Concepts of
Object-Oriented Programming

Peter Muller
Chair of Programming Methodology

Autumn Semester 2019 ETH:zurich

6. Object Structures and Aliasing

Object Structures

» Objects are the building blocks of object-oriented
programming

= However, interesting abstractions are almost
always provided by sets of cooperating objects

= Definition:
An object structure Is a set of objects that are
connected via references

Peter Miller — Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

Example 1: Array-Based Lists

O list)

array:| &=
next:

o y

Peter Miller — Concepts of Object-Oriented Programming

4 array N
length:

0:

1:

2.
NG /

class ArrayList {
private int[] array;
private int next;

public void add(int i) {
If (next==array.length) resize();
array[next] =1i;
next++;

}

public void setElems(int[]ia)

[}

6. Object Structures and Aliasing

Example 2: Doubly-Linked Lists

4 LinkedList A

header:
size:

-

O Listitr)
next:)
nextinde)

\ }/ J

Entry

(Object W fObject W

)

Peter Miller — Concepts of Object-Oriented Programming

L

o—]
®
b

f Object W

|

6. Object Structures and Aliasing

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing
6.3 Readonly Types

6.4 Ownership Types

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Alias

= Definition:
A name that has been assumed temporarily
[WordNet, Princeton University]

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Aliasing in Procedural Programming

program aliasTest
procedure assign(var p:int, var q: int);
begin

p = 25;

end;
begin
var x: int := 1;
assign(x, X);

end
end.

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Aliasing in Procedural Programming

= var-parameters are program aliasTest
passed by reference procedure assign(var p:int, var q: int);
(call by name) begin
= Modification of a var- L
parameter is p =25
observable by caller
end;
begin
var x: int := 1;
assign(x, X);
end
end.

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Aliasing in Procedural Programming

= var-parameters are program aliasTest
passed by reference procedure assign(var p:int, var q: int);
(call by name) begin
= Modification of a var-
parameter is p =25
observable by caller
end;
begin
var x: int := 1;
assign(x, x);
{x=25}
end
end.

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Aliasing in Procedural Programming

= var-parameters are program aliasTest
passed by reference procedure assign(var p:int, var q: int);
(call by name) begin
= Modification of a var- .
parameter is p =25
observable by caller ;
. : end,
= Aliasing: Several beqi
. egin
variables (here: p, Q) var x- int = 1
refer to same memory AN
location assign(x, x)
T {x=25}
= Aliasing can lead to end

unexpected side-effects |gng.

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Aliasing in Procedural Programming

var-parameters are
passed by reference
(call by name)

Modification of a var-
parameter is
observable by caller

Aliasing: Several
variables (here: p, q)
refer to same memory
location

Aliasing can lead to
unexpected side-effects

program aliasTest
procedure assign(var p: int, var q: int);
begin
{p=1Aqg=1}
p = 25;
{p=25A0=25}
end;
begin
var x: int := 1;
assign(x, X);
{x=25}
end
end.

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Aliasing in Object-Oriented Programming

= Definition:
An object o Is aliased if two or more variables hold
references to o.

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Aliasing in Object-Oriented Programming

= Definition:
An object o is aliased if two or more variables hold
references to o.

= Variables can be

Fields of objects (instance variables)

Static fields (global variables)

Local variables of method executions, including this
Formal parameters of method executions

Results of method invocations or other expressions

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Static Aliasing

= Definition: (st) O listz)
An alias iIs static if all array:| =~ W’“
Involved variables are next: next:
fields of objects or
static fields. array

= Static aliasing occurs In
the heap memory

—

listl.array[O] = 1;
list2.array[O | = -1;
System.out.printin(listl.array[0]);

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Dynamic Aliasing po.
= Definition: (st)
An alias is dynamic array:| S
If It Is not static. next: \/
/array\
= Dynamic aliasing
Involves stack- I

allocated variables N—

Int[] ia = listl.array;

listl.array[O]| = 1;

la[0] =-1;

System.out.printin(listl.array[O]);

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Intended Aliasing: Efficiency

Peter Miller — Concepts of Object-Oriented Programming

class SList {

}

SList next;

Object elem,;

SList rest() { return next; }

void set(Objecte) {elem =¢e; }

6.1 Object Structures and Aliasing — Aliasing

Intended Aliasing: Efficiency

= |[n OO-programming,
data structures are
usually not copied
when passed or
modified

= Aliasing and
destructive updates
make OO-programming
efficient

Peter Miller — Concepts of Object-Oriented Programming

class SList {

}

SList next;

Object elem,;

SList rest() { return next; }

void set(Objecte) {elem =¢e; }

6.1 Object Structures and Aliasing — Aliasing

Intended Aliasing: Efficiency

= |[n OO-programming,
data structures are
usually not copied
when passed or
modified

= Aliasing and
destructive updates
make OO-programming
efficient

Peter Miller — Concepts of Object-Oriented Programming

class SList {

}

SList next;

Object elem,;

SList rest() { return next; }

void set(Objecte) {elem =¢e; }

void foo(SList slist) {

SList rest = slist.rest();
rest.set(“Hello”); }

6.1 Object Structures and Aliasing — Aliasing

Intended Aliasing: Efficiency

= |[n OO-programming,
data structures are
usually not copied
when passed or
modified

= Aliasing and
destructive updates
make OO-programming
efficient

Peter Miller — Concepts of Object-Oriented Programming

slist

|

/SList\ /SList\ /SList\ /SList\

_-» .—-» h-* ‘

.

NG J /O J

class SList {

}

SList next;

Object elem,;

SList rest() { return next; }

void set(Objecte) {elem =¢e; }

void foo(SList slist) {

SList rest = slist.rest();
rest.set(“Hello”); }

6.1 Object Structures and Aliasing — Aliasing

Intended Aliasing: Efficiency

= |[n OO-programming,
data structures are
usually not copied
when passed or
modified

= Aliasing and
destructive updates
make OO-programming
efficient

Peter Miller — Concepts of Object-Oriented Programming

slist

rest

|

/SList\

/SList\

_-

.—-

.

J

_

J

class SList {
SList next;
Object elem,;
SList rest() { return next; }

void set(Objecte) {elem =¢e; }

}

void foo(SList slist) {
SList rest = slist.rest();
rest.set(“Hello™); }

6.1 Object Structures and Aliasing — Aliasing

Intended Aliasing: Efficiency

= |[n OO-programming,
data structures are
usually not copied
when passed or
modified

= Aliasing and
destructive updates
make OO-programming
efficient

Peter Miller — Concepts of Object-Oriented Programming

slist

rest

|

/SList\

/SList\

_-

.—-

.

