
Concepts of Object-Oriented Programming
AS 2017

Exercise 5
Inheritance

October 27, 2017

Task 1
From a previous exam

Consider the following Java classes:
public class B {

public void foo(B obj) {
System.out.print("B1 ");

}
public void foo(C obj) {

System.out.print("B2 ");
}

}

class C extends B {
public void foo(B obj) {

System.out.print("C1 ");
}
public void foo(C obj) {

System.out.print("C2 ");
}
public static void main(String[] args) {

B c = new C();
B b = new B();
b.foo(c);
c.foo(b);
c.foo(c);

}
}

What is the output of the execution of method main in class C? Explain your answer.

solution

The code will print B1 C1 C1 - the method definition is resolved in terms of the static
type of the argument, but the dynamic type of the receiver. Note that this means that it is
possible to have two aliases of the same object, and receive different results when passing
them as parameter to a method of the same name (note however that, this is not really
passing them to the same method - it is better to think of method overloads as definitions
of two different methods in the class).

Task 2 Inheritance
From the midterm 2014.

Consider the following class in Java, which represents a fixed-size sequence of integers:

public class Seq {
public Seq(int size) { a = new int[size]; } // all initialized to 0
public int getSize(){ return a.length; }
public int getAt(int i) { return a[i]; }
public void setAt(int i, int x) { a[i]=x; }
public void addTo(int i, int x) { a[i]+=x; }
public void addToAll(int x){

for (int i=0;i<a.length;i++)
a[i]+=x;

}

private int[] a;
}

Consider also the following subclass of Seq, which adds a getSum method to Seq that is
implemented efficiently:
public class SeqSum extends Seq {

public SeqSum(int size) { super(size); }
public int getSum() { return sum; }
public void setAt(int i, int x) {

int newSum=sum+x-getAt(i);
super.setAt(i,x);
sum = newSum;

}
public void addTo(int i, int x) {

int newSum=sum+x;
super.addTo(i,x);
sum = newSum;

}
public void addToAll(int x) {

super.addToAll(x);
sum += getSize()*x;

}

private int sum=0;
}

In this question do not use downcasting or reflection. A "client" refers only to clients instanti-
ating the class, not to subclasses.

A) Change the implementation of Seq.addToAll so that class Seq behaves exactly the same
but SeqSum.addToAll calculates the wrong sum. Show a client that produces a different
output with the original and modified implementations.

solution
public class Seq {

...
public void addToAll(int x) {

for (int i=0;i<a.length;i++)
addTo(i,x);

}
}
public class Client{

public void f() {
SeqSum s = new SeqSum(5);
s.addToAll(1);
assert(s.getSum()==5); //getSum() will return 10

}
}

B) Assume the original implementation of both classes. Give an alternative implementation
for Seq.setAt and separately for SeqSum.addTo so that each change alone leaves both classes
behaving exactly the same, but putting both changes together would break the behavior of at
least one method in class SeqSum. Show a client that observes the change in behavior.

solution
public class Seq {

...
public void setAt(int i, int x) { addTo(i,x-getAt(i)); }

}
public class SeqSum {

...
public void addTo(int i, int x) { setAt(i,x+getAt(i)); }

}
public class Client{

public void f() {
var s = new SeqSum(5);
s.setAt(1,1); //this will recurse until stack overflow

}
}

Task 3

A) Compare dynamic type checking with the dynamic keyword to static type inference with
var in C#:

• Give a correct program which can be realized with dynamic but not with var.
solution
dynamic x;
if (condition()) {

x = 4;
} else {

x = "5";
}

dynamic y = x + x;

• Give an incorrect program which will be accepted by the compiler with dynamic but not
with var.

solution
var x = 3;
x.substring(..);

B) C#’s most general type is object. Similar to var and dynamic, you can write object x

= ... with an expression of any type on the right-hand side.

• Given a compiling program using var. Can we replace all var keywords by object and
add explicit casts in the right places so that the program compiles and runs as before?

solution

This will be possible in all cases where we know what the type of the variable declared

with var is. In those cases we can just cast the declared variable in all places where it is
used to the most general type fulfilling all static type constraints on the corresponding
variable. Since the original program compiled, such a type must exist.

