
Concepts of Object-Oriented Programming
AS 2018

Exercise 9
Parametric Polymorphism and Information Hiding

November 23, 2018

Task 1
Consider the following Java method:
String concatenate(List<?> list) {

String result="";
String separator="";
if(list instanceof List<String>) {

result="String:";
separator=" ";

}
else if(list instanceof List<Integer>) {

result="Integers:";
separator="+";

}
for(Object el : list)

result=result+separator+el.toString();
return result;

}

A) This program is rejected by the Java compiler. Why?

solution

The Oracle and the Open JDK compilers both produce these short errors:

illegal generic type for instanceof
illegal generic type for instanceof

The Eclipse compiler tries to be more helpful:

Cannot perform instanceof check against parameterized type
List<String>. Use the form List<?> instead since further
generic type information will be erased at runtime

Cannot perform instanceof check against parameterized type
List<Integer>. Use the form List<?> instead since further
generic type information will be erased at runtime

This happens because of type erasure in Java.

B) Using the advice given by the Eclipse Java compiler (replace List<...> with List<?>),
rewrite and compile the program. What are the results of executing the method passing each
of the following:

• A list of strings containing only one element "word"?

• A list of Integers containing only one element Integer(1)?

• A list of Objects containing only one element (initialized by new Object())?

solution

First of all, we follow the output of the compiler, and so we rewrite the method to:
String concatenate(List<?> list) {

String result="";
String separator="";
if(list instanceof List<?>) {

result="String:";
separator=" ";

}
else if(list instanceof List<?>) {

result="Integers:";
separator="+";

}
for(Object el : list)

result=result+separator+el.toString();
return result;

}

The Java compiler will compile this program without any warning. The output of the
method is obviously:

String: word
String: 1
String: java.lang.Object@3e25a5

C) Is this behaviour consistent with what you would expect from the initial program? If not,
how can you fix it?

solution

No, in the original program we expected:

String: word
Integers:+1
java.lang.Object@3e25a5

We can fix it in the following way:
String concatenate(List<?> list) {

String result="";
String separator="";
if(list.size() >= 1)

if(list.get(0) instanceof String) {
result="Strings:";
separator=" ";

}
else if(list.get(0) instanceof Integer) {

result="Integers:";
separator="+";

}
for(Object el : list)

result=result+separator+el.toString();
return result;

}

But this requires to have at least one element in the list. Moreover, there is no guarantee
that if the first element is, for example, a string, that this is not a list of Objects.

D) What would happen if you tried to implement the different cases using method overloading
instead of just one method. Why is this the case?

solution

If we introduce separate methods which differ only by the generic types of their arguments,
we get compile-time errors such as:

Method concatenate(List<? extends Object>) has the same
erasure concatenate(List<E>) as another method in type C

This restriction is imposed to ensure that when choosing which of the overloaded method
definitions to call, we always have a “best fit”. Java class files do however include generic ver-
sions of the method signatures in the class (to enable separate compilation and type-checking
of generic code). For this reason, it might seem surprising that we cannot disambiguate
between these different overloaded methods, since at compile-time the type information is
all available. However, Java also supports raw types - versions of generic classes in which
no type parameter is provided (e.g., List for a List<X> class). These are supported for
backwards compatibility with pre-generics Java code. For this reason, we need to consider
the possibility that a client calling our method provides an argument of raw type List. In
this case, we would not be able to choose between our different method overloads.

E) What happens if you compile and execute the initial program in C# ? Why?

Assume that we replace the wildcard by a method type parameter T to make it work in C#.

solution

The program is compiled and we obtain the expected results (“String: word”, “Integers:+1”,
“...”), since in C# there is no type erasure and the information about generics is preserved
at runtime.

Task 2
A C++ template class can inherit from its template argument:
template <typename T>
class SomeClass : public T { ... }

A) Using this technique and given the following class definition

class Cell {
public:

virtual void setVal(int x) { x_ = x; }
virtual int value() { return x_; }

private:
int x_;

}

write two template classes that can be used as “mixins” for class Cell

• Doubling - doubles the value stored in the cell.

• Counting - counts the number of times the value of the cell was read.

