
Concepts of Object-Oriented Programming
AS 2020

Exercise 6
Inheritance

October 30, 2020

Task 1
From a previous exam

Consider the following Java classes:
public class B {

public void foo(B obj) {
System.out.print("B1 ");

}
public void foo(C obj) {

System.out.print("B2 ");
}

}

class C extends B {
public void foo(B obj) {

System.out.print("C1 ");
}
public void foo(C obj) {

System.out.print("C2 ");
}
public static void main(String[] args) {

B c = new C();
B b = new B();
b.foo(c);
c.foo(b);
c.foo(c);

}
}

What is the output of the execution of method main in class C? Explain your answer.

solution

The code will print B1 C1 C1.

Overloading is resolved statically, based on the static type of the receiver and the static
type of the arguments. Since both b and c have static type B, the compiler will choose for
all three calls the method B.foo(B obj).

At runtime, we will execute either the statically chosen method or a method that overrides
the statically chosen one, determined based on the dynamic type of the receiver. Note that
the dynamic type of the arguments is not relevant.

b has dynamic type B, so for the first call we will execute the statically chosen method,
B.foo(B obj).

c has dynamic type C, so for the last two calls we will execute the method from class C that
overrides the statically chosen method, that is, C.foo(B obj).

Task 2
Consider the following Java code:
class A {

String get(Client a) { return "AC"; }
}

class B extends A {
String get(SpecialClient a) { return "BS"; }

}

class C extends B {
String get(Client a) { return "CC"; }
String get(SpecialClient a) { return "CS"; }

}

class Client {
String m(A x, A y) { return "C1" + x.get(this) + y.get(this); }
String m(C x, A y) { return "C2" + x.get(this) + y.get(this); }
String m(B x, A y) { return "C3" + x.get(this) + y.get(this); }
String m(C x, C y) { return "C4" + x.get(this) + y.get(this); }

}

class SpecialClient extends Client {
String m(A x, A y) { return "S1" + x.get(this) + y.get(this); }
String m(C x, A y) { return "S2" + x.get(this) + y.get(this); }
String m(B x, A y) { return "S3" + x.get(this) + y.get(this); }
String m(B x, C y) { return "S4" + x.get(this) + y.get(this); }

}

public class Main {
public static void main(String[] args) {

Client client = new SpecialClient();
C c = new C();
B b = c;
System.out.println(client.m(b, c));

}
}

What is the result of compiling the code and running the Main.main method?

(a) The program does not compile due to a type error

(b) The program prints a string starting with "S4"

(c) The program prints a string ending with "CS"

(d) The program prints a string containing "BS"

(e) CORRECT: None of the above

solution

The program compiles and prints "S3CSCC".

client has static type Client, b has static B, c has static type C. The compiler chooses
the most specific method from the class Client, which accepts a parameter of type B and
one of type C. This is Client.m(B x, A y).

Since client has dynamic type SpecialClient, at runtime we will execute the method
that overrides the statically chosen method, that is SpecialClient.m(B x, A y). The
program will therefore print a string starting with "S3".

We now need to determine the results of the calls x.get(this) and y.get(this) from
the body of the method SpecialClient.m(B x, A y).

x has static type B, this has static type SpecialClient. The compiler therefore chooses
the method B.get(SpecialClient a). Since x has dynamic type C, we will actually
execute the method from class C which overrides the statically chosen method. That is,
B.get(SpecialClient a), which returns "CS".

y has static type A, this has static type SpecialClient. The compiler therefore chooses
the method A.get(Client a). Since y has dynamic type C, we will actually execute the
method from class C which overrides the statically chosen method. That is, C.get(Client
a), which returns "CC".

Task 3

A) Compare dynamic type checking with the dynamic keyword to static type inference with
var in C#:

• Give a correct program which can be realized with dynamic but not with var.
solution
static void Main() {

dynamic x;
if(condition()) {

x = 5;
} else {

x = "hello";
}

Print(x);
}

static void Print(string str) {
Console.WriteLine(str);

}

static void Print(int value) {
Console.WriteLine(value);

}

• Give an incorrect program which will be accepted by the compiler with dynamic but not
with var.

solution
var x = 3;
x.substring(..);

B) C#’s most general type is object. Similar to var and dynamic, you can write object x

= ... with an expression of any type on the right-hand side.

• Given a compiling program using var. Can we replace all var keywords by object and
add explicit casts in the right places so that the program compiles and runs as before?

solution

This will be possible in all cases where we know what the type of the variable declared
with var is. In those cases we can just cast the declared variable in all places where it is
used to the most general type fulfilling all static type constraints on the corresponding
variable. Since the original program compiled, such a type must exist.

