Concepts of Object-Oriented Programming E'H

AS 2020 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Fixercise 12
Encapsulation and Aliasing
December 11, 2020

Task 1

Suppose that the following Java classes are part of a package, to which an external user cannot
add classes.

public abstract class BankAccount {
boolean importantCustomer = false;
int amount = 0;
final int maxDebit = 1000;

/// invariant amount >= -maxDebit &&
/17 !importantCustomer => amount >= 0 &&
/17 importantCustomer <=> this instanceof RichCustomer

void deposit (int amount) ;
void withdraw (int amount) ;

}

public final class PoorCustomer extends BankAccount {
void deposit (int amount) {
if (amount >= 0)
this.amount += amount;

void withdraw (int amount) {
if (amount <= this.amount)
this.amount -= amount;

}

public final class RichCustomer extends BankAccount {
public RichCustomer () { importantCustomer = true; }
void deposit (int amount) {
if (this.amount + amount >= —-maxDebit)
this.amount += amount;

void withdraw (int amount) {
if (-maxDebit <= this.amount - amount)
this.amount -= amount;

}

Provide the most permissive access modifiers for each field and method, such that the class
invariant cannot be broken from outside the package. Assume that no integer over /underflow
occurs.



— solution
For the fields of class BankAccount, the most permissive access modifiers are:

importantCustomer: default modifier. In this way, it would be accessible by other classes
in the same package but not by subclasses. Otherwise, we may have a class that extends
BankAccount and sets to true importantCustomer without being a RichCustomer.

amount: default, since we need to access it from the other classes of this package (e.g.
PoorCustomer and RichCustomer), but we must prevent external attackers from modify-

ing it.
maxDebit: public, since it is final and it cannot be modified by other classes.

Methods withdraw and deposit can be declared public, since they preserve the invariants.

In Scala, a class can be declared as sealed. That means that the class can be extended only
by classes written in the same .scala file. Suppose that the class BankAccount is declared
as sealed, and PoorCustomer and RichCustomer are part of the same .scala file. Does
this allow you to choose more permissive access modifiers? Note that PoorCustomer and
RichCustomer are still declared as final.

— solution

If class BankAccount had been declared as sealed, we could choose protected as the access
modifier of the amount and importantCustomer fields, since external classes would not be
allowed to extend it and so would not be able to gain access to these fields. More generally,
if a class is sealed, the default and protected levels are equivalent, since it is not possible to
extend the current class outside the current package.

Task 2

Consider the following Java code:

package p;

public final class List {
///invariant 1: The list starting at head is acyclic
///invariant 2: The list starting at head is non-decreasing

public void prepend(int x) {
if (head == null || x <= head.getValue())
head = new Node (x, head);

}

public Node getHead() { return head; }
public Node head = null;

}

public final class Node {
Node (int x, Node n) {
value = x;
next = n;

}

public Node getNext () { return next; }
public int getValue() { return value; }
private Node next;

private int value;



Assuming that we cannot modify the classes List and Node, we would like to see whether or
not the invariants can be broken, either by adding classes to package p, or by clients outside of
package p. Assume reflection is not used at all.

A) Can invariant 1 be broken by adding clients outside of package p? If yes, show code, that
when run ends in a state in which the invariant is broken; if not explain why.

solution

Invariant 1 cannot be broken by clients outside p because the field Node.next is private
and can only be set in the constructor to an argument of the constructor, which must point
to an already existing list that does not include the object currently being created.

B) Can invariant 1 be broken by adding classes to package p? If yes, show code, that when
run ends in a state in which the invariant is broken; if not explain why.

solution
(Invariant 1 cannot be broken from inside p for the same reasons as above.

C) Can invariant 2 be broken by adding clients outside of package p? If yes, show code, that
when run ends in a state in which the invariant is broken; if not explain why.

— solution

Invariant 2 cannot be broken from outside p because:

The invariant depends only on the fields Node.next, Node.value, and List.head.

Both Node fields are only written to in the constructor of Node and cannot be modified
later as they are private.

The constructor of Node is of package access and so cannot be called directly by the client.
The only public method that calls it is List.prepend, which ensures invariant 2 - hence
no decreasing list of nodes (whether or not attached to a List) can be created by clients of
the package. So, although we can assign List.head any value, we cannot obtain a value
(a Node) that would break the invariant.

