
Concepts of Object-Oriented Programming
AS 2017

Exercise 12
Initialization

December 15, 2017

Task 1
Consider a Java class Vector, representing a 2 dimensional vector:
public class Vector {

public Number! x; // Remark: Number is a super-interface for
public Number! y; // Integer, Double, etc.

public Vector (Number! x, Number! y) {
this.x = x;
this.y = y;

}
}

Suppose that we add a subclass Vector3D which has a third Number field z and a new method
volume():
public class Vector3D extends Vector {

public Number! z;

double volume() {
return x.doubleValue()*y.doubleValue()*z.doubleValue();

}
}

Which of the following method definitions compile (assuming that the data-flow analysis for
non-null types doesn’t consider the semantics of instanceof)? Which would always run safely
(if compiled without typechecking)? Explain your answers.

A)

double getVolume1(Vector? c) {
if(c instanceof Vector3D) {

return c.volume();
} else { return 0.0; }

}

B)

double getVolume2(Vector? c) {
if(c instanceof Vector3D) {

return ((!) c).volume();
} else { return 0.0; }

}

C)

double getVolume3(Vector? c) {
if(c instanceof Vector3D) {

return ((Vector3D!) c).volume();
} else { return 0.0; }

}

D)

double getVolume4(Vector? c) {
if(c!=null && (c instanceof Vector3D)) {

return c.volume();
} else { return 0.0; }

}

E)

double getVolume5(Vector? c) {
if(c!=null && (c instanceof Vector3D)) {

return ((!) c).volume();
} else { return 0.0; }

}

F)

double getVolume6(Vector? c) {
if(c!=null && (c instanceof Vector3D)) {

return ((Vector3D!) c).volume();
} else { return 0.0; }

}

Task 2
Consider the following abstract class, representing a node of a singly-linked list:
public abstract class ListNode<X> {

public abstract void setItem(X x);
public abstract X getItem();
public abstract ListNode<X> getNext();

}

Consider now the following implementation using a simple (acyclic) list:
public class AcyclicListNode<X> extends ListNode<X> {

protected X item;
protected AcyclicListNode<X> next;

public AcyclicListNode<X> (X item) {
this.item = item;
this.next = null;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public AcyclicListNode<X> getNext() { return next; }

}

In this implementation, suppose that an empty list is represented simply by a null reference.
Suppose that a further design intention of this implementation is that each node is guaranteed
to store an X object in its item field.

A) Annotate the class AcyclicListNode<X> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from the
Construction Types system (free or unc annotations).

B) Now consider an alternative implementation using a cyclic list:

public class CyclicListNode<X> extends ListNode<X> {
protected X item;
protected CyclicListNode<X> next;

public CyclicListNode<X> (X item) {
this.item = item;
this.next = this;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public CyclicListNode<X> getNext() { return next; }

}

In this implementation, the design intention is that every node will always have a next object
in the list (sometimes itself). In this design, we choose to represent an empty list by a single
node whose next field points to itself, but whose item field is null. All non-empty lists will
be represented using only nodes whose item fields are non-null.

Annotate the class CyclicListNode<X> with appropriate non-null type annotations to ex-
press these design intentions as far as possible. You do not need any annotations from the
Construction Types system (free or unc annotations).

C) Now consider how to annotate the method signatures in ListNode<X> so that both im-
plementations can be accommodated. Your solution should be compatible with the usual
co/contra-variance rules for subclass method signatures.

Task 3
[From a previous exam]

Consider these two different implementations of a cyclic list that use the construction type
system taught in the course. The type system rejects both of these implementations:

1 class Node {
2 Node! next; // cyclic
3 Node? copy;
4 int value;
5
6 Node(int x)
7 {
8 next = this;
9 value = x;
10 }
11
12 Node(Node! other)
13 {
14 value = other.value;
15 other.copy = this;
16
17 if(other.next == other)
18 next = this;
19 else
20 next = new Node(other, other.next);
21 }
22
23 Node(Node! first, Node! other)
24 {
25 value = other.value;
26 other.copy = this;
27
28 if(other.next == first)
29 next = other.next.copy;
30 else
31 next = new Node(first, other.next);
32 }
33 }

