Concepts of Object-Oriented Programming E'H

AS 2018 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Fxercise 13
Self-Study Exercise Sheet

NOTE: This exercise sheet will not be discussed in an exercise session. We publish
it now together with the solution to allow you to better prepare for the final exam.
If you have any questions regarding this sheet, please consult your assistant.

Subtyping and Behavioral Subtyping

Task 1

Consider the class x and its only method foo where 22z is placeholder for a class name:

class X {
/// requires x>0 A (=3 1i,7J: int | 2 < i,J < x A ix3j=x)

/// ensures result>0 A result % 2 = 0
int foo(final int x){ return (new Z7Z()).foo(x); }

}

Which of the four classes below could be substituted for zzz such that no contracts will be
violated?

(a) class A {
/// requires x>0
/// ensures result = x+1
int foo(final int x) {...} }

(b) class B {
/// requires true
/// ensures result$%2 = 0
int foo(final int x) {...} }

(c) class C {
/// requires x%2 = 1
/// ensures result = x+1
)

int foo(final int x

(d) class D {
/// requires true
/// ensures result = xx (x+1)
int foo(final int x) {...} }

Inheritance, Dynamic Method Binding, Multiple Inheritance, and Linearization

Task 2

Consider the following Java classes and interfaces:

public interface IA { IA g(IA x); }
public interface IB extends IA { IB g(IA x); IA g(IB x); }
public interface IC extends IA { IC g(IB x); }

class B implements IB
{
public IB g (IA x) {System.out.print ("Bl");return null;}
public IC g(IB x) {System.out.print ("B2");return null;}
}

class C implements IC

{
public IC g(IA x) {System.out.print ("Cl");return null;}
public C g(IB x) {System.out.print ("C2");return null;}

class Main{
public static void main(String[] args) {

B b = new B();
C ¢ = new C();
IA al = b;

IA a2 = c;

IA rl = al.g(a2);

IA r2 = a2.g9(b);
IC r3 = b.g(b);
IA r4 = c.g(a2);

C 5 = c.g(b);
}

What is the output of the execution of the Main.main method? Explain your answer.

Bytecode Verification

Task 3

Assume two Java classes A and B and assume that B is a subclass of A. Consider the following
byte code:

0: aload_1
1: astore_2
2: goto O

and assume that the input to the initial node of this code is ([1, [A, A, B]), where the first list
indicates the contents of the stack and the second list indicates the contents of the registers.

After running the bytecode type inference algorithm, what is the inferred input to the initial
node?

(a) ([1,[A,A,A])

(b [A,RA,B])

¢ [A,B,B])

(
(d) Nothing is inferred — the type inference does not terminate

)
) (
)
)

(e) Nothing is inferred — the type inference rejects the program

Parametric Polymorphism

Task 4

Consider the following Java code:

class Box<T extends Number> ({
private T t;

public void set (T t) { this.t = t; }
public T get () { return t; }
}

class Main {
public static void main (String[] args) {
Box<Number> b = new Box< >();
b.set (new) ;
c = b.get();
System.out.println(c);

}

and recall that Integer <: Number <: Object. How can you fill in the blanks in the Main
.main method so that the code compiles and executes successfully?

Integer, Integer(9), Integer

(a
(

b) Integer, Integer (9), Object

)

)

Oﬁ Number, Integer (9), Integer

(d) Number, Integer (9), Object
)

(e) None of the above

Task 5

This is an extended version of a previous exam question.

Consider the following Java code:

interface Food {}
interface Grass extends Food {}
interface Meat extends Food({}

abstract class Animal<F extends Food> implements Meat {
abstract void eat (F food);
F getLunchBag () { return lunchBag; };
F' lunchBag;

}

final class Sheep extends Animal<Grass>{ void eat (Grass f) {
final class Wolf extends Animal<Meat> { wvoid eat (Meat £) {

Pl
Pl
class Cage { //You are allowed to modify this class

Cage (Animal<?> animal) { this.animal = animal; }

Animal<?> getAnimal () { return animal; }

Animal<?> animal;

class Zoof{
void feedAnimal (Cage cage){ /*code given in each sectionx/ }
<F extends Food>void feed (F food, Animal<F> animal) {animal.eat (food);}

void manage () { /xyour code herex/ }

}

Clearly a Wolf can eat a Sheep but not the other way around. In the following subtasks we
explore if relaxing some of the Java type rules can lead to a situation where a Sheep can eat
a Wolf - that is, the method eat is called on an object of the dynamic type Sheep with an
argument object of the dynamic type Wolf. All the code you give in the answers to the following
sections is in the same package as the code above, and must type check in standard Java. The
top method that is called in all sections is Zoo.manage. You can assume that method call
arguments are evaluated left to right, and that the program is sequential. You are not allowed
to use reflection, raw types, or type-casts.

A) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type checker:

{ feed(cage.getAnimal () .lunchBag, cage.getAnimal ()); }

Make a sheep eat a Wolf assuming the body of feedAanimal is exempted from the type checker.
Show all necessary code. You are only allowed to change the cage class and provide the body
of the zoo.manage method.

B) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type checker:

{feed(cage.animal.getLunchBag (), cage.animal); }

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type
checker? If so, show all necessary code, otherwise explain why not. You are only allowed to
change the Ccage class, provide the body of the zoo.manage method, and add new classes.

C) Answer the question in the previous section, assuming the field Cage.animal is final.
Explain your answer. Reminder: Java’s final fields can be assigned to only in the constructor
of the class that declares them.

D) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type-checker:

{feed(cage.animal.lunchBag, cage.animal) ;}

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type-
checker? If so, show all necessary code, otherwise explain why not.

E) Which of the above cases, that is safe in the sequential case, is unsafe in a multithreaded
program? For each such case, explain what can happen in the multithreaded case that cannot
in the sequential case.

F) The current Java rule for evaluating an expression (including a method call) with wildcard
typed arguments is to capture each wildcard in the arguments separately. Propose a more
lenient wildcard capture rule than current Java, that is typesafe and accept all the above cases
that you deem safe.

Hint: define "stable" paths that cannot be modified by calls.

O J oy Ul w R

NRE R R R ERRP PR R
OWW-Jo U WN F O O

Information Hiding and Encapsulation

Task 6

Suppose that we have a language with the information hiding rules of Java, but with structural
subtyping. What should be the subtyping relations between the following three classes?
class A {int foo();}

class B {protected int foo();}
class C {public int foo();}

Task 7

Consider the class Hour, defined as follows:

public class Hour {
protected int h=0;
/// invariant h>=0 && h<24

public void set (int h) {
if (h>=0 && h<24) this.h=h;
}
}

What is the external interface of Hour?

Can we extend the code, without changing the class, so that the invariant is broken? If yes,
provide an example, and propose how to fix the class.

Task 8 Information Hiding

Consider the following Java program consisting of two packages BTC and B2x:

package BTC;
public class Chain {

/// ensures result <= 2
int max_size () {
return 2;

}

package B2X;
import BTC. *;

public class Chain2x extends Chain {

/// ensures result <= 4
protected int max_size () {
return 4;

}

A) What is the most permissive access modifier for the method max_size () in class Chain such
that class Chain2x is a behavioral subtype of Chain? Assume that we do not use specification
inheritance. Fill the blank above with your answer. Explicitly write default for a default
access modifier. Write none if no choice of access modifier allows Chain2x to be a behavioral
subtype of Chain.

O J oy Ul wRE

S I S N N e A e T e e =
B> WNRPR OWOWO-JO U™ WN - O W

B) We now add a class Block and a subclass Block2x to package BTC:

package BTC;
public class Block {

protected int num;
/// invariant: 1 <= num

public Block (int n) {
num = (n <1 2?2 1 : n);

}
}
public class Block2x extends Block {

/// invariant: 2 <= num
protected Block pred;
/// invariant: pred != null ==> pred.num < num

public Block2x (int n, Block b) {
super (n < 1 ? 2 : 2%n);
pred = (b != null && 2 <= b.num && b.num < num ? b : null);

}

B.1 Do the invariants in Block and Block2x satisfy the requirements of behavioral subtyping?
Assume that we do not use specification inheritance. Briefly explain your answer.

B.2 A class C is correct with respect to its invariants if all constructors of C establish the
invariants of the new object and all exported methods m of C preserve the invariants of the
receiver object, that is, the invariant holds in the poststate of m provided that it held in the
prestate of m. Are classes Block and Block2x correct with respect to their invariants? Briefly
explain your answer.

C) We now want to extend the code in part B with methods that preserve the invariants of the
class in which they are declared but that make it possible to violate the invariants of Block2x
from client code in another package.

C.1 Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the first invariant of class Block2x (i.e.,
2 <= num) from client code in package B2x. Specify in which class you want to declare
the method, write the method, and write the client code that violates the invariant.

C.2 How can you prevent the code that you wrote in part C.1 from violating the invariant by
further extending the code in part B? You are not allowed to modify existing code. Write the
code that fixes the specific problem you exploited in part C.1.

C.3 Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the second invariant of class Block2x (i.e.,
pred != null ==> pred.num < num) from client code in package B2X in a way that cannot
be prevented by further extending the code in part B. Specify in which class you want to
declare the method, write the method, and write the client code that violates the
invariant.

Aliasing, Readonly Types, and Ownership Types

Task 9

Consider the following class definitions in the context of the read-only type system taught in
the course:

class C {
public D f;
void foo (readonly C other) {...}

}
class D { E g; }

class E {}

Let a and b be non-null references of type c. Which of the following statements is true:

(a) The call a.foo (b) is guaranteed not to change the value of b.f, but may change the
value of b.f.g

(b) The call a. foo (b) is guaranteed not to change the value of b. £ and neither the value of
b.f.g

(c) The assignment other.f.g = new E(); may appear in the code of foo

(d) None of the above is correct

Task 10

In the following question we do not consider the owners-as-modifiers discipline. We are only
concerned with the topology of the ownership type system.

