
Concepts of Object-Oriented Programming
AS 2017

Exercise 7
Bytecode Verification

self-study exercise sheet

NOTE: There will not be a regular exercise session on 10th of November, because
you will take the midterm exam. Therefore this exercise sheet will NOT be dis-
cussed in an exercise session. We publish it now together with the solution to allow
you to better prepare for the midterm. If you have any questions regarding this
exercise sheet, please consult your assistant.

Task 1
The method f of class E has the following signature:

void f();

and one local variable v. The maximal stack size is equal to 1.

The method f has the following body:
0: iconst 5
1: istore 1
2: aload 0
3: astore 1
4: iload 1
5: iconst 1
6: iadd
7: istore 1
8: return

Can the provided bytecode be verified? If so then verify it, otherwise explain which line of the
code causes the problem and why.

solution

In the following, we try to verify the bytecode. T is an uninitialized register. A state is
represented by a pair (S,R) where S describes the content of the stack and R describes the
content of the registers.

// ([],[E,T]) -- initial state
iconst 5

// ([int],[E,T])
istore 1

// ([], [E,int])
aload 0

// ([E], [E,int])
astore 1

// ([], [E,E])
iload 1

// ERROR!
...

The error happens because iload 1 expects that the local variable has the type integer,
but its type is E.

Task 2
Consider the following type hierarchy:

A

B

C1 C2

Suppose that the method f of class E has the following signature:
A f(boolean b1, boolean b2);

and there are three local variables x, y, z. It is known that the initial state is:
([], [E,boolean,boolean,C1,C2,A])

The maximal stack size is equal to 1.

The method f has the following body:
0: iload 1
1: ifeq 22
4: iload 2
5: ifeq 12
8: aload 3
9: goto 14
12: aload 4
14: astore 3
15: aload 5
17: astore 4
19: goto 0
22: aload 3
23: areturn

Note: In this example, ifeq x pops an integer from the stack and jumps to line x if the integer
is equal to zero.

A) Verify that the program is type safe.

solution

Here the initial state is ([], [E,b,b,C1,C2,A]). We denote the type boolean as b for
convenience (in reality the Java bytecode verifier views it as an integer).

We show the solution following the convention from Lecture 4, Slide 21. To each command
we dedicate an input and an output column. A command may have multiple inputs and
outputs, corresponding to the different iterations of the algorithm. You may also want to
see an animated solution of this task, published separately.

IN OUT

0 iload 1

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

([b], [E,b,b,C1,C2,A])
([b], [E,b,b,B,A,A])
([b], [E,b,b,A,A,A])

1 ifeq 22

([b], [E,b,b,C1,C2,A])
([b], [E,b,b,B,A,A])
([b], [E,b,b,A,A,A])

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

4 iload 2

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

([b], [E,b,b,C1,C2,A])
([b], [E,b,b,B,A,A])
([b], [E,b,b,A,A,A])

5 ifeq 12

([b], [E,b,b,C1,C2,A])
([b], [E,b,b,B,A,A])
([b], [E,b,b,A,A,A])

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

8 aload 3

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

([C1], [E,b,b,C1,C2,A])
([B], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

9 goto 14

([C1], [E,b,b,C1,C2,A])
([B], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

([C1], [E,b,b,C1,C2,A])
([B], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

12 aload 4

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

([C2], [E,b,b,C1,C2,A])
([A], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

14 astore 3

([C1], [E,b,b,C1,C2,A])
([B], [E,b,b,C1,C2,A])
([B], [E,b,b,B,A,A])
([A], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

-
([], [E,b,b,B,C2,A])
-
([], [E,b,b,A,A,A])
([], [E,b,b,A,A,A])

15 aload 5
([], [E,b,b,B,C2,A])
([], [E,b,b,A,A,A])

([A], [E,b,b,B,C2,A])
([A], [E,b,b,A,A,A])

17 astore 4
([A], [E,b,b,B,C2,A])
([A], [E,b,b,A,A,A])

([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

19 goto 0
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

22 aload 3

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

-
-
([A], [E,b,b,A,A,A])

23 areturn

([C1], [E,b,b,C1,C2,A])
([B], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

-
-
([], [E,b,b,A,A,A])

B) Provide the minimal type information that enables the verification of the bytecode, without
a fixpoint computation.

solution

In the following code, we mark the types that are given by the user, and those inferred by
the type checker.

