Concepts of Object-Oriented Programming E'H

AS 2020 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Fixercise 13
Readonly Types and Ownership Types
December 18, 2020

Task 1 (from a previous exam)

In the readonly/readwrite type system, which of the following assignments is not type
correct?

1. x = y; where x is readonly and y is readwrite

2. x

y.f; where x is readwrite, variable y is readonly and field f is readwrite

3. x y.f; where x is readwrite, variable y is readwrite and field f is readwrite

4. x = y.f; where x is readonly, variable y is readwrite and field f is readwrite

solution
(Number 2 is not allowed - it casts from a readonly reference to a readwrite reference.

Task 2

Consider the following classes:

class A {
readwrite StringBuffer nl = ...;
readonly StringBuffer n2 = ...;
}

class B {
readwrite A x;
readonly A vy;
public B (readwrite A x, readonly A y) {
this.x = x;
this.y = vy;

}

Note that the readwrite annotations could have been omitted, since readwrite is the default;
they are written explicitly here for clarity.

Check which programs typecheck and explain why they do or do not typecheck.

Program 1

readwrite A obj=new A();

readonly B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.y.nl;

Program 2

readwrite A obj=new A();

readwrite B obj2=new B (obj, obj);
readwrite StringBuffer v=obj2.y.nl;

Program 3

readwrite A obj=new A();
readwrite B obj2=new B (obj, obj);
readwrite StringBuffer v=obj2.x.nl;

Program 4

readonly A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B (obj, obj2);
readwrite StringBuffer v=obj3.y.nl;

Program 5

readwrite A obj=new A();
readonly A obj2=new A();

Program 6

readwrite A obj=new A();
readonly A obj2=new A();

readwrite B obj3=new B (obj, obj2);
readonly StringBuffer v=obj3.y.nl;

readwrite B obj3=new B (ob],
readonly

obj2);
StringBuffer v=0obj3.y.n2;

— solution

e Program 1 does not compile since obj2 is readonly, so obj2.y.nl is readonly,
and we try to assign it to a readwrite variable.

e Program 2 does not compile since field y in B is readonly, so obj2.y.nl is
readonly, and we try to assign it to a readwrite variable.

e Program 3 compiles! obj2 is readwrite, x is readwrite, so obj2.x is also
readwrite, nl is readwrite, S0 obj2.x.nl is also readwrite, and we assign obj2
.x.nl to a readwrite variable.

e Program 4 does not compile since obj is readonly and it is passed to the constructor
of B as the first argument, while the constructor expects a readwrite variable.

e Program 5 compiles! We can always assign something to a readonly variable.

e Program 6 compiles! We can always assign something to a readonly variable.

In addition: for all the programs except 4, the first argument passed to the constructor of B
is readwrite, and the second argument can be readwrite or readonly since a readonly
argument is expected.

Task 3

Consider how we might extend readonly types to handle arrays. For an array of primitive types,
one might want to declare that the array elements cannot be changed, using a declaration such
as:

readonly int[] x;

which, similarly to the rules for accessing fields of objects, would forbid an update such as
x[2] = 2; // error - x 1s declared with a readonly type

A) Should there be a subtyping relationship (in either direction) between the types readwrite
int[] and readonly int[]7?

solution

readonly int[] is more restrictive than readwrite int[] (fewer operations can be
performed with such a reference) so we could have readwrite int[] <:
int[].

readonly

B) For arrays of reference types, there are two reasonable questions to consider for readonly
typing. Firstly, just as for an array of primitive types, whether or not the array reference can
be used for modifications. Secondly, whether the array elements can be used for modifications.

y[1l] = .; // is this allowed?
y[1].f = ...; // is this allowed?

In order to express all possibilities, consider having two readonly/readwrite modifiers for
an array type - the first to denote access to the array reference itself, and the second to denote
access to the objects stored in its elements, e.g., readonly readonly T[] y; is the most
restrictive possibility.

Consider what the semantics of readonly readwrite T[] y; could be. There are two rea-
sonable choices here, depending on whether we regard accesses of the form y[1] . f as accesses
which go first via the array y, and then to the element y[1], or consider them as accesses
directly to y[1] (in a sense “skipping” v, and hence ignoring the first modifier).

For each of these two possible semantics, consider the following:

e Do all four combinations of modifiers express something different from one another?

e What subtyping relationships (if any) would be reasonable between the four possible
variants of a T[] type?

