Concepts of Object-Oriented Programming E'H

AS 2018 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Fxercise 13
Self-Study Exercise Sheet

NOTE: This exercise sheet will not be discussed in an exercise session. We publish
it now together with the solution to allow you to better prepare for the final exam.
If you have any questions regarding this sheet, please consult your assistant.

Subtyping and Behavioral Subtyping

Task 1

Consider the class x and its only method foo where 22z is placeholder for a class name:

class X {
/// requires x>0 A (=3 1i,7J: int | 2 < i,J < x A ix3j=x)

/// ensures result>0 A result % 2 = 0
int foo(final int x){ return (new Z7Z()).foo(x); }

}

Which of the four classes below could be substituted for zzz such that no contracts will be
violated?

(a) class A {
/// requires x>0
/// ensures result = x+1
int foo(final int x) {...} }

(b) class B {
/// requires true
/// ensures result$%2
int foo(final int x) {...} }

Il
o

(c) class C {
/// requires x%2 = 1
/// ensures result = x+1
)

int foo(final int x

(d) CORRECT:

class D {
/// requires true
/// ensures result = xx (x+1)
int foo(final int x) {...} }

solution

Choice (a) is not valid since 2 is a valid input to X: : foo (), but breaks the postcondition
if result = x + 1.

Choice (b) is not valid as it has a weaker postcondition, namely the result is not guaranteed
to be larger than 0.

Choice (c) is not valid as it does not have a weaker precondition. Note that X::foo ()
accepts 1 and all prime numbers. However, this includes 2, which is even and thus not
allowed by the precondition of C::foo ().

Choice (d) obviously has a weaker precondition. Moreover, on strictly positive inputs, it
guarantees strictly positive even outputs. Therefore it has a stronger postcondition.

Inheritance, Dynamic Method Binding, Multiple Inheritance, and Linearization

Task 2

Consider the following Java classes and interfaces:

public interface IA { IA g(IA x); }
public interface IB extends IA { IB g(IA x); IA g(IB x); }
public interface IC extends IA { IC g(IB x); }

class B implements IB
{
public IB g (IA x) {System.out.print ("Bl");return null;}
public IC g(IB x) {System.out.print ("B2");return null;}
}

class C implements IC

{
public IC g(IA x) {System.out.print ("Cl");return null;}
public C g(IB x) {System.out.print ("C2");return null;}

class Main{
public static void main(String[] args) {

B b = new B();
C ¢ = new C();
IA al = b;

IA a2 = c;

IA rl = al.g(a2);

IA r2 = a2.g9(b);
IC r3 = b.g(b);
IA r4 = c.g(a2);

C 5 = c.g(b);
}

What is the output of the execution of the Main.main method? Explain your answer.

— solution
The code will print B1 c1 B2 Cc1 C2:

al is of static type 1A and dynamic type B, a2 is of static type IA: al.g(a2) maps to
IA.g (IA), which is overriden in IB as IB.g (IA) and then in B as B.g (IA).

a2 is of static type 1A and dynamic type C, b is of static type B: a2.g(b) maps to IA.g(
IA), which is overriden in C as C.g (IA).

b is of static type B and dynamic type B: b.g(b) maps to B.g (IB) (more specific than
B.g (IA) - overload resolution).

c is of static type ¢ and dynamic type C, a2 is of static type IA: c.g(a2) mapsto C.g (IA).

c is of static type C and dynamic type C, b is of static type B: c.g(b) maps to C.g (IB)
(more specific - overload resolution).

Bytecode Verification

Task 3

Assume two Java classes A and B and assume that B is a subclass of A. Consider the following
byte code:

0: aload_1
1: astore_2
2: goto O

and assume that the input to the initial node of this code is ([1, [A, A, B]), where the first list
indicates the contents of the stack and the second list indicates the contents of the registers.

After running the bytecode type inference algorithm, what is the inferred input to the initial
node?

