Concepts of
Object-Oriented Programming

Peter Muller
Chair of Programming Methodology

Autumn Semester 2021 ETH:urich

6. Object Structures and Aliasing 2

Object Structures

» Objects are the building blocks of object-oriented
programming

* However, interesting abstractions are almost
always provided by sets of cooperating objects

= Definition:
An object structure is a set of objects that are
connected via references

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6. Object Structures and Aliasing

Example 1: Array-Based Lists

O st)

array:| &
next:

\ /

4 array N
length:

0:

1:

2:
O j

class ArrayList {
private int[| array;
private int next;

public void add(inti) {
if (next==array.length) resize();
array[next] =1i;
next++;

}

public void setElems(int[] ia)

[}

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6. Object Structures and Aliasing 4

Example 2: Doubly-Linked Lists

" LinkedList) C Listir)

header: next: A2
size: nextindexs” 2

N N S

Entry
o—
®

N

Y >

(Object W (Object W (Object W

) |

Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

6. Object Structures and Aliasing 5

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing
6.3 Readonly Types

6.4 Ownership Types

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.1 Object Structures and Aliasing — Aliasing 6

Alias

= Definition:
A name that has been assumed temporarily
[WordNet, Princeton University]

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.1 Object Structures and Aliasing — Aliasing

Aliasing in Procedural Programming

= var-parameters are
passed by reference
(call by name)

= Modification of a var-
parameter is
observable by caller

= Aliasing: Several
variables (here: p, Q)
refer to same memory
location

= Aliasing can lead to
unexpected side-effects

program aliasTest
procedure assign(var p: int, var q: int),
begin

{p=1rq=1}

p .= 25;

{p=25Aq=25}
end;

begin

var x; int := 1;
assign(x, X);
{x=25}
end
end.

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.1 Object Structures and Aliasing — Aliasing 8

Aliasing in Object-Oriented Programming

= Definition:
An object o is aliased if two or more variables hold
references to o.

= Variables can be
- Fields of objects (instance variables)
Static fields (global variables)
Local variables of method executions, including this
Formal parameters of method executions
Results of method invocations or other expressions

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.1 Object Structures and Aliasing — Aliasing

Static Aliasing

= Definition:
An alias is static if all
Involved variables are
fields of objects or
stafic fields.

= Static aliasing occurs In
the heap memory

O olistt) Colist2)

array:| =~ w——'
next: next:

array

—

list1.array[0] = 1;
list2.array[0] = -1;

System.out.printin(list1.array[0]);

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.1 Object Structures and Aliasing — Aliasing 10

Dynamic Aliasing b .
= Definition: (st)
An alias is dynamic array:| o=l S
if it is not static. next: \/
/array\
= Dynamic aliasing
involves stack- I

allocated variables N

int[] ia = list1.array;

list1.array[0] = 1;

ia[0]=-1,

System.out.printIn(list1.array[0]);

Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

6.1 Object Structures and Aliasing — Aliasing

11

Intended Aliasing: Efficiency

* |[n OO-programming,
data structures are
usually not copied
when passed or
modified

= Aliasing and
destructive updates
make OO-programming
efficient

slist rest

|

"SList | [SList] [SList] [SList |

‘—-* _-* _-* ‘

-

/L AN AN J

class SlList {

}

SList next;

Object elem;

SList rest() { return next; }
void set(Objecte) {elem =¢; }

void foo(SList slist) {

SList rest = slist.rest();
rest.set(“Hello”); }

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.1 Object Structures and Aliasing — Aliasing 12

Intended Aliasing: Sharing

= Aliasing is a direct

consequence of object — |
identity ;3/ l Listltr
2
= Objects have state that En‘try
can be modified —
= Objects have to be Entry | [Enty] | Enr
shared to make * T 2
modifications of state
effective

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.1 Object Structures and Aliasing — Aliasing 13

Unintended Aliasing: Capturing L
. Clistt)
= Capturing occurs when Iy —
objects are passedtoa i ——
data structure and then ' array || |
stored by the data
structure
. . —/
= Capturing often occurs in [j.ss ArrayList {
constructors (e.g., private int[] array:
streams in Java) private int next;

public void setElems(int[] ia)
{ array = ia; next = ia.length; }

= Problem: Alias can be
used to by-pass interface
of data structure }"'

