Concepts of Object-Oriented Programming E'H

AS 202 1 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Fixercise 12
Encapsulation, Aliasing, Readonly types, Ownership
December 17, 2021

Task 1 (from a previous exam)
In answering this task, do not use reflection, inheritance, and static fields or methods.

This task is concerned with reasoning about non-modification in a modular setting in the
presence of aliasing.

Consider the following code:

package cell;
public class Cell {
private int value;

/// ensures get () == newValue

public Cell (int newValue) { value = newValue; }

/// ensures get () == newValue

public void set (int newValue) { value = newValue; }
/// pure

public int get () { return value; }

}

package client;
import cell.x;
class Client{
/// requires cl != null
/// requires c2 != null
void setCells (Cell cl, Cell c2) {
cl.set (1);
c2.set (2);
assert(cl.get () == 1);
}

void setCellsClient () {
Cell cl = new Cell (5);
Cell c2 = new Cell(5);
setCells (cl, c2);

}

The objective of this task is to make sure that the assertion in the method setCells does not
fail, using modular reasoning. The potential problem is that of determining whether the call
c2.set (2) can affect the return value of c1.get ().

A) Modify the second line of the method setCellsClient (the initialization of c2) so that
the assertion in method setCells fails. The precondition of setCells must still be satisfied
by the modified version.



— solution

Cell cl
Cell c2 =

void setCellsClient ()
= new Cell (5);

setCells (cl1,

{

cl;
c2);

B) Add a precondition to setCells that will make the call from your version of the method
setCellsClient illegal. The precondition should be such that the original call is legal. Re-
member that the precondition can only refer to the arguments of the method and to public
fields and methods.

solution

/// requires cl != c2;

void setCells(Cell cl, Cell c2)

C) We now add a clone method to the cell class:

/// ensures result != null

/// ensures result != this

/// ensures result.get () == get ()

/// ensures get () == old(get ())

public Cell clone() { return new Cell (value); 1}

We also add to the client the methods 1eft and right, which use the clone method:

void left () { void right () {
Cell cl = new Cell (5); Cell cl = new Cell (5);
Cell c2 = cl.clone(); Cell c2a = new Cell(5);
setCells (cl, c2); Cell c2 = c2a.clone();

setCells(cl, c2);

}
Modify only the cell class so that a call to left causes the assertion in setCells to fail,
while a call to right does not cause the assertion to fail. You can add private and default
access members and methods to the cel1 class and add private classes to the cel1l package,
and also modify the implementation of existing methods, but not change the public interface
in any way. Your implementations must satisfy the existing contracts, including the one from
task B.

— solution

package cell;
class Cell {

/// ensures get () == newValue

public Cell (int newValue) { value = new CelllInt (newValue); }
/// ensures result != null

/// ensures result != this

/// ensures result.get () == get ()

/// ensures get () == old(get ())

public Cell clone() { return new Cell (value); 1}

/// ensures get () == newValue

public void set (int newValue) { value.set (newValue); }




/// pure
public int get () { return value.get(); 1}

private Cell (CellInt ci) { value = ci; }

private CellInt value;

private class CellInt {
private int value;

CellInt (int newValue) { value = newValue; }

int get () { return value; }
void set (int newValue) { value = newValue; }

}

The clone method now creates a new Cell that shares the representation (the Cel1Int),
and so modifying the cloned or the original ce11 also modifies the other.

D) Strengthen the precondition of the method setCells so that, with your modified cell,
the call from 1eft would fail the precondition check, while the call from the method right
would satisfy the precondition.

You can use the concept of the reach of an object, where, for an object x, reach (x) is defined
as the the set of objects which are reachable from x — the set of objects which can be described
by an access path x.f1.£f2. ... .fn for some n and some sequence of field names f1..fn
(we do not consider arrays in this task). All fields are considered, regardless whether they are
public or private. You can also use set operations in your precondition.

Remember that the precondition of a method can refer only to the this object and the method’s
arguments, dereferencing of public fields, and call public pure methods.

— solution

/// requires reach(cl) disjoint reach(c2);
void setCells (Cell cl, Cell c2)

Now the reach of the arguments c1 and c2 are disjoint, so modifying one cannot affect the
other in any way.

E) In order to prove the correctness of the body of the methods left and right, when
setCells has the stronger precondition from task D, we would have to strengthen the post-
condition of the clone method of class ce11. Write a stronger postcondition to the method
Cell.clone so that the bodies of the methods 1eft and right can be proven modularly —
i.e., without knowing the implementation of the c1one method and other private details of the
class cell.