D) Can invariant 2 be broken by adding classes to package p? If yes, show code, that when
run ends in a state in which the invariant is broken; if not explain why.

— solution

Invariant 2 can be broken as follows (all code inside p):

class Client({
void client () {
List list = new List ();
list.prepend(0);
Node n = new Node(l, list.getHead());
list.head = n;




Task 3

Consider the following Java code:
public class Hour {

public int h = 0;
}

public class Time {
private Hour hour = new Hour();
/// invariant hour.h >= 0 && hour.h < 24

public void setHour (int h) {
if (h >= 0 && h < 24) this.hour.h = h;
}

public Hour getHour () { return hour; }

A) Provide an example that breaks the invariant of Time without changing the code above
and without using reflection.

— solution

We can easily break the invariants through alias leaking. For instance, the following code
breaks the invariant of class Time:

Time t = new Time () ;
Hour h = t.getHour();
h.h = -1;

B) There are two immediate ways to fix the problem. In one of them, signatures of methods
are modified, while in the other they are not. What are these ways of fixing the problem?

— solution

We can fix this in two ways. We have to avoid the alias leaking. We can reach this goal
returning an integer value instead of an object, or a copy of the Hour object stored in the
current Time object.

public int getHour () { return hour.h; }
public Hour getHour () { return (Hour) hour.clone(); }

In general, it is simpler for reasoning, if possible, to return only primitive values, or to avoid
exposing aliases of the local state of the object, by instead returning copies of the stored
objects. In this way, we can avoid alias leaking, thus no external code can modify the values
contained in the current object.

C) Clearly, we would prefer to keep the signatures the same as before. Are there any drawbacks
to this approach?

— solution

The drawback of the second approach is that we are creating a new object and thus are
using more memory. Additionally, client code that uses reference equality to check if the
Hour object returned by getHour () is equal to another Hour object breaks if getHour ()
returns a new object on every call.




D) Would it be possible to introduce an interface with no mutator methods and use it to solve
the problem? Explain how this approach would look and whether there would still be a way to
break the invariant.

— solution

We could hide the h field of Hour by making Hour implement an interface THour that has
no mutator methods. Time.getHour () could then return this interface.

The client could still downcast from IHour to Hour and break the invariant but aside from
that the invariant is protected. This could be prevented by making Hour a private inner
class of Time.

Task 4

Data structures often intentionally share aliases. For instance, consider the following Java class:

class ArrayList<T> {
private T[] elements =
private int lastEl = 0;
public T get(int i) { return elements[i]; }
public int size() { return lastEl; }
public void add(T el) { elements[lastEl++] = el; }

.7

}

Imagine that this class is extended as follows

class Coordinates {

int x, y;

public Coordinates (int xx, int yy) { x = xx; vy = yy; }
}

class CList extends ArraylList<Coordinates> {
/// invariant V i:int | 0 < 1 A 1 < size() = get(i).x > get(i).y
public void add(Coordinates el) {
if (el.x > el.y) super.add(el);
}

A) Write a program that breaks the invariant of CList.

— solution

The invariant can be broken by exploiting the fact that CList captures and stores
Coordinates objects.

CList list = new CList();

Coordinates ¢ = new Coordinates (2, 1);

list.add(c);
c.x = 0;

B) How can we fix this problem?

solution
To fix cList we need two things

e We need to clone the Coordinates element before storing it.




public void add(Coordinates el) {
if (el.x > el.y) super.add((Coordinates) el.clone());

}

e We also need to clone the Coordinates element before returning it, as otherwise we
leak a reference that could be modified.
public Coordinates get (int i) {
return (Coordinates) super.get (i) .clone();

}

The drawback of such an approach is that we create a copy of all the elements stored in the
list. It is not possible to make sure the invariant is preserved without creating objects that
are only in the current CList object.

C) Is it possible to fix it without allocating new objects (either directly or indirectly), that is,
without consuming additional memory? What new problems might arise from your changes?

— solution

A possible solution would be to have final fields in class Coordinates. This would ensure
that the invariant cannot be broken, but it requires the allocation of new objects each time
we want to modify the fields. For instance, the following code:

Coordinates ¢ = new Coordinates (2, 1);
c.x = 0;

would have to be re-written to

Coordinates ¢ = new Coordinates (2, 1);

c = new Coordinates(0,1);

which allocates a new object even though this is not necessary (since the object pointed by
c is not shared, and so changing its fields cannot break the invariants of other objects).

