Concepts of Object-Oriented Programming E'H

AS 2022 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Exercise 12
Self-Study Exercise Sheet

NOTE: This exercise sheet will not be discussed in an exercise session. We publish
it together with the solution to help you better prepare for the exam. If you have
any questions, please submit them for the Q& A session.

Subtyping and Behavioral Subtyping

Task 1

Consider the class x and its only method foo, where 22z is a placeholder for a class name:

class X {
/// requires x > 0 A (—di,j: int | 2 < 1,3 < x A 1 * J = x)

/// ensures result > 0 A result % 2 = 0
int foo(final int x){ return (new ZZZ()).foo(x); }

}

Which of the four classes below could be substituted for zzz such that no contracts will be
violated?

(a) class A {
/// requires x > 0
/// ensures result = x + 1
int foo(final int x) {

(b) class B {
/// requires true
/// ensures result % 2 = 0
int foo(final int x) {...} }

(c) class C {
/// requires x % 2 = 1

/// ensures result = x + 1
int foo(final int x) {...} }
(d) CORRECT:
class D {
/// requires true
/// ensures result = x * (x + 1)

—~
.

—

—

int foo(final int x)

solution

Choice (a) is not valid since 2 is a valid input to X. foo (), but breaks the postcondition if
result = x + 1.

Choice (b) is not valid as it has a weaker postcondition, namely the result is not guaranteed
to be larger than 0.

Choice (c) is not valid as it does not have a weaker precondition. Note that X.foo ()
accepts 1 and all prime numbers. However, this includes 2, which is even and thus not
allowed by the precondition of C.foo ().

Choice (d) has a weaker precondition. Moreover, on strictly positive inputs, it guarantees
strictly positive even outputs. Therefore it has a stronger postcondition.

Inheritance, Dynamic Method Binding, Multiple Inheritance, and Linearization

Task 2 (from a previous exam)

Consider the following Java classes:

class A {
public void foo (Object o) { System.out.println("A"); 1}
}

class B {
public void foo (String o) { System.out.println("B"); 1}
}

class C extends A {
public void foo (String s) { System.out.println("C"); }
}

class D extends B {
public void foo (Object o) { System.out.println("D"); }
}

class Main {

public static void main (String[] args) {
A a = new C(); a.foo("Java");
C c =new C(); c.foo("Java");
B b = new D(); b.foo("Java");
D d = new D(); d.foo("Java");

14

}

What is the output of the execution of the method main in class Main?

(a) The code will print A C B D
(b) CORRECT: The code will print A C B B
(¢) The code will print C C B B
(d) The code will print C C B D
)

(e) None of the above

Task 3

Consider the following Java classes and interfaces:

public interface IA { IA g(IA x); }

public interface IB extends IA { IB g(IA x); IA g(IB x); }
public interface IC extends IA { IC g(IB x); }

class B implements IB ({
public IB g(IA x) { System.out.print ("Bl "); return null; }
public IC g(IB x) { System.out.print("B2 "); return null; }
}

class C implements IC ({
public IC g(IA x) { System.out.print("Cl "); return null; }
public C g(IB x) { System.out.print("C2 "); return null; }

class Main {
public static void main(String[] args) {

B b = new B();
C ¢ = new C();
IA al = b;

IA a2 = c;

IA rl = al.g(a2);

IA r2 = a2.g9(b);
IC r3 = b.g(b);
IA r4 = c.g(a2);

C 5 = c.g(b);
}

What is the output of the execution of the Main.main method? Explain your answer.

— solution
The code will print B1 ¢c1 B2 C1 C2:

al has static type IA, a2 has static type IA: the statically selected method for the first call
is Ia.g (Ia). This method is overriden in B (the dynamic type of al) by B.g (IA).

a2 has static type IA, b has static type B: the statically selected method for the second call
is IAa.g (IAa). This method is overriden in C (the dynamic type of a2) by C.g (IA).

b has static and dynamic type B: the statically selected method for the third call is B.g (IB)
(the most specific method according to the overloading resolution). This method will be
executed at runtime.

c has static and dynamic type C, a2 has static type IA: the statically selected method for
the fourth call is C.g (I2). This method will be executed at runtime.

c has static and dynamic type C, b has static type B: the statically selected method for
the last call is C.g (IB) (the most specific method according to the overloading resolution).
This method will be executed at runtime.

