
Concepts of Object-Oriented Programming
AS 2021

Exercise 7
Linearization and Bytecode Verification

November 12, 2021

Task 1
Consider the following declarations in Scala:
class C
trait T extends C
trait U extends C
class D extends C

Find all the types that can be created with or without traits, as well as the subtype relations
between them.

solution

We can create the following types:

C, D, T, U,
C with T (same type as T, because T extends C),
C with U (same type as U, because U extends C),
C with T with U (same type as C with U with T),
D with T,
D with U,
D with T with U (same type as D with U with T).

The subtype relation is reflexive and transitive. Moreover, let X ′, Y ′ be the two base classes
from which we derive X and Y by mixing in traits. Let A be the set of all traits mixed into
the first class and B the set of all traits mixed into the second class. The rule is as follows:

X <: Y if and only if X ′ <: Y ′ and A ⊇ B.

Note: The above rule applies in our example, but it is not a general rule for subtyping
in the presence of traits. Note that even if D with T with U and D with U with T

are equivalent types (subtypes of each other), they can describe different behavior, causing
subtle problems for behavioral subtyping.

We can also visualize the types and the subtype relations between them (the edges corre-
sponding to reflexive and transitive subtype relations were omitted):



C

C with T = T C with U = U

D

C with T with U = C with U with T

D with T D with U

D with T with U = D with U with T

Task 2
Consider the following Scala code:
class Cell {

private var x:Int = 0
def get() = { x }
def set(i:Int) = { x=i }

}

trait Doubling extends Cell {
override def set(i:Int) = { super.set(2*i) }

}

trait Incrementing extends Cell {
override def set(i:Int) = { super.set(i+1) }

}

A) What is the difference between the following objects?
val a = new Cell
val b = new Cell with Incrementing
val c = new Cell with Incrementing with Doubling
val d = new Cell with Doubling with Incrementing

solution

Object a behaves like a normal cell. Object b is also a cell, but it increases the stored value
by 1. The interesting difference is between c and d. They are both cells. They have mixed
in exactly the same traits. However, calling set(i) has a different effect on them: it stores
2i+1 in the first one and 2(i+1) in the second one.

B) We try to use the following code to implement a cell that stores the argument of the set
method multiplied by four:



val e = new Cell with Doubling with Doubling

Why does it not work? What does it do? How can we make it work?

solution

Trait Doubling will not get mixed in twice. Scala rejects this statically.

A possible attempt to bypass the problem is to create a new trait Doubling2 that behaves
exactly like Doubling:
trait Doubling2 extends Doubling
val e = new Cell with Doubling with Doubling2

The code passes through, but dynamically e behaves as if it were a Cell with Doubling.
Scala lets the code go through, because Doubling2 may introduce new functionalities, but
does not include Doubling twice in the linearization.

Our last try (the one that works), is to create a whole new trait from scratch, without
reusing existing code:
trait Doubling3 extends Cell {

override def set(i:Int) = { super.set(2*i) }
}
val e = new Cell with Doubling with Doubling3

And now e.set quadruples its argument, as expected.

C) Find a modularity problem in the above, or a similar, situation. Hint: a client that is given
a class C does not necessarily know if a trait T has been mixed in that class.

solution

A problem is that a method that accepts Cell with Doubling with Incrementing as
an argument could also be passed a class of the type Cell with Incrementing with

Doubling - so what it can actually assume about its inputs is less than would be expected.

D) We propose the following solution to support traits together with behavioral subtyping:
assume C is a class with specification S. Each time we create a new trait T that extends C, we
must ensure that C with T also satisfies S. Show a counterexample that demonstrates that
this approach does not work.

solution

Consider the following example:
class Cell {

var x:Int = 0
// ensures x <= i + 1
def set(i:Int) = { x=i }

}

trait Incrementing extends Cell {
override def set(i:Int) = { super.set(i+1) }

}

trait Incrementing2 extends Cell {
override def set(i:Int) = { super.set(i+1) }

}



Both Cell with Incrementing and Cell with Incrementing2 are behavioral sub-
types of Cell. But Cell with Incrementing with Incrementing2 is not a behavioral
subtype of Cell, as the following example shows:
val c: Cell = new Cell with Incrementing with Incrementing2
c.set(4)
assert(c.x <= 5) // fails, postcondition of Cell.set not fulfilled

Task 3
(from a previous exam)

Consider the following Scala code:
class A { def bar() = "" }
trait B extends A { override def bar() = super.bar() + "B" }
trait C extends B { override def bar() = super.bar() + "C" }
trait D extends B { override def bar() = super.bar() + "D" }

object Main {
def main() { foo(new A with D with C with B) }
def foo(x: A with D) { println(x.bar()) }

}

What would be the output of the call Main.main()?

(a) BDB

(b) BBDBC

(c) BBCBD

(d) DB

(e) CORRECT: BDC

(f) BCD

(g) None of the above

solution

The super calls are resolved based on the linear order.
L(new A with D with C with B) = L(B), L(C), L(D), L(A) (*)
L(A) = A

L(D) = D, B, A

L(C) = C, B, A

L(B) = B, A

We now substitute the linearizations of A, D, C, B in (*) (in this order) and make sure
the same class/trait is not included twice:
L(new A with D with C with B) = L(B), L(C), L(D), A

L(new A with D with C with B) = L(B), L(C), D, B, A

L(new A with D with C with B) = L(B), C, D, B, A

L(new A with D with C with B) = C, D, B, A

The call x.bar() corresponds to C.bar(), as C is the first in the linear order.
C.super().bar() is D.bar(), as D follows after C in the linear order.



