Concepts of Object-Oriented Programming E'H

AS 202 1 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Fixercise 13
Ownership Types, Non-Null Types and Object Initialization
December 20 & 21, 2021

Task 1 (from a previous exam)

Consider the following declarations:
class A {

rep B first;

rep B second;

}

class B {
any A obij;
peer B sibling;

}

Which of the following programs are allowed in the topological ownership system? For any
program that is accepted in the topological system, is it also accepted in the owner-as-modifier
system? Assume that none of the objects involved are null. Briefly explain each of your
answers.

Program 1 Program 2 Program 3 Program 4

rep B b; peer A a; rep B b; | any A a; peer A 3;
¥p = b.sibling; | a = b.obj; a.first.obj = a; | a.first = a.first;
— solution

e Program 1 is accepted in both systems.

e Program 2 is not accepted in the topological system (and neither in the owner-as-
modifier system). It attempts to assign an any reference to a peer reference. peer
is not a supertype of any.

e Program 3 is accepted in the topological system (it assigns any to any). However,
it assigns to the field of a 1ost reference, which means that it is not accepted in the
owner-as-modifier system.

e Program 4 is not accepted in the topological system (and neither in the owner-as-
modifier system), because it assigns to a lost location.

Task 2 (from a previous exam)

The topological ownership system guarantees the following property: if a reference a. f to an
object b is of ownership type rep C, then the object a is the owner of b. Moreover, each object
has at most one owner.

The topological ownership system has a weakness: it does not support ownership transfer, which
is desirable in many situations. Let us try to remedy this situation. Consider the following
incomplete definition of a class T:

class T {
public rep U £, g;

}

and the following program P, which, in addition to the field assignments, implicitly also changes
the owner of the object e2.g from e2 to el:

// implicitly: e2.g.owner = el;
el.f = e2.g;
e2.g = null;

where el, e2 are two non-null objects of type T.

A) The code P is not allowed in the topological ownership system. Which rule disallows it?

solution

Assuming el is not syntactically equal to this, then el.f must be 1lost and can therefore
not be assigned to.

B) Write a code snippet C, such that executing C; P is guaranteed to break the property
described in the first paragraph of this task, after P has finished executing. Do not rely on
any specific implementation of the class U (but you may assume the existence of a constructor
without parameters). You may also add constructors to the class T.

Note that:

e you can assume that P is accepted by the compiler.

e all the code that you write must respect the topological ownership system. P is the only
code that breaks the rules.

e you may not use reflection in your solution.

e you may not use P anywhere in the code that you write.

— solution
We can add the following constructor to T:

T |
f = new rep U();
g = £;

}

and use the following code C:
el = new peer T();
e2 = new peer T();

The invariant is broken after C; P, because el is the owner of el. f, but the rep field f of
a different object (e2) points to it.

Task 3

The ownership type system allows the following ownership modifiers: peer, rep, self, lost
and any - to structure the object store and to restrict how references can be passed and used.
We want to extend the ownership type system by adding one more modifier, down. This
modifier is introduced to denote references to objects in the same context as this or in the
context (transitively) owned by an object in the same context as this.

A) Redraw the subtype relation diagram below to include the newly introduced type of the

universe type system.

B) Define the viewpoint adaptation function », such that it is the most specific in terms of
the context information it conveys (i.e., it conveys as much context information as possible),
by filling the table below (for a combination T, » T the modifier 7, specifies the row and the
modifier 7 the column of the table used).

— solution

Recall that the viewpoint adaptation function » is used, in particular, to determine the owner
of an object referenced by a field access. More exactly, if the ownership modifier of e is T,
and the ownership modifier of a field £ is 7, then the ownership modifier assigned to the field
access e. f is determined as 7. » Ty. Note that this applies to field updates as well as field
reads.

> peer | rep any down
self
peer

rep
lost

any

down

— solution

Here is the table that defines the viewpoint adaptation as describing the most precise
information possible about where such a reference may belong in the heap topology:
> peer | rep any down

self | peer | rep any down

peer | peer | down | any down

rep rep down | any down

lost | lost | lost | any lost

any lost | lost | any lost

down | down | down | any down

Note that in the table above we over-approximate entries, in cases where we cannot de-
scribe precisely what we want. For example, repprep can be down, because down over-
approximates the objects which can actually be stored in such a field. This is a true
approximation - repprep is not allowed to store all the objects which can be referred to
via down, only some of them. This means that we need to add extra restrictions on field
assignments in the cases where we use down to over-approximate in this way.

