
Concepts of Object-Oriented Programming
AS 2020

Exercise 7
Dynamic Method Binding and Multiple Inheritance

November 6, 2020

Task 1
(from a previous exam)

Consider the following C++ program:
class X {

public:
X(int p) : fx(p) {}
int fx;

};
class Y {

public:
Y(int p) : fy(p) {}
int fy;

};
class B : public virtual X,public Y {

public:
B(int p) : X(p-1),Y(p-2){}

};
class C : public virtual X,public Y {

public:
C(int p) : X(p+1),Y(p+1){}

};
class D : public B, public C {

public:
D(int p) : X(p-1), B(p-2), C(p+1){}

};

int main() {
D* d = new D(5);
B* b = d;
C* c = d;
std::cout << b->fx << b->fy

<< c->fx << c->fy;
return 0;

}

What is the output of running the program?

(a) 5555

(b) 2177

(c) CORRECT: 4147

(d) 7177

(e) 7777

(f) None of the above

Task 2 (from a previous exam)
Consider the following C++ code (recall that default constructors, i.e., constructors without
arguments, do not need to be called explicitly in C++):
class A {

public:
A(int i) { std::cout << "A" << i; }
A() { std::cout << "A1"; }
virtual int get() { ... }

};

class B: MODIFIER A {
public:

B(int i) : A(i) { std::cout << "B" << i; }
};

class C: MODIFIER A {
public:

C(int i) : A(i) { std::cout << "C" << i; }
};
class D: public B, public C {

public:
D(int i) : B(i + 10), C(i + 20) { std::cout << "D" << i; }

};

Now assume that MODIFIER is replaced by public.

A) Why does the following client code not compile?

void client()
{

D* d = new D(5);
std::cout << d->get();

}

solution

The call d->get() is ambiguous because class D inherits two versions of A (and therefore
of get()), one from B and one from C.

B) Add a method to one of the classes so that client compiles.

solution

We can resolve the ambiguity by overriding get in class D, for example to return B::get()

or any other integer value. The resulting code looks as follows:
class D: public B, public C {

public:
...
virtual int get() { return B::get(); }

};

C) What is the output resulting from the call new D(5) in method client?

solution

The code outputs “A15 B15 A25 C25 D5” (without whitespace).

D) Now, assume that MODIFIER is replaced by public virtual.

What is the new output resulting from the call new D(5) in method client?

solution

The code outputs “A1 B15 C25 D5” (without whitespace).

Task 3
Consider the following C++ code:
class Person
{

Person *spouse;
string name;

public:
Person (string n) { name = n; spouse = nullptr; }

bool marry (Person *p)
{

if (p == this) return false;
spouse = p;
if (p) p->spouse = this;
return true;

}

Person *getSpouse () { return spouse; }
string getName () { return name; }

};

The method marry is supposed to ensure that a person cannot marry him-/herself. Without
changing the code above, create a new object that belongs to a subclass of Person and marry
it with itself.

Hint: use multiple inheritance. Explain what happens.

solution

The following C++ code breaks the invariant:
class B : public Person
{ public: B (string n) : Person (n) {} };
class C : public Person
{ public: C (string n) : Person (n) {} };
class D : public B, public C
{ public: D (string n) : B(n), C(n) {} };

void marryMyself ()
{

D me = D("Me");
B *b = &me;
C *c = &me;
b->marry(c);

if (b->getSpouse()) cout << b->getSpouse()->getName();
}

The object me contains an object of class B and an object of class C. The addresses of these
objects are different and they are obtained using the assignments to b and c respectively.
During the call b->marry(c), the condition p == this compares these two addresses and
finds them not equal.

Task 4 (from a previous exam)
Consider the following Java classes:
class A {

public void foo (Object o) { System.out.println("A"); }
}

class B {
public void foo (String o) { System.out.println("B"); }

}

class C extends A {
public void foo (String s) { System.out.println("C"); }

}

class D extends B {
public void foo (Object o) { System.out.println("D"); }

}

class Main {
public static void main(String[] args) {

A a = new C(); a.foo("Java");
C c = new C(); c.foo("Java");
B b = new D(); b.foo("Java");
D d = new D(); d.foo("Java");

}
}

What is the output of the execution of the method main in class Main?

(a) The code will print A C B D

(b) CORRECT: The code will print A C B B

(c) The code will print C C B B

(d) The code will print C C B D

(e) None of the above

Task 5
Java 8 allows interface methods to have a default implementation directly in the interface.