J

_

J

class SList {
SList next;
Object elem,;
SList rest() { return next; }

void set(Objecte) {elem =¢e; }

}

void foo(SList slist) {
SList rest = slist.rest();
rest.set(“Hello™); }

6.1 Object Structures and Aliasing — Aliasing

Intended Aliasing: Sharing

= Aliasing Is a direct
consequence of object
identity

= Objects have state that
can be modified

* Objects have to be
shared to make
modifications of state
effective

Peter Miller — Concepts of Object-Oriented Programming

Entr

Listltr

2

LinkedList |
[=
3
Entry
—f
.‘
)
Entr Entry
L @ =
S
{] {]

6.1 Object Structures and Aliasing — Aliasing

Unintended Aliasing: Capturing

= Capturing occurs when
objects are passed to a
data structure and then
stored by the data
structure

= Capturing often occurs in
constructors (e.g.,
streams in Java)

= Problem: Alias can be
used to by-pass interface
of data structure

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Unintended Aliasing: Capturing

= Capturing occurs when
objects are passed to a
data structure and then
stored by the data
structure

= Capturing often occurs in
constructors (e.g.,
streams in Java)

= Problem: Alias can be
used to by-pass interface
of data structure

Peter Miller — Concepts of Object-Oriented Programming

class ArrayList {
private int[] array;
private int next;
public void setElems(int[]I1a)
{ array = ia; next = ia.length; }

6.1 Object Structures and Aliasing — Aliasing

Unintended Aliasing: Capturing

= Capturing occurs when
objects are passed to a
data structure and then
stored by the data
structure

= Capturing often occurs in
constructors (e.g.,
streams in Java)

= Problem: Alias can be
used to by-pass interface
of data structure

Peter Miller — Concepts of Object-Oriented Programming

[distt)
array: 0—.{.
next: array
~—

class ArrayList {
private int[] array;
private int next;
public void setElems(int[]I1a)
{ array = ia; next = ia.length; }

6.1 Object Structures and Aliasing — Aliasing

Unintended Aliasing: Leaking

» | eaking occurs when
data structure pass a
reference to an object,
which is supposed to be
iInternal to the outside

= | eaking often happens
Dy mistake

= Problem: Alias can be
used to by-pass
Interface of data
structure

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Unintended Aliasing: Leaking

» | eaking occurs when
data structure pass a
reference to an object,
which is supposed to be
iInternal to the outside

- —eaking often happens class ArrayList {
Y% mistake private int[] array;

= Problem: Alias can be private int next;
used to by-pass public int[] getElems()
Interface of data Lreturm aray:}
structure -

Peter Miller — Concepts of Object-Oriented Programming

6.1 Object Structures and Aliasing — Aliasing

Unintended Aliasing: Leaking C

7 olistt)

» | eaking occurs when
array:|
data structure pass a ot

reference to an object, amay b

which is supposed to be
iInternal to the outside

. N
= | eaking often happens class ArrayList {

Oy mistake private int[] array;
= Problem: Alias can be private int next,

public int[] getElems()

used to by'paSS { return array; }

interface of data
structure)

Peter Miller — Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing
6.3 Readonly Types

6.4 Ownership Types

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Observation

» Many well-established techniques of object-
oriented programming work for individual objects,
but not for object structures in the presence of

aliasing

= “The big lie of object-oriented programming is that

objects provide encapsulation” [Hogg, 1991]

= Examples
- Information hiding and exchanging implementations
- Encapsulation and consistency

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations

class ArrayList { class ArrayList {
private int[| array; private Entry header;
private int next;
I/ requires ia != null I/ requires ia != null
I/ ensures Vi. O<=i<ia.length: I/l ensures Vi. O<=i<ia.length:
I/ iIsElem(old(ia[i])) ‘ I/ ISElem(old(ia[i]))
public void setElems(int[]ia) public void setElems(int[]i1a)
{ array = ia; next = ia.length; } { ... /" create Entry for each
element */ }
} }

» |nterface including contract remains unchanged

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations (cont'd)

int foo(ArrayList list) {
int[]ia =new int[3];
list.setElems(ia);
ia[0]=-1;
return list.getFirst();

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations (cont'd)

SR

int foo(ArrayList list) { list
int[]ia=new int[3]; °
list.setElems(ia); —
la[0] =-1;
return list.getFirst();

}

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations (cont'd)

int foo(ArrayList list) {
int[]ia =new int[3];
list.setElems(ia);
ia[0]=-1;
return list.getFirst();

list

—

Peter Miller — Concepts of Object-Oriented Programming

array T
3 -
0 e IA
0
0
—

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations (cont'd)

int foo(ArrayList list) {
int[]ia =new int[3];
list.setElems(ia);
ia[0]=-1;
return list.getFirst();

list

—

Peter Miller — Concepts of Object-Oriented Programming

array T
3 -
0 e IA
0
0
—

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations (cont'd)

int foo(ArrayList list) {
int[]ia =new int[3];
list.setElems(ia);
ia[0]=-1;
return list.getFirst();

list

Carray)

—

Peter Miller — Concepts of Object-Oriented Programming

3

-1
0
0

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations (cont'd)

int foo(ArrayList list) {
int[]ia =new int[3];
list.setElems(ia);
ia[0]=-1;
return list.getFirst();

list

Carray)

—

list

3

-1
0
0

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations (cont'd)

int foo(ArrayList list) {
int[]ia =new int[3];
list.setElems(ia);
ia[0]=-1;
return list.getFirst();

list

—

list

Peter Miller — Concepts of Object-Oriented Programming

array T
3 -
-1 e IA
0
0
I—
array T
3 -
0 o Ia
0
0
—

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations (cont'd)

int foo(ArrayList list) {
int[]ia =new int[3];
list.setElems(ia);
ia[0]=-1;
return list.getFirst();

list array —
1S 3 -
® > -1 o IA
0
N 0
E—
_ (array) e —
list 3 -
0 o IA
\ 0
0
—
E—
Entry
—
/S
ntr Entry Entr
C > | @ P>
.o | ® ®
0] { Q T 0]

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations (cont'd)

int foo(ArrayList list) {
int[]ia =new int[3];
list.setElems(ia);
ia[0]=-1;
return list.getFirst();

list array —
1S 3 -
® > -1 o IA
0
N 0
E—
_ (array) e —
list 3 -
-1 o IA
\ 0
0
—
E—
Entry
—
/S
ntr Entry Entr
C > | @ P>
.o | ® ®
0] { Q T 0]

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations (cont'd)

int foo(ArrayList list) {
int[]ia =new int[3];
list.setElems(ia);
ia[0]=-1;
return list.getFirst();

}

= Aliases can be used
to by-pass interface

= Observable behavior
IS changed!

; (array) —
list 3
® — [1 || o Ia
0
N, 0
E—
(array) e —
list 3 -
-1 < o Ia
N 0
0
-/
E—
Entry
—
)
ntr Entry Entr
Oty | [@ity
N | [g —g
0 { 0 { 0

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Consistency of Object Structures

= Consistency of object class ArrayList {
structures depends on private int]] array;

: : private int next;
flelds of several objects
// invariant array != null &&

_ /I 0<=next<=array.length &&
= [nvariants are usually /I Vi.O<=i<next: array[i]>= 0

specified as part of the
contract of those objects | publicvoid add(inti) {...}

that represent the public void setElems(int[]ia)
interface of the object L
structure }

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Consistency of Object Structures (cont'd)

Int foo(ArrayListlist) { //invariant of list holds
Int[] ia =new int[3 |;
list.setElems(ia); I/ invariant of list holds
1a[0] =-1; // invariant of list violated

}

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Consistency of Object Structures (cont'd)

Int foo(ArrayListlist) { //invariant of list holds
Int[] ia =new int[3 |;

list.setElems(ia); I/ invariant of list holds
1a[0] =-1; // invariant of list violated
}
list
[
N

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Consistency of Object Structures (cont'd)

Int foo(ArrayListlist) { //invariant of list holds
Int[] ia =new int[3 |;

list.setElems(ia); I/ invariant of list holds
1a[0] =-1; // invariant of list violated
}
list
Py /. Ia

\ } (array A/L/

o|lo|I0o|Ww

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Consistency of Object Structures (cont'd)

Int foo(ArrayListlist) { //invariant of list holds
Int[] ia =new int[3 |;

list.setElems(ia); I/ invariant of list holds
1a[0] =-1; // invariant of list violated
}
list

Carray) A/L/

o|lo|I0o|Ww

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Consistency of Object Structures (cont'd)

Int foo(ArrayListlist) { //invariant of list holds
Int[] ia =new int[3 |;

list.setElems(ia); I/ invariant of list holds
1a[0] =-1; // invariant of list violated
}
list

Carray) A/L/

OO|=|Ww

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Consistency of Object Structures (cont'd)

