
SO
LU

TIO
N

Concepts of Object-Oriented Programming
AS 2019

Concepts of Object-Oriented Programming
Midterm Examination

8.11.2019
Prof. Dr. Peter Müller

Last name: . First name: .

Student ID number: .

Department (if not D-INFK): .

I confirm with my signature, that I was able to take this exam under regular circumstances and
that I have read and understood the directions below.

Signature: .

Read completely and carefully the following instructions before starting to work on the exam:

1. Write your last and first name on every page that contains parts of your solutions. Use
a ballpoint pen or a fountain pen (no pencil). Do not use a red pen. Return the
instructions, the tasks, and your solutions.

2. It is neither allowed to use your own papers, documents, scripts, etc., nor any electronic
equipment (notebook computers, calculators, cell phones, etc.)

3. Write all of your solutions in English.

4. Explain your solutions carefully if a task asks for an explanation.

5. You have 1 hour to complete the exam.

6. Place your student ID on the desk.

Good Luck!

Task 1 2 3 4 Total
Max. points 6 6 20 12 44
Achieved

COOP Midterm Exam AS 2019 Name: 2/7

Task 1 Overloading and Overriding - 6 points
Fill in with types the three blanks from the following Java code, such that it compiles and when
executed prints Moving sofa from the kitchen:

class Furniture {
public String name() { return "furniture"; }

}

class BigFurniture extends Furniture {
public String name() { return "big furniture"; }

}

class Sofa extends BigFurniture {
public String name() { return "sofa"; }

}

class Room {
public String move(Furniture furniture, Room to) {

return "Moving " + furniture.name();
}

}

class SmallRoom extends Room {
public String move(BigFurniture furniture, SmallRoom to) {

return super.move(furniture, to) + " from small room";
}

}

class Kitchen extends SmallRoom {

public String move(________________ furniture, ________________ to) {
return super.move(furniture, to) + " from the kitchen";

}
}

class Main {
public static void main(String[] args) {

________________ fromRoom = new Kitchen();
BigFurniture furniture = new Sofa();
SmallRoom toRoom = new SmallRoom();
System.out.println(fromRoom.move(furniture, toRoom));

}
}

solution

Furniture, Room, Room

COOP Midterm Exam AS 2019 Name: 3/7

Task 2 Nominal and Structural Subtyping - 6 points
Assume that we have two statically-typed, type-safe languages with Java-like syntax: JStruct
has structural subtyping, JNom has nominal subtyping. They support overriding, but not
overloading. Both languages have an additional keyword inherits; class C inherits

D expresses that class C inherits from class D (but makes no statement about subtyping).
JNom additionally has a keyword subtypes; class C subtypes D expresses that class C is
a subtype of class D (without inheritance).

Assume that there are existing classes X, Y, Z such that Z <: Y <: X, and that the subtypes
clauses are only present in the JNom version of the following code:

class A {
X[] xs;
Y foo(Z z, Y y) { ... }

}

class B subtypes A {
X[] xs;
Z foo(Y z, Z y) { ... }

}

class C inherits A {
int bar(int i) { ... }

}

class D {
X[] xs;

}

class E inherits D {
Z foo(X z, X y) { ... }
int bar(int i) { ... }

}

class Client {
void main() {

doWork(new E())
}
void doWork(C c) { ... }

}

For each of the following four statements, write if they are correct or not, by answering "yes"
or "no". If a statement is not correct, briefly explain why.

1. JStruct should accept class B.

solution

Yes

2. JNom should accept class B.

solution

No, because the type of the second parameter of its foo method is more specific than in
class A.

3. In JStruct, C is not a subtype of A.

solution

No, because it has all the members A has and more.

4. The body of Client.main should be accepted by JStruct.

solution

Yes

COOP Midterm Exam AS 2019 Name: 4/7

Task 3 Behavioral Subtyping - 20 points
Consider the following Java code:
class Super {

int k;

/// requires y < k;
/// ensures k > y;
int foo(int x, int y) { ... }

}

class Mid extends Super {
/// requires y <= k;
/// ensures result > x && k > old(k);
int foo(int x, int y) { ... }

/// requires z != 0;
/// ensures result > 0;
int bar(int z) { ... }

}

class Sub extends Mid {
/// requires ?
/// ensures ?
int bar(int z) { ... }

}

A (6 points)

Assuming specification inheritance is not used, does Mid.foo fulfill behavioral subtyping?
Write down the condition(s) that need(s) to be checked without simplifications as well as
"yes" or "no".

solution

Yes.

Condition 1: y < k ==> y <= k

Condition 2: old(y < k) ==> (result > x && k > old(k) ==> k > y)

Optionally, people can make the universal quantification over parameters and field values
explicit, but it is not required. Doing this incorrectly does not result in point deductions.