— solution

Considering y[1].f as an access which goes first via y, and then y[1], we would obtain
that:

e If the first modifier is readonly, all the accesses to elements of the array will be
treated as readonly, since the readonly modifier for the array will be considered
first. Therefore, the only interesting combinations are:

(a) readonly readonly prﬂvabntto readonly readwrite)
(b) readwrite readonly
(¢) readwrite readwrite

Note: the same approach is adopted when we have a readonly object variable and
we access a readwrite field through it: the result would be readonly, since any
access via a readonly reference is readonly.

e The reasonable subtyping relations are (b) <: (a) and (c) <: (a). The case (b) <: (a)
corresponds to invariant array typing. The (c) <: (a) case corresponds to covariant
array typing but it is sound since the array type in (a) is readonly and, thus, an
array element type only appears in covariant position (e.g., v := a[i]).

Note that the relation (¢) <: (b) would also correspond to covariant array typing but
it would not be sound since it would indirectly allow casting a readonly reference to
a readwrite reference:

class P { String n; }

class C {
void client (readonly P p) {

readwrite readwrite P[] w = new P[1];
readwrite readonly P[] r = w;
r[0] = p; // legal since r[0] and p are readonly

w[0]l.n = "..."; // legal since w[0] is readwrite

The assignment in the third line of client is legal since we have readwrite as the
first modifier of r. Moreover, note that p should not be modifiable within the client
method, as it is passed as readonly. However, by allowing the alias in the second
line of the method, we enable a way to change p. This is undesirable and unsound.
The implicit cast from readonly to readwrite is done on p here.

Considering y[1] . f as a direct access, we would obtain that:

e All the four different combinations have different semantics. With respect to the
previous example, we would have that readonly readonly will allow only read
accesses both on the array and on the elements stored in it, while with readonly
readwrite we cannot assign elements in the array but we can write fields accessed
via the array elements.

e The subtyping relations are:
(a) readwrite readonly <: readonly readonly
Gﬁ readonly readwrite <: readonly readonly
(c) readwrite readwrite <: readonly readwrite
(d) readwrite readwrite <: readonly readonly

Note that we still have that readwrite readwrite =7 readwrite readonly. This
subtype relation is not reasonable; if it were allowed, then we could use the example
from the first semantic to modify an object through a readonly reference.

C) In the light of these questions, which of the two semantics seems the best choice?

— solution

The second solution is more expressive than the first one, since it allows the developer
to have more fine-grained control on the read and write accesses on arrays and on their
elements. Thus, the second choice seems to be the best. However, it should be carefully
considered whether such an approach (that would be different compared to the one adopted
for objects and field accesses) may confuse the developers, and eventually create safety
problems.

Task 4

Consider the following method signatures:

peer Object foo(any String el);
peer Object foo(rep String el)
rep Object foo(any String el);
any Object foo(peer String el);
rep Object foo(peer String el);

r

Find all the valid pairs of signatures such that one overrides the other. Assume that overriding
methods can have covariant return types and contravariant parameter types.

solution

The general typing rules are peer <: any and rep <: any since any is less restrictive
than rep and peer. Following these rules, we obtain that:

® peer Object foo(any String el) overrides
any Object foo(peer String el)

e rep Object foo(any String el) overrides
rep Object foo(peer String el), that overrides
any Object foo(peer String el)

® peer Object foo(any String el) overrides
peer Object foo(rep String el)

Task 5 (from a previous exam)

The topological ownership system guarantees the following property: if a reference a. f to an
object b is of ownership type rep C, then the object a is the owner of b. Moreover, each object
has at most one owner.

The topological ownership system has a weakness: it does not support ownership transfer, which
is desirable in many situations. Let us try to remedy this situation. Consider the following
incomplete definition of a class T:

class T {
public rep U f, g;

}

and the following program P, which, in addition to the field assignments, implicitly also changes
the owner of object e2.g from e2 to el:

// implicitly: e2.g.owner = el;

el.f = e2.qg;

e2.g null;

where el, e2 are two non-null objects of type T.

A) The code P is not allowed in the topological ownership system. Which rule disallows it?

solution

Assuming el is not syntactically equal to this, then el.f must be 1ost and can therefore
not be assigned to.

B) Write a code snippet C, such that executing C; P is guaranteed to break the property
described in the first paragraph of this task, after P has finished executing. Do not rely on any
specific implementation of class U (but you may assume the existence of a constructor without
parameters). You may also add constructors to class T.

