
Concepts of 
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2021



2

Peter Müller – Concepts of Object-Oriented Programming

5. Information Hiding and Encapsulation

5.1 Information Hiding
5.2 Encapsulation

5. Information Hiding and Encapsulation



3

Peter Müller – Concepts of Object-Oriented Programming

Information Hiding
§ Definition

Information hiding is a technique for reducing the 
dependencies between modules:
- The intended client is provided with all the information 

needed to use the module correctly, and with nothing 
more

- The client uses only the (publicly) available information

§ Information hiding deals with programs, that is, with 
static aspects

§ Contracts are part of the exported interfaces

5.1 Information Hiding and Encapsulation – Information Hiding



4

Peter Müller – Concepts of Object-Oriented Programming

Objectives
§ Establish strict interfaces
§ Hide implementation 

details
§ Reduce dependencies 

between modules
- Classes can be studied 

and understood in isolation
- Classes interact only in 

simple, well-defined ways

class Set {
…
// contract or documentation
public void insert( Object o )

{ … }
}

class BoundedSet {
Set rep;
int maxSize;

public void insert( Object o ) { 
if ( rep.size( ) < maxSize ) 

rep.insert( o );
}

}

5.1 Information Hiding and Encapsulation – Information Hiding



5

Peter Müller – Concepts of Object-Oriented Programming

class SymbolTable
extends Dictionary<String,String> 
implements Map<String,String> {

public int size;

public void add( String key, String value )
{ put( key, value ); }

public String lookup( String key ) 
throws IllegalArgumentException {

return atKey( key ); 
}

}

The Client Interface of a Class
§ Class name
§ Type parameters 

and their bounds
§ Super-class
§ Super-interfaces
§ Signatures of 

exported methods 
and fields

§ Client interface of 
direct superclass

5.1 Information Hiding and Encapsulation – Information Hiding

class SymbolTable
extends Dictionary<String,String> 
implements Map<String,String> {

public int size;

public void add( String key, String value )
{ put( key, value ); }

public String lookup( String key ) 
throws IllegalArgumentException {

return atKey( key ); 
}

}



6

Peter Müller – Concepts of Object-Oriented Programming

public class DList {
protected Node first, last;
private int modCount;
protected void modified( )
{ modCount++; }

…
}

Other Interfaces

§ Friend interface
- Mutual access to 

implementations of 
cooperating classes

- Hiding auxiliary classes

package coop.util;
/* default */ class Node {
/* default */ Object elem;
/* default */ Node next, prev;
… }

package coop.util;
public class DList {
protected Node first, last;
private int modCount;
protected void modified( ) 
{ modCount++; }

…
}

§ Subclass interface
- Efficient access to 

superclass fields
- Access to auxiliary 

superclass methods

§ And others 

5.1 Information Hiding and Encapsulation – Information Hiding



7

Peter Müller – Concepts of Object-Oriented Programming

Expressing Information Hiding
§ Java: Access modifiers

- public client interface
- protected subclass + friend interface
- Default access friend interface
- private implementation

§ Eiffel: Clients clause in feature declarations
- feature { ANY } client interface
- feature { T } friend interface for class T
- feature { NONE } implementation (only “this”-object)
- All exports include subclasses

5.1 Information Hiding and Encapsulation – Information Hiding



8

Peter Müller – Concepts of Object-Oriented Programming

Safe Changes
§ Consistent renaming of 

hidden elements
package coop.util;

public class DList {

protected Node first, last;

private int modCount;
protected void incrModCount( ) 
{ modCount++; }

…
}

package coop.util;

public class DList {

protected Node first, last;

private int version;
protected void incrModCount( ) 
{ version++; }

…
}

package coop.util;

public class DList {

protected Node first, last;

private int version;
protected void modified( ) 
{ version++; }

…
}

§ Modification of hidden 
implementation as long 
as exported functionality 
is preserved

