Concepts of Object-Oriented Programming E'H

AS 2020 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Exercise 14
Self-Study Exercise Sheet

NOTE: This exercise sheet will not be discussed in an exercise session. We publish
it together with the solution to help you better prepare for the exam. If you have
any questions, please submit them for the Q&A session.

Subtyping and Behavioral Subtyping

Task 1

Assume the following class definitions in a nominally typed language:

class A {...}
class B extends A {...}

Consider now the following two classes:

class Super {
B foo(B x) { return x; }

}

class Sub extends Super {
A foo(A x) { return x; }

}

According to the rules presented in the lecture, this subtyping is illegal. Briefly explain why
this is the case. However, considering the substitution principle, this subtyping is safe. Why?

— solution

According to the rules from the lecture, overriding methods should have covariant results;
Sub.foo () returns an A and A =7 B.

However, an object of sub has a wider interface (it applies to arguments of more types).
When it is applied to an object of type B, it returns a B, which is exactly the behavior
expected by the client from an object of Super.

Task 2

Consider the class x and its only method foo, where zzz is a placeholder for a class name:

class X {
/// requires x > 0 A (—di,j: int | 2 < i, < x A 1 * j = x)

/// ensures result > 0 A result % 2 = 0
int foo(final int x){ return (new ZZZ()).foo(x); }

}

Which of the four classes below could be substituted for zzz such that no contracts will be
violated?

(a) class A {
/// requires x > 0
/// ensures result = x + 1
int foo (final int x) {

(b) class B {
/// requires true
/// ensures result %
int foo(final int x)

~ N
Il

— O

—

(c) class C {
/// requires x % 2 =1
/// ensures result = x + 1
int foo(final int x) {...} }

(d) CORRECT:

class D {
/// requires true

/// ensures result = x * (x + 1)
int foo (final int x) {...} }
— solution

Choice (a) is not valid since 2 is a valid input to X: : foo (), but breaks the postcondition
if result = x + 1.

Choice (b) is not valid as it has a weaker postcondition, namely the result is not guaranteed
to be larger than 0.

Choice (c) is not valid as it does not have a weaker precondition. Note that X::foo ()
accepts 1 and all prime numbers. However, this includes 2, which is even and thus not
allowed by the precondition of C::foo ().

Choice (d) has a weaker precondition. Moreover, on strictly positive inputs, it guarantees
strictly positive even outputs. Therefore it has a stronger postcondition.

Inheritance, Dynamic Method Binding, Multiple Inheritance, and Linearization

Task 3

Consider the following Java classes and interfaces:

public interface IA { IA g(IA x); }
public interface IB extends IA { IB g(IA x); IA g(IB x); }
public interface IC extends IA { IC g(IB x); 1}

class B implements IB {
public IB g(IA x) { System.out.print ("Bl "); return null; }
public IC g(IB x) { System.out.print("B2 "); return null; }
}

class C implements IC {
public IC g(IA x) { System.out.print("Cl "); return null; }
public C g(IB x) { System.out.print("C2 "); return null; }

class Main{
public static void main(String[] args) {

B b = new B();
C ¢ = new C();
IA al = b;

IA a2 = c;

IA rl = al.g(a2);
IA r2 = a2.g9(b);
IC r3 = b.g(b);
IA r4 = c.g(a2);
C 5 = c.g(b);

}

What is the output of the execution of the Main.main method? Explain your answer.

— solution
The code will print B1 c1 B2 Cc1 C2:

al has static type IA, a2 has static type IA: the statically selected method for the first call
is Ia.g (Ia). This method is overriden in B (the dynamic type of al) by B.g (IA).

a2 has static type IA, b has static type B: the statically selected method for the second call
is Ia.g (IAa). This method is overriden in C (the dynamic type of a2) by Cc.g (Ia).

b has static and dynamic type B: the statically selected method for the third call is B.g (IB)
(the most specific method according to the overloading resolution). This method will be
executed at runtime.

c has static and dynamic type C, a2 has static type IA: the statically selected method for
the fourth call is C.g (z2). This method will be executed at runtime.

c has static and dynamic type C, b has static type B: the statically selected method for
the last call is C.g (IB) (the most specific method according to the overloading resolution).
This method will be executed at runtime.