In the case of anonymous types however, we do not know the name of the type to cast
to. Consider:
var x = new { a = 108, b = "Hello" };
Console.WriteLine(x.b);

Here, we could change var to object, but we will not be able to cast x in the second
line, because we do not know the type name which the compiler generates for this
anonymous type.

• Given a compiling program using dynamic. Can we replace all dynamic keywords by
object and add explicit casts in the right places so that the program compiles and runs
as before?

solution

Generally we cannot do this, as shown in the following example:
static void Main() {

dynamic x;
if(condition()) {

x = 5;
} else {

x = "hello";
}

Print(x);
}

static void Print(string str) {
Console.WriteLine(str);

}

static void Print(int value) {
Console.WriteLine(value);

}

To make this code work with object, we would need to add explicit type checks and
cast the argument to the proper static type.

For both questions, either informally describe how to do the replacement, or give a counter-
example where the transformation will always produce a program that does not compile or
behaves differently. Note that explicit casts to dynamic are not allowed in the transformation.

C) Assume now a language like C#, but with covariant return types and contravariant param-
eter types. Given four classes A, B, C and D:
class A { int m (int x); }

class B { void m (dynamic x); }
class C { dynamic m (int x); }
class D { dynamic m (dynamic x); }

Develop a subtyping rule for the dynamic type annotation and informally explain the reasoning
behind it. What are the potential subtypes among the four classes above?

solution

Following the Substitution principle, dynamic is equivalent to object, in that it accepts
any type. Therefore, the usual subtyping rules apply, treating dynamic as the most general
supertype of all other types. The potential subtyping relations are A <: C and D <: C.

There are two different ways of looking at class B. On the one hand, we could just say that
void is a special keyword that indicates the absence of a return value, and thus the method
B.m is unrelated to the other methods. Alternatively, we can allow methods with void

return type to be overwritten by methods with any return type (assuming the parameter
variance rules are satisfied): if a client code is written to expect void (no return value),
then we could instead use a method which returns an arbitrary value and just discard it.
In this second interpretation we will additionally have D <: B.

Task 4 Overloading and Overriding
Consider the following class in Java:
public class Person {

protected double salary;

public Person(double salary) {
this.salary = salary;

}

public boolean haveSameIncome(Person other) {
return this.salary == other.getIncome();

}

public double getIncome() {
return salary;

}

}

Consider also the following subclass of Person, a person with a spouse, which takes the salary
of the spouse into account as well:
public class MarriedPerson extends Person {

private double spouseSalary;

public MarriedPerson(double salary, double spouseSalary) {
super(salary);
this.spouseSalary = spouseSalary;

}

public boolean haveSameIncome(MarriedPerson other) {
return this.getIncome() == other.getIncome();

}

public double getIncome() {
return ((salary + spouseSalary) / 2);

}

}

A)Show an example with variables p1,p2, such that p1.haveSameIncome(p2) returns false,
but p1.getIncome() == p2.getIncome() returns true. In other words, fill in the following
blank with valid code, such that the assertion below the following box is valid. Do not use
reflection and assume that Person has no other subclasses.
Person p1;
MarriedPerson p2;

solution
p1 = new MarriedPerson(a,b);
p2 = new MarriedPerson(c,d);

for any a, b, c, d such that a+ b = c+ d but a 6= (c+ d)/2.

assert (!p1.haveSameIncome(p2) && p1.getIncome() == p2.getIncome());

B) Propose changes to Person and MarriedPerson such that the assertion above will fail.

B.1 Can you change only MarriedPerson.haveSameIncome, such that the assertion above
will fail for your solution to subtask A? If yes, provide the modified method. Otherwise, explain
why this is not possible.

solution

Yes, the following solution works.
public boolean haveSameIncome(Person other) {

// changed MarriedPerson to Person in signature
return this.getIncome() == other.getIncome();

}

B.2 Can you change only Person.haveSameIncome, such that the assertion above will fail
for your solution to subtask A? If yes, provide the modified method. Otherwise, explain why
this is not possible.

solution

Yes, the following solution works.
public boolean haveSameIncome(Person other) {

return this.getIncome() == other.getIncome();
// changed calls to salary to getIncome here

}

Another trivial solution would be:
public boolean haveSameIncome(Person other) {

return true;
}

Also possible: Type-check with instanceOf, then cast both to MarriedPerson and call
haveSameIncome on casted objects.

Also possible: Change parameter type to MarriedPerson.