In the case of anonymous types however, we do not know the name of the type to cast
to. Consider:
var x = new { a = 108, b = "Hello" };
Console.WriteLine(x.b);

Here, we could change var to object, but we will not be able to cast x in the second
line, because we do not know the type name which the compiler generates for this
anonymous type.

• Given a compiling program using dynamic. Can we replace all dynamic keywords by
object and add explicit casts in the right places so that the program compiles and runs
as before?

solution

Generally we cannot do this, as shown in the following example:
dynamic x;
if (condition()) {

x = 4;
} else {

x = "5";
}

dynamic y = x + x;

To make this code work with object, we would need to add explicit type checks and
duplicate the addition on the last line.

For both questions, either informally describe how to do the replacement, or give a counter-
example where the transformation will always produce a program that does not compile or
behaves differently. Note that explicit casts to dynamic are not allowed in the transformation.

C) Assume now a language like C#, but with covariant return types and contravariant param-
eter types. Given four classes A, B, C and D:
class A { int m (int x); }
class B { void m (dynamic x); }
class C { dynamic m (int x); }
class D { dynamic m (dynamic x); }

Develop a subtyping rule for the dynamic type annotation and informally explain the reasoning
behind it. What are the potential subtypes among the four classes above?

solution

Following the Substitution principle, dynamic is equivalent to object, in that it accepts
any type. Therefore, the usual subtyping rules apply, treating dynamic as the most general
supertype of all other types. The potential subtyping relations are A <: C and D <: C.

There are two different ways of looking at class B. On the one hand, we could just say that
void is a special keyword that indicates the absence of a return value, and thus the method
B.m is unrelated to the other methods. Alternatively, we can allow methods with void

return type to be overwritten by methods with any return type (assuming the parameter
variance rules are satisfied): if a client code is written to expect void (no return value),
then we could instead use a method which returns an arbitrary value and just discard it.
In this second interpretation we will additionally have D <: B.

Task 4
Assume we are working with a Java-like language in which method dispatch is dynamic for
the type of the receiver and static for the type of the arguments. Consider a class Matrix to
implement matrices with integer values. A simple implementation would be to store a (private)
2-dimensional array of integers, and provide methods such as:
void set(int i, int j, int value);
int get(int i, int j);
Matrix add(Matrix m);
Matrix multiply(Matrix m);

A sparse matrix is a matrix which contains mainly zeros. When such matrices are large it can
be that an alternative representation of the matrix, which only stores the locations and values
of non-zero entries, can provide much more efficient implementations for common expensive
operations such as addition and multiplication with other sparse matrices. If a sparse matrix is
to be added or multiplied with a standard matrix, it also is possible to define an implementation
which is more efficient that the standard one (but not as good as for two sparse matrices).

Consider writing a new class SparseMatrix to implement sparse matrices, with the similar
methods available to those for Matrix.

• Is it likely that there will be scope for reusing code from the class Matrix?
solution

Code reuse is not going to be possible (at least for the primitive operations), since the
two classes will use different internal representations of the data.

• Does it seem that SparseMatrix can (and should?) be a behavioural subtype of Matrix
?

solution

As long as all fields are private, the classes should be indistinguishable in terms of
behaviour (except for operation complexity). However, in order to state that formally,
we would have to write an abstract specification for the matrix class, which does not
refer to any fields.

• What would be the implications of making SparseMatrix a subclass of Matrix?
solution

SparseMatrix would be a subtype of Matrix, so an instance of the former could be
used anywhere where a Matrix is expected. On the other hand, a SparseMatrix

object will inherit a useless copy of the fields used in Matrix - this means an overhead
in memory and initialization time (since by default the superclass constructor will still
be called). This can also lead to subtle bugs.

• What alternative ways are there of expressing the relationship between the classes?

solution

An interface (or abstract class) could alternatively be defined, which both classes
implement (or subclass). This eliminates the redundant overlap between fields used
in the two classes. However, if client code has already been written in terms of the
class Matrix then adding the interface will not avoid any problems for this client code
(this is a good reason to always provide interfaces (or abstract classes in C++) rather
than class definitions, to clients!).