Task 4 (from a previous exam)
Consider the following Scala code, which compiles correctly and models some jobs a Person

may have. To work as a Lawyer or as a TaxiDriver, one needs to have a valid license. This
requirement can be expressed through self type annotations added to the traits Lawyer and
TaxiDriver (as in the given code). These annotations are checked by the compiler and allow
the traits Lawyer and TaxiDriver to be mixed only into subtypes of PersonWithLicense.
Self type annotations enable code reuse without subtyping, that is, Lawyer and TaxiDriver

��<: PersonWithLicense, but the methods of the class PersonWithLicense are available and
can be overridden inside these two traits.
class Person { def work(): String = { return "working"; }}

class Student { def work(): String = { return "studying"; }}

class PersonWithLicense extends Person {
def hasValidLicense(): Boolean = { return false; }
}

trait Gardener extends Person {
override def work(): String = { return super.work() + " in the garden";}
}

trait Lawyer extends Person {
this: PersonWithLicense => // self type annotation

override def work(): String = {
if(this.hasValidLicense()) return super.work() + " in court";
return "not " + super.work();

}

override def hasValidLicense(): Boolean = { return true; }
}

trait TaxiDriver extends Person {
this: PersonWithLicense => // self type annotation

override def work(): String = { return super.work() + " in Zurich"; }
}

A) For each of the following two code fragments (A.1 and A.2), if they compile, write the
output of their execution. Otherwise, briefly explain why they are rejected by the compiler.

A.1
val lawyer: Lawyer = new PersonWithLicense with Lawyer with TaxiDriver;
println(lawyer.work());

solution

The code compiles: the traits Lawyer and TaxiDriver are mixed into a sub-
type of PersonWithLicense, as required by the self type annotation and new

PersonWithLicense with Lawyer with TaxiDriver <: Lawyer.

The linearization of new PersonWithLicense with Lawyer with TaxiDriver is
TaxiDriver, Lawyer, PersonWithLicense, Person. When executed, the code prints:
working in court in Zurich

A.2



val student: Gardener = new Student with Gardener;
println(student.work());

solution

The code does not compile, because Student is not a subclass of Person (the superclass
of the trait Gardener)

B) Add one method to any of the given classes or traits except PersonWithLicense (ex-
plicitly write to which one) and fill in the instantiation from the client code below, such that it
compiles and when executed prints not working in Zurich in the garden. You are not
allowed to directly return this string, to use reflection, to define new classes or traits, nor to
modify the given code. If this is not possible, briefly explain why.
// Client code:
val person = new ________________________________________________________
println(person.work());

The following method should be added to: H

solution
// Client code:
val person = new PersonWithLicense with Lawyer with TaxiDriver with

Gardener;
println(person.work());

trait TaxiDriver extends Person {
...
// additional method:
override def hasValidLicense(): Boolean = { return false; }

}

Note that if we try to add the method hasValidLicense to the trait Gardener, the client
code does not compile, as new PersonWithLicense with Lawyer with TaxiDriver

with Gardener inherits two methods with the same signature.

Task 5
Consider a Java class E, which has a method f with the following signature: void f();

The method f has one local variable v and the following body:
0: iconst 5
1: istore 1
2: aload 0
3: astore 1
4: iload 1
5: iconst 1
6: iadd
7: istore 1
8: return

The maximal stack size is equal to 1. Can the provided bytecode be verified? If so then verify
it, otherwise explain which line of code causes the problem and why.



solution

In the following, we try to verify the bytecode. T is an uninitialized register. A state is
represented by a pair (S,R) where S describes the content of the stack and R describes the
content of the registers.
// ([],[E,T]) -- initial state
iconst 5
// ([int],[E,T])
istore 1
// ([], [E,int])
aload 0
// ([E], [E,int])
astore 1
// ([], [E,E])
iload 1
// ERROR!
...

The error happens because iload 1 expects that the local variable has the type integer,
but its type is E.

Task 6
The Java bytecode verifier is more permissive than the Java type system. Provide a program
that demonstrates this.

solution

Here is an example of such a program:
x = true;
x = 5;

The type of the variable can change in the bytecode but not in the source code.

Task 7
Assume we have two Java classes A and B. Consider the following Java class C:
class C {

void foo(A x) {
int y = 7;
this.bar(y, x);

}

B bar(int u, A v) {
...

}
}

Assume that the method foo gets compiled into bytecode as follows:
0: iconst 7
1: istore 2
2: aload 0
3: aload 2
4: aload 1
5: invokevirtual C.bar.B(int,A)

Can this bytecode be verified? If so, what is the final state (after line 5)?



solution

We assume that the maximal stack size is 3 and that MR = 3 (since we have three parame-
ters/local variables): this, one argument (x), and one local variable (y). The initial state
is ([], [C, A, T]), where C is the type of this, A is the type of the argument x and the
local variable y is uninitialized.
// ([],[C,A,T])
0: iconst 7
// ([int],[C,A,T])
1: istore 2
// ([],[C,A,int])
2: aload 0
// ([C],[C,A,int])
3: aload 2
// ERROR!
...

The error happens because aload 2 expects that the local variable (from register 2) has a
reference type, but its type is int.

Let’s now assume that we correct the given bytecode, such that in line 3 we have iload 2.
All the other instructions remain unchanged. We then obtain:
... // as before
3: iload 2
// ([int,C],[C,A,int])
4: aload 1
// ([A,int,C],[C,A,int])
5: invokevirtual C.bar.B(int,A)
// ([B],[C,A,int])

So the bytecode successfully verifies.