Task 4
Consider the following C++ code:

class Person {
bool likesDiamonds;

public: Person (bool 1) { likesDiamonds = 1; }
}i

class Programmer : virtual public Person {
public: Programmer () : Person (false) {}
// diamonds are a programmer’s worst enemy

}i

It is expected that ! 1ikesDiamonds is an invariant for the class Programmer. Use inheritance
to break this invariant, without altering the above code.

solution

The following C++ code breaks the invariant:

class Jeweler : virtual public Person {
public: Jeweler () : Person (true) ({}

// diamonds are a jeweler’s best friend

}i

class JewelerProgrammer : public Jeweler, public Programmer ({
public: JewelerProgrammer ()

Person (true), Jeweler (), Programmer () {}
i
void break () {
JewelerProgrammer* programmer = new JewelerProgrammer () ;

}

The call of the constructor Person (true) in class JewelerProgrammer bypasses the cor-
responding call Person (false) in class Programmer, breaking the invariant.

Task 5
Write three C+-+ classes:

e A class Queue that represents a queue of integers and has an enqueue and a dequeue
method

e A subclass of Queue that also stores (and allows clients to retrieve) the current sum of
all items in the queue, using the enqueue and dequeue methods

e A subclass of Queue that also stores (and allows clients to retrieve) the current product
of all items in the queue, using the enqueue and dequeue methods

We would now like to have a class that supports both functionalities (i.e., stores and allows
clients to retrieve both the sum and the product of all the items in the queue).

e Suppose that we use multiple inheritance and override the enqueue and dequeue methods
of the new class, such that the new methods call the enqueue and dequeue methods of
both of the old classes. Are there any problems with this approach?

e How can you solve this problem in Scala, using traits? Does this fix the above-mentioned
problems from C+-+7?

— solution

Here are the three requested classes:

class Queue {
int[] contents;
int size;

public: Queue() { contents = new int[100]; size = 0; }
void enqueue (int x) {...}
int dequeue() {...}
int getSize() { return size; }

}i

class SumQueue : virtual public Queue {
int sum;

public: SumQueue () : Queue() { sum = 0; }
void enqueue (int x) {
sum += X;
Queue: :enqueue (x) ;

}

int dequeue () {
int r = Queue::dequeue();
sum —-= r;
return r;

}

int getSum() { return sum; }
}i

class ProductQueue : wvirtual public Queue { ... };

class SuperQueue : public ProductQueue, SumQueue {
public: SuperQueue() : Queue (), ProductQueue (), SumQueue() {}
void enqueue (int x) {
ProductQueue: :enqueue (x) ;
SumQueue: :engqueue (X) ;

}

int dequeue () {
int r = ProductQueue: :dequeue () ;
SumQueue: :dequeue () ;
return r;
}
bi

One problem is that the enqueue and dequeue methods of the superclass are called twice.
An item is enqueued and dequeued twice. Interestingly, this behaves exactly like a queue,
but the capacity is half of the capacity of the original and the getSize method reports the
correct size multiplied by 2.

We can use traits and linearization to ensure that the enqueue /dequeue methods are called
only once. Here is the relevant Scala code:
class Queue {
def enqueue(x: int) = {...}
) e

def dequeue (int = {...}
}

trait Sum extends Queue {

var sum: int = 0
override def enqueue(x:int) = { sum += x; super.enqueue (x); }
override def dequeue(): int = {

var x = super.dequeue();

sum = sum - X;

return x;

}

trait Prod extends Queue {

var count: int =1
override def enqueue(x: int) = { prod %= x; super.enqueue (x); }
override def dequeue(): int = {

var x = super.dequeue () ;

prod = prod / x; // this assumes no zeros in the queue
return x;

}

Now, an object of type Queue with Sum with Prod has both functionalities, but calls

each underlying enqueue/dequeue method only once. The problems of the multiple inher-
itance solution do not appear here.

Bytecode Verification

Task 6
Consider the following type hierarchy:

B]

Suppose that the method f of class E has the following signature:
A f (boolean bl, boolean b2);
and there are three local variables x, y, z. The maximal stack size is equal to 1.

The method f contains the following code snippet:

iload 1
ifeq 22
iload 2
ifeq 12
aload 3
9: goto 14
12: aload 4
14: astore 3
15: aload 5
17: astore 4
19: goto O

22: aload 3
23: areturn

0 Ul PO

It is known that the state at the beginning of the snippet is:
([], [E,boolean,boolean,Cl,C2,A])

Note: In this example, i feq x pops an integer from the stack and jumps to line x if the integer
is equal to zero.

A) Verify that the code snippet is type safe.

— solution

Here the initial state is ([]1, [E,b,b,C1,C2,A]). We denote the type boolean as b for
convenience (in reality the Java bytecode verifier views it as an integer). We show the
solution following the convention from the lecture. To each command we dedicate an input
and an output column. A command may have multiple inputs and outputs, corresponding
to the different iterations of the algorithm. You may also want to see an animated solution
of this task, published separately.

