Concepts of Object-Oriented Programming E'H

AS 202 1 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Exercise 6
Inheritance
November 5, 2021

Task 1

Consider the following Java code:

class A {
String get (Client a) { return "AC"; }
}

class B extends A {
String get (SpecialClient a) { return "BS"; }
}

class C extends B {

String get (Client a) { return "CC"; }

String get (SpecialClient a) { return "CS"; }
}

class Client {

String m(A x, A y) { return "Cl" + x.get (this) + y.get (this); }
String m(C x, A y) { return "C2" + x.get (this) + y.get (this); }
String m(B x, A y) { return "C3" + x.get (this) + y.get (this); }
String m(C x, C y) { return "C4" + x.get (this) + y.get (this); }
}
class SpecialClient extends Client {
String m(A x, A y) { return "S1" + x.get (this) + y.get (this); }
String m(C x, A y) { return "S2" + x.get (this) + y.get (this); }
String m(B x, A y) { return "S3" + x.get (this) + y.get (this); }
String m(B x, C y) { return "S4" + x.get (this) + y.get (this); }

}

public class Main {
public static void main (String[] args) {

Client client = new SpecialClient();
C c = new C();
B b= c;

System.out.println(client.m(b, c));
}

What is the result of compiling the code and running the Main.main method?

(a) The program does not compile due to a type error
(b) The program prints a string starting with “S4”
(c) The program prints a string ending with “CS”



(d) The program prints a string containing “BS”
(e) CORRECT: None of the above

— solution
The program compiles and prints “S3CSCC”.

client has static type Client, b has static B, c has static type c. The compiler chooses
the most specific method from the class Cl1ient, which accepts a parameter of type B and
one of type c. Thisis Client.m(B x, A y).

Since client has dynamic type SpecialClient, at runtime we will execute the method
that overrides the statically chosen method, that is, SpecialClient.m(B x, A y). The
program will therefore print a string starting with “S3”.

We now need to determine the results of the calls x.get (this) and y.get (this) from
the body of the method SpecialClient.m(B x, A y).

x has static type B, this has static type SpecialClient. The compiler therefore chooses
the method B.get (SpecialClient a). Since x has dynamic type C, we will actually
execute the method from class ¢ which overrides the statically chosen method. That is,
B.get (SpecialClient a), which returns “CS”.

y has static type A, this has static type SpecialClient. The compiler therefore chooses
the method A.get (Client a). Since y has dynamic type C, we will actually execute the
method from class ¢ which overrides the statically chosen method. That is, C.get (Client
a), which returns “CC”.

Task 2 Overloading and Overriding

Consider the following class in Java:

public class Person {
protected double salary;

public Person (double salary) {
this.salary = salary;

}

public boolean haveSameIncome (Person other) {
return this.salary == other.getIncome();

}

public double getIncome () {
return salary;

}
}

Consider also the following subclass of Person, a person with a spouse, which takes the salary
of the spouse into account as well:

public class MarriedPerson extends Person {
private double spouseSalary;

public MarriedPerson (double salary, double spouseSalary) {
super (salary) ;




this.spouseSalary = spouseSalary;

}

public boolean haveSamelIncome (MarriedPerson other) {
return this.getIncome () == other.getIncome () ;

}

public double getIncome () {
return ((salary + spouseSalary) / 2);

}

A) Show an example with the variables p1 and p2, such that pl.haveSameIncome (p2) returns
false, but pl.getIncome () == p2.getIncome () returns true. In other words, fill in the
following blank with valid code, such that the assertion below is also valid. Do not use reflection
and assume that Person has no other subclasses.

Person pl;
MarriedPerson p2;

— solution
Pl = new MarriedPerson(a,b);
P2 = new MarriedPerson(c,d);

for any a,b, ¢, d such that a +b=c+d but a # (¢ + d)/2.

assert (!pl.haveSameIncome (p2) && pl.getIncome () == p2.getIncome());

B) Propose changes to Person and MarriedPerson such that the assertion will fail.

B.1 Can you change only MarriedPerson.haveSameIncome, such that the assertion will fail
for your solution to subtask A? If yes, provide the modified method. Otherwise, explain why

this is not possible.

— solution

Yes, the following solution works:

public boolean haveSameIncome (Person other) {
// changed MarriedPerson to Person in signature
return this.getIncome () == other.getIncome () ;

B.2 Can you change only Person.haveSameIncome, such that the assertion will fail for your
solution to subtask A? If yes, provide the modified method. Otherwise, explain why this is not

possible.

