus we do not need dynamic casting of the
values returned by this method.



Limitations: in Java, we have the same limitations as before (if programming against the
interface), and in addition code duplication and further type casts/checks in the implemen-
tation of concrete list classes, e.g. in add. Moreover, we do not have behavioural subtyping,
since method add in IntList may not respect the expected contracts in List (due to the
additional cast). E.g. if we invoked add passing an object that is not an instance of
Integer, the runtime environment would raise an exception and the element would not be
added to our list.

C) Implement the list using generic types.

solution
public class List<T> {

T[] elements;
public void add(int i, T el) {elements[i]=el;}
public T get(int i) {return elements[i];}

}

Advantages: short implementation, statically type safe.

Limitations: none! :) we have only advantages ...

Task 2
(from a previous exam)

Consider the following Java program, which is rejected by the Java compiler:
class Logger<T> {

public void log(T t) {
System.out.println(t.loggerString());

}
}

A) If the code above were allowed to compile without errors, what could go wrong? To answer,
write a brief code sample that uses Logger in a way which causes a failure at runtime.

solution
Logger<Object> l = new Logger<Object>();
l.log(new Object());

B) How can we fix the class Logger so that it compiles, while preserving its functionality? You
should not modify the method log, but otherwise can change or add any code. Your solution
should include all details required to check that Logger is a valid Java class.

solution
interface Loggable {

String loggerString();
}

class Logger<T extends Loggable> { ... }



C) Assume that class Logger has been fixed to resolve the problem from point A. Let A and
B be two classes such that A is a supertype of B and Logger<A> and Logger<B> are valid
instantiations. Consider the following method:
void foo(Logger<A> logA) {
Logger<B> logB = logA;
logB.log(new B());

}

The Java compiler rejects this code. Is the code safe? That is, if it were allowed to compile,
would it run without failure?

solution

Yes, the code is safe.

D) Suppose we relax the Java type system rules to allow contravariant generics.

• Will the method foo compile now?
solution

Yes.

• What are two situations that will require dynamic checks in order to enable contravariant
generics in a language, without limiting what a developer can write in a generic class?

solution

– When calling methods of generic classes, it would be necessary to check whether
the dynamic type of the result is a subtype of the static type of the variable
where the result is stored.

– When reading fields of generic classes, it would be necessary to check whether
the dynamic type of the field is a subtype of the static type of the variable where
the object is stored.

Task 3
Consider the following Scala classes:
class A
class B extends A
class P1[+T]
class P2[T <: A]

What are the possible instantiations of P1 and P2? What is the difference between P1[A]

and P2[A] from the perspective of a client? Provide an example to show which class is more
restrictive.

solution

Class P1 can be instantiated with any type, while P2 has to be instantiated with subtypes
of A.
val x : P1[AnyRef] //correct
val y : P2[AnyRef] //wrong: AnyRef is not a subtype of A

Furthermore, class P1 is covariant in its argument:
val x : P1[A]=new P1[B] //correct
val y : P2[A]=new P2[B] //wrong: found P2[B], required P2[A]



Task 4
(from a previous exam)

Consider the following Java code:
class Car<T> {

private List<? extends T> passengers;

public Car(List<? extends T> passengers) {
this.passengers = passengers;

}
}

Remember that List<E> in Java contains a method addAll with the following signature:
boolean addAll(Collection<? extends E> c)

Method addAll adds all elements of the given collection c to the receiver list and returns true
if the receiver list was modified.

A) We want to add a method to Car<T> that takes a list of passengers p to board the car.
After the method is executed, the field passengers should refer to a list containing both the
previous elements and the elements of p.
public void board(List<? extends T> p)

The following implementation is rejected by the compiler:
public void board(List<? extends T> p) {

this.passengers.addAll(p);
}

Assume the body of board is exempted from the type checker. Provide code that calls board
and inserts a string into a list of integers. Your code has to type-check.

solution
List<Integer> list1 = new LinkedList<>();
Car<Object> car = new Car<>(list1);
List<String> list2 = new LinkedList<>();
list2.add("");
car.board(list2);

B) Give a new implementation of board (without modifying its signature) that implements
the expected functionality and type-checks.

solution
public void board(List<? extends T> passengers) {

List<T> b = new LinkedList<>();
b.addAll(this.passengers);
b.addAll(passengers);
this.passengers = b;

}

C) We now want to add a method to class Car<T> that transfers all passengers from this car
to a given car. Fill in the blank to achieve the least restrictive but correct implementation.



public void transferPassengers(Car<__________> other) {
other.board(this.passengers);

}

solution
? super T

Task 5
Consider the following Java method:
public void add(Object value, List<?> list) {

list.add(value);
}

The Java compiler rejects this program, with the following message:

The method add(capture#1-of ?) in the type List<capture#1-of ?> is not
applicable for the arguments (Object)

A) Explain why we obtain such an error.

solution

We do not have any relation between the wildcard of List, and the types of the values that
we are going to store.

B) Fix the program by using a generic type for the parameter of method add and constraining
the wildcard appropriately.

solution
public <V> void add(V value, List<? super V> list) {

list.add(value);
}

We have to use a lower bound constraint because we want the argument of list.add to
be a supertype of V, otherwise we cannot pass it as a parameter.