Z

ouT

0 iload 1

[, [E,b,b,C1,C2,A])
], [E,b,b,B,AAl)
], [E,b,b,A A Al)

[b], [E,b,b,C1,C2,A])
Ibl, [E,b,b.B,A,A|)
[bl, [E,b,b.A,A,A)

[b], [E,b,b,C1,C2,A])

T, [E.b,b,CL,C2,A])

[b], [E,b,b,A,AAl)

1 | ifeq 22 [b], [E,b,b,B,A A|)], [E,b,b,B,AA])
[b], [E,b,b,A,AA]) []mbbAAAD
I, [E,b,b,C1,C2,A]) [b], [E,b,b,C1,C2,A])
4 | iload 2], [E,b,b,B,AA]) [bl, [E,b,b,B,AAl)
[], [E,b,b,A,AA]) [b], [E,b,b,A,AA])
[b], [E,b,b,C1,C2,A])], [E,b,b,C1,C2,A])
5 | ifeq 12 [b], [E,b,b,B,AAl) [, [E,b,b,B,AA])
[

| [EbbAAA|

8 aload 3

[, [E,b,b,C1,C2,A])
], [E,b,b,B,AAl)
], [E,b,b,A A Al)

|C1], [E.b,b,CL,C2,A])
B, [E.b,b,B,A.A|)
A], [E,b,b,AALA)

9 | goto 14

[C1], [E,b,b,CL,C2,A])
B, [E,b,b,B,A,A|)
[A], [E,b,b,A,A,A])

B], [E.b,b,B,A,A|)
A], [E.b,b,A,A,A])

12 | aload 4

], [E,b,b,C1,C2,A])
], [E,b,b,B,AA])
], [E,b,b,A,AA|)

[C2], [E,bb,C1,C2,A])
[A], [E,b,b,B,A.A|)
A], [E.b,b,A,A,A])

14 | astore 3

[C1], [E,b,b,C1,C2,A])
[B], [E,b,b,C1,C2,A])
[B], [E,b,b,B,AA])
[A], [E,b,b,B,AA|)
[A], [E,b,b,A,A/A|)

], [E,b,b,B,C2,A])

I, [E.b,b,A A A])
I, [E.b,b,A A A])

15 | aload 5

I, [E.b,b,B,C2,A])
I, [E.b,b,AAA])

|A], [E.b.b,B,C2,A])
IA], [E.b,b,A,A,A])

17 | astore 4

[A], [E,b,b,B,C2,A])
[A], [E,b,b,A,AA|)

I, [E.b,b.B,A,A])
I, [E.b,b,A A A

], [E,b,b,B,AA])

)
I, [E,b.b,B,A,A])
)

], [E,b,b,A,AA|)

(
(
(
(
(
(
(
(
(
(
(
(
(
E
(IC1], [E,b,b,C1,C2,A])
(
(
(
(
(
(
(
(
(
(
(
(
(
(

19 goto 0 “’ [E,b,b,A,A,A]) ” [E b b A A A]
], [E,b,b,C1,C2,A])
22 | aload 3 “, [E>b7b7B7A7A]) -

(A], [E,b,b,A A A])

23 | areturn

)~ =~ =~ =~~~ =~~~ —~ ~| =~ =~~~ —~] =~ —~ ~|~ —~ ~ =~ —~ —~[~ —~ —~|~ —~ —

(1Al [EbbAAA]

(I, [E,b.b,A,A Al)

B) Provide the minimal type information that enables the type checking algorithm (i.e., the
algorithm that does not perform a fixpoint computation) to verify the bytecode.

— solution

In the following code, we show the types that are given by the user, and those inferred by
the type checker.

// given: ([],[E,b,b,A,A,A])
O0: iload 1
// ([bl, E,b,b,A,A,A])

1: ifeqg 22

// (11, [E,b,b,AARA])

4: iload 2

// [b] 14 [ElblblAlAlA]
5: ifeq 12

// (11, [E,b,b,A,A,A])
8: aload 3

// ([A]l, [E,b,b,A,A,A])
9: goto 14

// ([]l [EIbIbIAIAIA])
12: aload 4

// given: ([A]l, [E,b,b,A,A,A7A])
14: astore 3

// ([1, [E,b,b,A,AA])
15: aload 5

// ([A]l, [E,b,b,A,A,A])
17: astore 4

// ([1, [E,b,b,A,AA])
19: goto O

// ([1, [E,b,b,A,AA])
22: aload 3

// ([A]l, [E,b,b,A,A,A])
23: areturn

// ([1, [E,b,b,A,AA])

The requirement to have type information at all basic blocks is a simplification that makes
it easier to determine where the compiler should output the information. Note that some
basic blocks have only a single preceding instruction, but determining this statically could
be hard. Such basic blocks, in theory, do not need type information. Only basic blocks that
are also join points definitely need type information. In our example, the instructions 4, 8,
12 and 22 are indeed the beginnings of basic blocks, but there is exactly one path to enter
these blocks and therefore type information is not really needed since this information will
be identical to the out-state of the single preceding instruction.