(a) CORRECT: ([1,[A,A,A])
(b [(A,A,B])

d) Nothing is inferred — the type inference does not terminate

)
(c) « [A,B,B])
(d)

)

(e) Nothing is inferred — the type inference rejects the program

— solution

Note that running the bytecode inference algorithm once from instruction 0 to instruction
2 results in retrieving the object in the second register and storing it in the third register.
This object is of type A thus resulting in ([]1, [A, A, A]) asinput to instruction O after
the jump of instruction 2. One then needs to compute the smallest common supertype
of A and B, which is A since B is a subclass of A. Therefore the resulting input to the
next iteration of the algorithm is ([], [aA, A, A]). Thisis then propagated to the jump
instruction, reaching the fixed point. (The inference algorithm therefore runs twice through
instructions 0 and 1, and once through instruction 2, before reaching the fixed point.)

Parametric Polymorphism

Task 4

Consider the following Java code:

class Box<T extends Number> {
private T t;

public void set (T t) { this.t = t; }
public T get () { return t; }
}

class Main {
public static void main (String[] args) {
Box<Number> b = new Box< >();
b.set (new) ;
c = b.get();
System.out.println(c);

}

and recall that Integer <: Number <: Object. How can you fill in the blanks in the Main
.main method so that the code compiles and executes successfully?

(a Integer, Integer (9), Integer
(b) Integer, Integer (9), ObJject

(c

d

)

)

) Number, Integer (9), Integer

) CORRECT: Number, Integer (9), Object
)

(e) None of the above

— solution

Choices (a) and (b) are not valid as generic types are invariant in Java. Therefore,
assigning a Box<Integer> to a Box<Number> is illegal.

Choice (c) is not valid since b.get () would return a Number, hence dissallowing the
assignment Integer ¢ = b.get ().

Choice (d) is valid. In the first gap, Number is clearly a valid option. In the second, by the
substitution principle, we can pass an Integer as it is a subtype of Number. Finally, the
assignment Object c = b.get () simply adds an implicit upcast from Number to Object,
which is valid as Number is a subtype of Object.

Choice (e) is not valid as choice (d) is valid.

Task 5

This is an extended version of a previous exam question.
Consider the following Java code:
interface Food {}

interface Grass extends Food {}
interface Meat extends Food{}

abstract class Animal<F extends Food> implements Meat {
abstract void eat (F food);
F getLunchBag(){ return lunchBag; };
F' lunchBag;

}

final class Sheep extends Animal<Grass>{ void eat (Grass f) {
final class Wolf extends Animal<Meat> { woid eat (Meat f£) {

}

}
b

class Cage { //You are allowed to modify this class
Cage (Animal<?> animal) { this.animal = animal; }
Animal<?> getAnimal () { return animal; }
Animal<?> animal;

}

class Zoo{
void feedAnimal (Cage cage){ /*code given in each sectionx/ }
<F extends Food>void feed (F food, Animal<F> animal) {animal.eat (food);}

void manage () { /xyour code herex/ }

}

Clearly a Wolf can eat a Sheep but not the other way around. In the following subtasks we
explore if relaxing some of the Java type rules can lead to a situation where a Sheep can eat
a Wolf - that is, the method eat is called on an object of the dynamic type Sheep with an
argument object of the dynamic type wolf. All the code you give in the answers to the following
sections is in the same package as the code above, and must type check in standard Java. The
top method that is called in all sections is Zoo.manage. You can assume that method call
arguments are evaluated left to right, and that the program is sequential. You are not allowed
to use reflection, raw types, or type-casts.

A) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type checker:

{ feed(cage.getAnimal () .lunchBag, cage.getAnimal ()); }

Make a Sheep eat a Wolf assuming the body of feedAanimal is exempted from the type checker.
Show all necessary code. You are only allowed to change the cage class and provide the body
of the Zoo.manage method.

— solution

class Cage{

Animal<?> getAnimal () {

if (animal!=null) return animal;
else{
animal = new Sheep();

Wolf wolf = new Wolf ();
wolf.lunchBag=wolf;
return wolf;

}
}

class Zoo{

void manage () {
feedAnimal (new Cage (null));

H}

B) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type checker:

{feed(cage.animal.getLunchBag (), cage.animal); }

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type
checker? If so, show all necessary code, otherwise explain why not. You are only allowed to
change the cage class, provide the body of the Zoo.manage method, and add new classes.