If we relax the requirement to have a most specific viewpoint adaptation function, we can
take an alternative approach which does not allow this kind of over-approximation; the
modifier chosen could reflect precisely the requirements for a reference to be allowed to
be stored in such a location, and thus avoid the need for extra requirements on the field
assignment rule. Here is the table with this approach:

> peer | rep any down

self | peer | rep any down

peer | peer | lost | any down

rep rep lost | any lost

lost | lost | lost | any lost

any lost | lost | any lost

down | lost | lost | any lost

In this case, perhaps surprisingly, cases such as repp»rep and downmdown result in lost.
This is because, choosing the answer down is not restrictive enough. In general, we have
no way to express what is safe to assign to the down field of a rep receiver (down from our
viewpoint includes objects above the rep, which should not be included), and similarly for
a down receiver. This second approach is not very flexible; only rep and peer objects can
ever be typed as down (via subtyping).

C) Consider the following example:

public class Node {
rep Node c;
down Node d;

public void foo () {
this.d.d = this; // should this line typecheck?
this.c.d this.d; // should this line typecheck?

}

Which of the assignments above should be allowed by the type system? Why?

— solution

The example code shows two cases where the field updates should not be allowed, because
we would allow a down field to point upwards (to this) in the ownership topology, and in
the second, because we would allow a down field to point to some object which is considered
down from the viewpoint of this, but not necessarily from the viewpoint of this.c.

D) Assuming that you only need to enforce the topological constraints of the type system, how
should the field update rule from lecture 6 slide 64 be adapted to the system extended with the
down modifier? Do you need to make any changes?

— solution

With the first (most precise) variant of the viewpoint adaptation function from B we have
to make sure that the examples from part C do not type-check, as those field updates are
unsafe. Therefore, we need to require that the result of the viewpoint adaptation is not
down, except in the special case of the receiver being self or peer, and the field type
being down (in these cases, the down result expresses precisely what is safe to assign to the
location; it is not an over-approximation).

With the second (avoiding over-approximation) variant of the viewpoint adaptation function
from B, we do not need to make any changes to the field assignment rule, to guarantee the
topological constraints of the type system.

Task 4
Consider the following classes, written in a Java-like language with non-null type annotations:

public class Vector ({
public Number! x; // Remark: Number is a supertype for
public Number! y; // Integer, Double, etc.

public Vector (Number! x, Number! y) {
this.x = x;

this.y = y;

}

public class Vector3D extends Vector {
public Number! z;

public Vector3D (Number! x, Number! y, Number! z) {
super (x, VY);

this.z = z;
}
double volume () {
return x.doubleValue() x y.doubleValue() x z.doubleValue();

}
}

Which of the following method definitions compile, assuming that the data-flow analysis for
non-null types doesn’t consider the semantics of instanceof? Which would always run safely,
if compiled without typechecking? Explain your answers.

A)

double getVolumel (Vector? c) {
if (¢ instanceof Vector3D) {
return c.volume () ;
} else { return 0.0; }

— solution

getVolumel won’t compile for two reasons - Java will complain that c is of (class) type
Vector for which the method volume is not defined and a non-null type checker would
complain that it cannot determine that c is non-null when the call is made. However, the
program would run safely - the if-condition not only guarantees that the method is defined

for the call, but implicitly that the expression c is non-null when the call is made (because
in Java (null instanceof T) always evaluates to false).

B)

double getVolume?2 (Vector? c) {
if (c instanceof Vector3D) {
return ((!) c).volume();

} else { return 0.0; }

solution

getVolume2 won’t compile for the first reason above - Java will complain that the method
volume is undefined. The code would still be safe.

C)

double getVolume3 (Vector? c) {
if (c instanceof Vector3D) {
return ((Vector3D!) c¢).volume();
} else { return 0.0; }

solution

getVolume3 will compile - the cast satisfies all the necessary constraints to be checked.
The code will still be safe (in particular, the cast always succeeds).

D)

double getVolumed (Vector? c) {
if(c !'= null && (c instanceof Vector3D)) {
return c.volume () ;
} else { return 0.0; }

solution

getVolume4 won't compile for the first reason above - Java will complain that the method
volume is undefined. The code would be safe though. Note that the non-null type checker
won’t complain in either case, because of the new if-condition.

E)

double getVolumeb5 (Vector? c) {
if(c !'= null && (c instanceof Vector3D)) {
return ((!) c).volume();
} else { return 0.0; }

solution
‘getVolumeS'wonﬂzannpﬂe,butissaﬁz&mthesan&3n¥monsasgetVolume4

F)

double getVolume6 (Vector? c) {
if(c !'= null && (c instanceof Vector3D)) {
return ((Vector3D!) c).volume();
} else { return 0.0; }

solution

getVolume6 will compile and run safely.

Task 5

Consider the following abstract class, representing a node of a singly-linked list:

public abstract class ListNode<X> {
public abstract void setItem(X x);
public abstract X getItem();
public abstract ListNode<X> getNext ();
}

Consider now the following implementation using a simple (acyclic) list:

public class AcyclicListNode<X> extends ListNode<X> {
protected X item;
protected AcyclicListNode<X> next;

public AcyclicListNode<X> (X item) {
this.item = item;
this.next = null;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public AcyclicListNode<X> getNext () { return next; }

}

In this implementation, suppose that an empty list is represented simply by a null reference.
Suppose that a further design intention of this implementation is that each node is guaranteed
to store an X object in its item field.

