Concepts of Object-Oriented Programming E'H

AS 2020 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Exercise 12
Encapsulation and Aliasing
December 11, 2020

Task 1

Suppose that the following Java classes are part of a package, to which an external user cannot
add classes.

public abstract class BankAccount ({
boolean importantCustomer = false;
int amount = 0;
final int maxDebit = 1000;

/// invariant amount >= -maxDebit &&
/// !importantCustomer => amount >= 0 &&
/17 importantCustomer <=> this instanceof RichCustomer

void deposit (int amount) ;
void withdraw (int amount) ;

}

public final class PoorCustomer extends BankAccount {
void deposit (int amount) {
if (amount >= 0)
this.amount += amount;

void withdraw (int amount) {

if (amount <= this.amount)
this.amount -= amount;

}

public final class RichCustomer extends BankAccount {

public RichCustomer () { importantCustomer = true; }
void deposit (int amount) {
if (this.amount + amount >= —-maxDebit)

this.amount += amount;

void withdraw (int amount) {
if (-maxDebit <= this.amount - amount)
this.amount -= amount;

}

Provide the most permissive access modifiers for each field and method, such that the class
invariant cannot be broken from outside the package. Assume that no integer over/underflow
occurs.

In Scala, a class can be declared as sealed. That means that the class can be extended only
by classes written in the same .scala file. Suppose that the class BankAccount is declared

as sealed, and PoorCustomer and RichCustomer are part of the same .scala file. Does
this allow you to choose more permissive access modifiers? Note that PoorCustomer and
RichCustomer are still declared as final.

Task 2

Consider the following Java code:

package p;

public final class List {
///invariant 1: The list starting at head is acyclic
///invariant 2: The list starting at head is non-decreasing

public void prepend(int x) {
if (head == null || x <= head.getValue())
head = new Node (x, head);

}

public Node getHead() { return head; }
public Node head = null;
}

public final class Node {
Node (int x, Node n) {
value = x;
next = n;

}

public Node getNext () { return next; }
public int getValue() { return value; }
private Node next;

private int value;

}

Assuming that we cannot modify the classes List and Node, we would like to see whether or
not the invariants can be broken, either by adding classes to package p, or by clients outside of
package p. Assume reflection is not used at all.

A) Can invariant 1 be broken by adding clients outside of package p? If yes, show code, that
when run ends in a state in which the invariant is broken; if not explain why.

B) Can invariant 1 be broken by adding classes to package p? If yes, show code, that when
run ends in a state in which the invariant is broken; if not explain why:.

C) Can invariant 2 be broken by adding clients outside of package p? If yes, show code, that
when run ends in a state in which the invariant is broken; if not explain why.

D) Can invariant 2 be broken by adding classes to package p? If yes, show code, that when
run ends in a state in which the invariant is broken; if not explain why:.

Task 3

Consider the following Java code:

public class Hour {
public int h = 0;
}

public class Time {
private Hour hour = new Hour () ;
/// invariant hour.h >= 0 && hour.h < 24

public void setHour (int h) {
if (h >= 0 && h < 24) this.hour.h = h;
}

public Hour getHour () { return hour; }

A) Provide an example that breaks the invariant of Time without changing the code above
and without using reflection.

B) There are two immediate ways to fix the problem. In one of them, signatures of methods
are modified, while in the other they are not. What are these ways of fixing the problem?

C) Clearly, we would prefer to keep the signatures the same as before. Are there any drawbacks
to this approach?

D) Would it be possible to introduce an interface with no mutator methods and use it to solve
the problem? Explain how this approach would look and whether there would still be a way to
break the invariant.

Task 4

Data structures often intentionally share aliases. For instance, consider the following Java class:

class ArrayList<T> {
private T[] elements =
private int lastEl = O;
public T get(int i) { return elements[i]; }
public int size() { return lastEl; }
public void add (T el) { elements[lastEl++] = el; }

L4

}

Imagine that this class is extended as follows

class Coordinates {

int x, vy;

public Coordinates (int xx, int yy) { x = xx; y = yy; }
}

class CList extends ArraylList<Coordinates> {
/// invariant V i:int | 0 < 1 A 1 < size() = get(i).x > get(i).y
public void add(Coordinates el) {
if (el.x > el.y) super.add(el);
}

A) Write a program that breaks the invariant of CList.
B) How can we fix this problem?

C) Is it possible to fix it without allocating new objects (either directly or indirectly), that is,
without consuming additional memory? What new problems might arise from your changes?

D) Discuss the benefits and the drawbacks of using alias sharing in data structures.

