Concepts of
Object-Oriented Programming

Peter Muller
Chair of Programming Methodology

Autumn Semester 2019 ETH:zurich

5. Information Hiding and Encapsulation

5. Information Hiding and Encapsulation

5.1 Information Hiding
5.2 Encapsulation

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Information Hiding

= Definition
Information hiding is a technique for reducing the
dependencies between modules:

- The intended client is provided with all the information
needed to use the module correctly, and with nothing
more

- The client uses only the (publicly) available information

» Information hiding deals with programs, that is, with
static aspects

= Contracts are part of the exported interfaces

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

ODbjectives

= Establish strict interfaces

= Hide implementation
details

» Reduce dependencies
between modules

- Classes can be studied
and understood in isolation

- Classes interact only in
simple, well-defined ways

Peter Miller — Concepts of Object-Oriented Programming

class Set {

/| contract or documentation
public void insert(Object o)

[}
}

class BoundedSet {
Set rep;
Int maxSize;

public void insert(Object 0) {
If (rep.size() < maxSize)
rep.insert(0);
}
}

5.1 Information Hiding and Encapsulation — Information Hiding

The Client Interface of a Class

» Class name class SymbolTable
extends Dictionary<String,String>
. Type parameters Implements Map<String,String> {
and their bounds public int size:
. Super-class public void add(String key, String value)
= Super-interfaces tput(key, value); }
= Signatures of public String lookup(String key)

throws lllegalArgumentException {

exported methods | . atkey(key).

and fields)

= Client interface of |}
direct superclass

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Other Interfaces

= Subclass interface
.. ublic class DList
- Efficient access to g .{ _
. protected Node first, last;
superclass fields . . _
N private int modCount;
- Access to auxiliary protected void modified()
superclass methods { modCount++: }
}

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Other Interfaces

= Subclass interface

- Efficient access to
superclass fields

- Access to auxiliary
superclass methods

= Friend interface

- Mutual access to
Implementations of
cooperating classes

- Hiding auxiliary classes

package coop.util;
public class DList {
protected Node first, last;
private int modCount;
protected void modified()
{ modCount++; }

}

Peter Miller — Concepts of Object-Oriented Programming

package coop.util;
[* default */ class Node {
[* default */ Object elem;
[* default */ Node next, prev;

)

5.1 Information Hiding and Encapsulation — Information Hiding

Other Interfaces

= Subclass interface

- Efficient access to
superclass fields

- Access to auxiliary
superclass methods

= Friend interface

- Mutual access to
Implementations of
cooperating classes

- Hiding auxiliary classes

= And others

Peter Miller — Concepts of Object-Oriented Programming

package coop.util;
public class DList {
protected Node first, last;
private int modCount;
protected void modified()
{ modCount++; }

}

package coop.util;
[* default */ class Node {
[* default */ Object elem;
[* default */ Node next, prev;

)

5.1 Information Hiding and Encapsulation — Information Hiding

Expressing Information Hiding

= Java: Access modifiers

- public client interface

- protected subclass + friend interface
- Default access friend interface

- private Implementation

= Eiffel: Clients clause in feature declarations
feature { ANY } client interface

feature { T } friend interface for class T

feature { NONE } implementation (only “this”-object)
All exports include subclasses

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Safe Changes

= Consistent renaming of
hidden elements

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Safe Changes

= Consistent renaming of | Package coop.utl;

hidden elements _ |
public class DList {

protected Node first, last;
private int modCount;

protected void incrModCount()
{ modCount++; }

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Safe Changes

= Consistent renaming of | Package coop.utl;

hidden elements _ |
public class DList {

protected Node first, last;
private int version;

protected void incrModCount()
{ version++; }

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Safe Changes

= Consistent renaming of | Package coop.utl;
hidden elements

- _ _ public class DList {
= Modification of hidden

Implementation as long protected Node first, last;
as exported functionality
is preserved private int version;

protected void incrModCount()
{ version++; }

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Safe Changes

= Consistent renaming of | Package coop.utl;
hidden elements

- _ _ public class DList {
= Modification of hidden

Implementation as long protected Node first, last;
as exported functionality
is preserved private int version;

protected void incrModCount()

= Access modifiers and {version++:

clients clauses specify
what classes might be }
affected by a change

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Safe Changes

= Consistent renaming of
hidden elements

» Modification of hidden
Implementation as long
as exported functionality
IS preserved

= Access modifiers and
clients clauses specify
what classes might be
affected by a change