A) Annotate the class AcyclicListNode<x> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from the
construction type system (free or unc annotations).

— solution

(Side note: the interaction of generic types and non-null types, e.g., the interpretation of a
type x! if X can be instantiated with types that themselves include non-nullity expectations,
is beyond the scope of the course, but in case you are worried, you can assume that the
explicitly visible annotation ! overrides any annotation in the instantiation for x, i.e., X!
can still be safely assumed to always store a non-null value.)

The following class definitions express the design expectations:

public class AcyclicListNode<X> extends ListNode<X> {
protected X! item;
protected AcyclicListNode<X>? next;

public AcyclicListNode<X> (X! item) {

this.item = item;
this.next = null;
}

public void setItem(X! x) { item = x; }
public X! getItem() { return item; }
public AcyclicListNode<X>? getNext () { return next; }

B) Now consider an alternative implementation using a cyclic list:

public class CyclicListNode<X> extends ListNode<X> {

protected X item;
protected CyclicListNode<X> next;

public CyclicListNode<X> (X item) {
this.item = item;
this.next = this;

}

public void setlItem(X x) { item = x; }
public X getItem() { return item; }
public CyclicListNode<X> getNext () { return next; }

}

In this implementation, the design intention is that every node will always have a next object
in the list (sometimes itself). In this design, we choose to represent an empty list by a single
node whose next field points to itself, but whose item field is nul11. All non-empty lists will
be represented using only nodes whose item fields are non-null.

Annotate the class CyclicListNode<x> with appropriate non-null type annotations to express
these design intentions as far as possible. You do not need any annotations from the construction

type system (free or unc annotations).

— solution

public class CyclicListNode<X> extends ListNode<X> {

protected X? item;
protected CyclicListNode<X>! next;

public CyclicListNode<X> (X? item) {
this.item = item;
this.next = this; // default - maybe changed later

}

public void setItem(X? x) { item = x; 1}
public X? getItem() { return item; }
public CyclicListNode<X>! getNext () { return next; }

}

Note that we may decide to pass a non-null reference to setItem.

C) Now annotate the method signatures in ListNode<x> so that both implementations can
be accommodated. Your solution should be compatible with the usual co/contra-variance rules

for subclass method signatures in a type-safe language.

— solution

We have to pick suitable method signatures so that the implementing methods have valid
overriding signatures in both classes above. This means strengthening the argument types
and weakening the return types:

public abstract class ListNode<X> {
public abstract void setItem(X! x);
public abstract X? getlItem();
public abstract ListNode<X>? getNext ();

Task 6

With non-null types, any class type T can be annotated to explicitly declare non-nullity (T!)
and possible-nullity (T2). In the construction type system, further variants of these types are
introduced, for free, “committed” (the default), and “unclassified” (unc) types. These types
are all treated differently by the type system taught in the lectures.

A) Explain at least one difference between the treatments of a reference of type T! and a
reference of type T2, giving an illustrative example.

— solution

For all solutions below, let us suppose that the class T has the following field declarations:
T! £;
7 g;

If x is a reference of type T!, then x.f is a permitted field read (without any if-checks/
dataflow analysis), but if x is a reference of type T2 then it is not.

Also, x can only be assigned to the f field of an object in the former case and not the latter
(T! is a subtype of T2 but not vice versa).

B) Explain at least one difference between the treatments of a reference of type free T! and
a reference of type unc T!, giving an illustrative example.

solution

Suppose y is a reference of type free T!. If x is also a reference of type free T! then
x.f = y; is a permitted field update, but if x is a reference of type unc T! then it is not.

Also, free T! is a subtype of unc T! but not vice versa.

C) Explain at least one difference between the treatments of a reference of type T! (a committed
reference) and a reference of type unc T!, giving illustrative examples.

— solution

If x is a reference of type T!, then x.f.f is a permitted field read, since x. f also has the
type T!. But if x is a reference of type unc T! then it is not permitted, since x. £ has the
type unc T?.

If v is a further reference of type unc T!, then y.f = x is allowed when x has the type T!
but not when x has the type unc T!.

Also, T! is a subtype of unc T! but not vice versa.

D) Explain at least two differences between the treatments of a reference of type T! and a
reference of type free T!, giving illustrative examples.

— solution

If x is a reference of type T!, then x.f.f is a permitted field read, since x. f also has the
type T!. But if x is a reference of type free T! then it is not permitted, since x. f has the
type unc T?.

If v is a further reference of type unc T!, then y.f = x is allowed when x has the type T!
but not when x has the type free T!.

Similarly, x.f = y is allowed when x has the type free T! but not when x has the type
T!.