Do not use multiple inheritance. It should be possible to use the classes like this:
auto c = new Doubling<Counting<Cell>>(); // instantiation
c->setVal(5);
c->value(); // returns 10
c->numRead(); // returns 1

solution
template <typename T>
class Doubling : public T {
public:

virtual void setVal(int x) override {
T::setVal(x * 2);

}
}

template <typename T>
class Counting : public T {
public:

virtual int value() override {
++numRead_;
return T::value();

}
int numRead() { return numRead_; }

private:
int numRead_;

}

B) Describe how the instantiation above will look like.

solution

When the mix-ins are instantiated the following two classes will be generated:
class CountingCell : public Cell {
public:

virtual int value() override {
++numRead_;
return Cell::value();

}
int numRead() { return numRead_; }

private:
int numRead_;

}

class DoublingCountingCell
: public CountingCell {

public:
virtual void setVal(int x) override {

CountingCell::setVal(x * 2);

}
}

C) How does this concept of mixins in C++ differ from Scala traits?

solution

While this concept is similar to Scala traits there are some notable differences. In Scala it
is possible to mix any number of traits in a class and use this in any location of the code
that requires the same class and a subset of the traits:
var x = new X with A with B with C with D
var x1: (X) = x // OK
var x2: (X with A) = x // OK
var x3: (X with B) = x // OK
var x4: (X with A with D with C) = x // OK

Using the proposed solution in C++ however is more restrictive, as there is no way to refer
to the class X with arbitrary mix-ins:
auto x = new D<C<B<A<X>>>>();
X* x1 = x; // OK
A<X>* x2 = x; // OK
B<X>* x3 = x; // Does not compile
C<D<A<X>>>* x4 = x; // Does not compile

This is particularly important for traits that introduce new methods like Counting.

numRead() since any client code that uses this new behavior would have to know exactly
how the trait was mixed-in.

Another problem of the C++ solution is object construction. If the base class does not
have a default constructor then the mix-ins should know to call the correct constructor and
provide appropriate parameters. An alternative here is for the mixin to just inherit the base
class constructors: using T::T; which will allow clients of the mixin to use all constructor
available in the base class. This works fine if the state of the mixin can be initialized with
default values.

A further difference to Scala is that in the C++ solution it is possible to include the same
“trait” more than once:
auto x = new Doubling<Doubling<X>>();
x->setVal(5);
x->value(); // returns 20

An advantage of the C++ solution is that we do not need to declare the base class that
the mix-ins extend. Thus it is possible to use them with different base classes as long they
have matching virtual methods.

Task 3
Suppose that the following Java classes are part of a package, to which an external user cannot
add classes.

public abstract class BankAccount {
... boolean importantCustomer=false;
... int amount=0;
... final int maxDebit=1000;

/// invariant amount >= -maxDebit &&
/// !importantCustomer => amount>=0 &&
/// importantCustomer <=> this instanceof RichCustomer

... void deposit(int amount);

... void withdraw(int amount);
}

public final class PoorCustomer extends BankAccount {
... void deposit(int amount) {

if(amount>=0)
this.amount+=amount;

}
... void withdraw(int amount) {

if(amount<=this.amount)
this.amount-=amount;

}
}

public final class RichCustomer extends BankAccount {
public RichCustomer() {importantCustomer=true;}
... void deposit(int amount) {

if(this.amount+amount >= -maxDebit)
this.amount+=amount;

}
... void withdraw(int amount) {

if(-maxDebit<=this.amount-amount)
this.amount-=amount;

}
}

Provide the most permissive access modifiers for each field and method, such that the class
invariant cannot be broken from outside the package. Assume that no integer over/underflow
occurs.

solution

For the fields of class BankAccount, the most permissive access modifiers are:

importantCustomer: default modifier. In this way, it would be accessible by other classes
in the same package but not by subclasses. Otherwise, we may have a class that extends
BankAccount and sets to true importantCustomer without being a RichCustomer.

maxDebit: public, since it is final and it cannot be modified by other classes.

amount: default, since we need to access it from the other classes of this package (e.g.
PoorCustomer and RichCustomer), but we must prevent external attackers from modify-
ing it.

Methods withdraw and deposit can be declared public, since they preserve the invariants.