§ Access modifiers and 
clients clauses specify 
what classes might be 
affected by a change 

5.1 Information Hiding and Encapsulation – Information Hiding



9

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations
§ Observable behavior 

must be preserved

§ Exported fields limit 
modifications severely
- Use getter and setter 

methods instead

§ Modifications are critical
- Fragile baseclass problem
- Object structures

class Coordinate {
private double x,y;
…
public double distOrigin( ) 
{ return Math.sqrt( x*x + y*y ); }

}

class Coordinate {
private double radius, angle;
…
public double distOrigin( ) 
{ return radius; }

}

5.1 Information Hiding and Encapsulation – Information Hiding



10

Peter Müller – Concepts of Object-Oriented Programming

class T {
public void m( ) { ... }

}

class S extends T {
public void m( ) { ... }

}

T v = new U( );
v.m( );

§ At compile time:
1. Determine static declaration
2. Check accessibility
3. Determine invocation mode 

(virtual / nonvirtual)

§ At run time:
4. Compute receiver reference
5. Locate method to invoke 

(based on dynamic type of 
receiver object)

Method Selection in Java (JLS1)

class U extends S { }

class T {
public void m( ) { ... }

}

T v = new U( );
v.m( );
T v = new U( );
v.m( );

class S extends T {
public void m( ) { ... }

}

5.1 Information Hiding and Encapsulation – Information Hiding



11

Peter Müller – Concepts of Object-Oriented Programming

Rules for Overriding: Access
§ Access Rule:

The access modifier of 
an overriding method 
must provide at least as 
much access as the 
overridden method

class Super {
…
protected void m( ) { … }

}

class Sub extends Super {
void m( ) { … }

}

In class Super or Sub:
public void test( Super v ) {
v.m( );

}

public

Default access

protected

public

5.1 Information Hiding and Encapsulation – Information Hiding



12

Peter Müller – Concepts of Object-Oriented Programming

Rules for Overriding: Hiding
§ Override Rule:

A method Sub.m
overrides the superclass
method Super.m only if 
Super.m is accessible 
from Sub

§ If Super.m is not 
accessible from Sub, it is 
hidden by Sub.m

§ Private methods cannot 
be overridden

class Super {
…
private void m( )
{ System.out.println(“Super”); }

public void test( Super v )
{ v.m( ); }

}

class Sub extends Super {
public void m( )
{ System.out.println(“Sub”); }

}

Super v = new Sub( );
v.test( v );

5.1 Information Hiding and Encapsulation – Information Hiding



13

Peter Müller – Concepts of Object-Oriented Programming

Problems with Default Access Methods
§ S.m does not override 

T.m (T.m is not 
accessible in S)

§ T.m and S.m are 
different methods with 
same signature

§ Static declaration for 
invocation is T.m

§ At run time, S.m is
selected and invoked

package PT;
public class T {

void m( ) { ... }
}

package PS;
public class S extends PT.T {

public void m( ) { ... }
}

In package PT:
T v = new PS.S( );
v.m( );

5.1 Information Hiding and Encapsulation – Information Hiding



14

Peter Müller – Concepts of Object-Oriented Programming

Corrected Method Selection (JLS2)
§ Dynamically selected method must override

statically determined method

§ At run time:
4. Compute receiver 

reference
5. Locate method to invoke

that overrides statically 
determined method

§ At compile time:
1. Determine static 

declaration
2. Check accessibility
3. Determine invocation 

mode (virtual / 
nonvirtual)