Task 5
Some research languages have symmetric multiple dispatch - methods are defined outside
classes, and dispatched dynamically on all arguments regardless of order (no overloading at
all). There is no designated receiver for a method but rather all arguments are of the same
priority - this is intended to handle binary methods better which are often naturally symmetric.
Out of all methods that are statically in scope for a given invocation, the runtime selects the
most specific method to dispatch according to all arguments, and so there must be a single best
implementation for each possible invocation of a method. The return type is not considered
in the implementation selection. When compiling a package the compiler analyzes all types
used in the package and all methods and makes sure that for each method and argument types
combination there is a single best method to be called - or issues an error if that is not the
case. Assume the following three classes in such a language:
package integer
class Integer
{

...
}
Integer add(Integer x,Integer y){...}

package natural
import integer.Integer
class Natural extends Integer
{

...
}
Integer add(Natural x,Integer y){...}
Integer add(Integer x,Natural y){...}
Natural add(Natural x,Natural y){...}

package even
import integer.Integer
class Even extends Integer
{

...
}

Integer add(Even x,Integer y){...}
Integer add(Integer x,Even y){...}
Even add(Even x,Even y){...}

The elipsis in each class body represents (possibly) private data but no other methods.

Each package compiles successfully on its own.

A user has now written the following client:
package client
import even.*
import natural.*

void f(Integer x,Integer y)
{

Integer z = add(x,y);
}

• What would be the problem in allowing this client to compile in a type safe multiple
dispatch language? Show code that would expose the problem.

solution

The problem would be that the call add(x,y) could be ambiguous between the meth-
ods add(Even,Integer) and add(Integer,Natural) in the call:
{

Even e;
Natural n;
f(e,n);

}

Both are the most specific implementations but neither is more specific than the other.

• Which requirement could we relax so that this call is valid?
solution

We could allow the runtime to choose any of the viable methods that is not worse
than another method - thus we would lose the ability to predict which method gets
called, but functionality should conform to at least that of add(Integer,Integer).

• What could we do in the client package, in order to resolve the problem, without modifying
other packages and without relaxing the requirement mentioned above?

solution

The client could define a method add(Even,Natural) (and any other missing meth-
ods) that would resolve the ambiguity.

Task 6 Inheritance
From the midterm 2014.

Consider the following class in Java, which represents a fixed-size sequence of integers:
public class Seq {

public Seq(int size) { a = new int[size]; } // all initialized to 0
public int getSize(){ return a.length; }
public int getAt(int i) { return a[i]; }
public void setAt(int i, int x) { a[i]=x; }
public void addTo(int i, int x) { a[i]+=x; }
public void addToAll(int x){

for (int i=0;i<a.length;i++)
a[i]+=x;

}

private int[] a;
}

Consider also the following subclass of Seq, which adds a getSum method to Seq that is
implemented efficiently:
public class SeqSum extends Seq {

public SeqSum(int size) { super(size); }
public int getSum() { return sum; }
public void setAt(int i, int x) {

int newSum=sum+x-getAt(i);
super.setAt(i,x);
sum = newSum;

}
public void addTo(int i, int x) {

int newSum=sum+x;
super.addTo(i,x);
sum = newSum;

}
public void addToAll(int x) {

super.addToAll(x);
sum += getSize()*x;

}

private int sum=0;
}

In this question do not use downcasting or reflection. A "client" refers only to clients instanti-
ating the class, not to subclasses.

A) Change the implementation of Seq.addToAll so that class Seq behaves exactly the same
but SeqSum.addToAll calculates the wrong sum. Show a client that produces a different
output with the original and modified implementations.

solution
public class Seq {

...
public void addToAll(int x) {

for (int i=0;i<a.length;i++)
addTo(i,x);

}
}
public class Client{

public void f() {
SeqSum s = new SeqSum(5);
s.addToAll(1);
assert(s.getSum()==5); //getSum() will return 10

}
}

B) Assume the original implementation of both classes. Give an alternative implementation
for Seq.setAt and separately for SeqSum.addTo so that each change alone leaves both classes
behaving exactly the same, but putting both changes together would break the behavior of at
least one method in class SeqSum. Show a client that observes the change in behavior.

solution
public class Seq {

...
public void setAt(int i, int x) { addTo(i,x-getAt(i)); }

}
public class SeqSum extends Seq {

...
public void addTo(int i, int x) { setAt(i,x+getAt(i)); }

}
public class Client{

public void f() {
SeqSum s = new SeqSum(5);
s.setAt(1,1); //this will recurse until stack overflow

}
}