Task 7

The bytecode type inference algorithm rejects a verified program if there are different stack
sizes for input values of a join point.

A) Provide a bytecode program that is rejected because of this limitation but that does not
cause runtime errors.

— solution

aload O
iconst 1
ifne 4
aload O
astore 1

DS w e O

Note: ifne jumps to the given index if the integer value at the top of the stack is not equal
to zero. It pops the value at the top of the stack.

There are two possibilities for the stack size after executing this program. In any of the two
cases, the height of the stack at point 4 is at least 1, and there will be surely a reference
value at the top of the stack.

B) Is it possible to construct a bytecode verification algorithm that avoids this limitation? If
yes, then provide an updated algorithm. If no, then show that it cannot be done.

— solution
We distinguish between two different cases:

1. If the stack sizes are statically known we can construct such an algorithm. The update
is as follows: when joining stacks of different sizes, pick the smallest one, but carry as
extra information the size of the largest one to be used when checking for overflow.
Note that if we just picked the smaller one and used that, we would not prevent stack
overflows at runtime. If we just picked the largest one and made the “extra” values
into dummy values by giving them the “top” type, we might not prevent underflows
when using instructions such as pop () .

2. In general it is not possible to implement an algorithm that can deal with stack sizes
which could vary at runtime. For example, if we push elements on top of the stack
in a loop, then the verifier will have no way of deciding what an upper bound for the
size is. Conversely for loops which pop elements from the stack, the verifier will not
be able to deduce a lower bound for the stack size. These situations can easily result
in over/underflows and should be rejected.

C) How serious is this restriction from a pragmatic perspective?

— solution

This limitation is not essential. If there are two states { [headl, x], [head2]} where
headl and head?2 are stacks of the same size, then any following code cannot access x and
it would have been possible to remove x already during bytecode generation. This is indeed
what the Java compiler does. Consider the following Java code:

public int bar () { return 42; }

public int foo(int x) {
if (x == 0) { bar(); 1}
return x;

}

If bar is called then it will put 42 on the stack, but this value is not actually needed for
the final return instruction. The Java compiler would emit as many pop instructions as
necessary to remove unneeded stack elements and make sure that all the paths that reach
return have the same stack length. Here is the bytecode that corresponds to the foo
method:

iload_1

ifne 9

aload_0

invokevirtual bar // Call to bar(), puts an int on the stack

: pop // Pop the stack to remove the unnecssary int
iload_1 // Here we get equal stack sizes from both paths
ireturn

O W 0 U PO

Parametric Polymorphism

Task 8

Consider the following Java code:

class Box<T extends Number> ({
private T t;

public void set (T t) { this.t = t; }
public T get() { return t; }
}

class Main {
public static void main(String[] args) {
Box<Number> b = new Box< >();
b.set (new) ;
c = b.get();
System.out.println(c);

}

and recall that Integer <: Number <: Object. How can you fill in the blanks in the Main
.main method so that the code compiles and executes successfully?

Integer, Integer(9), Integer

(a
(

b) Integer, Integer (9), Object

)
)

(c) Number, Integer (9), Integer

(d) CORRECT: Number, Integer (9), Object
)

(e) None of the above

— solution

Choices (a) and (b) are not valid as generic types are invariant in Java. Therefore,
assigning a Box<Integer> to a Box<Number> is illegal.

Choice (c) is not valid since b.get () would return a Number, hence dissallowing the
assignment Integer c = b.get ().

Choice (d) is valid. In the first gap, Number is clearly a valid option. In the second, by the
substitution principle, we can pass an Integer as it is a subtype of Number. Finally, the
assignment Object c = b.get () simply adds an implicit upcast from Number to Object,
which is valid as Number is a subtype of Object.

Choice (e) is not valid as choice (d) is valid.