1 class Node {
2 Node! next; // cyclic
3 Node? original;
4 int value;
5
6 Node(int x)
7 {
8 next = this;
9 value = x;

10 }
11
12 Node(Node! other)
13 {
14 value = other.value;
15 original = other;
16
17 if(other.next == other)
18 next = this;
19 else
20 new Node(this, this, other.next);
21 }
22
23 Node(free Node! first,
24 free Node! prev, Node! other)
25 {
26 value = other.value;
27 original = other;
28 prev.next = this;
29
30 if(other.next == first.original)
31 next = first;
32 else
33 new Node(first, this, other.next);
34 }
35 }

The constructors are used to clone an existing list. In both cases we establish a link between
a node and its clone.

A) Are there lines of code where we are trying to incorrectly assign to a field of a committed
object? If so, in which implementation (left or right) and on which lines?

B) If we allowed these implementations to run, is it possible that a committed object would
become not locally initialized, while a constructor is executing? If so, in which implementation
(left or right) and on which line is there an assignment where this happens?

C) If we allowed these implementations to run, is it possible that a committed object would
become not transitively initialized, while a constructor is executing? If so, in which implemen-
tation (left or right) and on which line is there an assignment where this happens?

D) Without changing the constructor signatures in any way, which two lines of the implemen-
tation on the right can you change and how, so that it typechecks in the construction type
system and achieves the expected result? Write the line numbers and the new content of the
lines.

Task 4
In the Construction Types system, when we read from the field of an expression of committed
type, we obtain a reference of committed type, i.e., if e1 has a committed type then e1.f

has a committed type. Similarly, if e1 has an unclassified type then e1.f has an unclassified
type. However, if e1 has a free type then e1.f does not have a free type, but instead has an
unclassified type. Explain why the alternative choice would be unsound (given the existing
rules of the system), giving an example of what would go wrong.

Task 5
With non-null types, any class type T can be annotated to explicitly declare non-nullity (T!)
and possible-nullity (T?). In the Construction Types system, further variants of these types are
introduced, for “free”, “committed” (the default), and “unclassified” (unc) types. These types
are all treated differently by the type system taught in the lectures.

A) Explain at least one difference between the treatments of a reference of type T! and a
reference of type T? , giving an illustrative example.

B) Explain at least one difference between the treatments of a reference of type free T! and
a reference of type unc T! , giving an illustrative example.

C) Explain at least two differences between the treatments of a reference of type T! (a com-
mitted reference) and a reference of type unc T! , giving illustrative examples.

D) Explain at least three differences between the treatments of a reference of type T! and a
reference of type free T!, giving illustrative examples.

Task 6
(From a previous exam)

Consider the following code in a Java-like language enriched with the non-null types system of
the course:
class Node
{

int depth;
public Node! parent;
public Node! left;
public Node! right;

Node(int d)
{ ... }

...
}

The constructor shown above, when invoked with a positive integer, as in
new Node(d)

must create a complete binary tree (type Node!) of depth d containing exactly 2d+1 − 1 nodes.
The root node has depth 0. The depth field of every node in the constructed tree must be
initialized to the depth of that node in the tree. The parent field of the root node should point
to the root node itself. Similarly the left and right fields of leaf nodes should point to the
leaf nodes themselves.

A) Write the body of the constructor. You may introduce other constructors and methods.
Make sure that you adhere to the rules of the non-null types system including construction
types.

B) Consider the following method:

void foo(unc Node! o)
{

unc Node! x = new Node(2);
free Node! y = new Node(2);
Node! z = new Node(2);
o.right = new Node(2);

}

Which of these assignments would typecheck? Explain.

Task 7
Consider the following Java classes:
public class A {

public static final int value = B.value + 1;
}

public class B {
public static final int value = C.value + 1;

}

public class C {
public static final int value = A.value + 1;

}

A) Will these classes compile? If not, how could we modify them so that they do?

B) What would the output of running the following program be?

public class Program {
public static void main(String[] args) {

System.out.println(A.value);
System.out.println(B.value);
System.out.println(C.value);

}
}

C) In what ways can you change the output of the program by reordering the statements?