Task 4
Consider the following C++ code:

class Person {

bool likesDiamonds;

public: Person (bool 1) { likesDiamonds = 1; }
}i

class Programmer : wvirtual public Person {
public: Programmer () : Person (false) {}
// diamonds are a programmer’s worst enemy

}i

It is expected that ! 1ikesDiamonds is an invariant for the class Programmer. Use inheritance
to break this invariant, without altering the above code.

— solution

The following C++ code breaks the invariant:

class Jeweler : virtual public Person {
public: Jeweler () : Person (true) {}
// diamonds are a jeweler’s best friend

}i

class JewelerProgrammer : public Jeweler, public Programmer {
public: JewelerProgrammer ()

Person (true), Jeweler (), Programmer () {}
}i
void break () {
JewelerProgrammer* programmer = new JewelerProgrammer () ;

}

The call of the constructor Person (true) in class JewelerProgrammer bypasses the cor-
responding call Person (false) in class Programmer, breaking the invariant.

Task 5
Consider the following C++ code:

class Person {
Person =*xspouse;
string name;

public:
Person (string n) { name = n; spouse = nullptr; }

bool marry (Person *p) {
if (p == this) return false;
spouse = p;
if (p) p->spouse = this;
return true;

}

Person =xgetSpouse () { return spouse; }
string getName () { return name; }

}i

The method marry is supposed to ensure that a person cannot marry him/herself. Without
changing the code above, create a new object that belongs to a subclass of Person and marry

it with itself.

Hint: use multiple inheritance. Explain what happens.

solution

The following C++ code breaks the invariant:

class B : public Person

{ public: B (string n) : Person (n) {} 1};
class C : public Person
{ public: C (string n) : Person (n) {} };
class D : public B, public C
{ public: D (string n) : B(n), C(n) {} };
void marryMyself () {

D me = D("Me");

B xb = &me;

C xc = &me;

b->marry(c);

if (b->getSpouse()) cout << b->getSpouse () ->getName () ;

}

The object me contains an object of class B and an object of class c. The addresses of these
objects are different and they are obtained using the assignments to b and c, respectively.
During the call b->marry (c), the condition p == this compares these two addresses and
finds them not equal.

Task 6
Write three C+-+ classes:

o A class Queue that represents a queue of integers and has an enqueue and a dequeue
method

o A subclass of Queue that also stores (and allows clients to retrieve) the current sum of
all items in the queue, using the enqueue and dequeue methods

« A subclass of Queue that also stores (and allows clients to retrieve) the current product
of all items in the queue, using the enqueue and dequeue methods

We would now like to have a class that supports both functionalities (i.e., stores and allows
clients to retrieve both the sum and the product of all the items in the queue).

e Suppose that we use multiple inheritance and override the enqueue and dequeue meth-
ods of the new class, such that the new methods call the enqueue and dequeue methods
of both of the old classes. Are there any problems with this approach?

e How can you solve this problem in Scala, using traits? Does this fix the above-mentioned
problems from C++7

— solution

Here are the three requested classes:

class Queue {
int[] contents;
int size;

public: Queue() { contents = new int[100]; size = 0; }
void enqueue (int x) {...}
int dequeue() {...}
int getSize() { return size; }
bi
class SumQueue : virtual public Queue {

int sum;

public: SumQueue () : Queue() { sum = 0; }
void enqueue (int x) {
sum += X;
Queue: :enqueue (x) ;

}

int dequeue () {
int r = Queue::dequeue();
sum —= r;

return r;

}

int getSum() { return sum; }

}i
class ProductQueue : virtual public Queue { ... };

class SuperQueue : public ProductQueue, SumQueue {
public: SuperQueue() : Queue(), ProductQueue (), SumQueue() {}
void enqueue (int x) {
ProductQueue: :enqueue (x) ;
SumQueue: :enqueue (x) ;

}

int dequeue () {
int r = ProductQueue: :dequeue () ;
SumQueue: :dequeue () ;
return r;

}i

One problem is that the enqueue and dequeue methods of the superclass are called twice.
An item is enqueued and dequeued twice. Interestingly, this behaves exactly like a queue,
but the capacity is half of the capacity of the original and the getSize method reports the
correct size multiplied by 2.