A) What are some advantages of this feature?

solution

An advantage is obviously that default implementations can be reused in multiple classes.
Another advantage (and the main reason this feature is added to Java) is that default
method implementations will allow interface evolution. Without a default implementation,
adding new methods to an interface would break all existing classes that implement that
interface, since they do not contain an implementation for the new methods. The new
features removes this problem.

B) What could be some problems with this feature? How can they be resolved?

solution

A problem could be inheriting two default implementations of the same method from unre-
lated interfaces. In that case we will have to either choose which implementation we prefer
or write a new implementation that overrides both.

Another issue is that interfaces can now suffer from the fragile base class problem. Compared
to the usual issue with normal Java classes, this is even more dangerous for interfaces with
default methods, since these methods will mostly call other methods of the interface which
are overriden in implementing classes. A very restrictive solution here could be to prohibit
calls to other methods of the interface, within the implementation of default methods.
Alternatively we can “deal” with the problem just like Java deals with the issue in classes -
do nothing and rely on the programmer to be careful.

C) What problems of C++ multiple inheritance are avoided by this new design for Java
interfaces?

solution

We still avoid problems with correct initialization of fields of super types, since only one
super type (the extended class) can have fields, and we can directly call its constructor.
Furthermore there are no problems with field duplication as in non-virtual C++ inheritance.

D) Now suppose that, in addition to method implementations, Java also allowed interfaces
to define fields. Interfaces would not have constructors and interface fields would always be
initialized with a default value.

solution

This makes multiple inheritance in Java very similar to C++.

• What are some advantages of this feature?
solution

An advantage is that we can also reuse fields. This will enable more methods with
default implementations in interfaces which could increase code reuse and reduce the
effort required to create new classes.

• Given the restrictions above, are there any problems left with such an implementation of
multiple inheritance? If so what are they? Propose a solution for each problem you have
identified.

solution

These restrictions are somewhat similar to Scala traits, which also do not have spe-
cialized constructors (only a default constructor). In this way we manage to avoid
problems with initialization order. However a problem that still remains is: how many
copies of a field exist? In particular:

– A class might implement the same interface multiple times (for example by im-
plementing two different interfaces that are a subtype of the same interface). A
solution here might be to only have a single copy of the field (as in C++ virtual
inheritance).

– A class might implement two different interfaces that both declare the same field.
Here we could either restrict interfaces to defining only private fields (which are
invisible to the implementor), or we could require some disambiguation syntax
when accessing fields, similar to C++ or the proposed syntax for disambiguating
conflicting default methods in Java 8.

Task 6
Consider the following C# classes:
public class Matrix {

public virtual Matrix add(Matrix other) {
Console.WriteLine("Matrix/Matrix");
return null;

}
}

public class SparseMatrix : Matrix {
public virtual SparseMatrix add(SparseMatrix other) {

Console.WriteLine("SparseMatrix/SparseMatrix");
return null;

}
}

public class MainClass {
public static void Main(string[] args) {

Matrix m = new Matrix();
Matrix s = new SparseMatrix();
add(m,m);
add(m,s);
add(s,m);
add(s,s);

}

public static Matrix add(Matrix m1, Matrix m2) {
return m1.add(m2);

}
}

A) What is the output of this program? Please explain.

solution

The output is:

Matrix/Matrix

Matrix/Matrix
Matrix/Matrix
Matrix/Matrix

The compiler chooses a method based on the static type of the receiver and the static type
of the argument. It thus chooses add(Matrix other) in all four cases. At runtime, either
this statically chosen method will be executed or its most-derived override. However, add
(SparseMatrix other) is not an override of add(Matrix other), because overriding
methods in C# should have invariant arguments and they should be declared with the
override modifier. Therefore, we always execute the method from Matrix.

B)Without breaking modularity, change only the body of MainClass.add to make it possible
to always call the most specific add method from the matrix hierarchy.

solution

We could change MainClass to the following:
public static Matrix add(Matrix m1, Matrix m2)
{

return (m1 as dynamic).add(m2 as dynamic);
}

Now, the initial method lookup is also done at runtime, based not on the static, but on
the dynamic type of the receiver. Thus in the third and fourth case there will be a choice
between the two different add methods in class SparseMatrix. To also enable a dynamic
lookup of the most-specific method based on the argument type, we additionally cast the
argument as dynamic.