— solution

class Fox extends Animal<Meat>{
Fox () {}
void eat (Meat m)
Wolf getLunchBox
Cage cage;

{}
()

{ cage.animal=new Sheep () ;return new Wolf (); }

}

class Zoof{

void manage () {
Fox fox = new Fox();
Cage cage = new Cage (fox);
fox.cage=cage;
feedAnimal (cage) ;

C) Answer the question in the previous section, assuming the field Cage.animal is final.
Explain your answer. Reminder: Java’s final fields can be assigned to only in the constructor
of the class that declares them.

— solution
Here we cannot make a sheep eat a wolf.

The reason is that cage.animal evaluates to the same value in both expressions cage
.animal and cage.animal.getLunchBox () and so type safety is not broken and the
Sheep can only be fed with Grass, which the Wolf is not.

D) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type-checker:

{feed(cage.animal.lunchBag, cage.animal) ;}

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type-
checker? If so, show all necessary code, otherwise explain why not.

solution

This is safe as no methods are called during the evaluation of arguments, so cage.animal
cannot change.

E) Which of the above cases, that is safe in the sequential case, is unsafe in a multithreaded
program? For each such case, explain what can happen in the multithreaded case that cannot
in the sequential case.

— solution

The version of feedAnimal in section D is unsafe as another thread might modify
Cage.animal between the evaluation of the two expressions.
The version in section C is safe.

F) The current Java rule for evaluating an expression (including a method call) with wildcard
typed arguments is to capture each wildcard in the arguments separately. Propose a more
lenient wildcard capture rule than current Java, that is typesafe and accept all the above cases
that you deem safe.

Hint: define "stable" paths that cannot be modified by calls.

— solution

We could allow wildcard capture to happen only once per access path in the same statement
(rather than once per occurrence in the statement), if either

1. It includes no method calls and there are no method calls evaluated between any two
instances of the path (only in the sequential case).

2. Tt begins with a local variable and follows only final fields (no method calls) - works
also in the concurrent case.

Information Hiding and Encapsulation

Task 6

Suppose that we have a language with the information hiding rules of Java, but with structural
subtyping. What should be the subtyping relations between the following three classes?
class A {int foo();}

class B {protected int foo();}
class C {public int foo();}

— solution
The subtyping relations are as follows: ¢ <: B <: A

Using structural subtyping we require that the methods and fields of subclasses are more
accessible than those of superclasses. When dealing with access modifiers, this means
that methods with more permissive modifiers may override methods with less permissive
modifiers.

Task 7

Consider the class Hour, defined as follows:

public class Hour {
protected int h=0;
/// invariant h>=0 && h<24

public void set (int h) {
if (h>=0 && h<24) this.h=h;
}
}

What is the external interface of Hour?

solution

The external interface is composed only of the method public set (int) since this is the
only public element of class Hour.

Can we extend the code, without changing the class, so that the invariant is broken? If yes,
provide an example, and propose how to fix the class.

— solution

The invariant can be broken easily by extending class Hour, and accessing the field h
directly. For instance:

public WrongHour extends Hour ({
public WrongHour () {super.h=-1;}
}

This can be prevented by making the field h private.

Task 8 Information Hiding

Consider the following Java program consisting of two packages BTC and B2x:

O J oy Ul W

N R R R R RRP PR
OWW-Jo U WN H O W

O J oy Ul bW

S S I R e e e e e e
B WNHFEOWOWJoUTd WN P O W

package BTC;
public class Chain {

/// ensures result <= 2
int max_size () {
return 2;

}

package B2X;
import BTC. x;

public class Chain2x extends Chain {

/// ensures result <= 4
protected int max_size () {
return 4;

}

A) What is the most permissive access modifier for the method max_size () in class Chain such
that class Chain2x is a behavioral subtype of Chain? Assume that we do not use specification
inheritance. Fill the blank above with your answer. Explicitly write default for a default
access modifier. Write none if no choice of access modifier allows Chain2x to be a behavioral
subtype of Chain.

