
Concepts of Object-Oriented Programming
AS 2017

Exercise 2
Types and Subtyping

October 6, 2017

Task 1
Show:

• A program that is rejected by a statically typed language but is executed without typing
errors in a dynamically typed language.

• A program that is rejected by a statically typed language and runs into a type error when
executed in a dynamically typed language.

Task 2
Suppose that we have a language with structural subtyping, contravariant parameter types and
covariant return types. Consider the following types:
class A { int m(int x){...}; }
class B { int m(int x){...}; int n(int x) {...}; }
class C { int n(int y){...}; int m(int x) {...}; }
class D { C m(A a) {...}; }
class E { C m(B b) {...}; }
class F { A m(B e) {...}; }
class G { B m(C e) {...}; }
class H { G m(D d, E e) {...}; }
class I { F m(E e, D d) {...}; }
class J { A a; }
class K { B b; }

Find all the subtyping relations among them. Assume that int has no subtype other than
itself.

Task 3
Consider the following Java program:
class B {

protected int get() {...}
}

class A extends B {
private int get() {...}

}

class C extends B {
public int get() {...}

}

When we compile it, we obtain the following error:

get() in A cannot override get() in B; attempting to
assign weaker access privileges; was protected

private int get() {...}
^

Explain why this is the behavior of the Java compiler.

Task 4
In C++ object aliasing is achieved using pointers and it is possible to have a pointer to a
pointer. Here is an example
class X {};

class Initializer {
public:

void init(X** x) {
*x = new X();

}
};

class Value {
private:

X* x = nullptr;
public:

Value(Initializer* i) {
i->init(&x); // The initializer object will set the value of x

}
};

How does the substitution principle apply to values of type pointer to pointer? Is it safe to
call methods that have the signature of init with a value of type pointer to pointer to a
subtype/supertype of X? Why?

Task 5 Union Types (from a previous exam)
Assume a language with nominal subtyping, covariant return types and contravariant param-
eter types that allows types to be defined as a disjunction of other types, as in the following
declarations:
String || Number get();
void set(String || Number newValue);

Such a type is called a union type and the different types that form the disjunction are its
components. Classes can be thought of as union types with just one component.

A type Sub is a subtype of another type Super, i.e. Sub <: Super, if for each component
Csub of Sub there exists a component Csup of Super such that Csub <: Csup. The usual nominal
subtyping rules apply for classes.

A) Consider the signatures of the four methods below, assuming that C <: B <: A (A, B, and
C are regular class types)
m1: B foo (B b)
m2: A foo (A || B ab)
m3: B || C foo (A a)
m4: A || B || C foo (C c)

Your task is to complete the table below. For each row and column, write ’yes’, if the method
at the left of the row could override the method at the top of the column. Otherwise write ’no’.

m1 m2 m3 m4
m1 yes
m2 yes
m3 yes
m4 yes

B) Assume that A, B, and Q are classes such that B <: A and Q is unrelated to A and B.
Consider this code fragment:
void foo(A || Q arg) { arg.bar(42); }

(i) Assume that the type checker admits method foo if all components of arg’s static type
have a method bar(int) which is accessible from foo. Do we need any run-time checks in
order to avoid run-time errors? If so, what are they? Under what conditions could they be
omitted?

(ii) Assume that the type checker admits method foo if at least one component of arg’s static
type has an accessible method bar(int). Do we need any run-time checks in order to avoid
run-time errors? If so, what are they? Under what conditions could they be omitted?

(iii) Answer the questions from (i) and (ii) for the code fragment below.
void foo(A || B arg) { arg.bar(42); }

Task 6
As you have seen in the lectures, arrays are covariant in Java and C#. Because of this, each
array update requires a run-time type check. Another approach would have been to adopt
contravariant arrays. Does this solution require run-time type checks? If this is the case,
explain in which cases you need these run-time type checks and provide an example in which a
check would fail.