Task 9 (extended version of a previous exam question)

Consider the following Java code:

interface Food {}
interface Grass extends Food {}
interface Meat extends Food {}

abstract class Animal<F extends Food> implements Meat {
abstract void eat (F food);
F getLunchBag () { return lunchBag; };
F lunchBag;

}

final class Sheep extends Animal<Grass> { wvoid eat (Grass f) {} }

final class Wolf extends Animal<Meat> { void eat (Meat £f) {} }

class Cage { //You are allowed to modify this class
Cage (Animal<?> animal){ this.animal = animal; }
Animal<?> getAnimal () { return animal; }
Animal<?> animal;

}

class Zoo {
void feedAnimal (Cage cage){ /*code given in each sectionx/ }

<F extends Food> wvoid feed(F food, Animal<F> animal) {
animal.eat (food);

}

void manage () { /*your code herex/ }

}

Clearly a Wolf can eat a Sheep but not the other way around. In the following subtasks we
explore if relaxing some of the Java type rules can lead to a situation where a Sheep can eat
a Wolf - that is, the method eat is called on an object of the dynamic type Sheep with an
argument object of the dynamic type Wwolf£. All the code you give in the answers to the following
sections is in the same package as the code above, and must type check in standard Java. The
top method that is called in all sections is Zoo.manage. You can assume that method call
arguments are evaluated left to right, and that the program is sequential. You are not allowed
to use reflection, raw types, or type-casts.

A) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type checker:

{ feed(cage.getAnimal () .lunchBag, cage.getAnimal()); }

Make a sheep eat a Wolf assuming the body of feedAnimal is exempted from the type checker.
Show all necessary code. You are only allowed to change the cage class and provide the body
of the Zoo.manage method.

— solution

Note that in order to have a Sheep eat a Wolf, Cage.getAnimal () . lunchbag needs to
return a Wolf, and the second call to Cage.getAnimal () to return a Sheep. This is not
possible with the current implementation of Cage.getAnimal (). Therefore the solution is
to change the implementation of said function to return different objects for different calls.
This can be done in several ways.

The following code uses an implicit flag (null field), but using an explicit flag is also
possible. Another possible solution is to count the number of times the function was called
and alternate the objects that are returned.

class Cage {

Animal<?> getAnimal () {

if (animal != null) return animal;
else {
animal = new Sheep();

Wolf wolf = new Wolf ();
wolf.lunchBag = wolf;
return wolf;

class Zoo {

void manage () {
feedAnimal (new Cage (null));

}

B) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type checker:

{ feed(cage.animal.getLunchBag(),cage.animal); }

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type
checker? If so, show all necessary code, otherwise explain why not. You are only allowed to
change the cage class, provide the body of the zoo.manage method, and add new classes.

— solution

The solution here is to realize that the only code that can be modified that will run be-
tween the two accesses of cage.animal is in the call to cage.animal.getLunchbag ().
Somehow the code will need to change the animal contained in the cage so that the access
of cage.animal returns a Sheep. Clearly the animal cannot be a Sheep all along, as this
would disallow returning a Wwolf from getLunchbag (). The idea is to have an animal ca-
pable of eating a Wolf (a subtype of Animal<Meat> that contains a reference to its cage, in
order to change the contents of its own cage to a Sheep during the call to get Lunchbag () :
class Fox extends Animal<Meat> {
Fox () {}
void eat (Meat m) {
)

Wolf getLunchBox (
Cage cage;

}
{

cage.animal = new Sheep(); return new Wolf (); }
}
class Zo00/{

void manage () {

Fox fox = new Fox();
Cage cage = new Cage (fox);
fox.cage = cage;

feedAnimal (cage) ;

C) Answer the question in the previous section, assuming the field Cage.animal is final.
Explain your answer. Reminder: Java’s final fields can be assigned to only in the constructor
of the class that declares them.

— solution
Here we cannot make a sheep eat a wolf.

The reason is that cage.animal evaluates to the same value in both expressions cage
.animal and cage.animal.getLunchBox () and so type safety is not broken and the
Sheep can only be fed with Grass, which the Wolf is not.

D) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type checker:

{ feed(cage.animal.lunchBag, cage.animal); }

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type-
checker? If so, show all necessary code, otherwise explain why not.

solution

This is safe as no methods are called during the evaluation of the arguments, so cage.
animal cannot change.

E) Which of the above cases, that is safe in the sequential case, is unsafe in a multithreaded
program? For each such case, explain what can happen in the multithreaded case that cannot
happen in the sequential case.

solution

The version of feedAnimal in section D is unsafe as another thread might modify cage.
animal between the evaluation of the two expressions. The version in section C is safe.

Information Hiding and Encapsulation

Task 10

Suppose that we have a language with the information hiding rules of Java, but with structural
subtyping. What should be the subtyping relations between the following three classes?
class A { int foo(); }

class B { protected int foo(); }
class C { public int foo(); }

— solution
The subtyping relations are as follows: ¢ <: B <: A

In a language with structural subtyping, methods and fields of subclasses should be more
accessible than those of the superclasses. For access modifiers, this means that methods
with more permissive modifiers may override methods with less permissive modifiers.