Task 7 (from a previous exam)
Consider the following C# code, which compiles and executes without raising exceptions:

1 class Ingredient {
2 public void mix(Ingredient i1, Ingredient i2) {
3 Console.WriteLine("Ingredient.mix");
4 }
5 }
6
7 class Milk: Ingredient {
8 public void mix(Egg e, Flour f) {
9 Console.WriteLine("Milk.mix");

10 }
11 }
12
13 class PowderedMilk: Milk {
14 public void mix(Ingredient i, Flour f) {
15 Console.WriteLine("PowderedMilk.mix");
16 }
17 }
18
19 class Egg: Ingredient {}
20
21 class Flour: Ingredient {}
22
23 class Program {
24 static void mix(Ingredient i1, Ingredient i2, Ingredient i3) {

25 (i1 as dynamic).mix(i2 as dynamic, i3 as dynamic);
26 }
27
28 static void Main() {
29 Ingredient i1 = new PowderedMilk();
30 Ingredient i2 = new Egg();
31 Ingredient i3 = new Flour();
32 mix(i1, i2, i3);
33 }
34 }

A) Which is the output of the execution of the method Program.Main()?

solution

PowderedMilk.mix

Overloading resolution in C# chooses the most specific method declaration in the class
of the receiver. If there is no applicable method, then the methods of the super class
are checked. This process is repeated until an applicable method is found. The program
therefore executes method PowderedMilk.mix(Ingredient i, Flour f), even though
method Milk.mix(Egg e, Flour f) has more specific parameter types. Note: The over-
loading resolution of Java would pick method Milk.mix(Egg e, Flour f).

B) List all the casts (from line 25) and all the methods that can be removed from the given
code, such that it still compiles and when executed produces the output from Task A.

solution

the cast for i2
the method Milk.mix()

the method Ingredient.mix()

Task 8 (from a previous exam)
Consider the following C++ class definitions, which compile fine:
class Box {

private:
int content;

public:
void set(int x) { content = x; }
int get() { return content; }

};

class IncreaseBox: virtual public Box {
public:
void increase() { set(1 + get()); }

};

class MultiplyBox: virtual public Box {
public:
void multiply(int x) { set(x * get()); }

};

class BestBox: virtual public IncreaseBox, virtual public MultiplyBox {};

In the lectures you have seen that in an object-oriented language one can simulate inheritance by
a combination of subtyping and aggregation. In this task you will need to adapt this technique
to handle multiple virtual inheritance in C++, and use it to translate the provided C++ code
to Java, without using default methods in Java interfaces.

To help you check that the translation preserves the original behavior, we provide on the right
an example of client code that (i) should compile fine in Java, and (ii) should compute the
same values as the analogous C++ version on the left. Note that in the Java version it should
be possible to create instances of MultiplyBox that are not instances of IncreaseBox, and
vice versa.

// C++
void client(BestBox* bb) {

Box* b = bb;
IncreaseBox* ib = bb;
MultiplyBox* mb = bb;

b->set(10);
ib->increase();
mb->multiply(2);

std::cout << b->get();
}

// Java
void client(BestBox bb) {

Box b = bb;
IncreaseBox ib = bb;
MultiplyBox mb = bb;

b.set(10);
ib.increase();
mb.multiply(2);

System.out.print(bb.get());
}

Draw a graph of the translated Java code, expressing classes, interfaces and the relations
between them. Each node must be a class or interface (write which one) with an intuitive
name; the directed edges must be labeled with “implements”, “extends” or “has-a”, according to
the relation that they express. You do not have to specify fields, methods nor constructors.

solution

interface Box

interface IncreaseBox interface MultiplyBox

interface BestBox

class BoxImpl

class IncreaseBoxImpl class MultiplyBoxImpl

class BestBoxImpl

extends extends

extends
extends

implements

implements implements

implements

has-a
has-a

has-a has-a

(optional) has-a

Note that this graph cannot express if the inheritance is virtual or non-virtual. To show
that IncreaseBox and MultiplyBox inherit virtually from Box, we can draw the graph
of all the objects on the Java heap that are reachable from an instance of the Java version
of the BestBox C++ class (i.e., BestBoxImpl):

BoxImpl

IncreaseBoxImpl MultiplyBoxImpl

BestBoxImpl

(optional)

In this second graph, each node represents a Java object and the directed edges represent
references between objects. To further express that BestBox inherits virtually from both
IncreaseBox and MultiplyBox, we would need to create instances of additional subtypes
of IncreaseBox and MultiplyBox, respectively.