Peter Miller — Concepts of Object-Oriented Programming

package coop.util;

public class DList {
protected Node first, last;
private int version;

protected void modified()
{ version++; }

5.1 Information Hiding and Encapsulation — Information Hiding

Exchanging Implementations

class Coordinate {
private double x,y;

public double distOrigin()
{ return Math.sgrt(x*x + y*y); }

}

class Coordinate {
private double radius, angle;

public double distOrigin()
{ return radius; }

}

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Exchanging Implementations

= Observable behavior class Coordinate {
must be preserved private double x,y;

public double distOrigin()
{ return Math.sgrt(x*x + y*y); }

}

class Coordinate {
private double radius, angle;

public double distOrigin()
{ return radius; }

}

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Exchanging Implementations

= Observable behavior class Coordinate {
must be preserved private double x,y;

public double distOrigin()

. EXported flelds limit { return Math.sqgrt(x*x + y*y); }
modifications severely }
- Use getter and setter
methods instead class Coordinate {

private double radius, angle;

public double distOrigin()
{ return radius; }

}

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Exchanging Implementations

= Observable behavior class Coordinate {
must be preserved private double x,y;

public double distOrigin()

. EXported flelds limit { return Math.sqgrt(x*x + y*y); }
modifications severely }
- Use getter and setter
methods instead class Coordinate {

private double radius, angle;

. MOdIfI(?atIOHS are critical oublic double distOrigin()
- Fragile baseclass problem { return radius; }
- Object structures }

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Method Selection in Java (JLS1)

class T {
public void m(){... }

}

class S extends T {
public void m(){... }

}

class U extends S {}

Tv=new U();
v.m();

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Method Selection in Java (JLS1)

class T {

= At compile time: public void m() {...}

1. Determine static declaration |}

class S extends T {
public void m(){... }

}

class U extends S {}

Tv=new U();
v.m();

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Method Selection in Java (JLS1)

class T {

= At compile time: public void m() {...}

1. Determine static declaration |}

2. Check accessibility

class S extends T {
public void m(){... }

}

class U extends S {}

Tv=new U();
v.m();

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Method Selection in Java (JLS1)

_ _ _ class T{
= At compile time: oublic void m(){ ...}

1. Determine static declaration |}

2. Check accessibility

class S extends T {

3. Determine invocation mode oublic void m() { ...}

(virtual / nonvirtual))

class U extends S {}

Tv=new U();
v.m();

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Method Selection in Java (JLS1)

class T {

= At compile time: public void m(){ ... }

1. Determine static declaration |}

2. Check accessibility

class S extends T {

3. Determine invocation mode oublic void m() { ...}

(virtual / nonvirtual))

= At run time: class U extends S {}

4. Compute receiver reference

Tv=new U(),
v.m();

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Method Selection in Java (JLS1)

= At compile time:
1. Determine static declaration
2. Check accessibility

3. Determine invocation mode
(virtual / nonvirtual)

= At run time:
4. Compute receiver reference

5. Locate method to invoke
(based on dynamic type of
receiver object)

Peter Miller — Concepts of Object-Oriented Programming

class T {
public void m(){... }

}

class S extends T {
public void m(){... }

}

class U extends S {}

Tv=new U(),
v.m();

5.1 Information Hiding and Encapsulation — Information Hiding

Rules for Overriding: Access

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Rules for Overriding: Access

class Super {

|.o.r.otected void m(){ ...}
}

class Sub extends Super {
voidm(){...}

}

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Rules for Overriding: Access

class Super {

|.o.r.otected void m(){ ...}
}

class Sub extends Super {
voidm(){...}

}

In class Super or Sub:
public void test(Super v) {

v.m();

}

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Rules for Overriding: Access

= Access Rule: class Super{
The access modifier of
an overriding method }
must provide at least as

protected void m(){...}

much access as the class Sub extends Super {

overridden method void m(){...}
}

In class Super or Sub:
public void test(Super v) {

v.m();

}

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Rules for Overriding: Access

= Access Rule: class Super {
The access modifier of orotected void m(){ ...}
an overriding method }

must provide at least as

much access as the class Sub extends Super {

overridden method void m(){...}
}

Default access

\ In class Super or Sub:

protected public void test(Super v) {
T~ v.m();
public }

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Rules for Overriding: Access

= Access Rule: class Super {
The access modifier of orotected void m(){ ...}
an overriding method }

must provide at least as

much access as the class Sub extends Super {

overridden method public void m(){...}
}

Default access

\ In class Super or Sub:

protected public void test(Super v) {
T~ v.m();
public }

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Rules for Overriding: Hiding

class Super {

private void m()
{ System.out.printin("Super”); }
public void test(Super v)
{v.m();}
}

class Sub extends Super {
public void m()
{ System.out.printin(“Sub”); }

}

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Rules for Overriding: Hiding

