
Concepts of Object-Oriented Programming
AS 2020

Exercise 14
Self-Study Exercise Sheet

NOTE: This exercise sheet will not be discussed in an exercise session. We publish
it together with the solution to help you better prepare for the exam. If you have
any questions, please submit them for the Q&A session.

Subtyping and Behavioral Subtyping

Task 1
Assume the following class definitions in a nominally typed language:
class A {...}
class B extends A {...}

Consider now the following two classes:
class Super {
B foo(B x) { return x; }

}

class Sub extends Super {
A foo(A x) { return x; }

}

According to the rules presented in the lecture, this subtyping is illegal. Briefly explain why
this is the case. However, considering the substitution principle, this subtyping is safe. Why?

Task 2
Consider the class X and its only method foo, where ZZZ is a placeholder for a class name:
class X {

/// requires x > 0 ∧ (¬∃i,j: int | 2 ≤ i,j ≤ x ∧ i * j = x)
/// ensures result > 0 ∧ result % 2 = 0
int foo(final int x){ return (new ZZZ()).foo(x); }

}

Which of the four classes below could be substituted for ZZZ such that no contracts will be
violated?
(a) class A {

/// requires x ≥ 0
/// ensures result = x + 1
int foo(final int x) {...} }

(b) class B {
/// requires true
/// ensures result % 2 = 0
int foo(final int x) {...} }

(c) class C {
/// requires x % 2 = 1
/// ensures result = x + 1
int foo(final int x) {...} }

(d) class D {
/// requires true
/// ensures result = x * (x + 1)
int foo(final int x) {...} }

Inheritance, Dynamic Method Binding, Multiple Inheritance, and Linearization

Task 3
Consider the following Java classes and interfaces:
public interface IA { IA g(IA x); }

public interface IB extends IA { IB g(IA x); IA g(IB x); }

public interface IC extends IA { IC g(IB x); }

class B implements IB {
public IB g(IA x) { System.out.print("B1 "); return null; }
public IC g(IB x) { System.out.print("B2 "); return null; }

}

class C implements IC {
public IC g(IA x) { System.out.print("C1 "); return null; }
public C g(IB x) { System.out.print("C2 "); return null; }

}

class Main{
public static void main(String[] args) {

B b = new B();
C c = new C();
IA a1 = b;
IA a2 = c;

IA r1 = a1.g(a2);
IA r2 = a2.g(b);
IC r3 = b.g(b);
IA r4 = c.g(a2);
C r5 = c.g(b);

}
}

What is the output of the execution of the Main.main method? Explain your answer.

Task 4
Consider the following C++ code:
class Person {

bool likesDiamonds;

public: Person (bool l) { likesDiamonds = l; }
};

class Programmer : virtual public Person {

public: Programmer () : Person (false) {}
// diamonds are a programmer’s worst enemy

};

It is expected that !likesDiamonds is an invariant for the class Programmer. Use inheritance
to break this invariant, without altering the above code.

Task 5
Write three C++ classes:

• A class Queue that represents a queue of integers and has an enqueue and a dequeue

method

• A subclass of Queue that also stores (and allows clients to retrieve) the current sum of
all items in the queue, using the enqueue and dequeue methods

• A subclass of Queue that also stores (and allows clients to retrieve) the current product
of all items in the queue, using the enqueue and dequeue methods

We would now like to have a class that supports both functionalities (i.e., stores and allows
clients to retrieve both the sum and the product of all the items in the queue).

• Suppose that we use multiple inheritance and override the enqueue and dequeuemethods
of the new class, such that the new methods call the enqueue and dequeue methods of
both of the old classes. Are there any problems with this approach?

• How can you solve this problem in Scala, using traits? Does this fix the above-mentioned
problems from C++?

Bytecode Verification

Task 6
Consider the following type hierarchy:

A

B

C1 C2

Suppose that the method f of class E has the following signature:
A f(boolean b1, boolean b2);

and there are three local variables x, y, z. The maximal stack size is equal to 1.

The method f contains the following code snippet:
0: iload 1
1: ifeq 22
4: iload 2
5: ifeq 12
8: aload 3
9: goto 14
12: aload 4
14: astore 3
15: aload 5

17: astore 4
19: goto 0
22: aload 3
23: areturn

It is known that the state at the beginning of the snippet is:
([], [E,boolean,boolean,C1,C2,A])

Note: In this example, ifeq x pops an integer from the stack and jumps to line x if the integer
is equal to zero.

