
Concepts of Object-Oriented Programming
AS 2020

Exercise 5
Behavioral Subtyping and Inheritance

October 23, 2020

Task 1
Consider the following Java code:

1 interface I {};
2
3 class C {};
4
5 public class Main {
6
7 public static C getC() {
8 return new C();
9 }

10
11 public static void main(String[] argv) {
12 C c1 = new C();
13 C c2 = getC();
14
15 I i1 = (I) c1;
16 I i2 = (I) c2;
17 }
18 }

Try to compile it. If it compiles, try to execute it. What happens? Why? Do you expect to
see the same behavior if I were a class, instead of an interface?

solution

• If I is an interface: the compiler allows the code to go through, although it cannot
prove that c1 and c2 implement I. The reason is that there might be a subclass D of
C such that D implements I and c1 and c2 might be objects of D. Here Java opts for
the flexibility of dynamic type checking. When the code executes, a runtime exception
is thrown, because c1 does not implement I and this is caught by the runtime check.
If we would comment out line 15, a runtime exception would be thrown in line 16, as
c2 does not implement I either.

• If I were a class : the code would not compile, due to type errors in lines 15 and
16. In this case, Java chooses static type checking: as it does not support multiple
inheritance, it is not possible to have a subclass D of C, which also extends I.

Task 2
Consider the following Java classes:
class Number {

int n;

/// requires true
/// ensures n == p
void set(int p) {
n = p;

}
}

class UndoNaturalNumber extends Number {
int undo;

/// requires 0 < q
/// ensures n == q && undo == old(n)
void set(int q) {
undo = n;
n = q;

}
}

Is UndoNaturalNumber a behavioral subtype of Number, based on the rules from slide 62?

Now consider that we are using specification inheritance. What are the effective pre/post-
conditions of the method UndoNaturalNumber.set according to the rules from slides 68 and
72?

solution

UndoNaturalNumber is not a behavioral subtype of Number, because it has a stronger
precondition for the method set.

The effective precondition is: true || (0 < q), which is equivalent to true.

The effective postcondition is: (old(true) ==> n == p) && (old(0 < q) ==> n ==

q && undo == old(n)). Note that p and q refer to the same parameter, so the effec-
tive postcondition actually is: (old(true) ==> n == q) && (old(0 < q) ==> n ==

q && undo == old(n)). Since for parameters we always have old(q) == q, the effective
postcondition is equivalent to (n == q) && (0 < q ==> undo == old(n)).

Task 3
From a previous exam.
Assume the following types in Java:
enum Shift {DayShift, NightShift, SpecialShift}

interface PostalWorker {
boolean sick();

///ensures sick()
void catchDisease();

///requires when == SpecialShift || when == DayShift
///requires !sick()
int work(Shift when);

}

interface Bartender {
boolean sick();

///ensures sick()
void catchDisease();

///requires when == SpecialShift || when == NightShift
///requires !sick()
int work(Shift when);

}

The work() method can be called to request the corresponding person to work the specified
shift. The value returned by work() is the average hourly wage that was earned during the
working shift including tips.

A) Now we introduce another interface:

interface HardWorker extends PostalWorker, Bartender {
///requires true
int work(Shift when);

}

Assuming the rules for specification inheritance discussed in the course (slides 68 and 72), what
is the effective precondition of the work() method of the HardWorker interface?

solution
///requires

(!sick() && (when == SpecialShift || when == DayShift))
|| (!sick() && (when == SpecialShift || when == NightShift))
|| true

which is equivalent to
///requires true

B) Now we add postconditions to all work() methods. Everything else remains as before.

interface PostalWorker {
...
///ensures result ≥ 15 && result ≤ 25
int work(Shift when);

}

interface Bartender {
...
///ensures result ≥ 20 && result ≤ 30
int work(Shift when);

}

interface HardWorker extends PostalWorker, Bartender {
...
///ensures result ≥ 25 && result ≤ 50
int work(Shift when);

}

Assuming the rules for specification inheritance discussed in the course (slides 68 and 72), what
is the effective postcondition of the work() method of the HardWorker interface?

solution
///ensures

(old(!sick() && (when == SpecialShift || when == DayShift))
⇒ (result ≥ 15 && result ≤ 25))

&& (old(!sick() && (when == SpecialShift || when == NightShift))

⇒ (result ≥ 20 && result ≤ 30))
&& (old(true)

⇒ (result ≥ 25 && result ≤ 50))

which is equivalent to
///ensures

(old(!sick() && when != NightShift)
⇒ result == 25)

&& (old(!sick() && when == NightShift)
⇒ (result ≥ 25 && result ≤ 30))

&& (old(sick())
⇒ (result ≥ 25 && result ≤ 50))

C) Consider the following code:

///requires worker != null
///requires !worker.sick()
int foo(HardWorker worker) {

return worker.work(Shift.SpecialShift);
}

What is the range of possible return values of the method foo()?

solution

Only 25 is a possible return value.

