
Concepts of Object-Oriented Programming
AS 2022

Exercise 12
Self-Study Exercise Sheet

NOTE: This exercise sheet will not be discussed in an exercise session. We publish
it together with the solution to help you better prepare for the exam. If you have
any questions, please submit them for the Q&A session.

Subtyping and Behavioral Subtyping

Task 1
Consider the class X and its only method foo, where ZZZ is a placeholder for a class name:
class X {

/// requires x > 0 ∧ (¬∃i,j: int | 2 ≤ i,j ≤ x ∧ i * j = x)
/// ensures result > 0 ∧ result % 2 = 0
int foo(final int x){ return (new ZZZ()).foo(x); }

}

Which of the four classes below could be substituted for ZZZ such that no contracts will be
violated?

(a) class A {
/// requires x ≥ 0
/// ensures result = x + 1
int foo(final int x) {...} }

(b) class B {
/// requires true
/// ensures result % 2 = 0
int foo(final int x) {...} }

(c) class C {
/// requires x % 2 = 1
/// ensures result = x + 1
int foo(final int x) {...} }

(d) class D {
/// requires true
/// ensures result = x * (x + 1)
int foo(final int x) {...} }

Inheritance, Dynamic Method Binding, Multiple Inheritance, and Linearization

Task 2 (from a previous exam)
Consider the following Java classes:

class A {
public void foo (Object o) { System.out.println("A"); }

}

class B {
public void foo (String o) { System.out.println("B"); }

}

class C extends A {
public void foo (String s) { System.out.println("C"); }

}

class D extends B {
public void foo (Object o) { System.out.println("D"); }

}

class Main {
public static void main(String[] args) {

A a = new C(); a.foo("Java");
C c = new C(); c.foo("Java");
B b = new D(); b.foo("Java");
D d = new D(); d.foo("Java");

}
}

What is the output of the execution of the method main in class Main?

(a) The code will print A C B D

(b) The code will print A C B B

(c) The code will print C C B B

(d) The code will print C C B D

(e) None of the above

Task 3
Consider the following Java classes and interfaces:
public interface IA { IA g(IA x); }

public interface IB extends IA { IB g(IA x); IA g(IB x); }

public interface IC extends IA { IC g(IB x); }

class B implements IB {
public IB g(IA x) { System.out.print("B1 "); return null; }
public IC g(IB x) { System.out.print("B2 "); return null; }

}

class C implements IC {
public IC g(IA x) { System.out.print("C1 "); return null; }
public C g(IB x) { System.out.print("C2 "); return null; }

}

class Main {
public static void main(String[] args) {

B b = new B();

C c = new C();
IA a1 = b;
IA a2 = c;

IA r1 = a1.g(a2);
IA r2 = a2.g(b);
IC r3 = b.g(b);
IA r4 = c.g(a2);
C r5 = c.g(b);

}
}

What is the output of the execution of the Main.main method? Explain your answer.

Task 4
Consider the following C++ code:
class Person {

bool likesDiamonds;

public: Person (bool l) { likesDiamonds = l; }
};

class Programmer : virtual public Person {
public: Programmer () : Person (false) {}

// diamonds are a programmer’s worst enemy
};

It is expected that !likesDiamonds is an invariant for the class Programmer. Use inheritance
to break this invariant, without altering the above code.

Task 5
Consider the following C++ code:
class Person {

Person *spouse;
string name;

public:
Person (string n) { name = n; spouse = nullptr; }

bool marry (Person *p) {
if (p == this) return false;
spouse = p;
if (p) p->spouse = this;
return true;

}

Person *getSpouse () { return spouse; }
string getName () { return name; }

};

The method marry is supposed to ensure that a person cannot marry him/herself. Without
changing the code above, create a new object that belongs to a subclass of Person and marry
it with itself.
Hint: use multiple inheritance. Explain what happens.

Task 6
Write three C++ classes:

• A class Queue that represents a queue of integers and has an enqueue and a dequeue

method

• A subclass of Queue that also stores (and allows clients to retrieve) the current sum of
all items in the queue, using the enqueue and dequeue methods

• A subclass of Queue that also stores (and allows clients to retrieve) the current product
of all items in the queue, using the enqueue and dequeue methods

We would now like to have a class that supports both functionalities (i.e., stores and allows
clients to retrieve both the sum and the product of all the items in the queue).

• Suppose that we use multiple inheritance and override the enqueue and dequeue meth-
ods of the new class, such that the new methods call the enqueue and dequeue methods
of both of the old classes. Are there any problems with this approach?