A) Verify that the code snippet is type safe.

B) Provide the minimal type information that enables the type checking algorithm (i.e., the
algorithm that does not perform a fixpoint computation) to verify the bytecode.

Task 7
The bytecode type inference algorithm rejects a verified program if there are different stack
sizes for input values of a join point.

A) Provide a bytecode program that is rejected because of this limitation but that does not
cause runtime errors.

B) Is it possible to construct a bytecode verification algorithm that avoids this limitation? If
yes, then provide an updated algorithm. If no, then show that it cannot be done.

C) How serious is this restriction from a pragmatic perspective?

Parametric Polymorphism

Task 8
Consider the following Java code:
class Box<T extends Number> {

private T t;

public void set(T t) { this.t = t; }
public T get() { return t; }

}

class Main {
public static void main(String[] args) {

Box<Number> b = new Box<_______>();
b.set(new _______);
_______ c = b.get();
System.out.println(c);

}
}

and recall that Integer <: Number <: Object. How can you fill in the blanks in the Main
.main method so that the code compiles and executes successfully?

(a) Integer, Integer(9), Integer

(b) Integer, Integer(9), Object

(c) Number, Integer(9), Integer

(d) Number, Integer(9), Object

(e) None of the above

Task 9 (extended version of a previous exam question)
Consider the following Java code:

interface Food {}
interface Grass extends Food {}
interface Meat extends Food {}

abstract class Animal<F extends Food> implements Meat {
abstract void eat(F food);
F getLunchBag(){ return lunchBag; };
F lunchBag;

}

final class Sheep extends Animal<Grass> { void eat(Grass f) {} }
final class Wolf extends Animal<Meat> { void eat(Meat f) {} }

class Cage { //You are allowed to modify this class
Cage(Animal<?> animal){ this.animal = animal; }
Animal<?> getAnimal() { return animal; }
Animal<?> animal;

}

class Zoo {
void feedAnimal(Cage cage){ /*code given in each section*/ }

<F extends Food> void feed(F food, Animal<F> animal) {
animal.eat(food);

}

void manage(){ /*your code here*/ }
}

Clearly a Wolf can eat a Sheep but not the other way around. In the following subtasks we
explore if relaxing some of the Java type rules can lead to a situation where a Sheep can eat
a Wolf - that is, the method eat is called on an object of the dynamic type Sheep with an
argument object of the dynamic type Wolf. All the code you give in the answers to the following
sections is in the same package as the code above, and must type check in standard Java. The
top method that is called in all sections is Zoo.manage. You can assume that method call
arguments are evaluated left to right, and that the program is sequential. You are not allowed
to use reflection, raw types, or type-casts.

A) Assume the following body of Zoo.feedAnimal(Cage cage), which is rejected by the
Java type checker:
{ feed(cage.getAnimal().lunchBag, cage.getAnimal()); }

Make a Sheep eat a Wolf assuming the body of feedAnimal is exempted from the type checker.

Show all necessary code. You are only allowed to change the Cage class and provide the body
of the Zoo.manage method.

B) Assume the following body of Zoo.feedAnimal(Cage cage), which is rejected by the
Java type checker:
{ feed(cage.animal.getLunchBag(),cage.animal); }

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type
checker? If so, show all necessary code, otherwise explain why not. You are only allowed to
change the Cage class, provide the body of the Zoo.manage method, and add new classes.

C) Answer the question in the previous section, assuming the field Cage.animal is final.
Explain your answer. Reminder: Java’s final fields can be assigned to only in the constructor
of the class that declares them.

D) Assume the following body of Zoo.feedAnimal(Cage cage), which is rejected by the
Java type checker:
{ feed(cage.animal.lunchBag, cage.animal); }

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type-
checker? If so, show all necessary code, otherwise explain why not.

E) Which of the above cases, that is safe in the sequential case, is unsafe in a multithreaded
program? For each such case, explain what can happen in the multithreaded case that cannot
happen in the sequential case.

Information Hiding and Encapsulation

Task 10
Suppose that we have a language with the information hiding rules of Java, but with structural
subtyping. What should be the subtyping relations between the following three classes?
class A { int foo(); }
class B { protected int foo(); }
class C { public int foo(); }

Task 11
Consider the class Hour, defined as follows:
public class Hour {

protected int h = 0;
/// invariant h >= 0 && h < 24

public void set(int h) {
if (h >= 0 && h < 24) this.h = h;

}
}

What is the external interface of Hour?