Int foo(ArrayListlist) { //invariant of list holds
Int[] ia =new int[3 |;

list.setElems(ia); I/ invariant of list holds
1a[0] =-1; // invariant of list violated
}
= Aliases can be used to
violate invariant list — T
» Making all fields private is || —

e array
not sufficient to _ /L/

encapsulate internal state

ook |w

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Security Breach in Java 1.1.1

|dentity[]

Class

@,

Identity]]

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Security Breach in Java 1.1.1

class Malicious {

void bad() {
ldentity[| s;
|dentity trusted = java.Secuirity.. .;
s = Malicious.class.getSigners();
s[O] = trusted,;
[* abuse privilege */

}

ldentity]]

|dentity

Class

~

ldentity]]

System

|dentity

|dentity

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Security Breach in Java 1.1.1

class Malicious { identity]] dentiy
@
void bad() { e
ldentity[| s; |dentity
|dentity trusted = java.Security...; ® :
s = Malicious.class.getSigners(); c
s[O] = trusted,; ass
/* abuse privilege */ h‘\
} ldentity]]
|dentity
} L o s
System

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Security Breach in Java 1.1.1

class Malicious { identity]] dentiy
@
void bad() { e
ldentity[| s; |dentity
|dentity trusted = java.Security...; ® :
s = Malicious.class.getSigners(); C
s[O] = trusted,; \ ass
/* abuse privilege */ \ "‘\
} ldentity]]
|dentity
} . : h—
|dentity[] getSigners()
{ return signers; } System

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Security Breach in Java 1.1.1

} \ Identity[]

System

class Malicious { identity]] dentiy
@
void bad() { e
ldentity[| s; |dentity
|dentity trusted = java.Security...; ® —
s = Malicious.class.getSigners();
s[O] = trusted,; \ Class
[* abuse privilege */ \ "‘\

|dentity

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Security Breach in Java 1.1.1

} \ Identity[]

System

class Malicious { Identity[] dentity
@
void bad() { °
ldentity[] s; |dentity
|dentity trusted = java.Security...; ® :
s = Malicious.class.getSigners(); j
s[0] = trusted,; \ Class
. . [
[* abuse privilege */ \ \

|dentity

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Security Breach in Java 1.1.1

class Malicious { identity]]

void bad() {

Identity[] s; |dentity
|dentity trusted = java.Security...; o

s = Malicious.class.getSigners();
s[0] = trusted,
[* abuse privilege */

} Identity[]

Class

@,

Peter Miuller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Problem Analysis

» Breach caused by unwanted alias

- Leaking of reference

= Difficult to prevent

- Information hiding:
not applicable to arrays

- Restriction of Identity
objects: not effective

- Secure information flow:
read access permitted

- Run-time checks:
too expensive

Peter Miller — Concepts of Object-Oriented Programming

|dentity]]
@

|dentity

>

L

|dentity

Class
.‘

System

\ Identity[]
—

|dentity

6.2 Object Structures and Aliasing — Problems of Aliasing

Other Problems with Aliasing

= Synchronization in concurrent
programs

- Monitor of each individual object

has to be locked to ensure —
mutual exclusion
= Distributed programming 4)
- For instance, parameter passing
for remote method invocation \ j
= Optimizations —

- For instance, object inlining is

not possible for aliased objects

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Alias Control In Java: LinkedList

= All flelds are private

= Entry Is a private inner class of LinkedList
- References are not passed out

- Subclasses cannot manipulate or leak Entry-objects

= Listltr is a private inner class of LinkedList

- Interface Listlterator provides controlled access to
Listltr-objects

- Listltr-objects are passed out, but in a controlled fashion
- Subclasses cannot manipulate or leak Listltr-objects

= Subclassing Is severely restricted

Peter Miller — Concepts of Object-Oriented Programming

6.2 Object Structures and Aliasing — Problems of Aliasing

Alias Control in Java: String

= All flelds are private

4 String A
» References to internal value:| =
character-array are not charl
passed out :
= Subclassing is prohibited \ 7
(final)

Peter Miller — Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing
6.3 Readonly Types

6.4 Ownership Types

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Object Structures Revisited

class Address ... { class Person {
private String street; private Address addr;
private String city; public Address getAddr()
{ return addr.clone(); }
public String getStreet(){ ...} public void setAddr(Address a)
public void setStreet(String s) { addr = a.clone(); }
{...}
}
public String getCity(){ ... } e ™~
RSN peter
public void setCity(String s) " home)
{...} addrl_*S, street:
0 Y, city:
} \ /

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Drawbacks of Alias Prevention

= Aliases are helpful to
share side-effects

= Cloning objects is not
efficient

* |[n many cases, it suffices
to restrict access to
shared objects

= Common situation: grant
read access only

Peter Miller — Concepts of Object-Oriented Programming

4 peter)
addr:
&) " home)
" annette) street
city:
addr:;| &
O /
_ /
. ETH
prof7: o’
NGl /

6.3 Object Structures and Aliasing — Readonly Types

Requirements for Readonly Access

= Mutable objects

- Some clients can mutate the
object, but others cannot

- Access restrictions apply to
references, not whole objects

= Prevent field updates

* Prevent calls of mutating
methods

* Transitivity

- Access restrictions extend to
references to sub-objects

Peter Miller — Concepts of Object-Oriented Programming

4 peter A
addr:
4 home)
N / street:
> city:
ETH J phone:| ¢
rof7: -’
p !.. /
v
N~ = 4 Natel A
No:
__ J

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access via Supertypes

interface ReadonlyAddress {
public String getStreet();
public String getCity();

}

class Address
Implements ReadonlyAddress ... {

... [* as before */ }

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access via Supertypes

interface ReadonlyAddress {
public String getStreet();
public String getCity();

}

class Address
Implements ReadonlyAddress ... {

... [* as before */ }

class Person {
private Address addr;

public ReadonlyAddress
getAddr()

{ return addr; }
public void setAddr(Address a)
{ addr = a.clone(); }

2

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access via Supertypes

interface ReadonlyAddress { class Person {

public String getStreet(); private Address addr;

public String getCity(); public ReadonlyAddress
) getAddr()

{ return addr; }
class Address public void setAddr(Address a)
Implements ReadonlyAddress ... { { addr = a.clone(): }

... [* as before */ })

= Clients use only the methods in the interface
- Object remains mutable
- No field updates
- No mutating method in the interface

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Limitations of Supertype Solution

» Reused classes
might not implement
a readonly interface

- See discussion of
structural subtyping

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Limitations of Supertype Solution

» Reused classes
might not implement
a readonly interface
- See discussion of

structural subtyping

» |nterfaces do not
support arrays,
fields, and non-public
methods

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Limitations of Supertype Solution

= Reu

sed classes

might not implement
a readonly interface

- See discussion of
structural subtyping

= |nterfaces do not

sup
fielo

nort arrays,
s, and non-public

met

nods

class Address
Implements ReadonlyAddress ... {

private PhoneNo phone;
public PhoneNo getPhone()
{ return phone; }}

Interface ReadonlyAddress {

public PhoneNo getPhone();
}

* Transitivity has to be encoded explicitly
- Requires sub-objects to implement readonly interface

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Limitations of Supertype Solution

= Reu

sed classes

might not implement
a readonly interface

- See discussion of
structural subtyping

= |nterfaces do not

sup
fielo

nort arrays,
s, and non-public

met

nods

class Address
Implements ReadonlyAddress ... {

private PhoneNo phone;
public PhoneNo getPhone()
{ return phone; }}

interface ReadonlyAddress {

public ReadonlyPhoneNo getPhone();
}

* Transitivity has to be encoded explicitly
- Requires sub-objects to implement readonly interface

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Supertype Solution Is not Safe

= No checks that
methods in readonly
Interface are actually
side-effect free

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Supertype Solution Is not Safe

