
Concepts of Object-Oriented Programming
AS 2021

Exercise 4
Contracts and Behavioral Subtyping

October 22, 2021

Task 1
Let SortedArray be a Java class which has a field A of type int[]. We say that a SortedArray
object is in a valid state, if the field A is sorted (in increasing order) with no duplicates. The
method insert adds the value of x into the array:
class SortedArray {
int[] A;

void insert (int x) {
int[] B = new int[A.length + 1];
int i = 0;
while (i < A.length && A[i] < x) {

B[i] = A[i];
i++;

}
B[i] = x;
while (i < A.length) {

B[i+1] = A[i];
i++;

}
A = B;

}
}

Give an appropriate invariant for the class, as well as a precondition and a postcondition for
the method insert, such that only valid states can be reached. In particular, the precondi-
tion should be as permissive as possible, and the postcondition should precisely describe the
behaviour of the method. You may use quantifiers (∀,∃) in your annotations. Note that the
invariant is always automatically added to the precondition and postcondition, so there is no
need to repeat it.

Hint: Consider what happens when the item to be inserted into the array already exists. Do
not change the implementation to avoid this situation.

solution
class sortedArray{

int[] A;
/// invariant A 6= null
/// invariant ∀ i:int | 0 ≤ i ∧ i < A.length-1 ⇒ A[i] < A[i+1]

/// requires ∀ i:int | 0 ≤ i ∧ i < A.length ⇒ x 6= A[i]
/// ensures A.length = old(A.length) + 1
/// ensures
/// ∃ j:int |
/// (0 ≤ j ∧ j < A.length)

/// ∧ A[j] = x
/// ∧ (∀ i:int | (0 ≤ i ∧ i < j ⇒ A[i] = old(A[i]))
/// ∧ (∀ i:int | (j < i ∧ i < A.length ⇒ A[i] = old(A[i-1]))
void insert (int x){...}

}

Another approach to express the specification of insert is as follows: first, we introduce
an auxiliary function contains:

contains(L, x) = ∃ j:int | (0 ≤ j ∧ j < L.length ∧ L[j] = x)

Using contains we can express the specifications of insert as follows:
requires ¬contains(A, x)
ensures ∀ y:int | contains(A, y) ⇔ (y = x ∨ contains(old(A), y))

Task 2
Alice and Bob are two software developers. Alice is writing a small class Cell that stores an
integer. The class supports methods for setting/getting/increasing the integer. Bob is going to
write code that uses the class Cell.

Here are the contracts of the methods (the bodies are omitted):
class Cell {

public int n;
// this field is public for simplicity;
// generally this is not a recommended practice

/// requires true
/// ensures n == p
public void set(int p) { ... }

/// requires true
/// ensures result == n && n == old(n)
public int get() { ... }

/// requires true
/// ensures n > old(n)
public void inc() { ... }

}

In this exercise we will experiment with modifying the specifications. In particular, if we modify
a specification, it might become:

• more restrictive for a party. For example, a specification that is more restrictive for
Alice does not allow some implementations that were OK with the old specification. A
specification that is more restrictive for Bob might mean that a piece of code that Bob
wrote cannot guarantee something that it had guaranteed before.

• more flexible for a party. A specification S is more flexible than a specification S ′ for a
party P if S ′ is more restrictive than S for P .

• it might be the case that the new specification is neither more restrictive nor more flexible
for a party. For example, the new specification makes some previously correct code illegal,
while it also makes some previously illegal code correct.

For example, if we modify the postcondition of get such that:

result == n || result == -n

the specification becomes more flexible for Alice, because she is allowed the, previously illegal,
implementation of get:

return n > 5 ? n : -n;

while, at the same time, it becomes more restrictive for Bob, because the following code

c.set(3); x = c.get();

does not guarantee the postcondition x == 3 anymore.

For each of the following specification changes (subtasks a-d), do the following:

(i) Write formally the new pre/postconditions (not invariants). Only write the pre/postcon-
ditions that change.

(ii) Compare the flexibility of the new specifications to the old ones, from the point of view
of both Alice and Bob.

(iii) Justify your answers for both parties by providing code.

Note that a postcondition should be satisfiable for any valid pre-state. You can assume that the
implementations of the methods do not call each other and that there are no integer overflows.

(a) It is only allowed to set n to a strictly positive value.
solution

This amounts to adding the precondition p > 0 to set. This specification is more
flexible for Alice; for example the following, previously incorrect, implementation is
now valid:

if(p > 0) n = p;

On the other hand, this is more restrictive for Bob, because the code

c.set(-1);

is not allowed by the new precondition anymore.

(b) inc should increase n by exactly one.
solution

This changes the postcondition of inc to n == old(n) + 1. Alice is more restricted,
since she cannot do this anymore:

n = n + 2;

Bob is more flexible. Now

c.set(4); c.inc(); x = c.get();

guarantees the postcondition x == 5, which it didn’t before.

(c) inc should increase n by a positive non-zero amount, but it should guarantee that the
final value of n is strictly positive.

solution

This conjoins the postcondition n > 0 to inc. The implementation from (b) still does
not work for Alice, who is more restricted. Bob, on the other hand, is more flexible:

c.inc(); x = c.get();

guarantees the postcondition x > 0.