— solution

Yes, the following solution works:

public boolean haveSameIncome (Person other) {
return this.getIncome () == other.getIncome () ;
// changed calls to salary to getIncome here




Another trivial solution would be:

public boolean haveSameIncome (Person other) {
return true;

}

Also possible: Type-check with instanceOf, then cast both to MarriedPerson and call
haveSameIncome on casted objects.

Also possible: Change parameter type to MarriedPerson.

Task 3
Consider the following C# classes:

public class Matrix {
public virtual Matrix add(Matrix other) ({
Console.WritelLine ("Matrix/Matrix") ;
return null;

}

public class SparseMatrix : Matrix {
public virtual SparseMatrix add(SparseMatrix other) {
Console.WriteLine ("SparseMatrix/SparseMatrix") ;
return null;

}

public class MainClass {

public static void Main(string[] args) {
Matrix m = new Matrix();
Matrix s = new SparseMatrix();
add(m, m
add (m,
add (s,
add (s

14

@]

3

)
)
)
)

4
4

@]

}

public static Matrix add(Matrix ml, Matrix m2) {
return ml.add (m2);

}

A) What is the output of this program? Please explain.

— solution

The output is:

Matrix/Matrix
Matrix/Matrix
Matrix/Matrix
Matrix/Matrix

The compiler chooses a method based on the static type of the receiver and the static type
of the argument. It thus chooses add (Matrix other) in all four cases. At runtime, either




this statically chosen method will be executed or its most-derived override. However, add
(SparseMatrix other) is not an override of add (Matrix other), because overriding
methods in C# should have invariant arguments and they should be declared with the
override modifier. Therefore, we always execute the method from Matrix.

B) Without breaking modularity, change only the body of MainClass.add to make it possible
to always call the most specific add method from the matrix hierarchy.

— solution

We could change MainClass to the following:

public static Matrix add(Matrix ml, Matrix m2) {
return (ml as dynamic).add(m2 as dynamic);

}

Now, the initial method lookup is also done at runtime, based not on the static, but on
the dynamic type of the receiver. Thus in the third and fourth case there will be a choice
between the two different add methods in class SparseMatrix. To also enable a dynamic
lookup of the most-specific method based on the argument type, we additionally cast the
argument as dynamic.

Task 4 (from a previous exam)

Consider the following C# code, which compiles and executes without raising exceptions:

1 eclass Ingredient {

2 public void mix (Ingredient il, Ingredient 12) {
3 Console.WriteLine ("Ingredient.mix");

4 }

5 1}

6

7 class Milk: Ingredient {

8 public void mix (Egg e, Flour f) {

9 Console.WritelLine ("Milk.mix") ;

10 }

11 1}

12

13 class PowderedMilk: Milk {

14 public void mix (Ingredient i, Flour f) {
15 Console.Writeline ("PowderedMilk.mix") ;
16 }

17 3}

18

19 eclass Egg: Ingredient {}

20

21 class Flour: Ingredient {}

22

23 class Program {

24 static void mix (Ingredient il, Ingredient 12, Ingredient i3) {
25 (11 as dynamic) .mix (i2 as dynamic, 13 as dynamic);
26 }

27

28 static void Main () {

29 Ingredient i1 = new PowderedMilk () ;

30 Ingredient i2 = new Egg();

31 Ingredient i3 = new Flour();

32 mix (i1, 12, 1i3);



33
34

}
A) Which is the output of the execution of the method Program.Main ()7

— solution

PowderedMilk.mix

Overloading resolution in C# chooses the most specific method declaration in the class of
the receiver. If there is no applicable method, then the methods of the super class are
checked. This process is repeated until an applicable method is found. The program there-
fore executes the method PowderedMilk.mix (Ingredient i, Flour f), even though
the method Milk.mix (Egg e, Flour f) has more specific parameter types.