— solution
/// ensures result != null
/// ensures reach(result) disjoint reach (this)
/// ensures result.get () == get ()

/// ensures get () == old(get ())
public Cell clone() { return new Cell (value); }




Strengthening the postcondition of Cell.clone like that has the following consequences:

e The implementation of Cel1.clone from subtask C can no longer be verified since
it does not guarantee the new postcondition (the reach sets won’t be disjoint)

e The bodies of the methods 1eft and right should therefore verify (modularly), and
indeed will: Cell.clone’s stronger postcondition now establishes the precondition
of setCells

Task 2
Consider the following C++ class:

class Person {
int money;
Person *xspouse;
public:
Person (int m, Person *s) {
if (!s) { spouse = NULL; }
else { spouse = s; s->spouse = this; }
money = m;
}
void f () const;
bi

The method £ promises not to make any changes to its receiver object. Provide an implemen-
tation for £ that violates this claim. You are not allowed to use casts, nor to introduce any
local variables.

solution

We can violate the claim by changing the receiver object this through the field spouse,
for instance: spouse->spouse—>money = 0;

This would only work if the s passed in the constructor is non-null.

Task 3 (from a previous exam)

In the readonly/readwrite type system, which of the following assignments is not type
correct?

1. x = y; where x is readonly and y is readwrite
2. x = y.f; where x is readwrite, variable y is readonly and field f is readwrite

3. x

y.f; where x is readwrite, variable y is readwrite and field f is readwrite

4. x y.f; where x is readonly, variable y is readwrite and field f is readwrite

solution
(Number 2 is not allowed - it casts from a readonly reference to a readwrite reference.

Task 4

Consider the following classes:

class A {



readwrite StringBuffer nl =
readonly StringBuffer n2 =
}

class B {
readwrite A x;
readonly A y;
public B (readwrite A x,
this.x = x;
this.y Vi

}

Note that the readwrite annotations could have been omitted, since readwrite is the default;

they are written explicitly here for clarity.

Check which of the following programs typecheck and explain why they do or do not typecheck.

Program 1

readwrite A a new A();

readonly B b = new B(a, a);

readwrite StringBuffer v = b.y.nl;

Program 3

readwrite A a = new A();

readwrite B b = new B(a, a);

readwrite StringBuffer v = b.x.nl;

Program 5

readwrite A al new A();
readonly A a2 = new A();
readwrite B b = new B (al,
readonly

az2);

7

StringBuffer v = b.y.nl;

readonly A y) {

Program 2

readwrite A a = new A();
readwrite B b = new B(a, a);
readwrite StringBuffer v = b.y.nl;

Program 4

readonly A al = new A();

readonly A a2 = new A();
readwrite B b = new B(al, a2);
readwrite StringBuffer v = b.y.nl;

Program 6

readwrite A al = new A();
readonly A a2 = new A();
readwrite B b = new B(al, a2);

readonly StringBuffer v = b.y.n2;

— solution

e Program 1 does not compile since b is readonly, so b.y.nl is readonly, and we
try to assign it to a readwrite variable.

e Program 2 does not compile since field y in B is readonly, so b.y.nl is readonly,
and we try to assign it to a readwrite variable.

e Program 3 compiles! b is readwrite, x is readwrite, S0 b.x is also readwrite, nl
is readwrite, so b.x.nl is also readwrite, and we assign b.x.nl to a readwrite
variable.

e Program 4 does not compile since al is readonly and it is passed to the constructor
of B as the first argument, while the constructor expects a readwrite variable.

e Program 5 compiles! We can always assign something to a readonly variable.

e Program 6 compiles! We can always assign something to a readonly variable.

In addition: for all the programs except 4, the first argument passed to the constructor of B
is readwrite, and the second argument can be readwrite or readonly since a readonly
argument is expected.




Task 5

Consider how we might extend readonly types to handle arrays. For an array of primitive types,
one might want to declare that the array elements cannot be changed, using a declaration such
as:

readonly int[] x;

which, similarly to the rules for accessing fields of objects, would forbid an update such as:

x[2] = 2; // error — x 1is declared with a readonly type

A) Should there be a subtyping relation (in either direction) between the types readwrite
int [] and readonly int[]7?

solution

readonly int[] is more restrictive than readwrite int[] (fewer operations can be
performed with such a reference), hence readwrite int[] <: readonly int[].

B) For arrays of reference types, there are two reasonable questions to consider for readonly
typing. Firstly, just as for an array of primitive types, whether or not the array reference can
be used for modifications. Secondly, whether the array elements can be used for modifications.

y[1l] = . // 1is this allowed?
y[1].f = ...; // is this allowed?

In order to express all possibilities, consider having two readonly/readwrite modifiers for
an array type - the first to denote access to the array reference itself, and the second to denote
access to the objects stored in its elements, e.g., readonly readonly T[] y; is the most
restrictive possibility.