• How can you solve this problem in Scala, using traits? Does this fix the above-mentioned
problems from C++?

Task 7
Java 8 allows interface methods to have a default implementation directly in the interface.

A) What are some advantages of this feature?
• What are some advantages of this feature?

• Given the restrictions above, are there any problems left with such an implementation of
multiple inheritance? If so what are they? Propose a solution for each problem you have
identified.

Bytecode Verification

Task 8
Consider the following type hierarchy:

A

B

C1 C2

Suppose that the method f of the class E has the following signature:
A f(boolean b1, boolean b2);

and there are three local variables x, y, z. The maximal stack size is equal to 1.
The method f contains the following code snippet:

0: iload 1
1: ifeq 22
4: iload 2
5: ifeq 12
8: aload 3
9: goto 14

12: aload 4
14: astore 3

15: aload 5
17: astore 4
19: goto 0
22: aload 3
23: areturn

It is known that the state at the beginning of the snippet is:
([], [E,boolean,boolean,C1,C2,A])

Note: In this example, ifeq x pops an integer from the stack and jumps to line x if the integer
is equal to zero.

A) Verify that the code snippet is type safe.

B) Provide the minimal type information that enables the type checking algorithm (i.e., the
algorithm that does not perform a fixpoint computation) to verify the bytecode.

Task 9
The bytecode type inference algorithm rejects a verified program if there are different stack
sizes for input values of a join point.

A) Provide a bytecode program that is rejected because of this limitation but that does not
cause runtime errors.

B) Is it possible to construct a bytecode verification algorithm that avoids this limitation? If
yes, then provide an updated algorithm. If no, then show that this cannot be done.

C) How serious is this restriction from a pragmatic perspective?

Parametric Polymorphism

Task 10
Consider the following Java code:
class Box<T extends Number> {

private T t;

public void set(T t) { this.t = t; }
public T get() { return t; }

}

class Main {
public static void main(String[] args) {

Box<Number> b = new Box<_______>();
b.set(new _______);
_______ c = b.get();
System.out.println(c);

}
}

and recall that Integer <: Number <: Object. How can you fill in the blanks in the Main

.main method so that the code compiles and executes successfully?

(a) Integer, Integer(9), Integer

(b) Integer, Integer(9), Object

(c) Number, Integer(9), Integer

(d) Number, Integer(9), Object

(e) None of the above

Task 11 (extended version of a previous exam question)
Consider the following Java code:

interface Food {}
interface Grass extends Food {}
interface Meat extends Food {}

abstract class Animal<F extends Food> implements Meat {
abstract void eat(F food);
F getLunchBag(){ return lunchBag; };
F lunchBag;

}

final class Sheep extends Animal<Grass> { void eat(Grass f) {} }
final class Wolf extends Animal<Meat> { void eat(Meat f) {} }

class Cage { // You are allowed to modify this class
Cage(Animal<?> animal){ this.animal = animal; }
Animal<?> getAnimal() { return animal; }
Animal<?> animal;

}

class Zoo {
void feedAnimal(Cage cage){ /* code given in each section */ }

<F extends Food> void feed(F food, Animal<F> animal) {
animal.eat(food);

}

void manage(){ /* your code here */ }
}

Clearly a Wolf can eat a Sheep but not the other way around. In the following subtasks we
explore if relaxing some of the Java type rules can lead to a situation where a Sheep can eat
a Wolf - that is, the method eat is called on an object of the dynamic type Sheep with an
argument object of the dynamic type Wolf. All the code you give in the answers to the following
sections is in the same package as the code above, and must type check in standard Java. The
top method that is called in all sections is Zoo.manage. You can assume that method call
arguments are evaluated left to right, and that the program is sequential. You are not allowed
to use reflection, raw types, or type-casts.

A) Assume the following body of Zoo.feedAnimal(Cage cage), which is rejected by the
Java type checker:
{ feed(cage.getAnimal().lunchBag, cage.getAnimal()); }

Make a Sheep eat a Wolf assuming the body of feedAnimal is exempted from the type checker.

Show all necessary code. You are only allowed to change the Cage class and provide the body
of the Zoo.manage method.

B) Assume the following body of Zoo.feedAnimal(Cage cage), which is rejected by the
Java type checker:
{ feed(cage.animal.getLunchBag(),cage.animal); }

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type
checker? If so, show all necessary code, otherwise explain why not. You are only allowed to
change the Cage class, provide the body of the Zoo.manage method, and add new classes.