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.1 Object Structures and Aliasing — Aliasing

14

Unintended Aliasing: Leaking

» | eaking occurs when
data structure pass a
reference to an object,
which is supposed to be
internal to the outside

» | eaking often happens
by mistake

» Problem: Alias can be
used to by-pass
interface of data
structure

O olistt)
array:| &
next: array
___/

class ArrayList {
private int[] array;
private int next;

public int[] getElems()

{ return array; }

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6. Object Structures and Aliasing 15

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing
6.3 Readonly Types

6.4 Ownership Types

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.2 Object Structures and Aliasing — Problems of Aliasing 16

Observation

= Many well-established techniques of object-
oriented programming work for individual objects,
but not for object structures in the presence of
aliasing

= “The big lie of object-oriented programming is that
objects provide encapsulation’ [Hogg, 1991]

= Examples
- Information hiding and exchanging implementations
- Encapsulation and consistency

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.2 Object Structures and Aliasing — Problems of Aliasing

17

Exchanging Implementations

class ArrayList {
private int| | array;
private int next;

// requires ia !'= null

// ensures Vi. 0<=i<ia.length:

I/ isElem(old(ia[i]))

public void setElems(int[] ia)
{ array = ia; next = ia.length; }

}

=)

class ArrayList {

}

private Entry header;

// requires ia !'= null

// ensures Vi. 0<=i<ia.length:

/] isElem(old(ia[i]))
public void setElems(int[] ia)

{ ... /* create Entry for each
element */ }

» |nterface including contract remains unchanged

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.2 Object Structures and Aliasing — Problems of Aliasing

18

Exchanging Implementations (cont’'d)

int foo(ArrayList list) {
int[]ia = new int[3];
list.setElems(ia);
ia[0] = -1;
return list.getFirst();

}

= Aliases can be used
to by-pass interface

= Observable behavior
IS changed!

) array —
list 3
° [1 || e Ia
0
— 0
—
" Aarrav)
list 3 :
-1 < e |a
\ 0
0
/
E—
Entry
—_
/S
Ent Entry Ent
o e o’
o |«) ®
0 0 I 0
\ \

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.2 Object Structures and Aliasing — Problems of Aliasing 19

Consistency of Object Structures

= Consistency of object class ArrayList {
structures depends on private int[| array;

: : private int next;
fields of several objects
// invariant array != null &&

_ /I 0<=next<=array.length &&
= Invariants are usually /I Vi.0<=i<next: array[i]>= 0

specified as part of the
contract of those objects | public void add(inti) {...}

that represent the public void setElems(int[] ia)
interface of the object Lo
structure }

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.2 Object Structures and Aliasing — Problems of Aliasing

20

Consistency of Object Structures (cont'd)

int[]ia = new int[3];
list.setElems(ia);

}

int foo(ArrayListlist) { // invariant of list holds

// invariant of list holds
a[0]=-1; // invariant of list violated

= Aliases can be used to
violate invariant

= Making all fields private is
not sufficient to
encapsulate internal state

list

array

ololL|w

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.2 Object Structures and Aliasing — Problems of Aliasing

21

Security Breach in Java 1.1.1

class Malicious { identity[] BT
@
void bad() { o
|dentity[] s; |dentity
|dentity trusted = java.Security...; @ >
s = Malicious.class.getSigners(); ¢
_ _ Class
s[0] = trusted;
/* abuse privilege */ \ h‘\
} |dentity[]
— | |dentity
} : : e
|dentity[] getSigners()
{ return signers; } System

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.2 Object Structures and Aliasing — Problems of Aliasing 22