= No checks that class Person {

methods in readonly private Address addr;
: public ReadonlyAddress getAddr()
Interface are actually

_ { return addr; }
side-effect free public void setAddr(Address a)

{ addr = a.clone(); }
* Readwrite aliases can

occur, e.g., through }
capturing

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Supertype Solution Is not Safe

= No checks that class Person {
methods In readonly private Address addr;

: public ReadonlyAddress getAddr()
interface are actually return addr: }

side-effect free public void setAddr(Address a)
{ addr = a.clone(); }

= Readwrite aliases can

occur, e.g., through }

capturing void m(Person p) {
ReadonlyAddress ra = p.getAddr();

Address a = (Address) ra;

= Clients can use casts . \
a.setCity(“Hagen”);

to get full access }

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In Elffel

= Better support for fields
- Readonly supertype can contain getters
- Field updates only on “this” object

= Command-query separation
- Distinction between mutating and inspector methods
- But queries are not checked to be side-effect free

= Other problems as before
- Reused classes, transitivity, arrays, aliasing, downcasts

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: const Pointers

class Address { class Person {
string city; Address* addr;
public: public:
string getCity(void) const Address* getAddr()
{ return city; } { return addr; }
void setCity(string s) void setAddr(Address a)
{city=s;} { I* clone */ }
}; C++ }; C++
= C++ supports readonly
pointers

- No field updates
- No mutator calls

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: const Pointers

class Address {
string city;
public:
string getCity(void)
{ return city; }
void setCity(string s)

{city=s;}

I

C++

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

}; C++

= C++ supports readonly

pointers
- No field updates
- No mutator calls

Peter Miller — Concepts of Object-Oriented Programming

void m(Person* p) {
const Address* a = p->getAddr();
a->setCity(“Hagen”);
cout << a->getCity();

} C++

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: const Pointers

class Address { class Person {
string city; Address* addr;
public: public:
string getCity(void) const Address* getAddr()
{ return city; } { return addr; }
void setCity(string s) void setAddr(Address a)
{city=s;} { I* clone */ }
}; C++ }; C++
= C++ supports readonly |void m(Person*p) {
pointers const AFIdress* a = p->getAddr();
- No field updates a->setCity(Hagen");
cout << a->getCiyx
- No mutator calls —
} Compile-time
L error)

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: const Pointers

class Address { class Person {
string city; Address* addr;
public: public:
string getCity(void) const Address* getAddr()
{ return city; } { return addr; }
void setCity(string s) void setAddr(Address a)
{city=s;} { I* clone */ }
}; C++ }; C++
= C++ supports readonly |void m(Person*p) {
pointers const Address* a = p->getAddr();
- No field updates a'>SetC'ty<%
cout << a->getCiyx
- No mutator calls) g\ .
Compile-time

L errors
J

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: const Functions

class Address { class Person {
string city; Address* addr;
public: public:
string getCity(void) const const Address* getAddr()
{ return city; } { return addr; }
void setCity(string s) void setAddr(Address a)
{city=s;} { I* clone */ }
3 C++ }; C++

= const functions must
not modify their receiver
object

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: const Functions

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s)

{city=s;}

};

C++

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

}; C++

= const functions must

not modify their receiver

object

Peter Miller — Concepts of Object-Oriented Programming

void m(Person* p) {
const Address* a = p->getAddr();
a->setCity(“Hagen”);
cout << a->getCity();

} C++

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: const Functions

class Address { class Person {
string city; Address* addr;
public: public:
string getCity(void) const const Address* getAddr()
{ return city; } { return addr; }
void setCity(string s) void setAddr(Address a)
{city=s;} { I* clone */ }
3 C++ }; C++
: void m(Person* p) {
= const functions must const Address*a = p->getAddr():
not modify their receiver | a.ssetcity(“Hagen”);

object cout << a-m\\}\
} L Compile-time

error
J

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: const Functions

class Address { class Person {
string city; Address* addr;
public: public:
string getCity(void) const const Address* getAddr()
{ return city; } { return addr; }
void setCity(string s) void setAddr(Address a)
{city=s;} { I* clone */ }
}; C++ }; C++
: void m(Person* p) {
= const functions must const Address* a = p->getAddr():
not modify their receiver | a.ssetcity(“Hagen”);
object cout << a->getCiye

p |

[Call of const

Compile-time

error

function allowed Y,

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

It wouldn't be C++ ...

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s) const {
Address* me = (Address*) this;

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

me->city = s; 3
} }; C++ C++
= const-ness can be cast

away

- No run-time check

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

It wouldn't be C++ ...

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s) const {

Address* me = (Address*) this;

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

me->city = s; 3
} }; C++ C++
= const-ness can be cast |void m(Person* p) {

away const Address* a = p->getAddr();

- No run-time check

Peter Miller — Concepts of Object-Oriented Programming

a->setCity(“Hagen”);

} \/ Call of const

qunction allowed

|

6.3 Object Structures and Aliasing — Readonly Types

It wouldn't be C++ ...

(cont'd)

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s)

{city =s;}

} C++

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

}; C++

= const-ness can be cast
away
- No run-time check

Peter Miller — Concepts of Object-Oriented Programming

void m(Person* p) {
const Address* a = p->getAddr();
Address* ma = (Address*) a;
ma->setCity(“Hagen”);

} C++

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: Transitivity

class Phone {
public:
Int number,;

%

C++

class Address {
string city;
Phone* phone;
public:
Phone* getPhone(void) const
{ return phone; }

}; C++

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: Transitivity

class Phone {
public:
Int number,;

%

C++

void m(Person*p) {
const Address* a = p->getAddr();
Phone* p = a->getPhone();
p->number = 2331...;

} C++

class Address {
string city;
Phone* phone;
public:
Phone* getPhone(void) const
{ return phone; }

}; C++

Peter Miller — Concepts of Object-Oriented Programming

= const pointers are not
transitive

= const-ness of sub-
objects has to be
iIndicated explicitly

6.3 Object Structures and Aliasing — Readonly Types

Transitivity (cont’'d)

class Address {
string city;
Phone* phone;
public:
const Phone* getPhone(void) const {
phone->number = 2331 ...;
return phone;

}

C++

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Transitivity (cont’'d)

class Address {
string city;
Phone* phone;
public:
const Phone* getPhone(void) const {
phone->number = 2331 ...;

return phone; const functions may
) modify objects other
than the receiver

C++

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: Discussion

Pros cons

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: Discussion

Pros cons

= const pointers provide
readonly pointers to
mutable objects
- Prevent field updates

- Prevent calls of non-
const functions

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: Discussion

Pros cons

= const pointers provide
readonly pointers to
mutable objects
- Prevent field updates
- Prevent calls of non-
const functions

= Work for library classes

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: Discussion

Pros cons

= const pointers provide
readonly pointers to
mutable objects
- Prevent field updates
- Prevent calls of non-
const functions
= Work for library classes

= Support arrays, fields,
and non-public
methods

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: Discussion

Pros cons
= const pointers provide ||= const-ness Is not
readonly pointers to transitive

mutable objects

- Prevent field updates
- Prevent calls of non-
const functions
= Work for library classes

= Support arrays, fields,
and non-public
methods

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: Discussion

Pros

= const pointers provide
readonly pointers to
mutable objects
- Prevent field updates
- Prevent calls of non-
const functions
= Work for library classes

= Support arrays, fields,
and non-public
methods

cons

= const-ness Is not
transitive

= const pointers are
unsafe

- Explicit casts

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Readonly Access In C++: Discussion

Pros

= const pointers provide
readonly pointers to
mutable objects
- Prevent field updates
- Prevent calls of non-
const functions
= Work for library classes