Task 5

The following Java classes, all part of the security package, were written by an unexperienced

programmer and contain a number of issues:

package security;

public class User {
public String name;
public String password;
public User (String name, String password) {
this.name = name;
this.password = password;

}

public class LoginException extends RuntimeException {
public User problemUser;
public LoginException (String message, User problemUser) ({
super (message) ;
this.problemUser = problemUser;
}
}

public class Login {

private List<User> users = new LinkedList<User>();
public void registerUser (User u) {
if (u == null || u.name == null || u.password == null
|| u.name.isEmpty () || u.password.isEmpty()) return;

users.add (u) ;

}

// Returns true if the user ’"u’ was successfully logged in.
// Otherwise returns false or throws an exception.
public boolean login (User u) throws LoginException {
if (u == null) return false;
User current = null;
try f
for (User registered : users) {
boolean nameEqual = registered.name.equals (u.name);
current = registered;

if (nameEqual) {
if (registered.password.equals (u.password))
return true;

}

if (nameEqual)
throw new LoginException("Invalid password for user", u);

}

return false;

}
catch (Exception e) {
throw new LoginException ("Invalid user", current);

}
}

The malicious method is in a different package:

void malicious (Login 1) { ... }

Assume the Login object that is passed into the method already has registered users.

A) Complete the body of the malicious method so that you manage to log-in as an already
existing user. You do not know any names or passwords of existing users. Do not use reflection.
You are not allowed to call 1ogin more than a constant number of times.

B) Is it possible to fix the problem under the following restrictions? In each of these cases,
explain how you can prevent the malicious login or why it is not possible.

e only modifying the User class?
e only modifying the LoginException class?
e only modifying the registerUser method?

e only modifying the body of the for loop inside the 1ogin method?

Task 6 (from a previous exam)
In answering this task, do not use reflection, inheritance, and static fields or methods.

This task is concerned with reasoning about non-modification in a modular setting in the
presence of aliasing.
Consider the following code:

package cell;
public class Cell {

/// ensures get () == newValue

public Cell (int newValue) { value = newValue; }

/// ensures get () == newValue

public void set (int newValue) { value = newValue; }
/// pure

public int get () { return value; }

private int value;

}

package client;
import cell.x;
class Client({
/// requires cl != null
/// requires c2 != null
void setCells(Cell cl, Cell c2) {
cl.set (1);
c2.set (2);
assert(cl.get () == 1);
}

void setCellsClient () {
Cell cl = new Cell (5);
Cell c2 = new Cell(5);
setCells (cl, c2);

}

The objective of this task is to make sure that the assertion in the method setCel1ls does not
fail, using modular reasoning. The potential problem is that of determining whether the call
c2.set (2) can affect the return value of c1.get ().

A) Modify the second line in method setCellsClient (the initialization of c2) so that the
assertion in method setCells fails. The precondition of setCells must still be satisfied by
the modified version.

B) Add a precondition to setCells that will make the call from your version of the method
setCellsClient illegal. The precondition should be such that the original call is legal. Re-
member that the precondition can only refer to the arguments of the method and to public
fields and methods.

C) We now add a clone method to the cell class:

/// ensures result != null

/// ensures result != this

/// ensures result.get () == get ()

/// ensures get () == old(get ())

public Cell clone() { return new Cell (value); 1}

We also add to the client the methods 1eft and right, which use the clone method:

void left () { void right () {
Cell cl = new Cell(5); Cell cl = new Cell(5);
Cell c2 = cl.clone(); Cell c2a = new Cell(5);
setCells (cl, c2); Cell c2 = c2a.clone();
} setCells (cl, c2);

}

Modify only the cell class so that a call to 1eft causes the assertion in setCells to fail,
while a call to right does not cause the assertion to fail. You can add private and default
access members and methods to the cell class and add private classes to the cell package,
and also modify the implementation of existing methods, but not change the public interface
in any way. Your implementations must satisfy the existing contracts, including the one from
task B.

D) Strengthen the precondition of the method setCells so that, with your modified cell,
the call from left would fail the precondition check, while the call from the method right
would satisfy the precondition.

You can use the concept of the reach of an object, where, for an object x, reach (x) is defined
as the the set of objects which are reachable from x — the set of objects which can be described
by an access path x.f1.f2.fn for some n and some sequence of field names f1..fn
(we do not consider arrays in this task). All fields are considered, regardless whether they are
public or private. You can also use set operations in your precondition.

Remember that the precondition of a method can refer only to the this object and the method’s
arguments, dereferencing of public fields, and call public pure methods.

E) In order to prove the correctness of the body of the methods left and right, when
setCells has the stronger precondition from section D, we would have to strengthen the
postcondition of the c1one method of class Ce11. Write a stronger postcondition to the method
Cell.clone so that the bodies of the methods 1eft and right can be proven modularly —
i.e., without knowing the implementation of the c1one method and other private details of the
class Cell.