C) Answer the question in the previous section, assuming the field Cage.animal is final.
Explain your answer. Reminder: Java’s final fields can be assigned to only in the constructor
of the class that declares them.

D) Assume the following body of Zoo.feedAnimal(Cage cage), which is rejected by the
Java type checker:
{ feed(cage.animal.lunchBag, cage.animal); }

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type-
checker? If so, show all necessary code, otherwise explain why not.

E) Which of the above cases, that is safe in the sequential case, is unsafe in a multithreaded
program? For each such case, explain what can happen in the multithreaded case that cannot
happen in the sequential case.

Information Hiding and Encapsulation

Task 12
Consider the class Hour, defined as follows:
public class Hour {

protected int h = 0;
/// invariant h >= 0 && h < 24

public void set(int h) {
if (h >= 0 && h < 24) this.h = h;

}
}

What is the external interface of Hour?
Can we extend the code, without changing the class, so that the invariant is broken? If yes,
provide an example and propose how to fix the class.

Task 13 (from a previous exam)
Consider the following Java program consisting of two packages BTC and B2X:

1 package BTC;
2
3 public class Chain {
4
5 /// ensures result <= 2

6 _______ int max_size() {
7 return 2;
8 }
9 }
10
11 package B2X;
12 import BTC.*;
13
14 public class Chain2x extends Chain {
15
16 /// ensures result <= 4
17 protected int max_size() {
18 return 4;
19 }
20 }

A)What is the most permissive access modifier for the method max_size() in class Chain such
that class Chain2x is a behavioral subtype of Chain? Assume that we do not use specification
inheritance. Fill the blank above with your answer. Explicitly write default for a default
access modifier. Write none if no choice of access modifier allows Chain2x to be a behavioral
subtype of Chain.

B) We now add a class Block and a subclass Block2x to package BTC:
1 package BTC;
2
3 public class Block {
4
5 protected int num;
6 /// invariant: 1 <= num
7
8 public Block(int n) {
9 num = (n < 1 ? 1 : n);
10 }
11
12 }
13
14 public class Block2x extends Block {
15
16 /// invariant: 2 <= num
17 protected Block pred;
18 /// invariant: pred != null ==> pred.num < num
19
20 public Block2x(int n, Block b) {
21 super(n < 1 ? 2 : 2*n);
22 pred = (b != null && 2 <= b.num && b.num < num ? b : null);
23 }
24
25 }

B.1) Do the invariants in Block and Block2x satisfy the requirements of behavioral subtyping?
Assume that we do not use specification inheritance. Briefly explain your answer.
B.2) A class C is correct with respect to its invariants if all constructors of C establish the
invariants of the new object and all exported methods m of C preserve the invariants of the
receiver object, that is, the invariant holds in the poststate of m provided that it held in the
prestate of m. Are the classes Block and Block2x correct with respect to their invariants?
Briefly explain your answer.

C) We now want to extend the code in part B with methods that preserve the invariants of the
class in which they are declared but that make it possible to violate the invariants of Block2x
from client code in another package.
C.1) Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the first invariant of class Block2x (i.e.,
2 <= num) from client code in package B2X. Specify in which class you want to declare
the method, write the method, and write the client code that violates the invariant.
C.2) How can you prevent the code that you wrote in part C.1 from violating the invariant
by further extending the code in part B? You are not allowed to modify existing code. Write
the code that fixes the specific problem you exploited in part C.1.
C.3) Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the second invariant of the class Block2x
(i.e., pred != null ==> pred.num < num) from client code in package B2X in a way that
cannot be prevented by further extending the code in part B. Specify in which class you want
to declare the method, write the method, and write the client code that violates
the invariant.

Aliasing, Readonly Types, and Ownership Types

Task 14
Consider the following class definitions in the context of the read-only type system taught in
the course:
class C {

public D f;
void foo(readonly C other) {...}

}

class D { E g; }

class E {}

Let a and b be non-null references of type C. Which of the following statements is true:
(a) The call a.foo(b) is guaranteed not to change the value of b.f, but may change the

value of b.f.g

(b) The call a.foo(b) is guaranteed not to change the value of b.f and neither the value of
b.f.g

(c) The assignment other.f.g = new E(); may appear in the code of foo

(d) None of the above is correct

Task 15
Annotate the following program with appropriate ownership type modifiers (according to the
topological ownership system) in order to maximize the buffer, the producer, and the con-
sumer encapsulation. This means that the modifiers you choose should increase the depth of
nested ownership context and reduce the number of (non-rep) edges/pointers between different
contexts.

