
Concepts of Object-Oriented Programming
AS 2017

Exercise 3
Subtyping and Behavioral Subtyping

October 13, 2017

Task 1
In this question, we are in a nominal subtyping setting. Some languages have a special type
MyType that represents the dynamic type of this object.

(a) Consider the following code:
class Point
{

int x,y;
boolean equals(MyType other)
{ return x == other.x && y == other.y; }

}

class ColorPoint extends Point
{

int color;
override boolean equals(MyType other)
{ return super.equals(other) && color == other.color; }

}

This definition requires that the dynamic type of the parameter of equals is a subtype
of the dynamic type of this.

Consider the following definitions that give static types to some variables:
Point p;
ColorPoint cp1, cp2;

and the following calls:
p.equals(cp1) // A
p.equals(cp2) // B
cp1.equals(p) // C
cp2.equals(cp1) // D
cp1.equals(cp2) // E

Assume a sound, statically-checked type system. Which of the calls above must be for-
bidden and which may be allowed? Why?

(b) Answer the same question, assuming that ColorPoint is final, i.e., we may not declare
new classes as its subtypes.

(c) Assume now that the language includes the feature of exact types. An exact type is
written @C where C is a normal type. When we declare that an object o is of type @C,
then o is of type C, but does not belong to any of the other subtypes of C. Assume that
the definitions of our variables are changed as follows:

@Point p;
@ColorPoint cp1;
ColorPoint cp2;

and do not assume that ColorPoint is final. Which calls should be forbidden now?
Why?

Hint. The classes shown here may be subclassed in code that is not available. The type-checker
cannot make the assumption that there are no other class definitions elsewhere.

Task 2
Let SortedArray be a Java class, which has a private field A. The field A must be a sorted
(in increasing order) array of integers with no duplicates. The following method inserts a value
into the array:
void insert (int x)
{

int[] B = new int[A.length + 1];
int i = 0;
while (i < A.length && A[i] < x)
{

B[i] = A[i];
i++;

}
B[i] = x;
while (i < A.length)
{

B[i+1] = A[i];
i++;

}
A = B;

}

Give an appropriate invariant for the class, as well as a precondition and a postcondition for the
method insert. You may use quantifiers (∀,∃) in your annotations. Note that the invariant is
automatically checked at the end of the method body and you do not need to explicitly include
it in the postcondition.

Hint: Consider what happens when the item to be inserted into the array already exists. Do
not change the implementation to avoid this situation.

Task 3
Alice and Bob are two software developers. Alice is writing a small class Cell that stores an
integer. The class supports methods for setting/getting/increasing the integer. Bob is going to
write code that uses the class Cell.

Here are the contracts of the methods (the bodies are omitted):
class Cell {

public int n;
// this field is public for simplicity
// generally this is not a recommended practice

/// requires true
/// ensures n == p
public void set(int p) { ... }

/// requires true
/// ensures result == n
public int get() { ... }

/// requires true
/// ensures n > old(n)
public void inc() { ... }

}

In this exercise we will experiment with modifying the specifications. In particular, if we modify
a specification, this might become:

• more restrictive for a party. For example, a specification that is more restrictive for
Alice might not allow some implementations that were OK with the old specification. A
specification that is more restrictive for Bob might mean that a piece of code that Bob
wrote cannot guarantee something that it had guaranteed before.

• more flexible for a party. If a specification S is more flexible than a specification S ′ for a
party P , then S ′ is more restrictive than S for P .

• it might be the case that the new specification is neither more restrictive nor more flexible
for a party. For example, the new specification makes some previously correct code illegal,
while it also makes some previously illegal code correct.

For example, if we modify the postcondition of get such that:

result == n || result == -n

the specification becomes more flexible for Alice, because she is allowed the, previously illegal,
implementation of get:

return n > 5 ? n : -n;

while, at the same time, it becomes more restrictive for Bob, because the following code

c.set(3); x = c.get();

does not guarantee the postcondition x == 3 anymore.

For each of the following specification changes (subtasks a-d), do the following:

(i) Write formally the new pre/postconditions (not invariants). Only write the pre/postcon-
ditions that change.

(ii) Compare the flexibility of the new specifications to the old ones, from the point of view
of both Alice and Bob.

(iii) Justify your answers for both parties by providing code.

Note that a postcondition should be satisfiable for any valid pre-state. You can assume that
the implementation of the methods do not call each other.

(a) It is only allowed to set n to a strictly positive value.

(b) inc should increase n by exactly one.

(c) inc should increase n by any amount, but it should guarantee that the final value of n is
strictly positive.

(d) inc should increase n by exactly one and should guarantee that the final value of n is
strictly positive. If necessary, add preconditions to ensure that it is possible for Alice to
achieve this goal.

Task 4
(from a previous exam)

Assume we add an otherwise clause to method contracts in Java, which gives a condition
on the state after the method throws an exception. The implementation of the method has
to guarantee that the condition in the otherwise clause is true whenever the method returns
exceptionally (that is, via throwing an exception).

Consider a class with an integer field f and the following Java method and its precondition and
an otherwise-clause (reminder: final parameters cannot be assigned to):
/// requires n > 0
/// otherwise f < 0
void foo(final int n) throws IOException

Assume method foo is overridden in a subclass and that we do not use specification inheritance.
Which of the following functions ...

1. ... override foo correctly based on the variance rules of Java and

2. ... have preconditions and otherwise-clauses that would be allowed if the subclass should
be a behavioral subtype?

For this, decide what kind of relationship between otherwise-clauses of behavioral subtypes
should exist, basing your decision on the substitution principle.

For this exercise, assume FileNotFoundException <: IOException <: Exception and
that there is no integer overflow.
(a) requires n == 0

otherwise f == -1
void foo(final int n) throws FileNotFoundException

(b) requires n > 0
otherwise f * f > 0
void foo(final int n) throws IOException

(c) requires n >= 0
otherwise f < -n
void foo(final int n) throws Exception

(d) requires n != 0
otherwise f == -n
void foo(final int n) throws IOException

(e) None of the above would be allowed

Would your answer be the same if n were not final ?

Task 5
Assume a language with structural subtyping, contravariant arguments, and covariant return
types. Is it possible to create the classes A, B, and C that meet all of the following requirements?

1. B is a structural subtype of A, and C is a structural subtype of B.

2. B is not a behavioral subtype of A.

3. C is a behavioral subtype of both A and B.

4. The signatures of any two methods of A, B, or C should be different. For this exercise
the signature is the combination of return type, method name, and argument order and
types. Note that different signatures do not preclude structural subtyping.

5. The classes do not have any fields.

If it is possible to meet all the above requirements, write the classes A, B, and C.

If it is not possible to meet all the requirements, explain why not. Then pick a requirement
and remove it. Write down the classes A, B, and C that meet the remaining four requirements.

In both cases specify the behavior of the classes using contracts. You do not need to provide
method bodies. You may use existing Java classes in your solution, if you want to.