Problem Analysis

» Breach caused by unwanted alias
- Leaking of reference

= Difficult to prevent i dentityf] [identity
- Information hiding: e
not applicable to arrays |dentity
oy : ° —3
- Restriction of Identity

objects: not effective Class
- Secure information flow: h‘\

read access permitted \ i dentity[] -
entity

- Run-time checks: —
too expensive

System

Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

6.2 Object Structures and Aliasing — Problems of Aliasing

23

Other Problems with Aliasing

= Synchronization in concurrent
programs

- Monitor of each individual object
has to be locked to ensure
mutual exclusion

= Distributed programming

- For instance, parameter passing
for remote method invocation

= Optimizations

\/

- For instance, object inlining is
not possible for aliased objects
N
Peter Muller — Concepts of Object-Oriented Programming E'HZU[‘/Ch

6.2 Object Structures and Aliasing — Problems of Aliasing 24

Alias Control in Java: LinkedList

= All fields are private

» Entry is a private inner class of LinkedList
- References are not passed out
- Subclasses cannot manipulate or leak Entry-objects

= Listltr is a private inner class of LinkedList

- Interface Listlterator provides controlled access to
Listltr-objects

- Listltr-objects are passed out, but in a controlled fashion
- Subclasses cannot manipulate or leak Listltr-objects

»= Subclassing is severely restricted

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.2 Object Structures and Aliasing — Problems of Aliasing

25

Alias Control in Java: String

= All fields are private

= References to internal
character-array are not
passed out

= Subclassing is prohibited
(final)

4 String A

value:

*—

charf |

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6. Object Structures and Aliasing 26

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing
6.3 Readonly Types

6.4 Ownership Types

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.3 Object Structures and Aliasing — Readonly Types 27

Object Structures Revisited

class Address ... { class Person {
private String street; private Address addr;
private String city; public Address getAddr()
{ return addr.clone(); }
public String getStreet(){ ... } public void setAddr(Address a)
public void setStreet(String s) { addr = a.clone(); }
{...}
}
public String getCity(){ ... } . ™~
RSN peter
public void setCity(String s) " home)
{...} addrl_*=™, street:
" J city:
} . /

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.3 Object Structures and Aliasing — Readonly Types

28

Drawbacks of Alias Prevention

= Aliases are helpful to
share side-effects

» Cloning objects is not
efficient

* |[n many cases, it suffices
to restrict access to
shared objects

= Common situation: grant
read access only

4 peter)
addr:
- Y 4 home)
4 annette A street
city:
addr;| &
O J
_ /
" ETH
prof7: o’
_ /

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.3 Object Structures and Aliasing — Readonly Types 29

Requirements for Readonly Access

= Mutable objects " peter
- Some clients can mutate the |addr:
object, but others cannot " home)
- Access restrictions apply to — C | street:
references, not whole objects > > city:
= Prevent field updates E_TH _ phone:|_1
= Prevent calls of mutating Protr - J
methods \ M Natel)
* Transitivity No:
- Access restrictions extend to

_ /

references to sub-objects

Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

6.3 Object Structures and Aliasing — Readonly Types 30

Readonly Access via Supertypes

interface ReadonlyAddress { class Person {

public String getStreet(); private Address addr;

public String getCity(); public ReadonlyAddress
} getAddr()

{ return addr; }
class Address public void setAddr(Address a)
implements ReadonlyAddress ... { { addr = a.clone(); }

... [* as before */ })

= Clients use only the methods in the interface
- Object remains mutable
- No field updates
- No mutating method in the interface

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.3 Object Structures and Aliasing — Readonly Types 31

Limitations of Supertype Solution

= Reused classes class Address
might not implement implements ReadonlyAddress ... {

a readonly interface private PhoneNo phone:

- See discussion O_f public PhoneNo getPhone()
structural subtyping { return phone; } }

» |nterfaces do not
support arrays,
fields, and non-public public ReadonlyPhoneNo getPhone();
methods }

* Transitivity has to be encoded explicitly
- Requires sub-objects to implement readonly interface

interface ReadonlyAddress {

Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

6.3 Object Structures and Aliasing — Readonly Types

32

Supertype Solution is not Safe

= No checks that
methods in readonly
interface are actually
side-effect free

= Readwrite aliases can
occur, e.g., through
capturing

= Clients can use casts
to get full access

class Person {
private Address addr;
public ReadonlyAddress getAddr()
{ return addr; }
public void setAddr(Address a)
{ addr = a.clone(); }