= Support arrays, fields,
and non-public
methods

cons

= const-ness Is not
transitive

= const pointers are
unsafe

- Explicit casts

= Readwrite alilases can
occur

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Pure Methods

» Tag side-effect free
methods as pure

= Pure methods

- Must not contain field
update

- Must not invoke non-
pure methods

- Must not create objects

- Can be overridden only
by pure methods

Peter Miller — Concepts of Object-Oriented Programming

class Address {
private String street;
private String city;
public pure String getStreet()

{...}
public void setStreet(String s)

{...}
public pure String getCity()

{...}
public void setCity(String s)

[}

6.3 Object Structures and Aliasing — Readonly Types

Types

= Each class or interface T
iIntroduces two types

= Readwrite type rw T
- Denoted by T in programs

* Readonly typero T

- Denoted by readonly T in
programs

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Types

» Each class or interface T | class Person{

: private Address addr;
Inar W
roduces two types public ReadonlyAddress

getAddr() {return addr; }

» Readwrite type rw T public void setAddr(Address a)
{ addr = a.clone(); }

- Denoted by T in programs | }

* Readonly typero T

- Denoted by readonly T in
programs

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Types

= Each class or interface T
iIntroduces two types

= Readwrite type rw T
- Denoted by T in programs

* Readonly typero T

- Denoted by readonly T in
programs

Peter Miller — Concepts of Object-Oriented Programming

class Person {
private Address addr;

public ReadonlyAddress
getAddr() {return addr; }

public void setAddr(Address a)
{ addr = a.clone(); }

.}
class Person { l

private Address addr;

public readonly Address
getAddr(){...}

6.3 Object Structures and Aliasing — Readonly Types

Subtype Relation

= Subtyping among readwrite
and readonly types Is
defined as in Java

- S extends or implements T =
'wS<:rwT

- S extends or implements T =
rnS<roT

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Subtype Relation

= Subtyping among readwrite
and readonly types Is
defined as in Java

- S extends or implements T =
'wS<:rwT

- S extends or implements T =
roS<:roT
= Readwrite types are
subtypes of corresponding
readonly types
-rwT<iroT

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Subtype Relation

= Subtyping among readwrite
and readonly types Is
defined as in Java

- S extends or implements T =
'wS<:rwT

- S extends or implements T =
rnS<roT
= Readwrite types are
subtypes of corresponding
readonly types
-rwT<iroT

Peter Miller — Concepts of Object-Oriented Programming

classT{...}

class Sextends T{... }

Srws=...
TrwT = ...
readonly SroS = ...
readonly T roT = ...

rwT =rwsS;
roT =roS;
rolT =rwT;
rwT =roT;

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Transitive Readonly

class Address { class Person {
private Address addr;
private int[] phone; public readonly Address
public int[] getPhone() {...} getAddr() { return addr; }
)
}

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Transitive Readonly

class Address { class Person {

private Address addr;

private int[] phone; public readonly Address
public int[] getPhone() {...} getAddr() { return addr; }

}

Personp = ...
readonly Address a,
a = p.getAddr();

int[] ph = a.getPhone();

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Transitive Readonly

class Address {

private int[] phone;
public int[] getPhone() {...}
}

class Person {
private Address addr;

public readonly Address
getAddr() {return addr; }

= Accessing a value of a
readonly type or
through a readonly type
should yield a readonly
value

Peter Miller — Concepts of Object-Oriented Programming

Personp = ...
readonly Address a,
a = p.getAddr();

int[] ph = a.getPhone();

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Transitive Readonly (cont'd)

* The type of
- Afield access
- An array access
- A method invocation

Is determined by the
type combinator »

> rw T roT
rw S rw T roT
roS roT roT

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Transitive Readonly (cont'd)

* The type of Personp = ...
- A field access readonly Address a;
- An array access a = p.getAddr();

- A method invocation

is determined by the nt[1ph = a.getPhone();

type combinator »

> rw T roT
rw S rw T roT
roS roT roT

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Transitive Readonly (cont'd)

* The type of Personp = ...
- A field access readonly Address a;
- An array access a = p.getAddr();

- A method invocation
Is determined by the

int[] ph :/\a.getPhone();

/

[ro Address

type combinator »

> rw T roT
rw S rw T roT
roS roT roT

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Transitive Readonly (cont'd)

* The type of Personp = ...
- A field access readonly Address a;
- An array access a = p.getAddr();

- A method invocation

Int[] ph = a getPhone()

Is determined by the
type combinator »

/

[ro Address [rw int]]

> rw T roT
rw S rw T roT
roS roT roT

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Transitive Readonly (cont'd)

* The type of Personp = ...
- A field access readonly Address a;
- An array access a = p.getAddr();

- A method invocation

Is determined by the LN =R e TemE)

/

type combinator »
[ro Address >[rw int]]

> rw T roT
rw S rw T roT
roS roT roT

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Transitive Readonly (cont'd)

* The type of Personp = ...
- A field access readonly Address a;
- An array access a = p.getAddr();

- A method invocation

Is determined by the
type combinator »

Int[] ph = a getPhone()

/

[ro Address >[rw int[| }

H_/

> rw T roT
rw S rw T ol ro intl |
roS roT roT

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Transitive Readonly (cont'd)

* The type of Personp = ...
- A field access readonly Address a;
- An array access a = p.getAddr();

- A method invocation

Is determined by the
type combinator »

donly int[] ph = a.getPh ;
rea onyln[]p/age \\one()

\

[ro Address }b [rw int[| }

%(_/

> rw T roT
rw S rw T roT LN
roS roT roT

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Type Rules: Readonly Access

= Expressions of readonly

types Must not occur as readonly Address roa;
receijver of roa.street = “Ramistrasse’;

roa.phone[0] = 41,

- a field update N ,
roa.setCity(“Hagen”);

- an array update

- an invocation of a non-pure
method

= Readonly types must not readonly Address roa;
be cast to readwrite types |Address a = (Address) roa;

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Readonly Types

Discussion

» Readonly types enable safe sharing of objects

= Very similar to const pointers in C++, but:
- Transitive
- No casts to readwrite types
- Stricter definition of pure methods

= All rules for pure methods and readonly types can
be checked statically by a compiler

= Readwrite aliases can still occur, e.g., by capturing

Peter Miller — Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing
6.3 Readonly Types

6.4 Ownership Types

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Object Topologies

class Person {

» Read-write aliases private Address addr;

- private Company employer;
can sl O_CCUI’, .- public readonly Address getAddr()
by capturing or

_ { return addr; }
leaking public void setAddr(Address a)
{ addr = a.clone(); }

= We need to public Company getEmployer()

distinguish “internal” | {return employer; }
references from public void setEmployer(Company c)

I =C;
other references temployer = c; J
}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Roles in Object Structures

= Interface objects that are
used to access the
structure

* Internal representation
of the object structure

- Must not be exposed to
clients

= Arguments of the object
structure
- Must not be modified

Peter Miller — Concepts of Object-Oriented Programming

LinkedList)

a h
Listltr
N []
N\ _
N
Entry
N
—
) 4) ()
Entr Entry Entry
e T s s <
— 4——oj—-—o
._/ ;. &
\/

6.4 Object Structures and Aliasing — Ownership Types

Ownership Model

= Each object has zero
Or one owner objects

* The set of objects
with the same owner
IS called a context

= The ownership
relation is acyclic

* The heap is
structured Into a

forest of ownership
trees

Peter Miller — Concepts of Object-Oriented Programming

LinkedList

Listltr

e

6.4 Object Structures and Aliasing — Ownership Types
: J P yP Owner of }

Ownership Model Entry objects

Listltr

= Each object has zero CinkedLis)
Or one owner objects —

* The set of objects
with the same owner
IS called a context

= The ownership
relation is acyclic

* The heap is
structured into a
forest of ownership
trees

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types
: J P yP Owner of }

Ownership Model Entry objects
. TR
Listltr
= Each object has Zero CincedLiod
Or one owner objects —
. 1
* The set of objects
with the same owner Entry
IS called a context
= The ownership Enty] [(Entr
: : : - o—t—p
relation is acyclic MllE RN
* The heap is ~___
structured into a | el
forest of ownership objects owned