Note: Java’s overloading resolution would pick the method Milk.mix (Egg e, Flour f)

B) List all the casts (from line 25) and all the methods that can be removed from the given
code, such that it still compiles and when executed produces the output from Task A.

solution

the cast for i2
the method Milk.mix ()
the method Ingredient .mix ()

Task 5

Some research languages have symmetric multiple dispatch — methods are defined outside
classes, and dispatched dynamically on all arguments regardless of order (no overloading at
all). There is no designated receiver for a method but rather all arguments are of the same
priority — this is intended to handle binary methods better which are often naturally symmetric.
Out of all methods that are statically in scope for a given invocation, the runtime selects the
most specific method to dispatch according to all arguments, and so there must be a single best
implementation for each possible invocation of a method. The return type is not considered
in the implementation selection. When compiling a package the compiler analyzes all types
used in the package and all methods and makes sure that for each method and argument types
combination there is a single best method to be called; if that is not the case it issues an error.
Assume the following three classes in such a language:

package integer

class Integer { ... }
Integer add(Integer x, Integer y) { ... }

package natural
import integer.Integer

class Natural extends Integer { ... }

Integer add(Natural x, Integer y) { ... }
Integer add(Integer x, Natural y) { ... }
Natural add(Natural x, Natural y) { ... }

package even
import integer.Integer
class Even extends Integer { ... }

Integer add (Even X, Integer y){..
Integer add(Integer x, Even v){...}
Even add (Even x, Even v) {



The ellipsis in each class body represents (possibly) private data but no other methods.
Each package compiles successfully on its own.

A user has now written the following client:

package client
import even.x
import natural.x

void f (Integer x, Integer y) {
Integer z = add(x, v);
}

e What would be the problem in allowing this client to compile in a type safe multiple
dispatch language? Show code that would expose the problem.
solution

The problem would be that the call add (x, y) could be ambiguous between the
methods add (Even, Integer) and add(Integer, Natural) in the call:

Even e;
Natural n;
f(e,n);

Both are the most specific implementations but neither is more specific than the other.

e Which requirement could we relax so that this call is valid?

solution

We could allow the runtime to choose any of the viable methods that is not worse than
another method — thus we would lose the ability to predict which method gets called,
but its functionality should conform to at least that of add (Integer, Integer).

e What could we do in the client package in order to resolve the problem, without modifying
other packages and without relaxing the requirement mentioned above?

solution

The client could define a method add (Even, Natural) (and any other missing meth-
ods) that would resolve the ambiguity.

Task 6

(from a previous exam)

Consider the following C++ program:

class X {
public:
X(int p) : £x(p) {}
int fx;
i
class Y {
public:
Y(int p) : fy(p) {}
int fy;
i
class B : public virtual X,public Y {
public:
B(int p) : X(p-1),Y(p—-2){}



}i

class C : public virtual X,public Y ({
public:
C(int p) : X(p+l),Y(p+1) {}

bi

class D : public B, public C {

public:
D(int p) : X(p-1), B(p-2), C(p+l){}
bi
int main() {
Dx d = new D(5);
Bx b = d;
Cx ¢ = d;

std::cout << b—>fx << b-—>fy
<< c—>fx << c—>fy;
return 0;

}

What is the output of running the program?
(a) 5555

CORRECT: 4147

Task 7 (from a previous exam)

Consider the following C++ code (recall that default constructors, i.e., constructors without
arguments, do not need to be called explicitly in C++):

class A {
public:
A(int i) { std::cout << "A" << i; }
A() { std::cout << "Al"; }
virtual int get () { ... }
bi

class B: MODIFIER A {
public:
B(int i) : A(i) { std::cout << "B" << i; }
}i

class C: MODIFIER A {
public:
C(int i) : A(i) { std::cout << "C" << 1i; }
}i
class D: public B, public C {
public:
D(int i) : B(i + 10), C(i + 20) { std::cout << "D" << i; }
bi

Now assume that MODIFIER is replaced by public.



A) Why does the following client code not compile?

void client () {
Dx d = new D(5);
std::cout << d->get();

solution

The call d->get () is ambiguous because class D inherits two versions of A (and therefore
of get ()), one from B and one from C.

B) Add a method to one of the classes so that client compiles.

— solution

We can resolve the ambiguity by overriding get in class D, for example to return B: : get ()
or any other integer value. The resulting code looks as follows:
class D: public B, public C {

public:

virtual int get () { return B::get(); }
}i

C) What is the output resulting from the call new D (5) in method client?

solution
(The code outputs “A15 B15 A25 C25 D5” (without whitespace).

D) Now, assume that MODIFIER is replaced by public virtual.

What is the new output resulting from the call new D (5) in method client?

solution
(The code outputs “A1 B15 C25 D5” (without whitespace).