D) Discuss the benefits and the drawbacks of using alias sharing in data structures.

— solution

The main benefit of alias sharing in data structures is to minimize the consumption of
memory. In addition, we may want to share aliases on data structures, for instance, in
order to further update the content of an element in a list. The main drawback is that alias
sharing does not allow us to reason locally about the objects stored in the data structure,
since clients could retain references to objects they store in the data structure, and might
therefore modify the contents of these objects after they were stored.

Task 5

The following Java classes, all part of the security package, were written by an unexperienced
programmer and contain a number of issues:

package security;
public class User {

public String name;
public String password;



public User (String name, String password) {
this.name = name;
this.password = password;

}

public class LoginException extends RuntimeException {
public User problemUser;
public LoginException(String message, User problemUser) {
super (message) ;
this.problemUser = problemUser;
}
}

public class Login {
private List<User> users = new LinkedList<User>();

public void registerUser (User u) {
if (u == null || u.name == null || u.password == null
|| u.name.isEmpty () || u.password.isEmpty()) return;
users.add (u) ;

}

// Returns true if the user ’"u’ was successfully logged in.
// Otherwise returns false or throws an exception.
public boolean login (User u) throws LoginException {

if (u == null) return false;

User current = null;

try {

for (User registered : users) {
boolean nameEqual = registered.name.equals (u.name) ;

current = registered;

if (nameEqual) {
if (registered.password.equals (u.password))
return true;

}

if (nameEqual)
throw new LoginException("Invalid password for user", u);

}

return false;

}
catch (Exception e) {
throw new LoginException("Invalid user", current);

}
}

The malicious method is in a different package:

void malicious (Login 1) { ... }
Assume the Login object that is passed into the method already has registered users.
A) Complete the body of the malicious method so that you manage to log-in as an already

existing user. You do not know any names or passwords of existing users. Do not use reflection.
You are not allowed to call 1ogin more than a constant number of times.

solution

The body of the malicious method could look like this:




void malicious (Login 1) {

User u = new User ("user", "pass");
l.registerUser (u);

u.name = null;

try {

l1.login(u);
}
catch (LoginException e) {
boolean success = 1l.login(e.problemUser);
// Logged in as the user that was registered before user u

B) Is it possible to fix the problem under the following restrictions? In each of these cases,
explain how you can prevent the malicious login or why it is not possible.

e only modifying the User class?
solution

e We could make both fields of User have the default (package) access:

public class User {
String name;
String password;

public User (String name, String password) {
this.name = name;
this.password = password;

Therefore, code outside the package will not be able to change existing User objects
and the malicious method could not cause the exception as before.

e only modifying the LoginException class?
solution

The LoginException class currently captures the value of the problematic user.
Instead it could create a new user that has the same name as problemUser but hides
the password.

public class LoginException extends RuntimeException {
public User problemUser;
public LoginException (String message, User problemUser) {
super (message) ;
this.problemUser = new User (problemUser.name, "xxxx");

}

This way, even if an exception is thrown, that refers to the wrong user name, the
user’s password will not be leaked.

e only modifying the registerUser method?
solution

We can change the registerUser method so that it does not capture its argument:




public void registerUser (User u) {
if (u == null || u.name == null || u.password == null
|| u.name.isEmpty () || u.password.isEmpty()) return;
users.add (new User (u.name, u.password));

Now we would not be able to modify the internal structure of the Login class by
modifying the user we just registered in the malicious method.

e only modifying the body of the for loop inside the 1ogin method?

solution

This for loop actually contains a bug which allows the exploit to work. To fix it we
must move the assignment to the current variable to the beginning of the loop:
for (User registered : users) {

current = registered;
boolean nameEqual = registered.name.equals (u.name);

In the original code we were able to cause an exception regarding a particular user,
but report the previous user as invalid, since current was not updated yet. This is
no longer the case.

Task 6 (from a previous exam)
In answering this task, do not use reflection, inheritance, and static fields or methods.

This task is concerned with reasoning about non-modification in a modular setting in the
presence of aliasing.