C) We can use the following alternative signature for add:
public <V> void add(V value, List<V> list)

Is this solution more restricted than the one obtained using the wildcard?

solution

This method has exactly the same constraints of the ones obtained using a wildcard. In
fact, the type of value can be a subtype of the type parameter of list, since it is a method
argument. In practice, this means that the generic type of list is supertype of the type of
value. For instance, consider the following program.
List<Object> list =...
add("x", list);

This program is accepted because strings are subtype of objects, thus V=Object is inferred
by the type checker.



D) Consider the following methods:

public <V> void addAllX(List<V> v, List<? super V> l) {
for(V el : v) l.add(el);

}
public <V> void addAllY(List<V> v, List<V> l) {

for(V el : v) l.add(el);
}

Method addAllX is less restrictive than addAllY. Provide an example to prove this claim.

solution
List<String> list = new ArrayList();
List<Object> list2 = new ArrayList();
addAllX(list, list2);
addAllY(list, list2);

The call to addAllX is accepted by the compiler, while the one to addAllY is rejected,
since it requires that the parametric type of List is exactly String. This happens because
of invariance on type parameters in Java, so V has to be String, but the generic type of
list2 is Object.

Task 6
(from a previous exam)

A) Suppose we have a simple list interface in Java:

public interface List<T> {
public int length();
public T get(int i);
public void add(T element);

}

We want to implement a class that concatenates two lists while inserting a separator of some
type A between the two lists:
public class Concatenator<A> {

public void concatenate(A separator, List<A> from, List<A> to) {
to.add(separator);
for (int i = 0; i < from.length(); i++) {

to.add(from.get(i));
}

}
}

We are unsatisfied with our signature of the concatenate method because it too restrictive. In
the following subtasks, we change the signature of the concatenate method, without changing
its body, while making sure that the body still type-checks and that only instances of subtypes
of A can be passed as separators.

We will try to make the signature less restrictive in the following sense. A signature s1 of
concatenate is less restrictive than another signature s2 if the following holds: for all types
T1, T2, T3, if arguments of static type T1,List<T2>,List<T3> are accepted by s2, they are also
accepted by s1, but the same property does not hold in the opposite direction.

Do not use raw types (e.g. do not use List without a type variable). Do not use more than
one upper bound per generic variable (e.g. do not use X extends A & B).

A.1) Provide the least restrictive signature using wildcards but no additional type parameters.



solution
public void concatenate(A separator,

List<? extends A> from,
List<? super A> to)

A.2) Provide a signature that is less restrictive than the original signature, without using
wildcards, but with one extra type parameter to concatenate.

solution

Solution 1:
public <B extends A> void concatenate(A separator,

List<B> from,
List<A> to)

or Solution 2:
public <B extends A> void concatenate(B separator,

List<B> from,
List<B> to)

or Solution 3:
public <B extends A> void concatenate(B separator,

List<B> from,
List<A> to)

A.3) Provide the least restrictive signature without using wildcards, but using any number of
type parameters to concatenate.

solution
public <C extends A, B extends C> void concatenate(C separator,

List<B> from,
List<C> to)

B)Provide the least restrictive signature without using wildcards or additional type parameters.
For this subtask, assume that Java provides variance modifiers known from Scala. Besides
modifying the signature of concatenate, you may add interfaces and let existing interfaces
implement them.

solution
public interface GetList<+A> {

public int length();
public A get(int i);

}
public interface AddList<-A> {

public void add(A element);
}
public interface List<A> extends AddList<A>, GetList<A> {

//...
}
public void concatenate(A separator, GetList<A> from, AddList<A> to) {

//...
}



C) In each the following subtasks (C.1-C.3), compare the restrictiveness of the given pair of
signatures from the previous subtasks (A.1-B). If one signature is less restrictive than the other,
provide an example of static types which are accepted by one but not the other signature.

For illustration, you can assume that we have three classes X,Y,Z with X <: Y <: Z, and
we are calling concatenate on a class of type Concatenator<Y>. An example which shows
differing restrictiveness then consists of a triple T1, T2, T3 ∈ {X,Y,Z}, such that arguments of
types T1,List<T2>,List<T3> is accepted by one, but not the other signature.

C.1) Compare solutions A.1 and A.3.

solution

A.3 is incomparable to A.1:

• We can call concatenate(Y, List<X>, List<Z>) in solution A.1, but not in so-
lution A.3.

• We can call concatenate(X, List<X>, List<X>) in solution A.3, but not in so-
lution A.1.

C.2) Compare solutions A.2 and A.3.

solution

• For Solution 1 and 3 in A.2: A.2 is strictly more restrictive than A.3: We can call
concatenate(X, List<X>, List<X>) in solution A.3, but not in solution A.2.

• For Solution 2 in A.2: A.2 is strictly more restrictive than A.3: We can call
concatenate(Y, List<X>, List<Y>) in solution A.3, but not in solution A.2.

C.3) Compare solutions A.1 and B.

solution

A.1 and B have the same restrictiveness.