— solution

The method max_size () in class Chain should have a default access modifier, so that
method max_size () in class Chain2x does not override it but only hides it. In this way,
even if method max_size () in class Chain2x has a weaker postcondition than method
max_size () in class Chain, we still vacuously have behavioral subtyping.

B) We now add a class Block and a subclass Block2x to package BTC:

package BTC;
public class Block {

protected int num;
/// invariant: 1 <= num

public Block (int n) {
num = (n <1 2?2 1 : n);

}
}

public class Block2x extends Block ({

/// invariant: 2 <= num
protected Block pred;
/// invariant: pred != null ==> pred.num < num

public Block2x (int n, Block b) {
super(n < 1 ? 2 : 2%n);
pred = (b != null && 2 <= b.num && b.num < num ? b : null);

25

}

B.1 Do the invariants in Block and Block2x satisfy the requirements of behavioral subtyping?
Assume that we do not use specification inheritance. Briefly explain your answer.

solution

Yes, the invariants satisfy the requirements of behavioral subtyping because the invariants
in class Block2x are stronger than the invariants in class Block.

B.2 A class C is correct with respect to its invariants if all constructors of C establish the
invariants of the new object and all exported methods m of C preserve the invariants of the
receiver object, that is, the invariant holds in the poststate of m provided that it held in the
prestate of m. Are classes Block and Block2x correct with respect to their invariants? Briefly
explain your answer.

solution

Yes, classes Block and Block2x are correct with respect to their invariants because their
constructors establish the invariants of the newly created objects (and there are no methods
in the two classes).

C) We now want to extend the code in part B with methods that preserve the invariants of the
class in which they are declared but that make it possible to violate the invariants of Block2x
from client code in another package.

C.1 Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the first invariant of class Block2x (i.e.,
2 <= num) from client code in package B2x. Specify in which class you want to declare
the method, write the method, and write the client code that violates the invariant.

— solution

It is possible to break the invariant by adding the following method to class Block:

public void reset () { num = 1; }

The client code that breaks the invariant is the following:

class Client {
public static void main (String[] args) {
Block2x b2x = new Block2x (1, null);
b2x.reset ();

C.2 How can you prevent the code that you wrote in part C.1 from violating the invariant by
further extending the code in part B? You are not allowed to modify existing code. Write the
code that fixes the specific problem you exploited in part C.1.

— solution

It is possible to prevent the above problem by overriding the newly added method reset
in class Block2x:

public void reset () { num = 2; }

C.3 Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the second invariant of class Block2x (i.e.,
pred != null ==> pred.num < num) from client code in package B2X in a way that cannot
be prevented by further extending the code in part B. Specify in which class you want to
declare the method, write the method, and write the client code that violates the
invariant.

— solution
It is possible to break the invariant by adding the following method to class Block:

public void incr() { num = num + 1; }

The client code that breaks the invariant is the following:

class Client {
public static void main(String[] args) {
Block b = new Block (2);
Block2x ¢ = new Block2x (2, b);
b.incr();
b.incr();

Aliasing, Readonly Types, and Ownership Types

Task 9

Consider the following class definitions in the context of the read-only type system taught in
the course:

class C {

public D f;

void foo (readonly C other) {...}
}

class D { E g; }

class E {}

Let a and b be non-null references of type c. Which of the following statements is true:

(a) The call a.foo (b) is guaranteed not to change the value of b.f, but may change the
value of b.f.g

(b) The call a. foo (b) is guaranteed not to change the value of b. £ and neither the value of
b.f.g

(c) The assignment other.f.g = new E(); may appear in the code of foo

(d) CORRECT: None of the above is correct

— solution

Choice (a) and (b) are not true since since we can have aliasing (a and b point to the same
object) and foo () has no restriction on modifying its receiver, therefore it might modify
the value of b. f via the alias a.

Choice (c) is not true since read-only types are transitive, meaning that other.f.g is
read-only since other is read-only. Therefore the assignment is not allowed.