Task 11

Consider the class Hour, defined as follows:

public class Hour {
protected int h = 0;
/// invariant h >= 0 && h < 24

public void set (int h) {
if (h >= 0 && h < 24) this.h = h;
}
}

What is the external interface of Hour?

solution

The external interface is composed only of the method public set (int) since this is the
only public element of class Hour.

Can we extend the code, without changing the class, so that the invariant is broken? If yes,
provide an example, and propose how to fix the class.

— solution

The invariant can be broken easily by extending class Hour, and accessing the field h
directly. For instance:

public WrongHour extends Hour ({
public WrongHour () { super.h = -1; }
}

This can be prevented by making the field h private.

Task 12 (from a previous exam)

Consider the following Java program consisting of two packages BTC and B2x:

package BTC;
public class Chain {

1
2
3
4
5 /// ensures result <= 2
6 int max_size () {
7 return 2;

38

9}
10
11 package B2X;
12 import BTC. x;

13

14 public class Chain2x extends Chain {
15

16 /// ensures result <= 4

17 protected int max_size () {

18 return 4;

19 }

20 }

A) What is the most permissive access modifier for the method max_size () in class Chain such
that class Chain2x is a behavioral subtype of Chain? Assume that we do not use specification
inheritance. Fill the blank above with your answer. Explicitly write default for a default
access modifier. Write none if no choice of access modifier allows Chain2x to be a behavioral
subtype of Chain.

— solution

The method max_size () in class Chain should have a default access modifier, so that
method max_size () in class Chain2x does not override it but only hides it. In this way,
even if method max_size () in class Chain2x has a weaker postcondition than method
max_size () in class Chain, we still vacuously have behavioral subtyping.

O J oy Ul wRE

S I S N N e A e T e e =
B> WNRPR OWOWO-JO U™ WN - O W

B) We now add a class Block and a subclass Block2x to package BTC:

package BTC;
public class Block {

protected int num;
/// invariant: 1 <= num

public Block (int n) {

num = (n <1 2?2 1 : n);

}
}
public class Block2x extends Block {
/// invariant: 2 <= num
protected Block pred;
/// invariant: pred != null ==> pred.num < num
public Block2x (int n, Block b) {

super (n < 1 ? 2 : 2%n);
pred = (b != null && 2 <= b.num && b.num < num ? b : null);

}

B.1) Do the invariants in Block and Block2x satisfy the requirements of behavioral subtyping?
Assume that we do not use specification inheritance. Briefly explain your answer.

solution

Yes, the invariants satisfy the requirements of behavioral subtyping because the invariants
in class Block2x are stronger than the invariants in class Block.

B.2) A class C is correct with respect to its invariants if all constructors of c establish the
invariants of the new object and all exported methods m of C preserve the invariants of the
receiver object, that is, the invariant holds in the poststate of m provided that it held in the
prestate of m. Are classes Block and Block2x correct with respect to their invariants? Briefly
explain your answer.

solution

Yes, classes Block and Block2x are correct with respect to their invariants because their
constructors establish the invariants of the newly created objects (and there are no methods
in the two classes).

C) We now want to extend the code in part B with methods that preserve the invariants of the
class in which they are declared but that make it possible to violate the invariants of Block2x
from client code in another package.

C.1) Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the first invariant of class Block2x (i.e.,
2 <= num) from client code in package B2x. Specify in which class you want to declare
the method, write the method, and write the client code that violates the invariant.

— solution

It is possible to break the invariant by adding the following method to class Block:

public void reset () { num = 1; }

The client code that breaks the invariant is the following:

class Client {
public static void main (String[] args) {
Block2x b2x = new Block2x (1, null);
b2x.reset () ;

C.2) How can you prevent the code that you wrote in part C.1 from violating the invariant
by further extending the code in part B? You are not allowed to modify existing code. Write
the code that fixes the specific problem you exploited in part C.1.

— solution

It is possible to prevent the above problem by overriding the newly added method reset
in class Block2x:

public void reset () { num = 2; }

C.3) Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the second invariant of class Block2x (i.e.,
pred != null ==> pred.num < num) from client code in package B2X in a way that cannot
be prevented by further extending the code in part B. Specify in which class you want to
declare the method, write the method, and write the client code that violates the
invariant.

— solution

It is possible to break the invariant by adding the following method to class Block:

public void incr() { num = num + 1; }

The client code that breaks the invariant is the following:

class Client {
public static void main(String[] args) {
Block b = new Block (2);
Block2x ¢ = new Block2x (2, b);
b.incr();
b.incr();

Aliasing, Readonly Types, and Ownership Types

Task 13
Consider the following C++ class:

class Person {
int money;
Person =*spouse;

public: Person (int m, Person =xs) {
if (!s) { spouse = NULL; }

else { spouse = s; s—->spouse = this; }
money = m;

}

void £ () const;

}i

The method f promises not to make any changes to its receiver object. Provide an implemen-
tation for £ that violates this claim. You are not allowed to use casts, nor to introduce any
local variables.

solution

We can violate the claim by changing the receiver object this through the field spouse,
for instance : spouse->spouse—>money = 0;

This would only work if the s passed in the constructor is non-null.