In Scala, a class can be declared as sealed. That means that the class can be extended only
by classes written in the same .scala file. Suppose that the class BankAccount is declared
as sealed, and PoorCustomer and RichCustomer are part of the same .scala file. Does this
allow you to choose more permissive access modifiers?

solution

If class BankAccount had been declared as sealed, we could choose protected as the access
modifier of the amount and importantCustomer fields, since external classes would not be

allowed to extend it and so would not be able to gain access to these fields. More generally,
if a class is sealed, the default and protected levels are equivalent, since it is not possible to
extend the current class outside the current package.

Task 4
From a previous exam

Consider the following Java program consisting of two packages:
1 package A;
2
3 public abstract class Person {
4 _______ int tickets = 0;
5 _______ final int maxTickets = 3;
6
7 /// invariant 0 <= tickets <= maxTickets
8
9 _______ abstract void buy(int t);
10 }
11
12 public class Buyer extends Person {
13 _______ void inc(int t) {
14 if (this.tickets+t <= this.maxTickets) this.tickets += t;
15 }
16 _______ void buy(int t) { if (t >= 0) inc(t); }
17 }
18
19
20
21 package B;
22 import A.*;
23
24 public class SmartBuyer extends Buyer {
25 _______ void inc(int t) { this.tickets += t; }
26 }
27
28 public class Main {
29 public static void main(String args[]) {
30 Buyer b = new SmartBuyer();
31 b.buy(9);
32 }
33 }

A) Provide the most restrictive access modifiers for the fields tickets and maxTickets and
the methods inc() and buy() such that the program is still accepted by the compiler.

solution

The field tickets must be protected (since we need to access it from the class
SmartBuyer which belongs to another package). The field maxTickets must have a
default access modifier (because we need to access it from the class Buyer which be-
longs to the same package). The method inc() can be declared private in both Buyer

and SmartBuyer. The method buy() in class Person must have a default access modi-
fier (because abstract methods cannot be private), while the method buy() in class Buyer
must be public (because we need to access it from the class Main which belongs to another
package and is not a subclass of Buyer).

B) With respect to the access modifiers that you provided in part A, add code to the class
SmartBuyer such that the execution of the main() method of the class Main breaks the
invariant of the class Person.

solution

One possible solution consists in overriding the method buy() in SmartBuyer as follows:
public void buy(int t) { inc(t); }

Alternatively, the implementation of the new buy() method can also directly modify this

.tickets in a way that breaks the invariant.

Task 5
Consider the following Java code:
package p;

public final class List {
///invariant 1: The list starting at head is acyclic
///invariant 2: The list starting at head is non-decreasing

public void prepend(int x){
if (head==null || x <= head.getValue())

head = new Node(x,head);
}

public Node getHead(){ return head; }
public Node head = null;

}

public final class Node {
Node(int x, Node n) {

value = x;
next = n;

}

public Node getNext(){ return next; }
public int getValue(){ return value; }
private Node next;
private int value;

}

Assuming that we cannot modify the classes List and Node, we would like to see whether or
not the invariants can be broken, either by adding classes to package p, or by clients outside of
package p. Assume reflection is not used at all.

A) Can invariant 1 be broken by adding clients outside of package p? If yes, show code, that
when run ends in a state in which the invariant is broken; if not explain why.

solution

Invariant 1 cannot be broken by clients outside p because the field Node.next is private
and can only be set in the constructor to an argument of the constructor, which must point
to an already existing list that does not include the object currently being created.

B) Can invariant 1 be broken by adding classes to package p? If yes, show code, that when
run ends in a state in which the invariant is broken; if not explain why.

solution

Invariant 1 cannot be broken from inside p for the same reasons as above.

C) Can invariant 2 be broken by adding clients outside of package p? If yes, show code, that
when run ends in a state in which the invariant is broken; if not explain why.

solution

Invariant 2 cannot be broken from outside p because:
The invariant depends only on the fields Node.next, Node.value, and List.head.
Both Node fields are only written to in the constructor of Node and cannot be modified
later as they are private.
The constructor of Node is of package access and so cannot be called directly by the client.
The only public method that calls it is List.prepend, which ensures invariant 2 - hence
no decreasing list of nodes (whether or not attached to a List) can be created by clients of
the package. So, although we can assign List.head any value, we cannot obtain a value
(a Node) that would break the invariant.