5.1 Information Hiding and Encapsulation – Information Hiding



15

Peter Müller – Concepts of Object-Oriented Programming

Problems with Protected Methods
§ S.m overrides T.m
§ Static declaration is 

T.m, which is 
accessible for C

§ At run time, S.m is 
selected, which is not
accessible for C

§ protected does not 
always “provide at 
least as much access” 
as protected

package PT;
public class T {

protected void m( ) { ... }
}

package PS;
public class S extends PT.T {

protected void m( ) { ... }
}

package PT;
public class C {
public void foo( ) {   

T v = new PS.S( );
v.m( );                    }

}

5.1 Information Hiding and Encapsulation – Information Hiding

public would 
be safe



16

Peter Müller – Concepts of Object-Oriented Programming

class CS extends C {
public void inc2( ) { inc1( ); }

}

Another Fragile Baseclass Problem
class C {
int x;
public void inc1( ) 
{ this.inc2( ); }

private void inc2( )
{ x++; }

}

CS cs = new CS( 5 );
cs.inc2( );
System.out.println( cs.x );

Develop 
Superclass

Implement 
Subclass

Modify 
Superclass

5.1 Information Hiding and Encapsulation – Information Hiding



17

Peter Müller – Concepts of Object-Oriented Programming

class CS extends C {
public void inc2( ) { inc1( ); }

}

Another Fragile Baseclass Problem
class C {
int x;
public void inc1( ) 
{ this.inc2( ); }

protected void inc2( )
{ x++; }

}

CS cs = new CS( 5 );
cs.inc2( );
System.out.println( cs.x );

Develop 
Superclass

Implement 
Subclass

Modify 
Superclass

5.1 Information Hiding and Encapsulation – Information Hiding



18

Peter Müller – Concepts of Object-Oriented Programming

5. Information Hiding and Encapsulation

5.1 Information Hiding
5.2 Encapsulation

5. Information Hiding and Encapsulation



19

Peter Müller – Concepts of Object-Oriented Programming

Objective
§ A well-behaved module 

operates according to its 
specification in any 
context, in which it can 
be reused

§ Implementations rely on 
consistency of internal 
representations

§ Reuse contexts should 
be prevented from 
violating consistency

class Coordinate {
public double radius, angle;
// invariant 0 <= radius &&
//  0 <= angle && angle < 360
…
// ensures  0 <= result
public double distOrigin( ) 
{ return radius; }

}

Coordinate c = new Coordinate( );
c.radius = -10;
Math.sqrt( c.distOrigin( ) );

5.2 Information Hiding and Encapsulation – Encapsulation



20

Peter Müller – Concepts of Object-Oriented Programming

Encapsulation
§ Definition

Encapsulation is a technique for structuring the 
state space of executed programs. Its objective is 
to guarantee data and structural consistency by 
establishing capsules with clearly defined 
interfaces.

§ Encapsulation deals mainly with dynamic aspects
§ Information hiding and encapsulation are often 

used synonymously in the literature; 
here, encapsulation is a more specific concept

5.2 Information Hiding and Encapsulation – Encapsulation



21

Peter Müller – Concepts of Object-Oriented Programming

Levels of Encapsulation
§ Capsules can be

- Individual objects
- Object structures
- A class (with all of its objects)
- All classes of a subtype hierarchy
- A package (with all of its classes and their objects)

§ Encapsulation requires a definition of the boundary 
of a capsule and the interfaces at the boundary

5.2 Information Hiding and Encapsulation – Encapsulation



22

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Objects
§ Objects have (external) 

interfaces and an (internal) 
representation

§ Consistency can include
- Properties of one execution state
- Relations between execution 

states
§ The internal representation of 

an object is encapsulated if it 
can be manipulated only by 
using the object’s interfaces

a1:
a2:

obj1

m(p1,p2) {..}
m1( ) {..}
m2(p) {..}
h1(p,q) {..}
h2(r) {..}
h3( ) {..}

ha1:
ha2:
ha3:

5.2 Information Hiding and Encapsulation – Encapsulation



23

Peter Müller – Concepts of Object-Oriented Programming

class Coordinate {
public double radius, angle;
// invariant 0 <= radius &&
//  0 <= angle && angle < 360
…
// ensures  0 <= result
public double distOrigin( ) 
{ return radius; }