}

void m(Person p) {
ReadonlyAddress ra = p.getAddr();
Address a = (Address) ra;
a.setCity(“Hagen”);

}

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.3 Object Structures and Aliasing — Readonly Types

33

Readonly Access in C++: const Pointers

class Address {
string city;
public:
string getCity(void)
{ return city; }
void setCity(string s)

{city=s;}

}; C++

class Person {
Address* addr;
public:
const Address™ getAddr()
{ return addr; }
void setAddr(Address a)
{ /" clone */ }

}; C++

= C++ supports readonly
pointers
- No field updates
- No mutator calls

void m(Person* p) {
const Address™ a = p->getAddr();
a->setCity(XHagen”);

cout << a@\\

}

Peter Muller — Concepts of Object-Oriented Programming

Compile-time
errors

6.3 Object Structures and Aliasing — Readonly Types

34

Readonly Access in C++: const Functions

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s)

{city=s;}

};

C++

class Person {
Address* addr;
public:
const Address™ getAddr()
{ return addr; }
void setAddr(Address a)
{ /" clone */ }

}; C++

= const functions must

not modify their receiver

object

void m(Person* p) {
const Address™ a = p->getAddr();
a->setCity(XHagen”);

cout << a-m\;\

Peter Muller — Concepts of Object-Oriented Programming

N o ot
(Call of const Compile-time
) error
qunctlon allowed)

6.3 Object Structures and Aliasing — Readonly Types

35

It wouldn't be C++ ...

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s) const {
Address® me = (Address™) this;

class Person {
Address* addr;
public:
const Address™ getAddr()
{ return addr; }
void setAddr(Address a)
{ /" clone */ }

me->city = s; %
} }; C++ C++
= const-ness can be cast |void m(Person* p){

away const Address™ a = p->getAddr();

- No run-time check

a->setCity(“Hagen”);

Peter Muller — Concepts of Object-Oriented Programming

} \/ Call of const
function allowed

6.3 Object Structures and Aliasing — Readonly Types 36

It wouldn't be C++ ... (cont’'d)

class Address { class Person {
string city; Address™* addr;
public: public:
string getCity(void) const const Address™ getAddr()
{ return city; } { return addr; }
void setCity(string s) void setAddr(Address a)
{city =s; } { /" clone */ }
3 C++ | C++

= const-ness can be cast | Ye'd m(Personp){
const Address™ a = p->getAddr();

away Address* ma = (Address™) a;
- No run-time check ma->setCity(“Hagen”);

} C++

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.3 Object Structures and Aliasing — Readonly Types

37

Readonly Access in C++: Transitivity

class Phone {
public:
int number;

%

C++

void m(Person* p) {
const Address™ a = p->getAddr();
Phone* ph = a->getPhone();
ph->number = 2331..;

} C++

class Address {
string city;
Phone* phone;
public:

{ return phone; }

X

Phone* getPhone(void) const

C++

= const pointers are not
transitive

= const-ness of sub-
objects has to be
indicated explicitly

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.3 Object Structures and Aliasing — Readonly Types 38

Transitivity (cont'd)

class Address {
string city;
Phone* phone;
public:
const Phone* getPhone(void) const {
phone->number = 2331 ...;

return phone; const functions may
) modify objects other
than the receiver

}; C++

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.3 Object Structures and Aliasing — Readonly Types

39

Readonly Access in C++: Discussion

Pros

= const pointers provide
readonly pointers to
mutable objects
- Prevent field updates
- Prevent calls of non-
const functions
= Work for library classes

= Support arrays, fields,
and non-public
methods

Cons

= const-ness Is not
transitive

= const pointers are
unsafe

- Explicit casts

= Readwrite aliases can
occur

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.3 Object Structures and Aliasing — Readonly Types 40

Pure Methods

= Tag side-effect free class Address {

methods as pure private String street;
private String city;

= Pure methods public pure String getStreet()
- Must not contain field {...}
update public void setStreet(String s)
- Must not invoke non- {..}

pure methods public pure String getCity()
{...}

- Must not create objects public void setCity(String s)