class Producer {
int[] buf;
int n;
Consumer con;

Producer() {
buf = new int[10];

}

void produce(int x) {
buf[n] = x;
n = (n+1)
% buf.length;

}
}

class Consumer {
int[] buf;
int n;
Producer pro;

Consumer(Producer p) {
buf = p.buf;
pro = p;
p.con = this;

}

int consume() {
n = (n+1)
% buf.length;

return buf[n];
}

}

class Context {
Producer p;
Consumer c;

Context() {
p = new Producer();
c = new Consumer(p);

}

public void run() {
for(int i=-5; i<=5;

++i) {
p.produce(i);
if(i%2 == 0)
c.consume();

}
}

}

Task 16
Assume the topological ownership framework taught in the course. Suppose that we want to
create a class SortedLinkedList, with the internal invariant that the values stored in the
nodes are sorted in ascending order.
package SortedLinkedList;
public class SortedLinkedList {

private rep Node head;

/// invariant head != null ==> head.sorted()
...

}
private class Node {

protected peer Node next;
protected int value;

/// pure
boolean sorted() {

return next != null ==> value < next.value && next.sorted()
}

}

Suppose that all the methods in SortedLinkedList are guaranteed to preserve the invariant
of the class. Furthermore, suppose that we want to create iterators for such lists (defined in
the same package):
public class LinkedListIterator { private any Node current_item; ... }

A) Why is the field current_item annotated as any? What drawbacks would the other
possible annotations have?

B) We would like to have the following features:
(i) the invariant of a SortedLinkedList object is guaranteed to hold in any program, except

when one of its methods executes

(ii) LinkedListIterator is a modifying iterator, i.e., it may change the value of the object
it is pointing to

We can’t have both features. Depending on whether or not we impose the “owners as modifiers”
discipline, we can have either (i) or (ii). Explain why this is the case.

C) The fact that (i) and (ii) cannot both hold together is not surprising. A modifying iterator
can break the invariant of the list it is iterating over. However, the “owners as modifiers”
discipline may disallow harmless designs. Write a benign class (perhaps a restricted modifying
iterator), which would not break the invariant of any object of SortedLinkedList, but still
does not compile under “owners-as modifiers”.

Non-null Types and Initialization

Task 17
Consider a Java class Vector, representing a 2 dimensional vector:
public class Vector {

public Number x; // Remark: Number is a super-interface for
public Number y; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y = y;

}
}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:
public double vectorLength(Vector c) {

double x = c.x.doubleValue();
double y = c.y.doubleValue();
return Math.sqrt(x * x + y * y);

}

A) This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

B) Add a pre-condition for the method, specifying what is required to be safe.

C) Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary precondition?

D) Suppose that you are also allowed to upgrade the class Vector to include reasonable non-
null type annotations. How does this affect your previous answer? Do these changes to the
class seem reasonable?

Task 18 (from a previous exam)
This question is about extending the non-null type system to handle arrays (ignoring initializa-
tion). Array types can have two type modifiers, declaring independently the nullity expectations
for the array itself and for the array elements. For any array type T[] the corresponding vari-
ants are T?[]?, T?[]!, T![]?, T![]! (the first modifier applies to the type of objects stored
in the array, while the second modifier concerns the reference to the array object itself).

Assuming that we want to guarantee a statically sound approach to subtyping (that is, we
want to enforce safety at compile time, without using runtime checks), explain whether or not
the following subtype relations are safe. For each relation you consider unsafe, provide a code
snippet illustrating that allowing such a subtype relationship would break the safety guarantees
of the type system (e.g. call a method on a null receiver). For these unsafe cases, explain also
what runtime checks could be made to restore safety.

• T?[]! <: T?[]?

• T![]! <: T![]?

• T![]? <: T?[]?

• T![]! <: T?[]!

NOTE: Object Initialization was discussed only briefly during the lectures and
exercise sessions. The following exercises are left here in case you are interested,
but this topic will not be examined.

Task 19
In the construction type system, when we read from the field of an expression of a committed
type, we obtain a reference of a committed type, i.e., if e1 has a committed type then e1.f

has a committed type as well. Similarly, if e1 has an unclassified type then e1.f also has an
unclassified type. However, if e1 has a free type then e1.f does not have a free type, but
instead has an unclassified type. Explain why the alternative choice would be unsound (given
the existing rules of the system), giving an example of what would go wrong.