}

Example: Breaking Consistency (1)

§ Problem:
Exported fields allow 
objects to manipulate 
the state of other objects

§ Solution:
Apply proper information 
hiding Coordinate c = new Coordinate( );

c.radius = -10;
Math.sqrt( c.distOrigin( ) );

5.2 Information Hiding and Encapsulation – Encapsulation

Use 
private



24

Peter Müller – Concepts of Object-Oriented Programming

class BadCoordinate 
extends Coordinate {

public void violate( ) 
{ angle = -1; }

}

class Coordinate {
protected double radius, angle;
// invariant 0 <= radius &&
//  0 <= angle && angle < 360
… 
public double getAngle( ) 
{ return angle; }

}

Example: Breaking Consistency (2)
§ Problem:

Subclasses can 
introduce (new or 
overriding) methods 
that break consistency

§ Solution:
Behavioral subtyping

BadCoordinate c = 
new BadCoordinate( );

c.violate( );
Math.sqrt( c.getAngle( ) );

5.2 Information Hiding and Encapsulation – Encapsulation



25

Peter Müller – Concepts of Object-Oriented Programming

Achieving Consistency of Objects
1. Apply information hiding: 

Hide internal representation wherever possible
2. Make consistency criteria explicit:

Use contracts or informal documentation to 
express consistency criteria (e.g., invariants)

3. Check interfaces:
Make sure that all exported operations of an 
object – including subclass methods – preserve all 
documented consistency criteria

5.2 Information Hiding and Encapsulation – Encapsulation



26

Peter Müller – Concepts of Object-Oriented Programming

Invariants
§ Invariants express 

consistency properties

§ The invariant of object o 
has to hold in:
- Prestates of o’s methods
- Poststates of o’s methods

§ Temporary violations 
possible

class Redundant {
private int a, b;
// invariant a == b
…
public void set( int v ) { 
// prestate: invariant holds
a = v;
// invariant does not hold
b = v;
// poststate: invariant holds

}
}

5.2 Information Hiding and Encapsulation – Encapsulation



27

Peter Müller – Concepts of Object-Oriented Programming

Checks for Invariants: Textbook Solution
§ Assume that all objects o are capsules

- Only methods executed on o can modify o’s state
- The invariant of object o refers only to the encapsulated 

fields of o

§ For each invariant, we have to show
- That all exported methods preserve the invariants 

of the receiver object
- That all constructors establish the invariants 

of the new object

5.2 Information Hiding and Encapsulation – Encapsulation



28

Peter Müller – Concepts of Object-Oriented Programming

Object Consistency in Java
§ Declaring all fields 

private does not 
guarantee encapsulation 
on the level of individual 
objects

§ Objects of same class 
can break the invariant

§ Eiffel supports 
encapsulation on the 
object level
- feature { NONE }

class Redundant {
private int a, b;
private Redundant next;
// invariant a == b
…
public void set( int v ) { … }

public void violate( ) {
// all invariants hold
next.a = next.b + 1;
// invariant of next does not hold

}
}

5.2 Information Hiding and Encapsulation – Encapsulation



29

Peter Müller – Concepts of Object-Oriented Programming

Invariants for Java (Simple Solution)

§ Assumption: The invariants of object o may refer 
only to private fields of o

§ For each invariant, we have to show
- That all exported methods and constructors of class T

preserve the invariants of all objects of T
- That all constructors in addition establish the invariants of 

the new object

5.2 Information Hiding and Encapsulation – Encapsulation



30

References
§ James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and 

Alex Buckley: The Java Language Specification. 2013
http://docs.oracle.com/javase/specs/

§ Peter Müller and Arnd Poetzsch-Heffter: Kapselung und 
Methodenbindung: Javas Designprobleme und ihre 
Korrektur. Java-Informations-Tage, 1998 (in German) 

Peter Müller – Concepts of Object-Oriented Programming

5. Information Hiding and Encapsulation