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types
: J P yP Owner of }

Ownership Model| [2eionan’ Entry objects

o

= Each object has zero Listltr

Or one owner objects

* The set of objects
with the same owner
IS called a context

= The ownership
relation is acyclic

* The heap is
structured into a

LinkedList
.\

_ Context of
forest of ownership objects owned

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

OwnershipTypes

Listltr

= \We use types to express LinkedList)

ownership information —

= peer types for objects in
the same context as this

= rep types for
representation objects Iin
the context owned by this

= any types for argument
objects in any context

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

OwnershipTypes

Listlt
= \We use types to express CinkedList = r
ownership information —
o
= peer types for objects in Entry
the same context as this
peer :
= rep types for reference | \ooby | el RO
representation objects in \\:j_::j_:'
the context owned by this ~__ |
s
= any types for argument)

objects in any context

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

OwnershipTypes rep
reference _
= We use types to express (inkedList =t
ownership information —
o J
= peer types for objects in Entry
the same context as this
peer t:::
= rep types for reference | \ooby | el RO
representation objects in \\:j_::j_:'
the context owned by this ~__ |
s
= any types for argument) U]

objects in any context

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

OwnershipTypes rep
reference _
= We use types to express (inkedList =t
ownership information —
o J
= peer types for objects in / Entry
the same context as this
peer t:::
= rep types for reference | \ooby | el RO
representation objects in \\:j_::j_:'
the context owned by this ~__ |
s
= any types for argument)]
objects in any context any
reference

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Example

class LinkedList {
private rep Entry header;

class Entry {
private any Object element;
private peer Entry previous, next;

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Example

class LinkedList {
private rep Entry header;

A list owns

Its nodes J

class Entry {
private any Object element;
private peer Entry previous, next;

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Example

class LinkedList {
private rep Entry header;

A list owns

Lists store
elements with
arbitrary owners

Its nodes J (

class Entry {
private any Object element;
private peer Entry previous, next;

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Example

class LinkedList {
private rep Entry header;

A list owns

Lists store
elements with

Its nodes J (

arbitrary owners
class Entry %4\

private any Object element;
private peer Entry previous, next;

] mdes have
the same owner

N

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Type Safety

* Run-time type information consists of
- The class of each object
- The owner of each object

» Type invariant: the static ownership information of
an expression e reflects the run-time owner of the
object o referenced by e’s value

- If e has type rep T then o’s owner is this
- If e has type peer T then o's owner is the owner of this
- If e has type any T then o’s owner is arbitrary

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Type Safety

* Run-time type information consists of
- The class of each object
- The owner of each object

» Type invariant: the static ownership information of
an expression e reflects the run-time owner of the
object o referenced by e’s value

- If e has type rep T then o’s owner is this
- If e has type peer T then o's owner is the owner of this
- If e has type any T then o’s owner is arbitrary

An existential
type

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Subtyping and Casts

classT{...}

= For types with identical class S extends T{ ... }

ownership modifier, subtyping
IS defined as In Java
-repS<irepT

- peer S<:peerT
-anyS<:any T

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Subtyping and Casts

classT{...}

= For types with identical class S extends T{ ... }

ownership modifier, subtyping
Is defined as in Java
-repS<irepT
- peer S<:peerT
-anyS<:any T

= rep types and peer types are
subtypes of corresponding
any types
-repT<iany T
- peerT < any T

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Subtyping and Casts

» For types with identical
ownership modifier, subtyping
Is defined as in Java
-repS<irepT
- peer S<:peerT
-anyS<iany T

= rep types and peer types are
subtypes of corresponding
any types
-repT<iany T
- peerT < any T

Peter Miller — Concepts of Object-Oriented Programming

classT{...}

class Sextends T{ ...}

peer T peerT = ...

any T anyT = ...

rep SrepS=...

rep T repT = ...

repT =reps;

anyT = repT,

peerT = (peerT)anyT,
repT =(rep T) anyT,;
repT = peerT,;

peerT =repT;

repT = anyT,

6.4 Object Structures and Aliasing — Ownership Types

Subtyping and Casts

» For types with identical
ownership modifier, subtyping
Is defined as in Java
-repS<irepT
- peer S<:peerT
-anyS<iany T

= rep types and peer types are
subtypes of corresponding
any types
-repT<iany T
- peerT < any T

Peter Miller — Concepts of Object-Oriented Programming

classT{...}

class Sextends T{ ...}

peer T peerT = ...

any T anyT = ...

rep SrepS=...

rep T repT = ... P
Run-time

repT =reps; checksj

anyT = repT,

peerT = (peer T?anyT;

repT =(rep T) anyT,;

repT = peerT,;

peerT =repT;

repT = anyT,

6.4 Object Structures and Aliasing — Ownership Types

Example (cont'd)

class LinkedList {
private rep Entry header;
public void add(any Object o) {
rep Entry newE = new rep Entry(o, header, header.previous);

}
}

class Entry {
private any Object element;
private peer Entry previous, next;
public Entry(any Object o, peer Entry p, peer Entryn){...}

}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Example (cont'd)

class LinkedList {
private rep Entry header;
public void add(any Object o) {
rep Entry newEk = new rep Entry(o, header, header.previous);

}

} Ownership information
IS relative to this
class Entry { (_ reference (viewpoint)

private any Object element;

private peer Entry previous, next;

public Entry(any Object o, peer Entry p, peer Entryn){...}
}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Viewpoint Adaptation: Example 1

List

Q
N\

N\

Entry

Entry Entry
@ — ®

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Viewpoint Adaptation: Example 1

List

Q
N\

N\

peer » peer = peer

Peter Miller — Concepts of Object-Oriented Programming

Entry Entry Entry
o — ® — ®

6.4 Object Structures and Aliasing — Ownership Types

Viewpoint Adaptation: Example 2

List

Q
\

A 1

Entry Entry Entry
® — ® — e

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Viewpoint Adaptation: Example 2

List

Q
\

A 1

rep » peer =rep

Entry Entry Entry
® — ® — e

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Viewpoint Adaptation

> peer T rep T any T
peer S peer T ? any T
rep S rep T ? any T
any S ? ? any T

Peter Miller — Concepts of Object-Oriented Programming

v=e.lf

(e)P t(f)<iz(v)

ef=v;

(v)<it(e)» t(f)

6.4 Object Structures and Aliasing — Ownership Types

Read vs. Write Access

O i)

this

joe

Peter Muller — Concepts of Object-Oriented Programming

ill

'0

class Person {
public rep Address addr;
public peer Person spouse;

peer Person joe, jill;

6.4 Object Structures and Aliasing — Ownership Types

Read vs. Write Access

O i)

this

joe

AN

Peter Muller — Concepts of Object-Oriented Programming

ill

'0

class Person {
public rep Address addr;
public peer Person spouse;

peer Person joe, jill;

joe.spouse = jill;

6.4 Object Structures and Aliasing — Ownership Types

Read vs. Write Access

(this | class Person {

° public rep Address addr;

ST public peer Person spouse;
ji

}

joe peer Person joe, jill;

AN

joe.spouse = jill;

any Address a = joe.addr;

'0

Peter Muller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Read vs. Write Access

(this | class Person {
° public rep Address addr;
TR public peer Person spouse;
ji
=
}

joe peer Person joe, jill;

— : y

o— joe.spouse = jill;

any Address a = joe.addr;

'0

joe.addr = new rep Address();

Peter Muller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Read vs. Write Access

