
Concepts of Object-Oriented Programming
AS 2020

Exercise 8
Multiple Inheritance and Linearization

November 13, 2020

Task 1 (from a previous exam)

A) In this task you will have to model a bakery, which produces and sells different types of
BakedProducts, such as Bread and SeasonalProducts. Moreover, for different events (e.g.,
Saint Nicholas or Easter), the bakery offers SeasonalBread.

Fill in the C++ class declarations below, such that all the following subtype relations are
fulfilled:

• Bread <: BakedProduct and SeasonalProduct <: BakedProduct

• Bread ��<: SeasonalProduct and SeasonalProduct ��<: Bread

(��<: means is not a subtype of )

• SeasonalBread <: SeasonalProduct and SeasonalBread <: Bread

Make sure that your code is accepted by the C++ compiler and when executed prints:

Grittibaenz for 6th of December

Easter bread for 1st of April
//Bakery code:
class Product {
public: string name;

Product(string n) { name = n; };
};

class BakedProduct : public Product {
public: BakedProduct(string n): Product(n) {};

};

class Bread : _______________________________________________ {
public: Bread(string n) :

_______________(n) {};
};

class SeasonalProduct : _____________________________________ {
public: SeasonalProduct(string n, string e) :

_______________(n + " for " + e) {};
};

class SeasonalBread : _______________________________________ {
public: SeasonalBread(string a, string b):

___________________________________________________



___________________________________________________ {};
};

//Client code A:
Product* prod1 = new SeasonalBread("6th of December", "Grittibaenz");
Product* prod2 = new SeasonalBread("1st of April", "Easter bread");
cout << prod1->name << endl;
cout << prod2->name << endl;
// prints: Grittibaenz for 6th of December
// Easter bread for 1st of April

B) C++ supports private inheritance, which allows code reuse (access to methods and fields)
without subtyping. Assume that we change the declaration of the class BakedProduct from
Task A to use private, instead of public inheritance. All the other classes remain unchanged.

Fill in the blanks from Client code B, such that it compiles and when executed prints the same
strings as in Task A. You are allowed to add methods (but not constructors) to any of the
provided classes. For each new method that you add, please explicitly write to which class it
belongs. You are not allowed to make any other changes.
//Client code B:

_________________ prod1 = new __________________("6th of December",
"Grittibaenz");

_________________ prod2 = new __________________("1st of April",
"Easter bread");

cout << prod1 ____________________________ << endl;

cout << prod2 ____________________________ << endl;
// prints: Grittibaenz for 6th of December
// Easter bread for 1st of April

Task 2
Consider the following declarations in Scala:
class C
trait T extends C
trait U extends C
class D extends C

Find all the types that can be created with or without traits, as well as the subtype relations
between them.

Task 3
Consider the following Scala code:
class Cell {

private var x:Int = 0
def get() = { x }
def set(i:Int) = { x=i }

}

trait Doubling extends Cell {
override def set(i:Int) = { super.set(2*i) }

}

trait Incrementing extends Cell {
override def set(i:Int) = { super.set(i+1) }

}



A) What is the difference between the following objects?

val a = new Cell
val b = new Cell with Incrementing
val c = new Cell with Incrementing with Doubling
val d = new Cell with Doubling with Incrementing

B) We try to use the following code to implement a cell that stores the argument of the set
method multiplied by four:
val e = new Cell with Doubling with Doubling

Why does it not work? What does it do? How can we make it work?

C) Find a modularity problem in the above, or a similar, situation. Hint: a client that is given
a class C does not necessarily know if a trait T has been mixed in that class.

D) We propose the following solution to support traits together with behavioral subtyping:
assume C is a class with specification S. Each time we create a new trait T that extends C, we
must ensure that C with T also satisfies S. Show a counterexample that demonstrates that
this approach does not work.

Task 4
(from a previous exam)

Consider the following Scala code:
class A { def bar() = "" }
trait B extends A { override def bar() = super.bar()+"B" }
trait C extends B { override def bar() = super.bar()+"C" }
trait D extends B { override def bar() = super.bar()+"D" }

object Main {
def main() { foo(new A with D with C with B) }
def foo(x: A with D) { println(x.bar()) }

}

What would be the output of the call Main.main()?

(a) BDB

(b) BBDBC

(c) BBCBD

(d) DB

(e) BDC

(f) BCD

(g) None of the above

Task 5 (from a previous exam)
Consider the following Scala code, which compiles correctly and models some jobs a Person

may have. To work as a Lawyer or as a TaxiDriver, one needs to have a valid license. This
requirement can be expressed through self type annotations added to the traits Lawyer and



TaxiDriver (as in the given code). These annotations are checked by the compiler and allow
the traits Lawyer and TaxiDriver to be mixed only into subtypes of PersonWithLicense.
Self type annotations enable code reuse without subtyping, that is, Lawyer and TaxiDriver

��<: PersonWithLicense, but the methods of the class PersonWithLicense are available and
can be overridden inside these two traits.
class Person { def work(): String = { return "working"; }}

class Student { def work(): String = { return "studying"; }}

class PersonWithLicense extends Person {
def hasValidLicense(): Boolean = { return false; }
}

trait Gardener extends Person {
override def work(): String = { return super.work() + " in the garden";}
}

trait Lawyer extends Person {
this: PersonWithLicense => // self type annotation

override def work(): String = {
if(this.hasValidLicense()) return super.work() + " in court";
return "not " + super.work();

}

override def hasValidLicense(): Boolean = { return true; }
}

trait TaxiDriver extends Person {
this: PersonWithLicense => // self type annotation

override def work(): String = { return super.work() + " in Zurich"; }
}

A) For each of the following two code fragments (A.1 and A.2), if they compile, write the
output of their execution. Otherwise, briefly explain why they are rejected by the compiler.

A.1
val lawyer: Lawyer = new PersonWithLicense with Lawyer with TaxiDriver;
println(lawyer.work());

A.2
val student: Gardener = new Student with Gardener;
println(student.work());

B) Add one method to any of the given classes or traits except PersonWithLicense (ex-
plicitly write to which one) and fill in the instantiation from the client code below, such that it
compiles and when executed prints not working in Zurich in the garden. You are not
allowed to directly return this string, to use reflection, to define new classes or traits, nor to
modify the given code. If this is not possible, briefly explain why.
// Client code:
val person = new ________________________________________________________
println(person.work());

The following method should be added to: H