// given: ([],[E,b,b,A,A,A])
0: iload 1

// ([b], E,b,b,A,A,A])
1: ifeq 22

// ([], [E,b,b,A,A,A])
4: iload 2

// [b], [E,b,b,A,A,A]
5: ifeq 12

// ([], [E,b,b,A,A,A])
8: aload 3

// ([A], [E,b,b,A,A,A])
9: goto 14

// ([], [E,b,b,A,A,A])
12: aload 4

// given: ([A], [E,b,b,A,A,A])
14: astore 3

// ([], [E,b,b,A,A,A])
15: aload 5

// ([A], [E,b,b,A,A,A])
17: astore 4

// ([], [E,b,b,A,A,A])
19: goto 0

// ([], [E,b,b,A,A,A])
22: aload 3

// ([A], [E,b,b,A,A,A])
23: areturn

// ([], [E,b,b,A,A,A])

The requirement to have type information at all basic blocks is a simplification that makes
it easier to determine where the compiler should output the information. Note that some
basic blocks have only a single preceding instruction, but determining this statically could
be hard. Such basic blocks, in theory, do not need type information. Only basic blocks that
are also join points definitely need type information. In our example, the instructions 4, 8,
12 and 22 are indeed the beginnings of basic blocks, but there is exactly one path to enter
these blocks and therefore type information is not really needed since this information will
be identical to the out-state of the single preceding instruction.

Task 3
Consider the following Java code:
interface IFace {

void m();
}
class Cl1 implements IFace {

public void m() { System.out.println("Cl1.m"); }
}
class Cl2 implements IFace {

public void m() { System.out.println("Cl2.m"); }
}
public class Test1 {

public static void main(String[] args) {
foo(true);
foo(false);

}
public static void foo(boolean param) {

IFace iface = null;
if(param) { iface = new Cl1();}
else { iface = new Cl2(); }
iface.m();

}

}

A) What type will be calculated for the variable iface of the method foo during bytecode
verification?

solution

Because the inference algorithm doesn’t take interfaces into consideration, the calculated
type for the variable iface is Object.

B) When can we decide that iface.m() is safe to call, during bytecode verification, or during
execution?

solution

Because the inferred type of the iface is Object, the decision can be made only during
execution.

C) Would your answer from B be the same if IFace were a class instead of an interface? What
if IFace were an abstract class?

solution

In both cases the inferred type of the iface would be IFace. The decision about the safety
of the call could be made during bytecode verification.

Task 4
The bytecode type inference algorithm rejects a verified program if there are different stack
sizes for input values of a join point.

A) Provide a bytecode program that is rejected because of this limitation but that does not
cause runtime errors.

solution
0 : aload 0
1 : iconst 1
2 : ifne 4
3 : aload 0
4 : astore 1

Note: ifne jumps to the given index if the integer value at the top of the stack is not equal
to zero. It pops the value at the top of the stack.

There are two possibilities for the stack size after executing this program. In any of the two
cases, the height of the stack at point 4 is at least 1, and there will be surely a reference
value at the top of the stack.

B) Is it possible to construct a bytecode verification algorithm that avoids this limitation? If
yes, then provide an updated algorithm. If no, then show that it can’t be done.

solution

We distinguish between two different cases.

1. If the stack sizes are statically known we can construct such an algorithm. The update
is as follows: when joining stacks of different sizes, pick the smallest one, but carry as
extra information the size of the largest one to be used when checking for overflow.
Note that if we just picked the smaller one and used that, we would not prevent stack
overflows at runtime.
If we just picked the largest one and made the “extra” values into dummy values by
giving them the “top” type, we might not prevent underflows when using instructions
such as pop().

2. In general it is not possible to implement an algorithm that can deal with stack sizes
which could vary at runtime. For example, if we push elements on top of the stack
in a loop, then the verifier will have no way of deciding what an upper bound for the
size is. Conversely for loops which pop elements from the stack the verifier won’t be
able to deduce a lower bound for the stack size. There situations can easily result in
over/underflows and should be rejected.

C) How serious is this restriction from a pragmatic perspective?

solution

This limitation is not essential. If there are two states {[head1, x], [head2]} where
head1 and head2 are stacks of the same size, then any following code cannot access x and
it would have been possible to remove x already during bytecode generation. This is indeed
what the Java compiler does. Consider the following Java code:
public int bar() { return 42;}
public int foo(int x) {

if (x==0) bar();
return x;

}

If bar is called then it will put 42 on the stack, but this value is not actually needed for
the final return instruction. The Java compiler would emit as many pop instructions
as necessary to remove unneeded stack elements and make sure that all paths that reach
return have the same stack length. Here is the bytecode that corresponds to the foo

method:
0: iload_1
1: ifne 9
4: aload_0
5: invokevirtual bar // Call to bar(), puts an int on the stack
8: pop // Pop the stack to remove the unnecssary int
9: iload_1 // Here we get equal stack sizes from both paths
10: ireturn

Task 5
The Java bytecode verifier is more permissive than the Java type system. Provide a program
that demonstrates this.

solution

Here is an example of such a program:

x=true;
x=5;

The type of the variable can change in the bytecode but not in the source code.