Peter Miller — Concepts of Object-Oriented Programming

class Super {

private void m()
{ System.out.printin("Super”); }
public void test(Super v)
{v.m();}
}

class Sub extends Super {
public void m()
{ System.out.printin(“Sub”); }

}

Super v = new Sub();
v.test(v);

5.1 Information Hiding and Encapsulation — Information Hiding

Rules for Overriding: Hiding

= Override Rule: class Super {

A method Sub.m orivate void m()

overrides the superclass { System.out.printin(“Super’); }
method Super.m only if public void test(Super v)
Super.m is accessible \ tvm(): }

from Sub
: class Sub extends Super {
= |f Super.m is not sublic void m()

accessible from Sub, It IS | ¢ system.out.printin(“Sub”); }

nidden by Sub.m }
= Private methods cannot | Superv=new Sub();
e overridden v.test(v);

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Problems with Default Access Methods

Peter Miller — Concepts of Object-Oriented Programming

package PT,

public class T {
voidm(){...}

}

package PS;

public class S extends PT.T {
public void m(){... }

}

In package PT:
Tv=new PS.5();
v.m();

5.1 Information Hiding and Encapsulation — Information Hiding

Problems with Default Access Methods

= S.m does not override
T.m (T.m Is not
accessible in S)

= T.mand S.m are
different methods with
same signature

= Static declaration for
Invocation i1s T.m

= Atrun time, S.m Is
selected and invoked

Peter Miller — Concepts of Object-Oriented Programming

package PT,
public class T {
voidm(){...}

}

package PS;
public class S extends PT.T {
public void m(){... }

}

In package PT:
Tv=new PS.5();
v.m();

5.1 Information Hiding and Encapsulation — Information Hiding

Corrected Method Selection (JLS2)

= Dynamically selected method must override
statically determined method

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Corrected Method Selection (JLS2)

= Dynamically selected method must override
statically determined method

= At compile time:

1. Determine static
declaration

2. Check accessibility

3. Determine invocation
mode (virtual /
nonvirtual)

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Corrected Method Selection (JLS2)

= Dynamically selected method must override
statically determined method

= At compile time: = At run time:
1. Determine static 4. Compute receiver
declaration reference
2. Check accessibility 5. Locate method to invoke
3. Determine invocation that overrides statically
mode (virtual / determined method
nonvirtual)

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Problems with Protected Methods

Peter Miller — Concepts of Object-Oriented Programming

package PT,
public class T {
protected void m(){...}

}

package PS;
public class S extends PT.T {
protected void m(){...}

}

package PT,
public class C {
public void foo() {
Tv=new PS.5();

v.m(); }
}

5.1 Information Hiding and Encapsulation — Information Hiding

Problems with Protected Methods

Peter Miller — Concepts of Object-Oriented Programming

S.m overrides T.m

Static declaration iIs
T.m, which Is
accessible for C

At run time, S.m Is
selected, which is not
accessible for C

protected does not
always “provide at
least as much access”
as protected

package PT,
public class T {
protected void m(){ ...}

}

package PS;
public class S extends PT.T {
protected void m(){...}

}

package PT,
public class C {
public void foo() {
Tv=new PS.S();

v.m(); }
}

5.1 Information Hiding and Encapsulation — Information Hiding

Problems with Protected Methods

Peter Miller — Concepts of Object-Oriented Programming

S.m overrides T.m

Static declaration iIs
T.m, which Is
accessible for C

At run time, S.m Is
selected, which is not
accessible for C

protected does not
always “provide at
least as much access”
as protected

package PT,
public class T {
protected void m(){ ...}

}

package PS;
public class S extends PT.T {
protected void m(){...}

i T ubiic would}

package PT; be safe
public class C {
public void foo() {
Tv=new PS.S();

v.m(); }

}

5.1 Information Hiding and Encapsulation — Information Hiding

Another Fragile Baseclass Problem

class C{
Int X;
public void incl()
{ this.inc2(); }
private void inc2()
{ x++; }

}

class CS extends C {
public voidinc2() {incl();}

}

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Another Fragile Baseclass Problem

class C{
int X;
public void incl()
{ this.inc2(); }
private void inc2()
{ x++; }

}

class CS extends C {
public voidinc2() {incl();}

}
CScs=new CS(5);
cs.inc2();

System.out.printin(cs.x);

Peter Miller — Concepts of Object-Oriented Programming

5.1 Information Hiding and Encapsulation — Information Hiding

Another Fragile Baseclass Problem

class C{
int X;
public void incl()
{ this.inc2(); }
protected void inc2()
{ x++; }

