Concepts of Object-Oriented Programming

AS 2017
Exercise H
Inheritance
October 27, 2017
Task 1

From a previous exam

Consider the following Java classes:

public class B {
public void foo (B obj) {
System.out.print ("B1 ");
}
public void foo (C obj) {
System.out.print ("B2 ");
}
}

class C extends B {
public void foo (B obij) {
System.out.print ("C1 ");
}
public void foo (C ob7j) {
System.out.print ("C2 ");
}
public static void main(String[] args) {
B ¢ = new C();
B b = new B();
b.foo(c);
c.foo(b);
c.foo(c);

}

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

What is the output of the execution of method main in class C? Explain your answer.

Task 2 Inheritance
From the midterm 201}.

Consider the following class in Java, which represents a fixed-size sequence of integers:

public class Seq {
public Seg(int size) { a = new int[size]
public int getSize(){ return a.length; }
public int getAt (int i) { return ali]; }
public void setAt (int i, int x) { al[i]l=x
public void addTo(int i, int x) { al[i]l+=
public void addToAll (int x) {
for (int i=0;i<a.length;i++)
ali]+=x;

}

.
4

.
X7

}

; } // all initialized to 0

private int([] a;

}

Consider also the following subclass of Seq, which adds a getSum method to Seqg that is
implemented efficiently:
public class SegSum extends Seq {
public SegSum(int size) { super(size); 1}
public int getSum() { return sum; }
public void setAt (int i, int x) {
int newSum=sum+x-getAt (i) ;
super.setAt (i, x);
sum = newsSum;
}
public void addTo(int i, int x) {
int newSum=sum+x;
super.addTo (i, x);
sum = newsum;

}
public void addToAll (int x) {

super.addToAll (x) ;
sum += getSize () xx;

}

private int sum=0;

}

In this question do not use downcasting or reflection. A "client" refers only to clients instanti-
ating the class, not to subclasses.

A) Change the implementation of seq.addToall so that class seq behaves exactly the same
but SegSum.addToAll calculates the wrong sum. Show a client that produces a different
output with the original and modified implementations.

B) Assume the original implementation of both classes. Give an alternative implementation
for seq.setAt and separately for SegSum.addTo so that each change alone leaves both classes
behaving exactly the same, but putting both changes together would break the behavior of at
least one method in class SegqSum. Show a client that observes the change in behavior.

Task 3

A) Compare dynamic type checking with the dynamic keyword to static type inference with
var in C#:

e Give a correct program which can be realized with dynamic but not with var.

e Give an incorrect program which will be accepted by the compiler with dynamic but not
with var.

B) C#’s most general type is object. Similar to var and dynamic, you can write object x
= ... with an expression of any type on the right-hand side.

e Given a compiling program using var. Can we replace all var keywords by object and
add explicit casts in the right places so that the program compiles and runs as before?

e Given a compiling program using dynamic. Can we replace all dynamic keywords by
object and add explicit casts in the right places so that the program compiles and runs
as before?

For both questions, either informally describe how to do the replacement, or give a counter-
example where the transformation will always produce a program that does not compile or
behaves differently. Note that explicit casts to dynamic are not allowed in the transformation.

C) Assume now a language like C#, but with covariant return types and contravariant param-
eter types. Given four classes A, B, C and D:

class A { int m (int x); }

class B { void m (dynamic x); }

class C { dynamic m (int x); }

class D { dynamic m (dynamic x); }

Develop a subtyping rule for the dynamic type annotation and informally explain the reasoning
behind it. What are the potential subtypes among the four classes above?

Task 4

Assume we are working with a Java-like language in which method dispatch is dynamic for
the type of the receiver and static for the type of the arguments. Consider a class Matrix to
implement matrices with integer values. A simple implementation would be to store a (private)
2-dimensional array of integers, and provide methods such as:

void set (int i, int j, int value);

int get(int i, int j);

Matrix add(Matrix m);

Matrix multiply (Matrix m);

A sparse matrix is a matrix which contains mainly zeros. When such matrices are large it can
be that an alternative representation of the matrix, which only stores the locations and values
of non-zero entries, can provide much more efficient implementations for common expensive
operations such as addition and multiplication with other sparse matrices. If a sparse matrix is
to be added or multiplied with a standard matrix, it also is possible to define an implementation
which is more efficient that the standard one (but not as good as for two sparse matrices).

Consider writing a new class SparseMatrix to implement sparse matrices, with the similar
methods available to those for Matrix.

e Is it likely that there will be scope for reusing code from the class Matrix?
e Does it seem that sparseMatrix can (and should?) be a behavioural subtype of Matrix?
e What would be the implications of making SparseMatrix a subclass of Matrix?

e What alternative ways are there of expressing the relationship between the classes?

Task 5

Suppose from now on that SparseMatrix is to be implemented as a subclass of Matrix.
Assume (reasonably!) that the two classes will use different internal representations (fields). If
you sketch a possible implementation, it might help.

e What would happen if client code could access the fields? E.g., suppose entries is the
2-d array field of Matrix, and m is a local Matrix variable, and consider:
4;

m.entries[i] [J] =
= 4) { // crash }

if (m.get (i, J)!

What can go wrong here? To what extent are these problems avoided by making the
fields private?

e What might go wrong (or at least give unexpected behavior) if we do not override all of
the methods of Matrix when writing SparseMatrix?

e What difficulties might occur if we wanted to add extra methods to Mat rix later?

Task 6

Some research languages have symmetric multiple dispatch - methods are defined outside
classes, and dispatch dynamically on all arguments regardless of order (no overloading at all).
There is no designated receiver for a method but rather all arguments are of the same priority
- this is intended to handle binary methods better which are often naturally symmetric. Out
of all methods that are statically in scope for a given invocation, the runtime selects the most
specific method to dispatch according to all arguments, and so there must be a single best
implementation for each possible invocation of a method. The return type is not considered
in the implementation selection. When compiling a package the compiler analyzes all types
used in the package and all methods and makes sure that for each method and argument types
combination there is a single best method to be called - or issues an error if that is not the
case. Assume the following three classes in such a language:

package integer

class Integer

{

}
Integer add(Integer x,Integer y){...}

package natural
import integer.Integer
class Natural extends Integer

{

}

Integer add(Natural x,Integer vy){..
Integer add(Integer x,Natural y){...}
Natural add(Natural x,Natural vy) {

package even
import integer.Integer
class Even extends Integer

{
}

Integer add(Even x,Integer y){...}
Integer add(Integer x,Even yv){...}
Even add (Even x, Even v) | .}

The elipsis in each class body represents (possibly) private data but no other methods.
Each package compiles successfully on its own.

A user has now written the following client:

package client
import even.x
import natural.x

void f (Integer x,Integer y)

{
Integer z = add(x,y);

}

e What would be the problem in allowing this client to compile in a type safe multiple
dispatch language? Show code that would expose the problem.

e Which requirement could we relax so that this call is valid? Dispatch must remain
completely symmetric.

e What could we do in the client package, in order to resolve the problem, without modifying
other packages and without relaxing the requirement mentioned above?