Task 5
Suppose from now on that SparseMatrix is to be implemented as a subclass of Matrix.
Assume (reasonably!) that the two classes will use different internal representations (fields). If
you sketch a possible implementation, it might help.

• What would happen if client code could access the fields? E.g., suppose entries is the
2-d array field of Matrix, and m is a local Matrix variable, and consider:
m.entries[i][j] = 4;
if(m.get(i,j)!= 4) { // crash }

What can go wrong here? To what extent are these problems avoided by making the
fields private?

solution

In the case of the code
m.entries[i][j] = 4;
if(m.get(i,j)!= 4) { // crash }

if m turns out to reference a SparseMatrix object, then because the method call to
get() will be dynamically dispatched, it will refer to the fields used for the internal
representation of SparseMatrix, and not the entries array. Therefore, there is no
reason to expect the if-condition to be false. Making the fields private avoids this
problem arising in client code, but it can still occur in other methods of Matrix if
there is a mixture of direct field accesses and (dynamically dispatched) method calls.

• What might go wrong (or at least give unexpected behavior) if we do not override all of
the methods of Matrix when writing SparseMatrix?

solution

Similarly to the previous part, if we retain any method implementations from the
Matrix class then these are likely to refer to the fields used for internal representation
of the superclass and not the subclass, which are unlikely to contain meaningful values.

• What difficulties might occur if we wanted to add extra methods to Matrix later?
solution

Any extra methods that we add to Matrix will suffer the same difficulty - be-
cause they will typically refer to the entries array, they will not operate correctly
on SparseMatrix objects. The only exception is a method which is implemented
entirely in terms of previously-defined methods (no field accesses).

Task 6
Some research languages have symmetric multiple dispatch - methods are defined outside
classes, and dispatch dynamically on all arguments regardless of order (no overloading at all).
There is no designated receiver for a method but rather all arguments are of the same priority
- this is intended to handle binary methods better which are often naturally symmetric. Out
of all methods that are statically in scope for a given invocation, the runtime selects the most
specific method to dispatch according to all arguments, and so there must be a single best
implementation for each possible invocation of a method. The return type is not considered
in the implementation selection. When compiling a package the compiler analyzes all types
used in the package and all methods and makes sure that for each method and argument types
combination there is a single best method to be called - or issues an error if that is not the
case. Assume the following three classes in such a language:
package integer
class Integer
{

...
}
Integer add(Integer x,Integer y){...}

package natural
import integer.Integer
class Natural extends Integer
{

...
}
Integer add(Natural x,Integer y){...}
Integer add(Integer x,Natural y){...}
Natural add(Natural x,Natural y){...}

package even
import integer.Integer
class Even extends Integer
{

...
}

Integer add(Even x,Integer y){...}
Integer add(Integer x,Even y){...}
Even add(Even x,Even y){...}

The elipsis in each class body represents (possibly) private data but no other methods.

Each package compiles successfully on its own.

A user has now written the following client:
package client
import even.*
import natural.*

void f(Integer x,Integer y)
{

Integer z = add(x,y);
}

• What would be the problem in allowing this client to compile in a type safe multiple
dispatch language? Show code that would expose the problem.

solution

The problem would be that the call add(x,y) could be ambiguous between the meth-
ods add(Even,Integer) and add(Integer,Natural) in the call:
{

Even e;
Natural n;
f(e,n);

}

Both are the most specific implementations but neither is more specific than the other.

• Which requirement could we relax so that this call is valid? Dispatch must remain
completely symmetric.

solution

We could allow the runtime to choose any of the viable methods that is not worse
than another method - thus we would lose the ability to predict which method gets
called, but functionality should conform to at least that of add(Integer,Integer).

• What could we do in the client package, in order to resolve the problem, without modifying
other packages and without relaxing the requirement mentioned above?

solution

The client could define a method add(Even,Natural) (and any other missing meth-
ods) that would resolve the ambiguity.