}

class CS extends C {
public voidinc2() {incl();}

}
CScs=new CS(5);
cs.inc2();

System.out.printin(cs.x);

Peter Miller — Concepts of Object-Oriented Programming

5. Information Hiding and Encapsulation

5. Information Hiding and Encapsulation

5.1 Information Hiding
5.2 Encapsulation

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Objective

= A well-behaved module
operates according to its
specification in any
context, in which it can
be reused

* I[mplementations rely on
consistency of internal
representations

= Reuse contexts should
be prevented from
violating consistency

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Objective

= A well-behaved module |ciass coordinate {
operates according to its | public double radius, angle;

specification in any /linvariant 0 <= radius &&
context, in which it can /I'0 <= angle && angle < 360
be reused

/l ensures 0 <= result
* Implementations rely on public double distOrigin()

consistency of internal { return radius; }
representations }

= Reuse contexts should Coordinate ¢ = new Coordinate();
be prevented from c.radius = -10;
Violating Consistency Math.sqrt(c.distOrigin());

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Encapsulation

= Definition
Encapsulation is a technique for structuring the
state space of executed programs. Its objective is
to guarantee data and structural consistency by
establishing capsules with clearly defined
Interfaces.

= Encapsulation deals mainly with dynamic aspects

* Information hiding and encapsulation are often
used synonymously in the literature;
here, encapsulation is a more specific concept

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Levels of Encapsulation

= Capsules can be

Individual objects

Obiject structures

A class (with all of its objects)

All classes of a subtype hierarchy

A package (with all of its classes and their objects)

= Encapsulation requires a definition of the boundary
of a capsule and the interfaces at the boundary

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Consistency of Objects

» Objects have (external)
Interfaces and an (internal)
representation

= Consistency can include
- Properties of one execution state
- Relations between execution

states

* The internal representation of
an object is encapsulated If it
can be manipulated only by
using the object’s interfaces

Peter Miller — Concepts of Object-Oriented Programming

4 objl h

al:
az.
hal:
ha2:
ha3:

m(p1,p2){..}
m1() {..}
m2(p) {..}

hl(p,q){..}
h2(r) {..}

h3(){..}
\ J

5.2 Information Hiding and Encapsulation — Encapsulation

Example: Breaking Consistency (1)

class Coordinate {
public double radius, angle;
// invariant O <= radius &&
// 0 <=angle && angle < 360

/[l ensures 0 <= result

public double distOrigin()
{ return radius; }

}

Coordinate ¢c = new Coordinate();
c.radius = -10;
Math.sqgrt(c.distOrigin());

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Example: Breaking Consistency (1)

class Coordinate {
public double radius, angle;
// invariant O <= radius &&
// 0 <=angle && angle < 360

= Problem:
Exported fields allow
objects to manipulate

the state of other objects Jl ensures 0 <= result

public double distOrigin()
{ return radius; }

}

Coordinate ¢c = new Coordinate();
c.radius = -10;
Math.sqgrt(c.distOrigin());

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Example: Breaking Consistency (1)

class Coordinate {
public double radius, angle;
// invariant O <= radius &&
// 0 <=angle && angle < 360

= Problem:
Exported fields allow
objects to manipulate

the state of other objects | // ensures 0 <= result
public double distOrigin()
{ return radius; }

= Solution:
. . }
Apply proper information
hiding Coordinate ¢ = new Coordinate();

c.radius = -10;
Math.sqgrt(c.distOrigin());

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Example: Breaking Consistency (1)

Use

orivate class Coordinate {

N public double radius, angle;
// invariant O <= radius &&
// 0 <=angle && angle < 360

= Problem:
Exported fields allow
objects to manipulate

the state of other objects | // ensures 0 <= result
public double distOrigin()
{ return radius; }

= Solution:
. . }
Apply proper information
hiding Coordinate ¢ = new Coordinate();

c.radius = -10;
Math.sqgrt(c.distOrigin());

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Example: Breaking Consistency (2)

class Coordinate {
protected double radius, angle;

/I Invariant 0 <= radius &&
// 0 <= angle && angle < 360

public double getAngle()
{ return angle; }

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Example: Breaking Consistency (2)

class Coordinate {
protected double radius, angle;

/I Invariant 0 <= radius &&
// 0 <= angle && angle < 360

public double getAngle()
{ return angle; }

}

class BadCoordinate
extends Coordinate {

public void violate()
{angle =-1;}

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Example: Breaking Consistency (2)

class Coordinate {
protected double radius, angle;