D) Can invariant 2 be broken by adding classes to package p? If yes, show code, that when
run ends in a state in which the invariant is broken; if not explain why.

solution

Invariant 2 can be broken as follows (all code inside p):

class Client{
void client(){

List l = new List();
l.prepend(0);
Node n = new Node(1,l.getHead());
l.head = n;

}
}

Task 6
Consider the following Java code:
public class Hour {

public int h=0;
}

public class Time {
private Hour hour=new Hour();
private int m=0;
/// invariant hour.h>=0 && hour.h<24

public void setHour(int h) {
if(h>=0 && h<24) this.hour.h=h;

}

public Hour getHour() {return hour;}
}

A) Provide an example that breaks the invariant of Time without changing the code above
and without using reflection.

solution

We can easily break the invariants through alias leaking. For instance, the following code
breaks the invariant of class Time:
Time t=new Time();
Hour h=t.getHour();
h.h=-1;

B) There are two immediate ways to fix the problem. In one of them, signatures of methods
are modified, while in the other they are not. What are these ways of fixing the problem?

solution

We can fix this in two ways. We have to avoid the alias leaking. We can reach this goal
returning an integer value instead of an object, or a copy of the Hour object stored in the
current Time object.
public int getHour() {return hour.h;}
public Hour getHour() {return (Hour) hour.clone();}

In general, it is simpler for reasoning, if possible, to return only primitive values, or to avoid
exposing aliases of the local state of the object, by instead returning copies of the stored
objects. In this way, we can avoid alias leaking, thus no external code can modify the values
contained in the current object.

C)Clearly, we would prefer to keep the signatures the same as before. Are there any drawbacks
to this approach?

solution

The drawback of the second approach is that we are creating a new object and thus are
using more memory. Additionally, client code that uses reference equality to check if the
Hour object returned by getHour() is equal to another Hour object breaks if getHour()
returns a new object on every call.

D) Would it be possible to introduce an interface with no mutator methods and use it to solve
the problem? Explain how this approach would look and whether there would still be a way to
break the invariant.

solution

We could hide the h field of Hour by making Hour implement an interface IMHour that has
no mutator methods. Time.getHour() could then return this interface.

The client could still downcast from IMHour to Hour and break the invariant but aside from
that the invariant is protected. This could be prevented by making Hour a private inner
class of IMHour.

Task 7
Consider the following Java programs:

Program 1 Program 2 Program 3 Program 4
package A1;
public class X {
int x;

}

package A1;
public class X {
protected int x;

}

package A1;
public class X {
private int x;
}

package A1;
public class X {
protected int x;
}

package A2;
import A1.X;
class Y extends X
{

int f(X v) {
return v.x;

}
}

package A2;
import A1.X;
class Y extends X
{

int f(X v) {
return v.x;

}
}

package A2;
import A1.X;
class Y extends X
{

int f(X v) {
return v.x;

}
}

package A2;
import A1.X;
class Y extends X
{

int f() {
return this.x;
}

}

Only one of these programs compiles. Which one? Why are the other programs rejected?

You can refer to the Java Language Specification rule 6.6.2.1 for more detailed information
about the protected access modifier.

solution

Here is a recap of the meaning of the Java access modifiers:

• public: every class can access the element

• protected: only subclasses and classes in the same package can access the element

• default : only classes in the same package can access the element

• private: only this class can access the element

The detailed semantics of the protected modifier are available in the Java Language
Specification linked above.

Explanation:

• Program 1 does not compile because method f of class Y tries to access a field of the
superclass with default access modifier (that is, it can be accessed only by classes in
the same package) from an external package.

• Program 2 does not compile because method f of class Y tries to access a protected
field of an object instance of the superclass, but from a different package (A2, while
the superclass belongs to A1). Note that Java does not allow subclasses to access
protected fields of other objects instance of the superclass if they belong to a different
package.

In order to make this program compile and run, we could define class X and class Y
in the same package. Alternatively, if the parameter v was of type Y (or any subclass
of it, defined in any package), the program would also be accepted.

• Program 3 does not compile because method f of class Y tries to access a private field
of the superclass.

• Program 4 compiles. In fact, method f of class Y is allowed to access this.x since it
is a protected field of class X.

https://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.6.2.1