(this | class Person {

° public rep Address addr;

ST public peer Person spouse;
ji

}

peer Person joe, jill;

joe

AN

joe.spouse = jill;

any Address a = joe.addr;

'0

joe.addr = new rep Address();

Peter Muller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

The lost Modifier

= Some ownership
relations cannot be
expressed in the type
system

= |nternal modifier lost for
fixed, but unknown
owner

Peter Miller — Concepts of Object-Oriented Programming

class Person {
public rep Address addr;
public peer Person spouse;

}

peer Person joe, jill;

joe.spouse = jill;

any Address a = joe.addr;

6.4 Object Structures and Aliasing — Ownership Types

The lost Modifier

= Some ownership class Person {
relations cannot be public rep Address addr;
expressed in the type public peer Person spouse;
system }"'

= |nternal modifier lost for
fixed, but unknown
owner joe.spouse = jill;

peer Person joe, jill;

[lost Address }

any Address a = joe.a\&lr;

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

The lost Modifier

= Some ownership class Person {
relations cannot be public rep Address addr;
expressed in the type public peer Person spouse;
system }"'

= |nternal modifier lost for
fixed, but unknown

owner joe.spouse = jill;

= Reading locations with
lost ownership is allowed

peer Person joe, jill;

[lost Address }

any Address a = joe.a\&dr;

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

The lost Modifier

= Some ownership class Person {
relations cannot be public rep Address addr;
expressed in the type public peer Person spouse;
system }"'

= |nternal modifier lost for
fixed, but unknown

owner joe.spouse = jill;
= Reading locations with
lost ownership is allowed

= Updating locations with
lost ownership is unsafe

peer Person joe, jill;

[lost Address }

any Address a = joe.a\&dr;

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

The lost Modifier

= Some ownership class Person {
relations cannot be public rep Address addr;
expressed in the type public peer Person spouse;
system }"'

= |Internal modifier lost for
fixed, but unknown
owner joe.spouse = jill;

= Reading locations with
lost ownership is allowed

= Updating locations with ~ [J0€:addr = new rep Address();
lost ownership is unsafe ﬁost Address}

peer Person joe, jill;

[lost Address }

any Address a = joe.a\&jr;

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

The lost Modifier: Detalls

> peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

The lost Modifier: Detalls

Peter Miller — Concepts of Object-Oriented Programming

|

> peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T

~
Another

existential type

|

6.4 Object Structures and Aliasing — Ownership Types

The lost Modifier: Detalls

> peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T
~
= Subtyping [exis’?enr?ttiZIe[ype }
-repT<:lostT
- peer T<:lostT
- lostT<:any T

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Type Rules: Field Access
= The field read

v=e.lf

IS correctly typed if

- e Is correctly typed
-t(e)p» 1(f)<it(v)

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Type Rules: Field Access

= The field read = The field write
v =e.f; e.f=v;
IS correctly typed if IS correctly typed if
- e Is correctly typed - e is correctly typed
-1(e)p1(f)<it(V) -t(v)<it(e) P t(f)

- 7(e) » 1(f) does not
have lost modifier

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Type Rules: Field Access

= The field read = The field write
v =e.f; e.f=v;
IS correctly typed if IS correctly typed if
- e Is correctly typed - e is correctly typed
-1(e)p1(f)<it(V) -t(v)<it(e) P t(f)

- (e) » 1(f) does not
have lost modifier

= Analogous rules for method invocations
- Argument passing is analogous to field write
- Result passing is analogous to field read

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

The self Modifier

class Person {
public rep Address addr;
public peer Person spouse;

peer Person joe;

joe.addr = new rep Address();

this.addr = new rep Address();

Peter Muller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

The self Modifier

class Person {
public rep Address addr;
public peer Person spouse;

}

peer Person joe;

joe.addr = new rep Address();

this.addr = new rep Address();

* Internal modifier self only for the this literal

Peter Muller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

The self Modifier: Detalls

> peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T
self S peer T rep T any T

Peter Miller — Concepts of Object-Oriented Programming

v=e.lf

(e)» t(f)<it(v)

ef=v;

(v)<it(e)» 1(f)
(e) » t(f) does not
have lost modifier

6.4 Object Structures and Aliasing — Ownership Types

The self Modifier: Detalls

> peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T
self S peer T rep T any T
= Subtyping

- self T<:peerT

Peter Miller — Concepts of Object-Oriented Programming

v=e.lf

(e)» t(f)<it(v)

ef=v;

(v)<it(e)» 1(f)
(e) » t(f) does not
have lost modifier

6.4 Object Structures and Aliasing — Ownership Types

Example: Sharing

this

class Person {
public rep Address addr;

joe

= Different Person objects
have different Address
objects

- No unwanted sharing

’0

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Example: Internal vs. External Objects

class Person {
private rep Address addr;

public rep Address getAddr() {
return addr;

}

public void setAddr(rep Address a) {
addr = a;

}

public void setAddr(any Address a) {
addr = new rep Address(a);

}
}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Example: Internal vs. External Objects

Address is part of
Person’s internal
represenations

class Person {
private rep Address addr;

public rep Address getAddr() {
return addr;

}

public void setAddr(rep Address a) {
addr = a;

}

public void setAddr(any Address a) {
addr = new rep Address(a);

}
}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Example: Internal vs. External Objects

Address is part of
Person’s internal
represenations

class Person {
private rep Address addr;

public rep Address getAddr() {
return addr;

Clients receive a
} lost-reference

public void setAddr(rep Address a) {
addr = a;

}

public void setAddr(any Address a) {
addr = new rep Address(a);

}
}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Example: Internal vs. External Objects

Address is part of
Person’s internal
represenations

class Person {
private rep Address addr;

public rep Address getAddr() {
return addr;

Clients receive a}

} lost-reference
public void setAddr(rep Address a) {

addr = a; Cannot be called
} by clients

public void setAddr(any Address a) {
addr = new rep Address(a);

}
}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Example: Internal vs. External Objects

Address is part of
Person’s internal
represenations

class Person {
private rep Address addr;

public rep Address getAddr() {
return addr;

Clients receive a}

} lost-reference
public void setAddr(rep Address a) {

addr = a; Cannot be called
} by clients

public void setAddr(any Address a) {
addr = new rep Address(a);

) Cloning
} necessary

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Internal vs. External Objects (cont'd)

class Person {
private any Company employer;

public any Company getEmployer() {
return employer;

}

public void setEmployer(any Company c) {
employer = c;

}

}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Internal vs. External Objects (cont'd)

Company is shared
between many
Person objects

class Person {
private any Company employer;

public any Company getEmployer() {
return employer;

}

public void setEmployer(any Company c) {
employer = c;

}

}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Internal vs. External Objects (cont'd)

Company is shared
between many
Person objects

class Person {
private any Company employer;

public any Company getEmployer() {
return employer;

}
public void setEmployer(any Company c) {

employer = c; Can be called
} by clients

}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Owner-as-Modifier Discipline

= Based on the ownership type system we can
strengthen encapsulation with extra restrictions

- Prevent modifications of internal objects
- Treat any and lost as readonly types
- Treat self, peer, and rep as readwrite types

= Additional rules enforce owner-as-modifier

- Field write e.f = vis valid only if t(e) Is self,
peer, or rep

- Method call e.m(...) is valid only if t(e) Is self,
peer, or rep, or called method is pure

Peter Muller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Owner-as-Modifier Discipline (cont'd)

this

= A method may modify only objects directly or
Indirectly owned by the owner of the current this
object

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Internal vs. External Objects Revisited

class Person {
private rep Address addr;
private any Company employer;

public rep Address getAddr() {return addr; }

public void setAddr(any Address a) {
addr = new rep Address(a);