/I Invariant 0 <= radius &&
// 0 <= angle && angle < 360

public double getAngle()
{ return angle; }

}

BadCoordinate ¢ =
new BadCoordinate();

c.violate();
Math.sgrt(c.getAngle());

class BadCoordinate
extends Coordinate {

public void violate()
{angle =-1;}

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Example: Breaking Consistency (2)

= Problem:
Subclasses can
Introduce (new or
overriding) methods
that break consistency

class Coordinate {
protected double radius, angle;

/I Invariant 0 <= radius &&
// 0 <= angle && angle < 360

public double getAngle()
{ return angle; }

}

BadCoordinate ¢ =
new BadCoordinate();

c.violate();
Math.sgrt(c.getAngle());

class BadCoordinate
extends Coordinate {

public void violate()
{angle =-1;}
}

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Example: Breaking Consistency (2)

= Problem: class Coordinate {

tected double radius, angle;
Subclasses can PTO ’ ’
/I Invariant O <= radius &&

introduce (new or /I’ 0<=angle & angle < 360
overriding) methods
that break consistency public double getAngle()

: return angle:
= Solution: { gle; J

Behavioral subtyping }

class BadCoordinate

BadCoordinate ¢ = extends Coordinate {
new BadCoordinate(); public void violate()

c.violate(); {angle =-1;}

Math.sqrt(c.getAngle()); }

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Achieving Consistency of Objects

1. Apply information hiding:
Hide internal representation wherever possible
2. Make consistency criteria explicit:
Use contracts or informal documentation to
express consistency criteria (e.g., invariants)

3. Check interfaces:
Make sure that all exported operations of an
object — including subclass methods — preserve all
documented consistency criteria

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Invariants

* [nvariants express
consistency properties

= The invariant of object o
has to hold In:
- Prestates of o's methods
- Poststates of o’'s methods

= Temporary violations
possible

Peter Miller — Concepts of Object-Oriented Programming

class Redundant {
private int a, b;
/[Invariant a ==

public void set(intv) {
/[prestate: invariant holds
a=\yv,
// invariant does not hold
b=v,
/] poststate: invariant holds

5.2 Information Hiding and Encapsulation — Encapsulation

Checks for Invariants: Textbook Solution

= Assume that all objects o are capsules
- Only methods executed on o can modify o’s state

- The invariant of object o refers only to the encapsulated
fields of o

= For each invariant, we have to show

- That all exported methods preserve the invariants
of the receiver object

- That all constructors establish the invariants
of the new object

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Object Consistency in Java

class Redundant {
private int a, b;
private Redundant next;
/[invariant a ==

public void set(intv){...}

public void violate() {
/[all invariants hold
next.a = next.b + 1;
/[Invariant of next does not hold

}

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Object Consistency in Java

= Declaring all fields class Redundant {
private does not private int a, b;
Iati private Redundant next;
guarantee encqps_u_atlon 1 invariant a == b
on the level of individual |
objects public void set(intv){...}

public void violate() {
/[all invariants hold
next.a = next.b + 1;
/[invariant of next does not hold

}

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Object Consistency in Java

= Declaring all fields class Redundant {
private does not private int a, b;
Iati private Redundant next;
guarantee encqps_u_atlon 1 invariant a == b
on the level of individual |
objects public void set(intv){...}

* Objects of same class

: : blic void violate
can break the invariant public void violate() 1

/I all invariants hold
next.a = next.b + 1;
/I Invariant of next does not hold

}

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Object Consistency in Java

= Declaring all fields class Redundant {
private does not private int a, b
Iati private Redundant next;
guarantee encqps_u_atlon 1 invariant a == b
on the level of individual |
objects public void set(intv){...}

* Objects of same class

: : blic void violate
can break the invariant public void violate() 1

/I all invariants hold

= Eiffel supports next.a = next.b + 1;
encapsulation on the /I Invariant of next does not hold
object level J

- feature { NONE }

Peter Miller — Concepts of Object-Oriented Programming

5.2 Information Hiding and Encapsulation — Encapsulation

Invariants for Java (Simple Solution)

= Assumption: The invariants of object o may refer
only to private fields of o

= For each invariant, we have to show

- That all exported methods and constructors of class T
preserve the invariants of all objects of T

- That all constructors in addition establish the invariants of
the new object

Peter Miller — Concepts of Object-Oriented Programming

5. Information Hiding and Encapsulation

References

= James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and
Alex Buckley: The Java Language Specification. 2013
http://docs.oracle.com/javase/specs/

= Peter Muller and Arnd Poetzsch-Heffter: Kapselung und
Methodenbindung: Javas Designprobleme und ihre
Korrektur. Java-Informations-Tage, 1998 (in German)

Peter Miller — Concepts of Object-Oriented Programming