Task 10

In the following question we do not consider the owners-as-modifiers discipline. We are only
concerned with the topology of the ownership type system.

Consider the assignment:

o.f = p.g;

and assume that o.f and p.g have the same static type.

A) The assignment is forbidden if o.f has ownership modifier 1ost. Show an example to
demonstrate why we need this rule to preserve the topological invariant.

— solution

The following code breaks the acyclicity requirement for the topology:

class C

{
rep C down;

void foo()

{

down.down = this;

}

B) If the ownership modifier of o. £ is any, then what are the requirements for the assignment
to be legal?

solution
(None. The assignment is always legal.

C) If o. f has ownership modifier 1ost can we upcast o.f to an any reference and make the
assignment legal? Why (not)?

solution

We cannot upcast a reference that is being assigned to. This is illegal according to the
subtyping rules.

Non-null Types and Initialization

Task 11

Consider the following Java code:

public class A {
public static int al;
public static int a2;

static {
al = D.d * 3;
new B<String>();
new B<Integer>();
a2 = 17 + D.d + al;

}

public class B<T> {
public static int Db;
static {
b = A.a2;
A.al += 10;

}

public class C {
static { A.a2 += 100; }
}

public class D extends C { public static int d = A.a2; }

public class Main {
public static void main(String[] args) {
if (1 == 2){
System.out.println(D.d);
lelse/(
System.out.println (A.a2);

}

}

What is the result of compiling the code and running the Main.main method?

(a) The code does not compile

(b) The program does not terminate or aborts with a stack overflow

d) The program terminates normally and prints 417

)
)
(c) The program terminates normally and prints 127
(d)
) The program terminates normally and prints 437
)

(e
(f) CORRECT: None of the above

solution

The initialisation is performed lazily. When executing the main () function, we skip the
then branch and execute the else branch. There, A get initialized when the field read A. a2

is encountered. This launches the static initializer for A. When executing al = D.d = 3,
the initializer for D is called. However, D extends C, therefore C’s initializer is executed first.
Since A’s initializer has not completed execution and not yet assigned to A.a2, the field is
still at the default 0 value. Therefore C’s initializer sets A.a2 to be equal to 100. Then
D’s initializer sets D.d to A.a2 which is still 100. This allows to conclude the a1 = D.
d * 3 assignment, setting A.al to 300. Then, as a B is constructed, it sets B.b to 100,
and increments A.al to 310. The second constructor does not affect the lazy initialization,
since it is only computed once per class, and type erasure tell’s us B is a single class.

At the current standing, we have that A.a1 is 310, A.a2 is 100, B.b is 100, D.d is 100. This
makes the final assigment to A.a2 trivial. Therefore the output of this program is 427.

Task 12

Consider a Java class Vector, representing a 2 dimensional vector:

public class Vector ({
public Number x; // Remark: Number is a super-interface for
public Number vy; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y = y;

}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:
public double vectorLength (Vector c) {

double x = c.x.doubleValue () ;

double y = c.y.doubleValue () ;
return Math.sqgrt(x » x + y * Vy);

A) This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

— solution

If ¢ were null, the field dereferences c.x and c.y would generate exceptions. Furthermore,
if c.x were null then method call c.x.doublevalue () would generate an exception.
Similarly, if c.y were null.

There is no reasonable answer for the method to return if it encounters null values - any
attempt to deal with these cases would have to return some arbitrary value, since the
question the method is meant to answer is undefined in these cases.

B) Add a pre-condition for the method, specifying what is required to be safe.

solution
(requires: c#null A c.x#null A c.y#null

C) Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary pre-condition?

— solution
public double vectorLength (Vector! c)
would make the following pre-condition sufficient:

requires: c.x#null A c.y#null

D) Suppose that you are also allowed to upgrade the class Vector to include reasonable non-
null type annotations. How does this affect your previous answer? Do these changes to the
class seem reasonable?

solution

By changing the types of the fields x and y to be Number! we could guarantee that no
pre-condition would be required. This seems a reasonable change, since a null Vector
doesn’t seem to be meaningful anyway.

