Concepts of Object-Oriented Programming E'H

AS 2020 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Fixercise 13
Readonly Types and Ownership Types
December 18, 2020

Task 1 (from a previous exam)

In the readonly/readwrite type system, which of the following assignments is not type
correct?

1. x = y; where x is readonly and y is readwrite

2. x = y.f; where x is readwrite, variable y is readonly and field f is readwrite

3. x = y.f; where x is readwrite, variable y is readwrite and field f is readwrite

4. x = y.f; where x is readonly, variable y is readwrite and field f is readwrite
Task 2

Consider the following classes:

class A {
readwrite StringBuffer nl = ...;
readonly StringBuffer n2 = ...;
}

class B {
readwrite A x;
readonly A vy;
public B (readwrite A x, readonly A y) {
this.x = x;
this.y V;

}

Note that the readwrite annotations could have been omitted, since readwrite is the default;
they are written explicitly here for clarity.

Check which programs typecheck and explain why they do or do not typecheck.



Program 1

readwrite A obj=new A();

readonly B obj2=new B(obj, obj);
readwrite StringBuffer v=obj2.y.nl;

Program 2

readwrite A obj=new A();

readwrite B obj2=new B (obj, obj);
readwrite StringBuffer v=obj2.y.nl;

Program 3

readwrite A obj=new A();
readwrite B obj2=new B (obj, obj);
readwrite StringBuffer v=obj2.x.nl;

Program 4

readonly A obj=new A();
readonly A obj2=new A();
readwrite B obj3=new B (obj, obj2);
readwrite StringBuffer v=obj3.y.nl;

Program 5

readwrite A obj=new A();
readonly A obj2=new A();

Program 6

readwrite A obj=new A();
readonly A obj2=new A();

readwrite B obj3=new B (obj,
readonly

obj2);
StringBuffer v=obj3.y.nl;

readwrite B obj3=new B (ob],
readonly

obj2);
StringBuffer v=0obj3.y.n2;

Task 3

Consider how we might extend readonly types to handle arrays. For an array of primitive types,
one might want to declare that the array elements cannot be changed, using a declaration such
as:

readonly int[] x;

which, similarly to the rules for accessing fields of objects, would forbid an update such as

x[2] = 2; // error — x is declared with a readonly type

A) Should there be a subtyping relationship (in either direction) between the types readwrite
int [] and readonly int[]?

B) For arrays of reference types, there are two reasonable questions to consider for readonly
typing. Firstly, just as for an array of primitive types, whether or not the array reference can
be used for modifications. Secondly, whether the array elements can be used for modifications.

y[1l] = .; // is this allowed?
y[1].f = ...; // is this allowed?

In order to express all possibilities, consider having two readonly/readwrite modifiers for
an array type - the first to denote access to the array reference itself, and the second to denote
access to the objects stored in its elements, e.g., readonly readonly T[] y; is the most
restrictive possibility.

Consider what the semantics of readonly readwrite T[] y; could be. There are two rea-
sonable choices here, depending on whether we regard accesses of the form y[1].f as accesses
which go first via the array y, and then to the element y[1], or consider them as accesses
directly to y[1] (in a sense “skipping” y, and hence ignoring the first modifier).

For each of these two possible semantics, consider the following:

e Do all four combinations of modifiers express something different from one another?

e What subtyping relationships (if any) would be reasonable between the four possible
variants of a T[] type?

C) In the light of these questions, which of the two semantics seems the best choice?



Task 4

Consider the following method signatures:

peer Object foo(any String el);
peer Object foo(rep String el);
rep Object foo(any String el);
any Object foo(peer String el);
rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other. Assume that overriding
methods can have covariant return types and contravariant parameter types.

Task 5 (from a previous exam)

The topological ownership system guarantees the following property: if a reference a. f to an
object b is of ownership type rep C, then the object a is the owner of b. Moreover, each object
has at most one owner.

The topological ownership system has a weakness: it does not support ownership transfer, which
is desirable in many situations. Let us try to remedy this situation. Consider the following
incomplete definition of a class T:

class T {
public rep U f, g;

}

and the following program P, which, in addition to the field assignments, implicitly also changes
the owner of object e2.g from e2 to el:

// implicitly: e2.g.owner = el;

el.f = e2.g;

e2.qg null;

where e1, e2 are two non-null objects of type T.
A) The code P is not allowed in the topological ownership system. Which rule disallows it?

B) Write a code snippet C, such that executing C; P is guaranteed to break the property
described in the first paragraph of this task, after P has finished executing. Do not rely on any
specific implementation of class U (but you may assume the existence of a constructor without
parameters). You may also add constructors to class T.

Note that:

e you can assume that P is accepted by the compiler.

all the code that you write must respect the topological ownership system. P is the only
code that breaks the rules.

e you may not use reflection in your solution.

e you may not use P anywhere in the code that you write.

Task 6

The ownership type system allows the following ownership modifiers: peer, rep, self, lost
and any - to structure the object store and to restrict how references can be passed and used. We
want to extend the ownership type system by adding one more modifier down. This modifier
is introduced to denote references to objects in the same context as this or in the context
(transitively) owned by an object in the same context as this.



A) Redraw the subtype relation diagram below to include the newly introduced type of the

universe type system.

Clost T
Gt T—(peer 1) Crep T

B) Define the viewpoint adaptation function », such that it is the most specific in terms of
the context information it conveys (i.e. it conveys as much context information as possible),
by filling the table below (for a combination 7. » T} the modifier 7, specifies the row, and the
modifier T the column of the table used).

Recall that the viewpoint adaptation function » is used, in particular, to determine the owner
of an object referenced by a field access. More exactly, if the ownership modifier of e is T,
and the ownership modifier of a field £ is T, then the ownership modifier assigned to the field
access e. f is determined as T, » 1. Note that this applies to field updates as well as field
reads.

> peer | rep any down
self

peer

rep
lost
any

down

C) Consider the following example:

public class Node({
rep Node cj;
down Node d;

public void foo () {
this.d.d = this; // should this line typecheck?
this.c.d this.d; // should this line typecheck?

}

Which of the assignments above should be allowed by the type system? Why?

D) Assuming that you only need to enforce the topological constraints of the type system, how
should the field update rule from lecture 6 slide 64 be adapted to the system extended with the
down modifier? Do you need to make any changes?