Task 20
In the construction type system, a field assignment e1.f = e2 is permitted if the usual sub-
typing holds, and if, in addition either e1 has a free type, or e2 has a committed type.
In particular (in terms of construction types), it is ok for an expression with committed type to
be assigned to the field of an expression with committed type and it is also ok for an expression
of free type to be assigned to the field of an expression of free type. However, it is not permitted
for an expression of unclassified type to be assigned to the field of an expression of unclassified
type. Explain why not, giving an example of what would go wrong if we were to allow this.

Task 21 (from a previous exam)
Consider the following two different implementations of a cyclic list that use the construction
type system taught in the course. The type system rejects both of them. The constructors are
used to clone an existing list. In both cases we establish a link between a node and its clone.

A) Are there lines of code where we are trying to incorrectly assign to a field of a committed
object? If so, in which implementation (left or right) and on which lines?

B) If we allowed these implementations to run, is it possible that a committed object would
become not locally initialized, while a constructor is executing? If so, in which implementation
(left or right) and on which line is there an assignment where this happens?

C) If we allowed these implementations to run, is it possible that a committed object would
become not transitively initialized, while a constructor is executing? If so, in which implemen-
tation (left or right) and on which line is there an assignment where this happens?

D) Without changing the constructor signatures in any way, which two lines of the implemen-
tation on the right can you change and how, so that it typechecks in the construction type
system and achieves the expected result? Write the line numbers and the new content of the
lines.

1 class Node {
2 Node! next; // cyclic
3 Node? copy;
4 int value;
5
6 Node(int x)
7 {
8 next = this;
9 value = x;
10 }
11
12 Node(Node! other)
13 {
14 value = other.value;
15 other.copy = this;
16
17 if(other.next == other)
18 next = this;
19 else
20 next = new Node(other, other.next);
21 }
22
23 Node(Node! first, Node! other)
24 {
25 value = other.value;
26 other.copy = this;
27
28 if(other.next == first)
29 next = other.next.copy;
30 else
31 next = new Node(first, other.next);
32 }
33 }

1 class Node {
2 Node! next; // cyclic
3 Node? original;
4 int value;
5
6 Node(int x)
7 {
8 next = this;
9 value = x;
10 }
11
12 Node(Node! other)
13 {
14 value = other.value;
15 original = other;
16
17 if(other.next == other)
18 next = this;
19 else
20 new Node(this, this, other.next);
21 }
22
23 Node(free Node! first,
24 free Node! prev, Node! other)
25 {
26 value = other.value;
27 original = other;
28 prev.next = this;
29
30 if(other.next == first.original)
31 next = first;
32 else
33 new Node(first, this, other.next);
34 }
35 }

Task 22
Consider the following three classes (declared in the same package):
public class Person {

Dog? dog; // people might have a dog

public Person() { }
}

public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(Person owner, String breed) {
this.owner = owner;
this.bone = new Bone(this);
this.breed = breed;

}
}

public class Bone {
Dog! dog; // Bones must belong to a dog

public Bone(Dog toOwn) {
this.dog = toOwn;

}
}

A) Annotate the code with non-null and construction type annotations where they are neces-
sary. Explain why the code now type-checks according to construction types.

B) Could we provide constructors for the classes Dog and Bone with no parameters?

C) Now, suppose a (possibly mad) scientist wants to extend the implementations of these
classes with some genetic engineering. Firstly, we want to be able to “clone” a bone. We can
add the following method to the class Bone to make a copy of an existing bone and assign it
to another Dog:
public Bone clone(Dog toOwn) {

return new Bone(toOwn);
}

However, our scientist would like to go further and be able to clone dogs. A cloned Dog should
also have its bone cloned along with it, but may be assigned to a new owner: we add the
following extra constructor and method to the class Dog:
Dog(Dog toClone, Person newOwner) {

this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone(this);

}

public Dog clone(Person toOwn) {
return new Dog(this, toOwn);

}

However, our scientist would like to still go further and be able to clone people. A cloned
Person should also have its dog (if any) cloned along with it: we add the following extra
constructor and method to the class Person:
Person(Person toClone) {

Dog? d = toClone.dog;
if(d!=null) {

this.dog = new Dog(d, this);
}

}

public Person clone() {
return new Person(this);

}

Annotate this extra code with appropriate non-null and construction types annotations. You
should guarantee that each of the clone methods (which belong to the public interface) return
a committed reference. You should ensure that your answers guarantee that all of the code
type-checks. Explain your choices.
Hint: think carefully about how constructor calls are typed and what happens if the constructors
are called in more than one situation.