}

public any Company getEmployer() {return employer; }

public void setEmployer(any Company c) { employer =c; }

}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Internal vs. External Objects Revisited

class Person { Company is shared:
private rep Address addr; cannot be modified

private any Company employer;

public rep Address getAddr() {return addr; }

public void setAddr(any Address a) {
addr = new rep Address(a);

}

public any Company getEmployer() {return employer; }

public void setEmployer(any Company c) { employer =c; }

}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Internal vs. External Objects Revisited

class Person { Company is shared:
private rep Address addr; cannot be modified

private any Company employer;

public rep Address getAddr() {return addr; }

Clients receive
(transitive)
readonly reference

public void setAddr(any Address a) {
addr = new rep Address(a);

}

public any Company getEmployer() {return employer; }

public void setEmployer(any Company c) { employer =c; }

}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Internal vs. External Objects Revisited

class Person { Company is shared:
private rep Address addr; cannot be modified

private any Company employer;

public rep Address getAddr() {return addr; }

Clients receive
(transitive)
readonly reference

public void setAddr(any Address a) {
addr = new rep Address(a);

} Accidental capturing
IS prevented

public any Company getEmployer() {return employer; }

public void setEmployer(any Company c) { employer =c; }

}

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Achievements

= rep and any types enable
encapsulation of whole
object structures

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Achievements

= rep and any types enable
encapsulation of whole
object structures

= Encapsulation cannot be
violated by subclasses,
via casts, etc.

Peter Miller — Concepts of Object-Oriented Programming

class ArrayList {
protected rep int[| array;
private int next;

}

class MyList extends ArrayList {
public peer int[| leak() {
return array;

}
}

6.4 Object Structures and Aliasing — Ownership Types

Achievements

= rep and any types enable
encapsulation of whole
object structures

= Encapsulation cannot be
violated by subclasses,
via casts, etc.

= The technique fully

supports subclassing

- In contrast to solutions with
private inner or final
classes, etc.

Peter Miller — Concepts of Object-Oriented Programming

class ArrayList {
protected rep int[| array;
private int next;

}

class MyList extends ArrayList {
public peer int[| leak() {
return array;

}
}

6.3 Object Structures and Aliasing — Problems of Aliasing

Exchanging Implementations

class ArrayList { class ArrayList {
private int[| array; private Entry header;
private int next;
I/ requires ia != null I/ requires ia != null
I/ ensures Vi. O<=i<ia.length: I/l ensures Vi. O<=i<ia.length:
I/ iIsElem(old(ia[i])) ‘ I/ ISElem(old(ia[i]))
public void setElems(int[]ia) public void setElems(int[]i1a)
{ array = ia; next = ia.length; } { ... /" create Entry for each
element */ }
} }

» |nterface including contract remains unchanged

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Exchanging Implementations (cont'd)

class ArrayList { class ArrayList {
private rep int[| array; private rep Entry header;,
private int next;

/l requires ia !'= null // requires ia != null
I/ ensures Vi. O<=i<ia.length: Il ensures Vi. O<=i<ia.length:
I/ ISElem(old(ia[i])) -// isElem(old(ia[i]))
public void public void
setElems(any int[] ia) setElems(any int[] ia)
{ System.arraycopy(...); {... /" create Entry for each
next = ia.length; } element */ }
) }

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Exchanging Implementations (cont'd)

class ArrayList { class ArrayList {
private rep int[| array; private rep Entry header;,
private int next;

/l requires ia !'= null // requires ia != null
I/ ensures Vi. O<=i<ia.length: Il ensures Vi. O<=i<ia.length:
I/ ISElem(old(ia[i])) -// isElem(old(ia[i]))
public void public void
setElems(any int[] ia) setElems(any int[] ia)

{ System.arraycopy(...); { ... /" create Entry for each

next = ia.length; } element */ }
) Wtal capturing } }
L IS prevented

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Exchanging Implementations (cont'd)

class ArrayList {
private rep int[| array;
private int next;

public any int[| getElems()
{ return array; }

Peter Miller — Concepts of Object-Oriented Programming

class ArrayList {
private rep Entry header;

public void any int| | getElems()
{ I* create new array */ }

6.4 Object Structures and Aliasing — Ownership Types

Exchanging Implementations (cont'd)

class ArrayList { class ArrayList {
private rep int[| array; private rep Entry header;,
private int next;

public any int| | getElems() public void any int[| getElems()
{ return array; } { I* create new array */ }

Leaking is still
possible

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Exchanging Implementations (cont'd)

class ArrayList {
private rep int[| array;
private int next;

public any int[| getElems()
{ return array; }

) Leaking is still
possible

class ArrayList {
private rep Entry header;

public void any int| | getElems()
{ I* create new array */ }

}

list.prepend(0);

any int[] ia = list.getElems();
list.prepend(1);
assertia[0]==1,;

peer ArrayListlist = new peer ArrayList();

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Exchanging Implementations (cont'd)

class ArrayList { class ArrayList {

private rep int[| array; private rep Entry header;

private int next;

public any int| | getElems() public void any int[| getElems()

{ return array; } { I* create new array */ }
) Leaking is still)
possible

peer ArrayListlist = new peer ArrayList();
list.prepend(0); = Observable
any int[] ia = list.getElems(); behavior IS
I|st.prepend(1); Changed
assertia[0]==1,

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Problems of Aliasing

Consistency of Object Structures

= Consistency of object class ArrayList {
structures depends on private int]] array;

: : private int next;
flelds of several objects
// invariant array != null &&

_ /I 0<=next<=array.length &&
= [nvariants are usually /I Vi.O<=i<next: array[i]>= 0

specified as part of the
contract of those objects | publicvoid add(inti) {...}

that represent the public void setElems(int[]ia)
interface of the object L
structure }

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Invariants for Object Structures

= The invariant of object o | ¢ass ArrayList{
may depend on private rep int[] array;
: private int next;
- Encapsulated fields of o

- Fields of objects
(transitively) owned by o

// invariant array !'= null &&
/I 0<=next<=array.length &&
[l Vi1.0<=I<next: array[i]>=0

= Interface objects have public void add(inti) {...}
full control over their publiCnVO_irc]itse_tElems
rep-objects (anyint[Jia) {..}

Peter Miller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Problems of Aliasing

Security Breach in Java 1.1.1

class Malicious { identity]] dentiy
@
void bad() { e
ldentity[| s; |dentity
|dentity trusted = java.Security...; ® '
s = Malicious.class.getSigners(); c
s[O] = trusted,; \ ass
/* abuse privilege */ \ "‘\
} ldentity]]
— | |dentity
} . : T
|dentity[] getSigners()
{ return signers; } System

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Security Breach in Java 1.1.1 (cont’d)

class Malicious { Identity[] dentity
@ >
void bad() { °
any ldentity[] s; |dentity
ldentity trusted = java.Security...; >
s = Malicious.class.getSigners(); 1t
_ . Class _ _
s[O] = trusted,; \ — Mny[] signers; }
} \ "\
Identity][] /
} — [ldentity
L ——

{ return signers; }

Erep Identity[] getSigners()?
System

Peter Miller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Ownership Types

Ownership Types: Discussion

= Ownership types express heap topologies and
enforce encapsulation

= Owner-as-modifier is helpful to control side effects
- Maintain object invariants
- Prevent unwanted modifications

= Other applications also need restrictions of read
access

- Exchange of implementations
- Thread synchronization

Peter Miller — Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

References

= Werner Dietl and Peter Muller: Universes: Lightweight
Ownership for JIML. Journal of Object Technology, 2005

= Werner Dietl, Sophia Drossopoulou, and Peter Mdller:
Separating Ownership Topology and Encapsulation with

Generic Universe Types. ACM Trans. Program. Lang. Syst.,
2011

Peter Miller — Concepts of Object-Oriented Programming