- Can be overridden only {1
by pure methods

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.3 Object Structures and Aliasing — Readonly Types

41

Types

= Each class or interface T
Introduces two types

= Readwrite type rw T
- Denoted by T in programs

= Readonly typero T

- Denoted by readonly T in
programs

class Person {
private Address addr;

public ReadonlyAddress
getAddr() { return addr; }

public void setAddr(Address a)
{ addr = a.clone(); }

.}
class Person { l

private Address addr;

public readonly Address
getAddr(){...}

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.3 Object Structures and Aliasing — Readonly Types 42

Subtype Relation

= Subtyping among readwrite |cfassT{...}

and readonly types is class S extends T{ ... }
defined as in Java S S =
- Sextendsorimplements T = | TrwT = ...
wS<:rwT readonly S roS = ...
- S extends or implements T = |readonly TroT = ...
roS<:roT
= Readwrite types are WwT =rws;
subtypes of corresponding |™! =roS;
rol =rwT,
readonly types
-mwil<roTl wT = roT:

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.3 Object Structures and Aliasing — Readonly Types

43

Type Rules: Transitive Readonly

class Address {

private int[] phone;
public int[] getPhone() { ...}

}

class Person {
private Address addr;

public readonly Address
getAddr() { return addr; }

= Accessing a value of a
readonly type or
through a readonly type
should yield a readonly
value

Personp = ...
readonly Address a;
a = p.getAddr();

int[] ph = a.getPhone();

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.3 Object Structures and Aliasing — Readonly Types 44

Type Rules: Transitive Readonly (cont'd)

* The type of Personp = ...
- A field access readonly Address a;

- An array access a = p.getAddr();
- A method invocation
int[] ph = a getPhone();

Is determined by the
type combinator » /

[ro Address |p» [rw int[| J

H_J

> w T roT
w S w T roT 0
roS roT roT

Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

6.3 Object Structures and Aliasing — Readonly Types 45

Type Rules: Transitive Readonly (cont'd)

* The type of Personp = ...
- A field access readonly Address a;

- An array access a = p.getAddr(),

- A method invocation _ i |
is determined by the e et pba'getpgone()

type combinator »

[ro Address }b [rw int[| J

H_J

> w T roT
w S w T roT 0 4
roS roT roT

Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

6.3 Object Structures and Aliasing — Readonly Types

46

Type Rules: Readonly Access

= Expressions of readonly
types must not occur as
receiver of
- a field update
- an array update

- an invocation of a non-pure
method

= Readonly types must not
be cast to readwrite types

readonly Address roa;
roa.street = “Ramistrasse’;
roa.phone[0] = 41;
roa.setCity(“Hagen”);

readonly Address roa;
Address a = (Address) roa;

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.3 Object Structures and Aliasing — Readonly Types 47

Discussion

» Readonly types enable safe sharing of objects

» Very similar to const pointers in C++, but:
- Transitive
- No casts to readwrite types
- Stricter definition of pure methods

= All rules for pure methods and readonly types can
be checked statically by a compiler

= Readwrite aliases can still occur, e.g., by capturing

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6. Object Structures and Aliasing 48

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing
6.3 Readonly Types

6.4 Ownership Types

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types 49

Object Topologies

class Person {

» Read-write aliases private Address addr;

: private Company employer;
can still O.CCUF, €9, public readonly Address getAddr()
by capturing or

_ { return addr; }
leaking public void setAddr(Address a)
{ addr = a.clone(); }

= \We need to public Company getEmployer()

distinguish “internal” | 1 return employer; }
references from public void setEmployer(Company c)

employer = c;
other references t employer =c; }
}

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types

50

Roles in Object Structures

* Interface objects that are
used to access the
structure

* |nternal representation
of the object structure

- Must not be exposed to
clients

= Arguments of the object
structure
- Must not be modified

LinkedList)

Peter Muller — Concepts of Object-Oriented Programming

(o h
Listltr
®
N
N
Entry
C—
~—
Entry| (Entry\ (Entry\
o—z Oy
— p—g —g
L/ ;.J_;_/
\/
ETHzurich