Task 13

Consider the following three classes (declared in the same package):

public class Person {
Dog? dog; // people might have a dog

public Person() { }
}

public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog (Person owner, String breed) {
this.owner = owner;
this.bone = new Bone (this);
this.breed = breed;

}

public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone (Dog toOwn) {
this.dog = toOwn;
}

A) Annotate the code with non-null and construction type annotations where they are necessary.
Explain why the code now type-checks according to construction types.

solution
(Here are the annotations for the first version of the code:

public class Person {
Dog? dog; // a person might have a dog

public Person() { }
}

public class Dog {
Person! owner; // A dog must have an owner
Bone! bone; // A dog must have a bone
String! breed; // A dog must have a breed

public Dog(unc Person ! owner, unc String ! breed) {
this.owner = owner;
this.bone = new Bone (this);
this.breed = breed;

}

public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone (unc Dog ! toOwn) {
this.dog = toOwn;
}
}

Note that we choose the parameter to the construction of Bone to be unclassified - since it
is public then it probably should be callable with a committed parameter from client code,
but it is also called inside the body of the constructor of Dog, with a free parameter. Note
that the returned reference from these two kinds of call will be different - committed in the
former case, and free in the latter. For the Dog constructor, we can also choose to make
the parameters unclassified. Although in this case we do not directly need to permit “free”
arguments being passed to the constructor, we may as well be as permissive as possible.
In general, if it is possible to type a constructor body using “unclassified” argument types
then this should be the preferred choice of signature as it is the most permissive. Note that
the same does not apply for method signatures, since any overriding method definitions are
then also be forced to cope with unclassified arguments, which may be much less convenient
than using committed ones.

B) Could we provide constructors for classes Dog and Bone with no parameters?

— solution

It isn’t reasonable to have constructors for Dog and Bone without parameters, since we
need some way of initialising their non-null fields. Although it would be possible to do this
by calling e.g., the Person constructor from the Dog constructor, this doesn’t seem very
intuitive (nor would it be easy to establish the intuitive invariants of the code - that a Dog’s
owner refers back to the same Dog, etc.). In particular, if all of the constructors need to
take no parameters, they would need to call each other infinitely. This is because, we can’t
set up a cyclic object structure without some kind of mutual initialization (in this case we
can only build an infinite object structure to satisfy the non-null requirements of all the
objects).

C) Now, suppose a (possibly mad) scientist wants to extend the implementations of these
classes with some genetic engineering. Firstly, we want to be able to “clone” a bone. We can

add the following method to class Bone to make a copy of an existing bone, and assign it to
another Dog:
public Bone clone (Dog toOwn) {

return new Bone (toOwn) ;

}

However, our scientist would like to go further, and be able to clone dogs. A cloned Dog should
also have its bone cloned along with it, but may be assigned to a new owner: we add the
following extra constructor and method to class Dog:
Dog (Dog toClone, Person newOwner) {

this.owner = newOwner;

this.breed toClone.breed;
this.bone = new Bone (this);

}

public Dog clone (Person toOwn) {
return new Dog(this, toOwn);

}

However, our scientist would like to go still further, and be able to clone people. A cloned
Person should also have its dog (if any) cloned along with it: we add the following extra
constructor and method to class Person:
Person (Person toClone) {

Dog? d = toClone.dog;

if (d!=null) {

this.dog = new Dog(d, this);

}

}

public Person clone() {
return new Person (this);

}

Annotate this extra code with appropriate non-null and construction types annotations. You
should guarantee that each of the clone methods (which belong to the public interface) return
a committed reference. You should ensure that your answers guarantee that all of the code
type-checks - explain your choices.

Hint: think carefully about how constructor calls are typed, and what happens if the construc-
tors are called in more than one situation.