D) Change the body of the method foo() such that it calls the work() method of worker in
a way that makes it possible for this call to return 50.

solution
int foo(HardWorker worker) {

worker.catchDisease();
return worker.work(Shift.SpecialShift);

}

Task 4
Suppose that we have a database, for which we would like to add an “automated key generation”
feature. This means that each time the user inserts a new tuple, a unique key is automatically
generated for the tuple by the system. A way to do this is to write a counter, which increments
by 1 the value that it returns each time it is called. The method that generates a new key is
called generate.

A) Write a Java class IncCounter and an accompanying specification for such a counter.

solution
class IncCounter {
/// constraint old(key) <= key
int key;

IncCounter () { key = 0; }

/// ensures (key == old(key) + 1) ∧ (result == old(key))
int generate () { return key++; }

}

B) Annotate the following Java class with specifications and show that it is not a behavioural
subtype of IncCounter.
class DecCounter {
int key;
DecCounter () { key = 0; }
int generate () { return key--; }

}

solution

The postcondition which precisely describes the behavior of the method DecCounter.

generate is (key == old(key) - 1) ∧ (result == old(key)). This postcondition
does not refine the postcondition of IncCounter.generate. The history constraint is
old(key) >= key and also does not strengthen the one of IncCounter.

C) Write an abstract class GenerateUniqueKey together with a specification, such that both
IncCounter and DecCounter (with the specifications from tasks A and B) are behavioural
subtypes of GenerateUniqueKey, and such that GenerateUniqueKey.generate generates
unique keys. In the specification, you may use helper methods and fields.

solution

The abstract parent class GenerateUniqueKey can be declared using a helper pure method
boolean used(int). Note that only pure (i.e., side-effect free) methods can be used in
specifications. Informally, the helper method returns true if x has been used as a key before.
Furthermore, the correctness of the class relies on the property that once a number is used,
it never becomes unused again. This can be expressed using a history constraint.

The definitions of the classes follow:
abstract class GenerateUniqueKey {

/// constraint ∀ x:int | (old(used(x)) ⇒ used(x))
abstract boolean used(int);

/// ensures ¬old(used(result)) ∧ used(result)
abstract int generate ();

}

class IncCounter { // ... and similarly for DecCounter
/// constraint old(key) <= key
int key;
IncCounter () { key = 0; }

boolean used (int x) { return x < key; }

/// ensures key == old(key) + 1 ∧ result == old(key)
int generate () { return key++; }

}

Task 5
From a previous midterm.

Imagine extending the syntax of the Java language to support the following keywords:

• subtypes: used to declare that a class is a subtype of another class (without inheritance)

• inherits: used to declare that a class inherits form another class (without subtyping)

Now consider the following classes:
class A {

public int foo (int n) { return n - 1; }
}

class B {
public int foo (int n) { return n + 1; }
public int bar (int n) { return foo(n) - 1; }

}

class C inherits A subtypes B {
public int bar (int n) { return foo(n); }

}

class Main {
public static void main(String[] args) {

B b = new C();
System.out.println(b.bar(3));

}
}

What should happen if we tried to compile the code and execute the method main from the
class Main?

(a) The code should be rejected by the compiler

(b) The code should compile but the execution should fail

(c) CORRECT: The code should compile and print 2

(d) The code should compile and print 4

(e) None of the above

Task 6
Consider two classes Stack and Queue, implementing the standard LIFO/FIFO data struc-
tures, both of which have methods with the following signatures:
void push(Object o);
Object pop();
bool isEmpty();
int size();
void reverse();

A) Despite having identical signatures, these two classes cannot be behavioral subtypes of each
other. Why is this the case?

solution

The intended behavior is that a Stack is LIFO, while a Queue is FIFO. Therefore, the pop
and push have different behavior, so neither can be considered a behavioral subtype of the
other.

B) When implementing these two classes, is there any possibility of code reuse? If so, give
details.

solution

Depending on the internal representation, either the pop() or the push() method (but
not both) could be reused, from one implementation to the other. For example, if one
implements a Queue by pushing to the end of a linked list, and popping from the beginning,
then a Stack could be implemented either by pushing on the beginning of the list and
reusing the pop() method, or by reusing the push() method and popping from the end
of the list. Furthermore, it’s likely that the isEmpty(), size() and reverse() methods
could all be reused.

C) Describe at least one way of reusing the code in one class by the other - which programming
language features are needed for this to work?

solution

Any mechanism which allows code reuse without subtyping, e.g., private inheritance in
C++ or aggregation.

Another option would be to have a “common superclass” used by both implementations.
This superclass, however, would either be too wide (allowing insertion/removal at both
ends) or rather thin (allowing only insertion on one end). In the wide case, we could use
a kind of linked list, for example, that can insert/remove at the beginning and at the end,
and use private inheritance to expose only the relevant operations to the clients of each
data structure.