Note that:

e you can assume that P is accepted by the compiler.

all the code that you write must respect the topological ownership system. P is the only
code that breaks the rules.

e you may not use reflection in your solution.

e you may not use P anywhere in the code that you write.

— solution
We can add the following constructor to T:

T |

f = new rep U();
g =£f;

}

and use the following code C:
el = new peer T();
e2 = new peer T();

The invariant is broken after C; P, because el is the owner of el. f, but the rep field £ of
a different object (e2) points to it.

Task 6

The ownership type system allows the following ownership modifiers: peer, rep, self, lost
and any - to structure the object store and to restrict how references can be passed and used. We
want to extend the ownership type system by adding one more modifier down. This modifier
is introduced to denote references to objects in the same context as this or in the context
(transitively) owned by an object in the same context as this.

A) Redraw the subtype relation diagram below to include the newly introduced type of the
universe type system.

¢

Yea o

— solution

¢

B) Define the viewpoint adaptation function », such that it is the most specific in terms of
the context information it conveys (i.e. it conveys as much context information as possible),
by filling the table below (for a combination T, » T} the modifier 7, specifies the row, and the
modifier 7 the column of the table used).

Recall that the viewpoint adaptation function » is used, in particular, to determine the owner
of an object referenced by a field access. More exactly, if the ownership modifier of e is T,
and the ownership modifier of a field £ is 7%, then the ownership modifier assigned to the field
access e. f is determined as 7. » Ty. Note that this applies to field updates as well as field
reads.

> peer | rep any down
self
peer

rep
lost

any

down

— solution

Here is the table that defines the viewpoint adaptation as describing the most precise
information possible about where such a reference may belong in the heap topology:
> peer | rep any down

self | peer | rep any down

peer | peer | down | any down

rep rep down | any down

lost | lost | lost | any lost

any lost | lost | any lost

down | down | down | any down

Note that in the table above we over-approximate entries, in cases where we cannot de-
scribe precisely what we want. For example, repp»rep can be down, because down over-
approximates the objects which can actually be stored in such a field. This is a true approx-
imation - repwrep is not allowed to store all objects which can be referred to via down,
only some of them. This means that we need to add extra restrictions on field assignments
in the cases where we use down to over-approximate in this way.

If we relax the requirement to have a most specific viewpoint adaptation function, we can
take an alternative approach which does not allow this kind of over-approximation; the
modifier chosen could reflect precisely the requirements for a reference to be allowed to
be stored in such a location, and thus avoid the need for extra requirements on the field
assignment rule. Here is the table with this approach:

> peer | rep any down

self | peer | rep any down

peer | peer | lost | any down

rep rep lost | any lost

lost | lost | lost | any lost

any lost | lost | any lost

down | lost | lost | any lost

In this case, perhaps surprisingly, cases such as repw»rep and downwdown result in lost.
This is because, choosing the answer down is not restrictive enough. In general, we have
no way to express what is safe to assign to the down field of a rep receiver (down from our
viewpoint includes objects above the rep, which should not be included), and similarly for
a down receiver. This second approach is not very flexible; only rep and peer objects can
ever be typed as down (via subtyping).

C) Consider the following example:

public class Node({
rep Node cj;
down Node d;

public void foo () {
this.d.d = this; // should this line typecheck?
this.c.d = this.d; // should this line typecheck?
}

Which of the assignments above should be allowed by the type system? Why?

— solution

The example code shows two cases where the field updates should not be allowed, because
we would allow a down field to point upwards (to this) in the ownership topology, and in
the second, because we would allow a down field to point to some object which is considered
down from the viewpoint of this, but not necessarily from the viewpoint of this.c.

D) Assuming that you only need to enforce the topological constraints of the type system, how
should the field update rule from lecture 6 slide 64 be adapted to the system extended with the
down modifier? Do you need to make any changes?

— solution

With the first (most precise) variant of the viewpoint adaptation function from B we have
to make sure that the examples from part C do not type-check, as those field updates are
unsafe. Therefore, we need to require that the result of the viewpoint adaptation is not
down, except in the special case of the receiver being self or peer, and the field type
being down (in these cases, the down result expresses precisely what is safe to assign to the
location; it is not an over-approximation).

With the second (avoiding over-approximation) variant of the viewpoint adaptation function
from B, we do not need to make any changes to the field assignment rule, to guarantee the
topological constraints of the type system.

