Concepts of Object-Oriented Programming E'H

AS 202 1 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Fixercise 9
Parametric Polymorphism
November 26, 2021

Task 1

(from a previous exam)

Consider the following Java code:
class Car<T> {
private List<? extends T> passengers;

public Car (List<? extends T> passengers) {
this.passengers = passengers;
}
}

Remember that List<E> in Java contains a method addall with the following signature:

boolean addAll (Collection<? extends E> c)

The method addal1l adds all elements of the given collection c to the receiver list and returns
true if the receiver list was modified.

A) We want to add a method to car<T> that takes a list of passengers p to board the car.
After the method is executed, the field passengers should refer to a list containing both the
previous elements and the elements of p.

public void board(List<? extends T> p)

The following implementation is rejected by the compiler:

public void board(List<? extends T> p) {
this.passengers.addAll (p);
}

Assume the body of board is exempted from the type checker. Provide code that calls board
and inserts a string into a list of integers. Your code has to type-check.

— solution

List<Integer> listl = new LinkedList<Integer>();

Car<Object> car = new Car<Object>(listl);
List<String> 1list2 = new LinkedList<String>();
list2.add("");

car.board(list2);




B) Give a new implementation of board (without modifying its signature) that implements
the expected functionality and type-checks.

— solution

public void board(List<? extends T> p) {
List<T> b = new LinkedList<T> () ;
b.addAll (this.passengers) ;
b.addAll (p);
this.passengers = b;

C) We now want to add a method to class Car<T> that transfers all passengers from this car
to a given car. Fill in the blank to achieve the least restrictive but correct implementation.
public void transferPassengers (Car< > other) {

other.board (this.passengers);

}

solution

? super T

Task 2

Consider the following Java method:

public void add(Object value, List<?> list) {
list.add(value);
}

The Java compiler rejects this program, with the following message:

The method add(capture#l-of ?) in the type List<capture#l-of ?> is
not applicable for the arguments (Object)

A) Explain why we obtain such an error.

solution

We do not have any relation between the wildcard of List and the types of the values that
we are going to store.

B) Fix the program by using a generic type for the parameter of the method add and con-
straining the wildcard appropriately.

— solution

public <V> void add(V value, List<? super V> list) {
list.add(value);
}

We have to use a lower bound constraint because we want the argument of 1ist.add to
be a supertype of v, otherwise we cannot pass it as a parameter.




C) We can use the following alternative signature for add:

public <V> void add(V value, List<V> list)

Is this solution more restricted than the one obtained using the wildcard?

— solution

This method has exactly the same constraints as the one obtained using a wildcard. In fact,
the type of value can be a subtype of the type parameter of 1ist, since it is a method
argument. In practice, this means that the generic type of 1ist is a supertype of the type
of value. For instance, consider the following program:

List<Object> list = new ArrayList<Object>();
add("x", list);

This program is accepted because String <: Object, thus Vv=Object is inferred by the
type checker.

D) Consider the following methods:

public <V> void addAllX (List<V> v, List<? super V> 1) {
for(v el : v) l.add(el);

}

public <V> wvoid addAllY (List<V> v, List<Vv> 1) {
for(v el : v) l.add(el);

}

The method addA11X is less restrictive than adda11yY. Provide an example to prove this claim.

— solution

List<String> listStr = new ArrayList<String>();
List<Object> 1listObj = new ArrayList<Object>();
addAllX (listStr, 1listObj);
addAllYy (listStr, 1listObj);

The call to adda11x is accepted by the compiler, while the one to addal1ly is rejected,
since it requires that the parametric type of List is exactly string. This happens because
the type parameters are invariant in Java, so v has to be String, but the generic type of
listObj is Object.

Task 3

Consider the following class relations and the definition of the method foo:

class A {}
class B extends A {}
class C extends B {}

B foo(List<? super B> listl, List<? extends B> list2) {
listl.add (0, list2.get(0));
return list2.get (0);

}

in which the signatures of the methods of List<T> are:

public void add(int index, T wvalue) {...}
public T get (int index) {...}

Can the method body be typechecked with respect to the method signature?



— solution
The typechecker knows that

dT1 >: B A JdT2 <: B

and has to prove that

T2 <: T1 // listl.add (0, list2.get (0))
AND

T2 <: B // return list2.get (0);

The assumptions are generated from the method signature, while the proof obligations are
generated from the method body. This implication holds since T2 <: T1 because of the
transitive property of (<:), and T2 <: B directly from the hypothesis. Thus, the program
typechecks.

Task 4

Consider the following Scala classes:

class A

class B extends A
class P1[+T]
class P2[T <: A]

What are the possible instantiations of P1 and P27 What is the difference between P1[A]
and P2 [A] from the perspective of a client? Provide an example to show which class is more
restrictive.