Can we extend the code, without changing the class, so that the invariant is broken? If yes,
provide an example, and propose how to fix the class.

Task 12 (from a previous exam)
Consider the following Java program consisting of two packages BTC and B2X:

1 package BTC;
2
3 public class Chain {
4
5 /// ensures result <= 2
6 _______ int max_size() {
7 return 2;
8 }
9 }
10
11 package B2X;
12 import BTC.*;
13
14 public class Chain2x extends Chain {
15
16 /// ensures result <= 4
17 protected int max_size() {
18 return 4;
19 }
20 }

A)What is themost permissive access modifier for the method max_size() in class Chain such
that class Chain2x is a behavioral subtype of Chain? Assume that we do not use specification
inheritance. Fill the blank above with your answer. Explicitly write default for a default
access modifier. Write none if no choice of access modifier allows Chain2x to be a behavioral
subtype of Chain.

B) We now add a class Block and a subclass Block2x to package BTC:

1 package BTC;
2
3 public class Block {
4
5 protected int num;
6 /// invariant: 1 <= num
7
8 public Block(int n) {
9 num = (n < 1 ? 1 : n);
10 }
11
12 }
13
14 public class Block2x extends Block {
15
16 /// invariant: 2 <= num
17 protected Block pred;
18 /// invariant: pred != null ==> pred.num < num
19
20 public Block2x(int n, Block b) {
21 super(n < 1 ? 2 : 2*n);
22 pred = (b != null && 2 <= b.num && b.num < num ? b : null);
23 }
24
25 }

B.1) Do the invariants in Block and Block2x satisfy the requirements of behavioral subtyping?
Assume that we do not use specification inheritance. Briefly explain your answer.

B.2) A class C is correct with respect to its invariants if all constructors of C establish the
invariants of the new object and all exported methods m of C preserve the invariants of the
receiver object, that is, the invariant holds in the poststate of m provided that it held in the
prestate of m. Are classes Block and Block2x correct with respect to their invariants? Briefly
explain your answer.

C) We now want to extend the code in part B with methods that preserve the invariants of the
class in which they are declared but that make it possible to violate the invariants of Block2x
from client code in another package.

C.1) Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the first invariant of class Block2x (i.e.,
2 <= num) from client code in package B2X. Specify in which class you want to declare
the method, write the method, and write the client code that violates the invariant.

C.2) How can you prevent the code that you wrote in part C.1 from violating the invariant
by further extending the code in part B? You are not allowed to modify existing code. Write
the code that fixes the specific problem you exploited in part C.1.

C.3) Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the second invariant of class Block2x (i.e.,
pred != null ==> pred.num < num) from client code in package B2X in a way that cannot
be prevented by further extending the code in part B. Specify in which class you want to
declare the method, write the method, and write the client code that violates the
invariant.

Aliasing, Readonly Types, and Ownership Types

Task 13
Consider the following C++ class:
class Person {

int money;
Person *spouse;

public: Person (int m, Person *s) {
if (!s) { spouse = NULL; }
else { spouse = s; s->spouse = this; }
money = m;

}
void f () const;

};

The method f promises not to make any changes to its receiver object. Provide an implemen-
tation for f that violates this claim. You are not allowed to use casts, nor to introduce any
local variables.

Task 14
Consider the following class definitions in the context of the read-only type system taught in
the course:
class C {

public D f;
void foo(readonly C other) {...}

}

class D { E g; }

class E {}

Let a and b be non-null references of type C. Which of the following statements is true:

(a) The call a.foo(b) is guaranteed not to change the value of b.f, but may change the
value of b.f.g

(b) The call a.foo(b) is guaranteed not to change the value of b.f and neither the value of
b.f.g

(c) The assignment other.f.g = new E(); may appear in the code of foo

(d) None of the above is correct

Task 15
Annotate the following program with appropriate ownership type modifiers (according to the
topological ownership system) in order to maximize the buffer, the producer, and the con-
sumer encapsulation. This means that the modifiers you choose should increase the depth of
nested ownership context and reduce the number of (non-rep) edges/pointers between different
contexts.

class Producer {
int[] buf;
int n;
Consumer con;