Throughout the following tasks, we will say that a method is valid if and only if:

• Assuming only its precondition and the postconditions of invoked methods

• it does not fail at runtime (e.g., violate an assertion or perform a division by zero) and

• it fulfills the preconditions of all methods it invokes and

• it fulfills its postcondition.

COOP Midterm Exam AS 2019 Name: 5/7

B (7 points)

Give a contract to Sub.bar that has the following properties:

• it does not fulfill behavioral subtyping if no specification inheritance is used.

• if specification inheritance is used, the effective contract of Sub.bar is sufficient to prove
that the following client code is valid:

void client (int x) {
if (x > 0) {

int r = new Sub().bar(x);
assert(r > 2); // the contract of bar must imply that this assertion

// succeeds.
}

}

Write down both the declared contract of Sub.bar and its resulting effective contract.

solution

One example:

Declared contract: requires z > 0; ensures result > 2;

Effective contract: requires z != 0 || z > 0; ensures result > 0 && (z > 0

==> result > 2);

C (7 points)

Assume that specification inheritance is used and that existing code does not use reflection. Is
it possible to add one method to Super such that a previously valid implementation of Mid.
bar becomes invalid? If not, just write "no", otherwise provide the new method in Super with
contracts and a now-invalid implementation of Mid.bar.

solution

We add a method Super.bar with contract: requires true; ensures result > 0;

Implementation of Mid.bar that is no longer valid:
class Mid extends Super {

...

/// requires z != 0;
/// ensures result > 0;
int bar(int z) { return 1 + Math.abs(5/z); } // div by zero if z==0

}

COOP Midterm Exam AS 2019 Name: 6/7

Task 4 Linearization - 12 points
Consider the following Scala code, which compiles correctly and models some jobs a Person

may have. To work as a Lawyer or as a TaxiDriver, one needs to have a valid license. This
requirement can be expressed through self type annotations added to the traits Lawyer and
TaxiDriver (as in the given code). These annotations are checked by the compiler and allow
the traits Lawyer and TaxiDriver to be mixed only into subtypes of PersonWithLicense.
Self type annotations enable code reuse without subtyping, that is, Lawyer and TaxiDriver

��<: PersonWithLicense, but the methods of the class PersonWithLicense are available and
can be overridden inside these two traits.
class Person { def work(): String = { return "working"; }}

class Student { def work(): String = { return "studying"; }}

class PersonWithLicense extends Person {
def hasValidLicense(): Boolean = { return false; }
}

trait Gardener extends Person {
override def work(): String = { return super.work() + " in the garden";}
}

trait Lawyer extends Person {
this: PersonWithLicense => // self type annotation

override def work(): String = {
if(this.hasValidLicense()) return super.work() + " in court";
return "not " + super.work();

}

override def hasValidLicense(): Boolean = { return true; }
}

trait TaxiDriver extends Person {
this: PersonWithLicense => // self type annotation

override def work(): String = { return super.work() + " in Zurich"; }
}

A (6 points)

For each of the following two code fragments, if they compile, write the output of their execution.
Otherwise, briefly explain why they are rejected by the compiler.
val lawyer: Lawyer = new PersonWithLicense with Lawyer with TaxiDriver;
println(lawyer.work());

solution

The code compiles: the traits Lawyer and TaxiDriver are mixed into a sub-
type of PersonWithLicense, as required by the self type annotation and new

PersonWithLicense with Lawyer with TaxiDriver <: Lawyer.

The linearization of new PersonWithLicense with Lawyer with TaxiDriver is
TaxiDriver, Lawyer, PersonWithLicense, Person. When executed, the code prints:
working in court in Zurich

val student: Gardener = new Student with Gardener;
println(student.work());

COOP Midterm Exam AS 2019 Name: 7/7

solution

The code does not compile, because Student is not a subclass of Person (the superclass
of the trait Gardener)

B (6 points)

Add one method to any of the given classes or traits except PersonWithLicense (explicitly
write to which one) and fill in the instantiation from the client code below, such that it compiles
and when executed prints not working in Zurich in the garden. You are not allowed
to directly return this string, to use reflection, to define new classes or traits, nor to modify the
given code. If this is not possible, briefly explain why.
// Client code:
val person = new __
println(person.work());

The following method should be added to: H

solution
// Client code:
val person = new PersonWithLicense with Lawyer with TaxiDriver with

Gardener;
println(person.work());

trait TaxiDriver extends Person {
...
// additional method:
override def hasValidLicense(): Boolean = { return false; }

}

Note that if we try to add the method hasValidLicense to the trait Gardener, the client
code does not compile, as new PersonWithLicense with Lawyer with TaxiDriver

with Gardener inherits two methods with the same signature.

This is not possible because (optional):