Task 14

Consider the following class definitions in the context of the read-only type system taught in
the course:

class C {

public D f;

void foo (readonly C other) {...}
}

class D { E g; }
class E {}

Let a and b be non-null references of type c. Which of the following statements is true:

(a) The call a.foo (b) is guaranteed not to change the value of b. £, but may change the
value of b.f.g

(b) The call a. foo (b) is guaranteed not to change the value of b. £ and neither the value of
b.f.g

(c) The assignment other.f.g = new E(); may appear in the code of foo

(d) CORRECT: None of the above is correct

— solution

Choice (a) and (b) are not true since we can have aliasing (a and b point to the same
object) and foo () has no restriction on modifying its receiver, therefore it might modify
the value of b. £ via the alias a.

Choice (c) is not true since readonly types are transitive, meaning that other.f.g is
readonly since other is readonly. Therefore the assignment is not allowed.

Task 15

Annotate the following program with appropriate ownership type modifiers (according to the
topological ownership system) in order to maximize the buffer, the producer, and the con-
sumer encapsulation. This means that the modifiers you choose should increase the depth of
nested ownership context and reduce the number of (non-rep) edges/pointers between different

contexts.

class Producer {
int[] buf;

int n;

Consumer con;

Producer () {
buf = new int[10];
}

void produce (int x)
buf[n] = x;
n = (n+1)
% buf.length;

{

class Consumer {
int[] buf;
int n;
Producer pro;

Consumer (Producer p) {
buf = p.buf;

pro = p;y

p.con = this;

}

int consume () {
n = (n+l)
% buf.length;
return buf[n];
t
}

class Context {
Producer p;
Consumer cj;

Context () {

p = new Producer();
c = new Consumer (p) ;
}
public void run() {
for (int i=-5; 1i<=5;
++1) |
p.produce (1) ;
if(i%2 == 0)

c.consume () ;

— solution

class Producer {
rep int([] buf;

int n;

peer Consumer con;

Producer () {

buf = new rep int
[10];

}

void produce (int x)
buf[n] = x;
n = (n+1)
% buf.length;

{

class Consumer {
any int[] buf;

int n;

peer Producer pro;

Consumer (peer
Producer p) {
buf = p.buf;
pro = pj;
p.con =

}

this;

int consume () {
n = (n+1l)
% buf.length;
return buf[n];
}
}

class Context {
rep Producer pj;

rep Consumer c;
Context () {
p = new rep Producer
()i
c = new rep Consumer
(P);
}
public void run() {
for (int i=-5; 1<=5;
++i) |
p.produce (i) ;
if(1i%2 == 0)

c.consume () ;
}
}
}

We do not have to add ownership modifiers to primitive types. We could have annotated
con in Producer and pro in Consumer as any — in general, this would even allow one
modification less (in the topological system): of an any receiver, only an any field can
be modified, whereas of a peer receiver, both a peer and an any field can be modified.
However, our goal is to maximize encapsulation, and therefore peer is the best choice here.

Task 16

In the following question we do not consider the owners-as-modifiers discipline. We are only
concerned with the topology of the ownership type system.

Consider the assignment:

o.f = p.g;

and assume that o.f and p.g have the same static type.

A) The assignment is forbidden if o.f has ownership modifier 1ost. Show an example to
demonstrate why we need this rule to preserve the topological invariant.

— solution

The following code breaks the acyclicity requirement for the topology:

class C {
rep C down;

void foo () {
down.down = this;

}

B) If the ownership modifier of o. f is any, then what are the requirements for the assignment
to be legal?

solution
(None. The assignment is always legal.

C) If o. f has ownership modifier 1ost can we upcast o.f to an any reference and make the
assignment legal? Why (not)?

solution

We cannot upcast a reference that is being assigned to. This is illegal according to the
subtyping rules.

Task 17 (from a previous exam)

Consider the following declarations:
class A {

rep B first;

rep B second;

}

class B {
any A obij;
peer B sibling;

}

Which of the following programs are allowed in the topological ownership system? For any
program that is accepted in the topological system, is it also accepted in the owner-as-modifier
system? Assume that none of the objects involved are null. Briefly explain each of your
answers.