6.4 Object Structures and Aliasing — Ownership Types (51
- /Dictionary\ Erﬁ er)eb'"g:;ts
Ownership Model "y obj J

= Each object has zero
Oor one owner objects

* The set of objects
with the same owner
IS called a context

= The ownership
relation is acyclic

* The heap Is
structured into a

_ Context of
forest of ownership objects owned
trees by list head

Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

6.4 Object Structures and Aliasing — Ownership Types 92

OwnershipTypes rep
reference P
= We use types to express TinkedList =il
ownership information —
o J

= peer types for objects with / Entry
the same owner as this

" rep types for [refgfgr:ce Erltz_:ErlT_v_’ Ent
representation objects \“4 EEEE
owned by this |

e

* any types for argument)

objects with any owner any
reference

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types 23

Example

class LinkedList {
private rep Entry header;

A list owns

its nodes J (

Lists store
elements with

arbitrary owners
class Entry %

private any Object element;
private peer Entry previous, next;

) mdes have
the same owner

N

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types o4

Type Safety

= Run-time type information consists of
- The class of each object
- The owner of each object

= Type invariant: the static ownership information of
an expression e reflects the run-time owner of the
object o referenced by e’s value
- If e has type rep T then o’s owner is this
- If e has type peer T then o’s owner is the owner of this
- If e has type any T then o’s owner is arbitrary

\/ An existential W
L type

) L.
Peter Miiller — Concepts of Object-Oriented Programming E'HZUFICh

6.4 Object Structures and Aliasing — Ownership Types

95

Subtyping and Casts

* For types with identical
ownership modifier, subtyping
Is defined as in Java
-repS<irep T
- peer S <:peer T
-anyS<:any T

* rep types and peer types are
subtypes of corresponding
any types

classT{...}

class Sextends T{ ...}

peer T peerT = ...
any T anyT = ...
rep SrepS = ...
rep Trepl = ... p

Run-time
repT = repS; checksj
anyT = repT, ?f
peerT = (peer T/ anyT,
repT =(rep T) anyT,;

repT = peerT;
- <
Y I ey peerT =repT,
- peel’ T <’ any T repT = anyT;
Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types 26

Example (cont'd)

class LinkedList {
private rep Entry header;
public void add(any Object 0) {
rep Entry newk = new rep Entry(o, header, header.previous);

}

) Ownership information
is relative to this
class Entry { _ reference (viewpoint)

private any Object element;

private peer Entry previous, next;

public Entry(any Object o, peer Entry p, peer Entryn) { ... }
}

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types o7

Viewpoint Adaptation: Example 1

List
Q
\\
Entry Entry Entry
® > ® > ®

peer P peer = peer

Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

6.4 Object Structures and Aliasing — Ownership Types

58

Viewpoint Adaptation: Example 2

List
b |
\
Entry
@

rep P peer =rep

Entry

Entry

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.4 Object Structures and Aliasing — Ownership Types

959

Viewpoint Adaptation

> peer T rep T any T
peer S peer T ? any T
rep S rep T ? any T
any S ? ? any T

(e)P t(f)<iz(v)

ef=v;

(v)<it(e)» 1(f)

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.4 Object Structures and Aliasing — Ownership Types 60

Read vs. Write Access

(this | class Person {
° public rep Address addr;
public peer Person spouse;

il

}

joe peer Person joe, jill;

A

joe.spouse = jill;

any Address a = joe.addr;

r.

joe.addr = new rep Address();

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types

61

The lost Modifier

= Some ownership
relations cannot be
expressed Iin the type
system

= Internal modifier lost for
fixed, but unknown
owner

» Reading locations with
lost ownership is allowed

» Updating locations with
lost ownership is unsafe

class Person {
public rep Address addr;
public peer Person spouse;

}

peer Person joe, jill;

joe.spouse = jill;

[lost Address }

any Address a = joe.a\@r;

joe.addr = new rep Address();

ﬁlost Address W

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.4 Object Structures and Aliasing — Ownership Types