Consider the following code:

package cell;
public class Cell {
/// ensures get () == newValue
public Cell (int newValue) { value = newValue; }

/// ensures get () == newValue

public void set (int newValue) { value = newValue; }
/// pure

public int get () { return value; }

private int value;

}

package client;
import cell.x;
class Client/{

/// requires cl != null

/// requires c2 != null

void setCells(Cell cl, Cell c2) {
cl.set (1);
c2.set (2);

assert (cl.get () == 1);



void setCellsClient () {
Cell cl = new Cell(5);
Cell c2 = new Cell(5);
setCells (cl, c2);

}

The objective of this task is to make sure that the assertion in the method setCells does not
fail, using modular reasoning. The potential problem is that of determining whether the call
c2.set (2) can affect the return value of c1.get ().

A) Modify the second line in method setCellsClient (the initialization of c2) so that the
assertion in method setCells fails. The precondition of setCells must still be satisfied by
the modified version.

— solution

void setCellsClient () {
Cell cl = new Cell(5);
Cell c2 = cl;
setCells(cl, c2);

B) Add a precondition to setCells that will make the call from your version of the method
setCellsClient illegal. The precondition should be such that the original call is legal. Re-
member that the precondition can only refer to the arguments of the method and to public
fields and methods.

solution

/// requires cl != c2;
void setCells (Cell cl, Cell c2)

C) We now add a clone method to the cell class:

/// ensures result != null

/// ensures result != this

/// ensures result.get () == get ()

/// ensures get () == old(get ())

public Cell clone() { return new Cell (value); }

We also add to the client the methods 1eft and right, which use the clone method:

void left () { void right () {
Cell cl = new Cell (5); Cell cl = new Cell (5);
Cell c2 = cl.clone(); Cell c2a = new Cell (5);
setCells (cl, c2); Cell c2 = c2a.clone();
} setCells(cl, c2);

}

Modify only the cell class so that a call to left causes the assertion in setCells to fail,
while a call to right does not cause the assertion to fail. You can add private and default
access members and methods to the Cell class and add private classes to the cell package,
and also modify the implementation of existing methods, but not change the public interface
in any way. Your implementations must satisfy the existing contracts, including the one from
task B.



— solution

package cell;
class Cell {
/// ensures get () == newValue
public Cell (int newValue) { value = new CelllInt (newValue); }

/// ensures result != null

/// ensures result != this

/// ensures result.get () == get ()

/// ensures get () == old(get ())

public Cell clone() { return new Cell (value); 1}
/// ensures get () == newValue

public void set (int newValue) { value.set (newValue); }

/// pure
public int get () { return value.get(); 1}

private Cell (CellInt ci) { value = ci; }
private CellInt value;

private class CellInt {
CellInt (int newValue) { wvalue
int get () { return value; }
void set (int newValue) { value = newValue; }
private int value;

newValue; }

}

The clone method now creates a new Cell that shares the representation (the cel1Int),
and so modifying the cloned or the original ce11 also modifies the other.

D) Strengthen the precondition of the method setCells so that, with your modified cel1l,
the call from left would fail the precondition check, while the call from the method right
would satisfy the precondition.

You can use the concept of the reach of an object, where, for an object x, reach (x) is defined
as the the set of objects which are reachable from x — the set of objects which can be described
by an access path x.f1.f2. ... .fn for some n and some sequence of field names f1..fn
(we do not consider arrays in this task). All fields are considered, regardless whether they are
public or private. You can also use set operations in your precondition.

Remember that the precondition of a method can refer only to the this object and the method’s
arguments, dereferencing of public fields, and call public pure methods.

— solution

/// requires reach(cl) disjoint reach(c2);
void setCells (Cell cl, Cell c2)

Now the reach of the arguments c1 and c2 are disjoint, so modifying one cannot affect the
other in any way.

E) In order to prove the correctness of the body of the methods left and right, when
setCells has the stronger precondition from section D, we would have to strengthen the
postcondition of the c1one method of class Ce11. Write a stronger postcondition to the method



Cell.clone so that the bodies of the methods 1eft and right can be proven modularly —
i.e., without knowing the implementation of the c1one method and other private details of the
class Cell.

— solution
/// ensures result != null
/// ensures reach(result) disjoint reach (this)
/// ensures result.get () == get ()
/// ensures get () == old(get ())
public Cell clone() { return new Cell (value); }

Strengthening the postcondition of Cell.clone like that has the following consequences:

e The implementation of Cell.clone from subtask C) can no longer be verified since
it does not guarantee the new postcondition (the reach sets won’t be disjoined)

e The bodies of the methods 1eft and right should therefore verify (modularly), and
indeed will: Cell.clone’s stronger postcondition now establishes the precondition
of setCells