Program 1 Program 2 Program 3 Program 4

rep B b; peer A a; rep B b; | any A a; peer A 3;

b = b.sibling; | a = b.obj; a.first.obj = a; | a.first = a.first;

— solution

e Program 1 is accepted in both systems.

e Program 2 is not accepted in the topological system (and neither in the owner-as-
modifier system). It attempts the assignment of an any reference to a peer reference.
peer is not a super-type of any.

e Program 3 is accepted in the topological system (it assigns any to any). However,
it assigns to the field of a 1ost reference, which means that it is not accepted in the
owner-as-modifier system.

e Program 4 is not accepted in the topological system (and neither in the owner-as-
modifier system), because it assigns to a lost location.

Task 18

Assume the topological ownership framework taught in the course. Suppose that we want to
create a class SortedLinkedList, with the internal invariant that the values stored in the
nodes are sorted in ascending order.

package SortedLinkedList;

public class SortedLinkedList {
private rep Node head;

/// invariant head != null ==> head.sorted()

}

private class Node {
protected peer Node next;
protected int value;

/// pure
boolean sorted() {
return next != null ==> value < next.value && next.sorted()

}
}

Suppose that all the methods in SortedLinkedList are guaranteed to preserve the invariant
of the class. Furthermore, suppose that we want to create iterators for such lists (defined in
the same package):

public class LinkedListIterator { private any Node current_item; ... }

A) Why is the field current_item annotated as any? What drawbacks would the other
possible annotations have?

— solution

If current_item were annotated as rep, then the owner of the node it refers to is the
iterator itself. In this case, the iterator cannot iterate over a SortedLinkedList object [,
because [also owns its nodes. The ownership topology allows at most one owner per object.

If current_item were annotated as peer, then, assuming that current_item has a list
owner [, the owner of the iterator must also be [. This may be OK in topological ownership.
However, if we add “owners as modifiers”, the iterator’s methods that traverse [cannot be
called directly from an object outside [, which defeats the purpose of iterators.

B) We would like to have the following features:

(i) the invariant of a SortedLinkedList object is guaranteed to hold in any program, except
when one of its methods executes

(ii) LinkedListIterator is a modifying iterator, i.e., it may change the value of the object
it is pointing to

We can’t have both features. Depending on whether or not we impose the “owners as modifiers”
discipline, we can have either (i) or (ii). Explain why this is the case.

— solution

If we don’t have “owners as modifiers”, an object may get/hold an any reference to a node
of the list, modify its value field, and break the invariant: (i) is not achieved.

If we do have “owners as modifiers”, then the iterator may not modify the value of the node
it is pointing at, because it holds an any reference to it: (ii) is not achieved.

C) The fact that (i) and (ii) cannot both hold together is not surprising. A modifying iterator
can break the invariant of the list it is iterating over. However, the “owners as modifiers”
discipline may disallow harmless designs. Write a benign class (perhaps a restricted modifying
iterator), which would not break the invariant of any object of SortedLinkedList, but still
does not compile under “owners-as modifiers”.

— solution

We could have an iterator that performs the requested modification iff this does not violate
the invariant:

public class LinkedListIterator {
private any Node f£f;

// some non-modifying methods

public void modifyCarefully(int x) {
if (f.value <= x && (f.next == null || x < f.next.value))
f.value = x;
// benign but does not type check under "owners as modifiers"

}

Reflection

Task 19
Which of the following is the defining characteristic of reflection?

(a) It allows for much simpler code
(b) It enables more flexibility

(c) CORRECT: It allows a program to observe and modify its own structure and
behavior

(d) It is not statically safe

(e) It may hurt performance

(f) None of the above

Task 20

Consider the following Java code:

void foo () throws java.lang.Exception {

}

LinkedList<String> xs = new LinkedList<String>();
xs.add ("A"); xs.add("B"); xs.add("Cc");

Class<?> ¢ = xs.getClass();
Method remove = c.getMethod ("remove");
xs.add (remove.invoke (xs));

which uses the following methods of class LinkedList<E>

public E remove ()
public boolean add(E e)

Which of the following statements is true? The invocation of ...

— solution

(a) c.getMethod ("remove") is rejected by the compiler

remove.invoke (xs) is rejected by the compiler

CORRECT: xs.add (...) is rejected by the compiler

)
)
(d) remove.invoke (xs) raises an exception (at runtime)
)
)

xs.add (...) raises an exception (at runtime)

This code snippet aims to create a LinkedList of String, add three elements to it, recover
class and method information via reflection, remove an element from the list and add it to

the list again.

The issue with this code is that the return type of Method.invoke (...) is Object. There-
fore, the compiler complains that there is no suitable method xs.add () that takes an

Object paﬁnneﬂﬂ‘ﬂﬁurnedffonlremove.invoke(xs).