62

The lost Modifier: Details

> peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T

~

= Subtyping
- rep T <:lost T
- peer T <:lost T
- lost T <:any T

Another
existential type

|

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.4 Object Structures and Aliasing — Ownership Types 63

Type Rules: Field Access

= The field read * The field write
v = e.f; e.f=v;
Is correctly typed if is correctly typed if
- e Is correctly typed - e is correctly typed
-t(e)p(f)<it(Vv) -t(v)<it(e) P 1(f)

- 1(e) » 1(f)does not
have lost modifier
* Analogous rules for method invocations
- Argument passing is analogous to field write
- Result passing is analogous to field read

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types 64

The self Modifier

class Person {
public rep Address addr;
public peer Person spouse;

}

peer Person joe;

joe.addr = new rep Address();

this.addr = new rep Address();

* [nternal modifier self only for the this literal

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types

65

The self Modifier: Details

2 peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T
self S peer T rep T any T
= Subtyping

- self T <:peer T

e.f:

<
I

(e)P t(f)<it(Vv)

ef=v;

(v)<it(e)P t(f)

(e) » t(f) does not
have lost modifier

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.4 Object Structures and Aliasing — Ownership Types

66

Example: Sharing

class Person {
public rep Address addr,;

= Different Person objects
have different Address
objects

- No unwanted sharing

this

joe

'0

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.4 Object Structures and Aliasing — Ownership Types

67

Example: Internal vs. External Objects

class Person {
private rep Address addr,

public rep Address getAddr() {

Address is part of
Person’s internal
representation

return addr;

}

Clients receive a
lost-reference

public void setAddr(rep Address a) {

addr = a;
}

Cannot be called
by clients

public void setAddr(any Address
addr = new rep Address(a);

a){

} Cloning

} Xnecessary

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.4 Object Structures and Aliasing — Ownership Types

68

Internal vs. External Objects (cont’'d)

class Person {

private any Company employer;

public any Company getEmployer() {
return employer;

}

Company is shared
between many
Person objects

public void setEmployer(any Company c) {

employer = c; Can be called
} by clients
Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types 69

Owner-as-Modifier Discipline

= Based on the ownership type system we can
strengthen encapsulation with extra restrictions
- Prevent modifications of internal objects
- Treat any and lost as readonly types
- Treat self, peer, and rep as readwrite types

= Additional rules enforce owner-as-modifier
- Field write e.f = vis valid only if ©(e) is self,
peer, or rep

- Method call e.m(...) is valid only if t(e) is self,
peer, or rep, or called method is pure

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types 70

Owner-as-Modifier Discipline (cont’'d)

this

= A method may modify only objects directly or
iIndirectly owned by the owner of the current this
object

Peter Miller — Concepts of Object-Oriented Programming E'HZUFiCh

6.4 Object Structures and Aliasing — Ownership Types 71

Internal vs. External Objects Revisited

class Person { Company is shared;
private rep Address addr; cannot be modified

private any Company employer;

public rep Address getAddr() { return addr; }

Clients receive
(transitive)
readonly reference

public void setAddr(any Address a) {
addr = new rep Address(a);

) Accidental capturing
IS prevented

public any Company getEmployer() { return employer; }

public void setEmployer(any Company c) { employer = c; }

}

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types

72

Achievements

* rep and any types enable
encapsulation of whole
object structures

* Encapsulation cannot be
violated by subclasses,
via casts, etc.

= The technique fully
supports subclassing
- In contrast to solutions with

private inner or final
classes, etc.

class ArrayList {

protected rep int[| array;

private int next;

}

class MyList extends ArrayList {
public peer int[| leak() {

return array;

}
}

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.3 Object Structures and Aliasing — Problems of Aliasing

73

Exchanging Implementations

class ArrayList {
private int| | array;
private int next;

// requires ia !'= null

// ensures Vi. 0<=i<ia.length:

I/ isElem(old(ia[i]))

public void setElems(int[] ia)
{ array = ia; next = ia.length; }

}

=)

class ArrayList {

}

private Entry header;

// requires ia !'= null

// ensures Vi. 0<=i<ia.length:

/] isElem(old(ia[i]))
public void setElems(int[] ia)

{ ... /* create Entry for each
element */ }

» |nterface including contract remains unchanged

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.4 Object Structures and Aliasing — Ownership Types 74

Exchanging Implementations (cont’'d)

class ArrayList { class ArrayList {
private rep int[| array; private rep Entry header;
private int next;

// requires ia != null // requires ia != null
/l ensures Vi. 0<=i<ia.length: I/l ensures Vi. 0<=i<ia.length:
// isElem(old(ia[i])) ‘// isElem(old(ia[i]))
public void public void
setElems(any int[| ia) setElems(any int[| ia)
{ System.arraycopy(...); {... " create Entry for each

next = ia.length; } element */ }

} Wtal capturing | |}
IS prevented

N

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types 75

Exchanging Implementations (cont’'d)

class ArrayList { class ArrayList {

private rep int[| array; private rep Entry header;

private int next;

public any int| | getElems() public void any int[| getElems()

{ return array; } { I* create new array */ }
\ Leaking is still \
possible

peer ArrayList list = new peer ArrayList();
list.prepend(0); = Observable
any int[] ia = list.getElems(); behavior is
list.prepend(1); Changed
assertia[0] == 1,

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.3 Object Structures and Aliasing — Problems of Aliasing 76

Consistency of Object Structures

= Consistency of object class ArrayList {
structures depends on private int[| array;

: : private int next;
fields of several objects
// invariant array != null &&

_ /I 0<=next<=array.length &&
= Invariants are usually /I Vi.0<=i<next: array[i]>= 0

specified as part of the
contract of those objects | public void add(inti) {...}

that represent the public void setElems(int[] ia)
interface of the object Lo
structure }

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.4 Object Structures and Aliasing — Ownership Types 77

Invariants for Object Structures

= The invariant of object o | class ArrayList{
may depend on private rep int[] array;
_ private int next;
- Encapsulated fields of o

- Fields of objects
(transitively) owned by o

// invariant array != null &&
[/ 0<=next<=array.length &&
/[Vi.0<=i<next: array[i]>=0

» Interface objects have public void add(inti) {...}
full control over their P“'z'i:nvﬁi:tﬁ]eif')em? }
rep-objects d

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6.3 Object Structures and Aliasing — Problems of Aliasing

78

Security Breach in Java 1.1.1

class Malicious { identity[] BT
@
void bad() { o
|dentity[] s; |dentity
|dentity trusted = java.Security...; @ >
s = Malicious.class.getSigners(); ¢
_ _ Class
s[0] = trusted;
/* abuse privilege */ \ h‘\
} |dentity[]
— | |dentity
} : : e
|dentity[] getSigners()
{ return signers; } System

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

6.4 Object Structures and Aliasing — Ownership Types 79

Security Breach in Java 1.1.1 (cont'd)

class Malicious ({ identity[] BT
@ >
void bad() { o
any ldentity[] s; |dentity
|dentity trusted = java.Security...; e >
s = Malicious.class.getSigners(); 1
B Class , _
s[0] = trusted; rep |dentity[] signers; }
O
} \ \
|dentity[]
} o—| [ldentity
D ——

{ return signers; }

[rep |dentity[] getSigners()}
System

Peter Miller — Concepts of Object-Oriented Programming E'HZUFiCh

6.4 Object Structures and Aliasing — Ownership Types 80

Ownership Types: Discussion

= Ownership types express heap topologies and
enforce encapsulation

= Owner-as-modifier is helpful to control side effects
- Maintain object invariants
- Prevent unwanted modifications

= Other applications also need restrictions of read
access

- Exchange of implementations
- Thread synchronization

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

6. Object Structures and Aliasing 81

References

= Werner Dietl and Peter Muller: Universes: Lightweight
Ownership for JML. Journal of Object Technology, 2005

= Werner Dietl, Sophia Drossopoulou, and Peter Muller:

Separating Ownership Topology and Encapsulation with

Generic Universe Types. ACM Trans. Program. Lang. Syst.,
2011

Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