Producer() {
buf = new int[10];
}

void produce(int x) {
buf[n] = x;
n = (n+1)
% buf.length;

}
}

class Consumer {
int[] buf;
int n;
Producer pro;

Consumer(Producer p) {
buf = p.buf;
pro = p;
p.con = this;

}

int consume() {
n = (n+1)
% buf.length;
return buf[n];

}
}

class Context {
Producer p;
Consumer c;

Context() {
p = new Producer();
c = new Consumer(p);

}

public void run() {
for(int i=-5; i<=5;

++i) {
p.produce(i);
if(i%2 == 0)
c.consume();

}
}
}

Task 16
In the following question we do not consider the owners-as-modifiers discipline. We are only
concerned with the topology of the ownership type system.

Consider the assignment:
o.f = p.g;

and assume that o.f and p.g have the same static type.

A) The assignment is forbidden if o.f has ownership modifier lost. Show an example to
demonstrate why we need this rule to preserve the topological invariant.

B) If the ownership modifier of o.f is any, then what are the requirements for the assignment
to be legal?

C) If o.f has ownership modifier lost can we upcast o.f to an any reference and make the
assignment legal? Why (not)?

Task 17 (from a previous exam)
Consider the following declarations:
class A {

rep B first;
rep B second;

}

class B {
any A obj;
peer B sibling;

}

Which of the following programs are allowed in the topological ownership system? For any
program that is accepted in the topological system, is it also accepted in the owner-as-modifier
system? Assume that none of the objects involved are null. Briefly explain each of your
answers.
Program 1 Program 2 Program 3 Program 4
rep B b;
...
b = b.sibling;

peer A a; rep B b;
...
a = b.obj;

any A a;
...
a.first.obj = a;

peer A a;
...
a.first = a.first;

Task 18
Assume the topological ownership framework taught in the course. Suppose that we want to
create a class SortedLinkedList, with the internal invariant that the values stored in the
nodes are sorted in ascending order.
package SortedLinkedList;
public class SortedLinkedList {

private rep Node head;

/// invariant head != null ==> head.sorted()
...

}
private class Node {

protected peer Node next;
protected int value;

/// pure
boolean sorted() {
return next != null ==> value < next.value && next.sorted()

}
}

Suppose that all the methods in SortedLinkedList are guaranteed to preserve the invariant
of the class. Furthermore, suppose that we want to create iterators for such lists (defined in
the same package):
public class LinkedListIterator { private any Node current_item; ... }

A) Why is the field current_item annotated as any? What drawbacks would the other
possible annotations have?

B) We would like to have the following features:

(i) the invariant of a SortedLinkedList object is guaranteed to hold in any program, except
when one of its methods executes

(ii) LinkedListIterator is a modifying iterator, i.e., it may change the value of the object
it is pointing to

We can’t have both features. Depending on whether or not we impose the “owners as modifiers”
discipline, we can have either (i) or (ii). Explain why this is the case.

C) The fact that (i) and (ii) cannot both hold together is not surprising. A modifying iterator
can break the invariant of the list it is iterating over. However, the “owners as modifiers”
discipline may disallow harmless designs. Write a benign class (perhaps a restricted modifying
iterator), which would not break the invariant of any object of SortedLinkedList, but still
does not compile under “owners-as modifiers”.

Reflection

Task 19
Which of the following is the defining characteristic of reflection?

(a) It allows for much simpler code

(b) It enables more flexibility

(c) It allows a program to observe and modify its own structure and behavior

(d) It is not statically safe

(e) It may hurt performance

(f) None of the above

Task 20
Consider the following Java code:
void foo() throws java.lang.Exception {
LinkedList<String> xs = new LinkedList<String>();
xs.add("A"); xs.add("B"); xs.add("C");

Class<?> c = xs.getClass();
Method remove = c.getMethod("remove");
xs.add(remove.invoke(xs));

}

which uses the following methods of class LinkedList<E>
public E remove()
public boolean add(E e)

Which of the following statements is true? The invocation of . . .

(a) c.getMethod("remove") is rejected by the compiler

(b) c.getMethod("remove") raises an exception (at runtime)

(c) remove.invoke(xs) is rejected by the compiler

(d) remove.invoke(xs) raises an exception (at runtime)

(e) xs.add(...) is rejected by the compiler

(f) xs.add(...) raises an exception (at runtime)