— solution

Here is the fully annotated code for the cloning case:

public class Person {
Dog? dog; // A person might have a dog

public Person() { }

Person (Person! toClone) {
Dog d? = toClone.dog;
if(d !'= null) {
this.dog = new Dog(d, this);
}
}

public Person! clone() {
return new Person (this);

}

}

public class Dog {
Person! owner; // A dog must have an owner
Bone! bone; // A dog must have a bone
String! breed; // A dog must have a breed

public Dog(unc Person ! owner, unc String ! breed) {
this.owner = owner;
this.bone = new Bone (this);

this.breed = breed;
}

Dog (Dog! toClone, unc Person! newOwner) {
this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone (this);

}

public Dog! clone (Person! toOwn) {
return new Dog(this, toOwn);

}
}

public class Bone {
Dog! dog; // A bone must belong to a dog..

public Bone (unc Dog ! toOwn) {
this.dog = toOwn;
}

public Bone! clone (Dog! toOwn) {
return new Bone (toOwn) ;

}

Note that all parameters to the new constructors and methods need to have non-null type
annotations, since they are each either dereferenced, used to initialize non-null-declared
fields or passed on as further parameters to calls that require non-null parameters.

The toClone parameter of the new constructor of Person needs to be a committed pa-
rameter, otherwise when we dereference toClone.dog we will obtain an unclassified value,
which will not be suitable to use as a parameter for the new Dog constructor.

The toClone parameter of the new constructor of Dog needs to be a committed parameter,
since when a field is read from it, we need to obtain a result with a non-null type. How-
ever, the newOwner parameter of the new constructor of Dog needs to be an unclassified
parameter. This is because this parameter is sometimes supplied from a free reference (in
the new constructor of Person), and sometimes from a committed reference (in the clone
method of Dog).

For similar reasons, the toOwn parameter of the constructor of Bone needs to be an unclas-
sified parameter (as was suggested for the previous part of the question). This is because
this parameter is sometimes supplied from a free reference (in the new constructor of Dog),
and sometimes from a committed reference (in the clone method of Bone).

This is an important usage of the unclassified types in the construction types system -
they are useful for constructors which get called sometimes with free and sometimes with
committed parameters. Recall that the type of a new expression is determined from the
static types of the actual parameters at a particular call, and not from the formal parameters

in the constructor signature. For example, in the clone method of the Bone class, the new
expression new Bone (toOwn) is given a committed type because the actual parameter
toOwn has a static type which is committed, despite the fact that the constructor argument
type is declared as unclassified in its signature. This means that the same constructor can
produce committed /free results depending on the particular arguments provided in each call
(new expression). In particular, the return type of the clone method can be a committed
reference, as required in the question (the same applies to all of the clone methods in the
code, since they each call constructors with only committed arguments).

Reflection

Task 14
Which of the following is the defining characteristic of reflection?

(a) It allows for much simpler code
(b) It enables more flexibility

(c) CORRECT: It allows a program to observe and modify its own structure and
behavior

(d) It is not statically safe
(e) It may hurt performance

(f) None of the above

solution
(See page 4 of the slides on reflection.

Task 15

Consider the following Java code:

void foo () throws java.lang.Exception {
LinkedList<String> xs = new LinkedList<String>();
xs.add ("A"); xs.add("B"); xs.add("C");

Class<?> ¢ = xs.getClass();
Method remove = c.getMethod ("remove");
xs.add (remove.invoke (xs));

}

which uses the following methods of class LinkedList<E>

public E remove ()
public boolean add(E e)

Which of the following statements is true? The invocation of ...
a) c.getMethod ("remove") is rejected by the compiler

b) c.getMethod ("remove") raises an exception (at run time)
(c

)
) remove.invoke (xs) is rejected by the compiler
d) remove.invoke (xs) raises an exception (at run time)
)
)

(
(
(

(e
(f

CORRECT: xs.add (...) is rejected by the compiler

xs.add (...) raises an exception (at run time)

solution

This code snippet aims to create a LinkedList of String, add three elements to it, recover
class and method information via reflection, remove an element from the list and add it to
the list again.

The issue with this code is that the return type of Method.invoke (...) is Object. There-
fore, the compiler complains that there is no suitable method xs.add () that takes an
ObJject parameter returned from remove.invoke (xs).