Consider what the semantics of readonly readwrite T[] y; could be. There are two rea-
sonable choices here, depending on whether we regard accesses of the form y[1].f as accesses
which go first via the array y, and then to the element y[1], or consider them as accesses
directly to y[1] (in a sense “skipping” y, and hence ignoring the first modifier).

For each of these two possible semantics, consider the following:

e Do all four combinations of modifiers express something different from one another?

e What subtyping relations (if any) would be reasonable between the four possible variants
of a T[] type?

— solution

Considering y[1].f as an access which goes first via y, and then y[1], we would obtain
that:

e If the first modifier is readonly, all the accesses to elements of the array will be
treated as readonly, since the readonly modifier for the array will be considered
first. Therefore, the only interesting combinations are:

(a) readonly readonly (equivalent to readonly readwrite)
(b) readwrite readonly

(c) readwrite readwrite




Note: the same approach is adopted when we have a readonly object variable and
we access a readwrite field through it: the result would be readonly, since any
access via a readonly reference is readonly.

e The reasonable subtyping relations are (b) <: (a) and (c) <: (a). The case (b) <: (a)
corresponds to invariant array typing. The (c¢) <: (a) case corresponds to covariant
array typing but it is sound since the array type in (a) is readonly and, thus, an
array element type only appears in covariant position (e.g., v := a[i]).

Note that the relation (c¢) <: (b) would also correspond to covariant array typing but
it would not be sound since it would indirectly allow casting a readonly reference to
a readwrite reference, as shown below:

class P { String n; }

class C {
void client (readonly P p) {
readwrite readwrite P[] w = new P[1];
readwrite readonly P[] r = w;
r[0] = p; // legal since r[0] and p are readonly
w(0].n = "..."; // legal since w[0] is readwrite

The assignment in the third line of client is legal since we have readwrite as the
first modifier of r. Moreover, note that p should not be modifiable within the client
method, as it is passed as readonly. However, by allowing the alias in the second
line of the method, we enable a way to change p. This is undesirable and unsound.
The implicit cast from readonly to readwrite is done on p here.

Considering y[1] . f as a direct access, we would obtain that:

e All the four different combinations have different semantics. With respect to the
previous example, we would have that readonly readonly will allow only read
accesses both on the array and on the elements stored in it, while with readonly
readwrite we cannot assign elements in the array but we can write fields accessed
via the array elements.

e The subtyping relations are:
(a) readwrite readonly <: readonly readonly
Gﬁ readonly readwrite <: readonly readonly
(c) readwrite readwrite <: readonly readwrite
(d) readwrite readwrite <: readonly readonly

Note that we still have that readwrite readwrite =7 readwrite readonly. This
subtype relation is not reasonable; if it were allowed, then we could use the example
from the first semantic to modify an object through a readonly reference.

C) In the light of these questions, which of the two semantics seems the best choice?

solution

The second solution is more expressive than the first one, since it allows the developers
to have more fine-grained control on the read and write accesses on arrays and on their




elements. Thus, the second choice seems to be the best. However, it should be carefully
considered whether such an approach (that would be different compared to the one adopted
for objects and field accesses) may confuse the developers, and eventually create safety
problems.

Task 6

Consider the following method signatures:

peer Object foo(any String el);
peer Object foo(rep String el);
rep Object foo(any String el);
any Object foo(peer String el);
rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other. Assume that overriding
methods can have covariant return types and contravariant parameter types.

— solution

The general typing rules are peer <: any and rep <: any since any is less restrictive
than rep and peer. Following these rules, we obtain that:

® peer Object foo(any String el) overrides
any Object foo(peer String el)

® rep Object foo(any String el) overrides
rep Object foo(peer String el), that overrides
any Object foo(peer String el)

® peer Object foo(any String el) overrides
peer Object foo(rep String el)

Task 7

In the following question we do not consider the owners-as-modifiers discipline. We are only
concerned with the topology of the ownership type system.

Consider the assignment:

o.f = p.g;

and assume that o.f and p.g have the same static type.

A) The assignment is forbidden if o.f has ownership modifier 1ost. Show an example to
demonstrate why we need this rule to preserve the topological invariant.

— solution

The following code breaks the acyclicity requirement for the topology:

class C {
rep C down;

void foo () {
down.down = this;

}




B) If the ownership modifier of o. £ is any, then what are the requirements for the assignment
to be legal?

solution
(None. The assignment is always legal.

C) If o. f has ownership modifier 1ost, can we upcast o.f to an any reference and make the
assignment legal? Why (not)?

solution

We cannot upcast a reference that is being assigned to. This is illegal according to the
subtyping rules.