— solution
Class P1 can be instantiated with any type, while P2 has to be instantiated with subtypes
of Aa.

val x : Pl1[AnyRef] // correct
val y : P2[AnyRef] // wrong: AnyRef is not a subtype of A

Furthermore, class P1 is covariant in its argument:

val x : P1[A] = new P1[B] // correct
val y : P2[A] new P2[B] // wrong: found P2[B], required P2[A]

Task 5

Consider the following Scala definitions:

class PartialFunction[-F, +T]

class A
class B extends A
class C extends B

class X { def foo(): PartialFunction[B, B] }

Which of the following methods would be a valid override of the above method foo?
Gﬁ override def foo(): PartialFunction[A, A]
(b) CORRECT: override def foo(): PartialFunction[A, C]

Qﬂ override def foo(): PartialFunction[C, A]



(d) override def foo(): PartialFunction[C, C]

(e) None of the above

Task 6

(from a previous exam)

A) Suppose we have a simple list interface in Java:

public interface List<T> {
public int length();
public T get (int 1i);
public void add (T element);
}

We want to implement a class that concatenates two lists while inserting a separator of some
type A between the two lists:
public class Concatenator<A> {
public void concatenate (A separator, List<A> from, List<A> to) {
to.add (separator);
for (int i = 0; i < from.length(); i++) {
to.add(from.get (1)) ;
}

}

We are unsatisfied with our signature of the concatenate method because it is too restric-
tive. In the following subtasks, we change the signature of the concatenate method, without
changing its body, while making sure that the body still type-checks and that only instances
of subtypes of A can be passed as separators.

We will try to make the signature less restrictive in the following sense. A signature s; of
concatenate is less restrictive than another signature sy if the following holds: for all types
11,15, Ts, if arguments of static type Ty, List<Ty>, List<T3> are accepted by ss, they are also
accepted by si, but the same property does not hold in the opposite direction.

Do not use raw types (e.g. do not use List without a type variable). Do not use more than
one upper bound per generic variable (e.g. do not use x extends A & B).

A.1) Provide the least restrictive signature using wildcards but no additional type parameters.

solution

public void concatenate (A separator,
List<? extends A> from,
List<? super A> to)

A.2) Provide a signature that is less restrictive than the original signature, without using
wildcards, but with one extra type parameter to concatenate.

— solution

Solution 1:

public <B extends A> wvoid concatenate (A separator,
List<B> from,
List<A> to)




or Solution 2:

public <B extends A> wvoid concatenate (B separator,
List<B> from,
List<B> to)

or Solution 3:

public <B extends A> wvoid concatenate (B separator,
List<B> from,
List<A> to)

A.3) Provide the least restrictive signature without using wildcards, but using any number of
type parameters to concatenate.

solution

public <C extends A, B extends C> wvoid concatenate (C separator,
List<B> from,
List<C> to)

B) Provide the least restrictive signature without using wildcards or additional type parameters.
For this subtask, assume that Java provides the variance modifiers known from Scala. Besides
modifying the signature of concatenate, you may add interfaces and let existing interfaces
implement them.

— solution

public interface GetList<+A> {
public int length();
public A get (int 1i);

}

public interface AddList<-A> {
public void add (A element);

}
public interface List<A> extends AddList<A>, GetList<A> {

/]

}
public void concatenate (A separator, GetList<A> from, AddList<A> to) {

/..
}

C) In each the following subtasks (C.1-C.3), compare the restrictiveness of the given pair of
signatures from the previous subtasks (A.1-B). If one signature is less restrictive than the other,
provide an example of static types which are accepted by one but not by the other signature.

For illustration, you can assume that we have three classes %, v,z with x <: ¥ <: 2z, and
we are calling concatenate on a class of type Concatenator<y>. An example which shows
differing restrictiveness then consists of a triple 71,75, T3 € {X, Y, 2}, such that arguments of
types T1, List<Ty>, List<T3> are accepted by one, but not by the other signature.

C.1) Compare solutions A.1 and A.3.

solution

A.3 is incomparable to A.1:




e We can call concatenate (Y, List<X>, List<Zz>) in solution A.1l, but not in so-
lution A.3.

e We can call concatenate (X, List<X>, List<X>) in solution A.3, but not in so-
lution A.1.

C.2) Compare solutions A.2 and A.3.

— solution

e For Solution 1 and 3 in A.2: A.2 is strictly more restrictive than A.3: We can call
concatenate (X, List<X>, List<X>) in solution A.3, but not in solution A.2.

e For Solution 2 in A.2: A.2 is strictly more restrictive than A.3: We can call
concatenate (Y, List<X>, List<Y>) in solution A.3, but not in solution A.2.

C.3) Compare solutions A.1 and B.

solution
(A.l and B have the same restrictiveness.