(d) inc should increase n by exactly one and should guarantee that the final value of n is
strictly positive. If necessary, add preconditions to ensure that it is possible for Alice to
achieve this goal.

solution

This changes the postcondition of inc to n > 0 && n == old(n) + 1. However,
for this to be implementable, inc should also have a precondition n >= 0. (Note that
adding this precondition makes the conjunct n > 0 in the postcondition obsolete).

This restricts Alice again (the implementation from (b) is not acceptable). However,
now Bob is also restricted. The following code is not allowed by the new precondition
anymore:

c.set(-2); c.inc();

On the other hand Alice also gains some flexibility! For example, one possible imple-
mentation of inc which would have not been valid before is:

if(n > -10) n = n + 1;

Bob also gains some flexibility. Bob’s code from case (b) guarantees the postcondition
x == 5.

Task 3
(from a previous exam)

A modifies clause is a part of a method specification that declares which heap locations can
be modified by the method. As an example, in the following Java code, method foo is not
allowed to write to any heap location besides this.x and other.x.
class X {
public int x;
public int y;

/// modifies (this.x, other.x)
void foo(X other) { ... }

}

A modifies clause can be interpreted as an implicit postcondition that states that all heap
locations that are not listed will have the same value after the method invocation as before.

1. When overriding a method, should it be allowed to expand the modifies clause, i.e., to
include more modifiable heap locations? If yes, just write “yes”, otherwise provide a code exam-
ple that demonstrates the problem when overriding method foo with an expanded modifies

clause.

solution

No.
class Y extends X {
/// modifies (this.x, other.x, this.y)
void foo(X other) { y = 2; }

}

public void client() {
X x = new Y();
x.y = 12;
x.foo(x);
assert x.y == 12;

}

2. When overriding a method, should it be allowed to reduce the modifies clause, i.e., to
include less modifiable heap locations? If yes, just write “yes”, otherwise provide a code example
that demonstrates the problem when overriding method foo with a reduced modifies clause.

solution

Yes.

Task 4
(from a previous exam)

Assume we add an otherwise clause to method contracts in Java, which gives a condition
on the state after the method throws an exception. The implementation of the method has
to guarantee that the condition in the otherwise clause is true whenever the method returns
exceptionally (that is, via throwing an exception).

Consider a class with an integer field f and the following Java method and its precondition and
an otherwise-clause (reminder: final parameters cannot be assigned to):
/// requires n > 0
/// otherwise f < 0
void foo(final int n) throws IOException

Assume method foo is overridden in a subclass and that we do not use specification inheritance.
Which of the following functions ...

1. ... override foo correctly based on the variance rules of Java and

2. ... have preconditions and otherwise-clauses that would be allowed if the subclass should
be a behavioral subtype?

For this, decide what kind of relationship between otherwise-clauses of super and subclass
should exist, basing your decision on the substitution principle.

For this exercise, assume FileNotFoundException <: IOException <: Exception and
that there is no integer overflow.
(a) requires n == 0

otherwise f == -1
void foo(final int n) throws FileNotFoundException

(b) requires n > 0
otherwise f * f > 0
void foo(final int n) throws IOException

(c) requires n >= 0
otherwise f < -n
void foo(final int n) throws Exception

(d) CORRECT:

requires n != 0
otherwise f == -n
void foo(final int n) throws IOException

(e) None of the above would be allowed

Would your answer be the same if n were not final ?

solution

Exceptions have to be covariant, so (c) cannot be the right answer. otherwise-clauses
should respect the same rules as postconditions. Namely, overriding methods of subtypes
may have stronger otherwise-clauses than corresponding supertype methods.

Presuper ⇒ Presub old(Presuper) ⇒ (Postsub ⇒ Postsuper) Behavioral subtyping
a no yes no
b yes no no
d yes yes yes

If n were not final , the right answer would still be (d). Parameter references in
postconditions always refer to the value that was originally passed, so it would not make
any difference if n were not final .

Task 5
Assume a language with structural subtyping, contravariant arguments, and covariant return
types. Is it possible to create the classes A, B, and C that meet all of the following requirements?

1. B is a structural subtype of A, and C is a structural subtype of B.

2. B is not a behavioral subtype of A.

3. C is a behavioral subtype of both A and B.

4. The signatures of any two methods of A, B, or C should be different. For this exercise
the signature is the combination of return type, method name, and argument order and
types. Note that different signatures do not preclude structural subtyping.

5. The classes A, B, and C do not have any fields.

If it is possible to meet all the above requirements, write the classes A, B, and C.

If it is not possible to meet all the requirements, explain why not. Then pick a requirement
and remove it. Write down the classes A, B, and C that meet the remaining four requirements.

In both cases specify the behavior of the classes using contracts. You do not need to provide
method bodies. You may use existing Java classes in your solution, if you want to.

solution

All requirements can be met. Here are the corresponding classes:
class A {

/// requires a > 0
/// ensures result > 0
Number foo(Integer a)

}

class B {

/// requires a > 10
/// ensures result > 0
Number foo(Number a)

}

class C {
/// requires true
/// ensures result == 10 ∨ result == 20
Integer foo(Object o)

}