Consider the assignment:

o.f = p.g;

and assume that o.f and p.g have the same static type.

A) The assignment is forbidden if o.f has ownership modifier 1ost. Show an example to
demonstrate why we need this rule to preserve the topological invariant.

B) If the ownership modifier of o. f is any, then what are the requirements for the assignment
to be legal?

C) If o. £ has ownership modifier lost can we upcast o.f to an any reference and make the
assignment legal? Why (not)?

Non-null Types and Initialization

Task 11

Consider the following Java code:

public class A {
public static int al;
public static int a2;

static {
al = D.d *= 3;
new B<String>();
new B<Integer>();
a2 = 17 + D.d + al;

}

public class B<T> {
public static int Dbj;
static {
b = A.a2;
A.al += 10;

}

public class C {
static { A.a2 += 100; }
}

public class D extends C { public static int d = A.a2; }

public class Main {
public static void main(String[] args) {

if (1 == 2){
System.out.println(D.d);
}else({

System.out.println(A.a2);
}

}

What is the result of compiling the code and running the Main.main method?

(a) The code does not compile

(b) The program does not terminate or aborts with a stack overflow

The program terminates normally and prints 417

(d

e) The program terminates normally and prints 437

f

)
)
(c) The program terminates normally and prints 127
)
)
) None of the above

(
(

Task 12
Consider a Java class Vector, representing a 2 dimensional vector:

public class Vector ({

public Number x; // Remark: Number is a super—-interface for
public Number y; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y = y;

}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:
public double vectorLength (Vector c) {

double x = c.x.doubleValue () ;

double y = c.y.doubleValue();
return Math.sgrt(x * x + y *x y);

A) This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

B) Add a pre-condition for the method, specifying what is required to be safe.

C) Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary pre-condition?

D) Suppose that you are also allowed to upgrade the class Vector to include reasonable non-
null type annotations. How does this affect your previous answer? Do these changes to the
class seem reasonable?

Task 13

Consider the following three classes (declared in the same package):

public class Person {
Dog? dog; // people might have a dog

public Person () { }
}

public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(Person owner, String breed) ({
this.owner = owner;
this.bone = new Bone (this);
this.breed = breed;

}

public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone (Dog toOwn) {
this.dog = toOwn;
}

A) Annotate the code with non-null and construction type annotations where they are necessary.
Explain why the code now type-checks according to construction types.

B) Could we provide constructors for classes Dog and Bone with no parameters?

C) Now, suppose a (possibly mad) scientist wants to extend the implementations of these
classes with some genetic engineering. Firstly, we want to be able to “clone” a bone. We can
add the following method to class Bone to make a copy of an existing bone, and assign it to
another Dog:

public Bone clone (Dog toOwn) {
return new Bone (toOwn) ;

}

However, our scientist would like to go further, and be able to clone dogs. A cloned Dog should
also have its bone cloned along with it, but may be assigned to a new owner: we add the
following extra constructor and method to class Dog:

Dog (Dog toClone, Person newOwner) {

this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone (this);

}

public Dog clone (Person toOwn) {
return new Dog(this, toOwn);

}

However, our scientist would like to go still further, and be able to clone people. A cloned
Person should also have its dog (if any) cloned along with it: we add the following extra
constructor and method to class Person:
Person (Person toClone) {

Dog? d = toClone.dog;

if (d!=null) {

this.dog = new Dog(d, this);

}

}

public Person clone() {
return new Person (this);

}

Annotate this extra code with appropriate non-null and construction types annotations. You
should guarantee that each of the clone methods (which belong to the public interface) return
a committed reference. You should ensure that your answers guarantee that all of the code
type-checks - explain your choices.

Hint: think carefully about how constructor calls are typed, and what happens if the construc-
tors are called in more than one situation.

Reflection

Task 14
Which of the following is the defining characteristic of reflection?

(a) It allows for much simpler code
It enables more flexibility

It allows a program to observe and modify its own structure and behavior

It may hurt performance

)
)
d) It is not statically safe
)
) None of the above

Task 15

Consider the following Java code:

void foo () throws java.lang.Exception {
LinkedList<String> xs = new LinkedList<String>();
xs.add("A"); xs.add("B"); xs.add("Cc");

Class<?> c = xs.getClass();
Method remove = c.getMethod ("remove");
xs.add (remove.invoke (xs)) ;
}
which uses the following methods of class LinkedList<E>
public E remove ()
public boolean add(E e)
Which of the following statements is true? The invocation of ...

(a) c.getMethod ("remove") is rejected by the compiler
(b) c.getMethod ("remove™) raises an exception (at run time)
(c) remove.invoke (xs) is rejected by the compiler
(d) remove.invoke (xs) raises an exception (at run time)
) xs.add(...) is rejected by the compiler

)

(e
(f

xs.add (...) raises an exception (at run time)