We can use traits and linearization to ensure that the enqueue/dequeue methods are called
only once. Here is the relevant Scala code:
class Queue {
def enqueue(x: int) = {...}
) e

def dequeue (int = {...}
}

trait Sum extends Queue {

var sum: int = 0
override def enqueue(x:int) = { sum += x; super.enqueue (x); }
override def dequeue(): int = {

var x = super.dequeue();

sum = sum - X;

return x;

}

trait Prod extends Queue {

var count: int = 1
override def enqueue(x: int) = { prod %= x; super.enqueue (x); }
override def dequeue(): int = {

var x = super.dequeue () ;

prod = prod / x; // this assumes no zeros in the queue

return x;

}

Now, an object of type Queue with Sum with Prod has both functionalities, but calls
each underlying enqueue/dequeue method only once. The problems of the multiple in-
heritance solution do not appear here.

Task 7

Java 8 allows interface methods to have a default implementation directly in the interface.

A) What are some advantages of this feature?

— solution

An advantage is that default implementations can be reused in multiple classes. Another
advantage (and the main reason this feature was added to Java) is that default method
implementations allow interface evolution. Without a default implementation, adding new
methods to an interface would break all existing classes that implement that interface, since
they do not contain an implementation for the new methods. The new features removes
this problem.

B) What could be some problems with this feature? How can they be resolved?

— solution

A problem could be inheriting two default implementations of the same method from unre-
lated interfaces. In that case we will have to either choose which implementation we prefer
or write a new implementation that overrides both.

Another issue is that interfaces can now suffer from the fragile base class problem. Compared
to the usual issue with normal Java classes, this is even more dangerous for interfaces with
default methods, since these methods will mostly call other methods of the interface which
are overriden in implementing classes. A very restrictive solution here could be to prohibit
calls to other methods of the interface, within the implementation of default methods.
Alternatively we can “deal” with the problem just like Java deals with the issue in classes
- do nothing and rely on the programmer to be careful.

C) What problems of C++ multiple inheritance are avoided by this new design for Java
interfaces?

solution

We still avoid problems with correct initialization of fields of super types, since only one
super type (the extended class) can have fields, and we can directly call its constructor.
Furthermore there are no problems with field duplication as in non-virtual C++ inheritance.

D) Now suppose that, in addition to method implementations, Java also allowed interfaces
to define fields. Interfaces would not have constructors and interface fields would always be
initialized with a default value.

solution
(This makes multiple inheritance in Java very similar to C4++.

o What are some advantages of this feature?

solution

An advantage is that we can also reuse fields. This will enable more methods with
default implementations in interfaces which could increase code reuse and reduce the
effort required to create new classes.

o Given the restrictions above, are there any problems left with such an implementation of
multiple inheritance? If so what are they? Propose a solution for each problem you have
identified.

solution

These restrictions are somewhat similar to Scala traits, which also do not have spe-
cialized constructors (only a default constructor). In this way we manage to avoid
problems with initialization order. However a problem that still remains is: how many
copies of a field exist? In particular:

— A class might implement the same interface multiple times (for example by
implementing two different interfaces that are a subtype of the same interface).
A solution here might be to only have a single copy of the field (as in C++
virtual inheritance).

— A class might implement two different interfaces that both declare the same field.
Here we could either restrict interfaces to defining only private fields (which are
invisible to the implementor), or we could require some disambiguation syntax
when accessing fields, similar to C++ or the proposed syntax for disambiguating
conflicting default methods in Java 8.

Bytecode Verification

Task 8
Consider the following type hierarchy:

Suppose that the method £ of the class E has the following signature:
A f (boolean bl, boolean b2);
and there are three local variables x, y, z. The maximal stack size is equal to 1.

The method f contains the following code snippet:

O0: iload 1
1: ifeq 22
4. iload 2

5: ifeqg 12
8: aload 3
9: goto 14
12: aload 4
14: astore 3
15: aload 5
17: astore 4
19: goto O
22: aload 3
23: areturn

It is known that the state at the beginning of the snippet is:
([]1, [E,boolean,boolean,Cl,C2,A])

Note: In this example, i feq x pops an integer from the stack and jumps to line x if the integer
is equal to zero.

A) Verify that the code snippet is type safe.

— solution

Here the initial state is ([1, [E,b,b,C1,C2,A]). We denote the type boolean as b for
convenience (in reality the Java bytecode verifier views it as an integer). We show the
solution following the convention from the lecture. To each command we dedicate an input
and an output column. A command may have multiple inputs and outputs, corresponding
to the different iterations of the algorithm. You may also want to see an animated solution
of this task, published separately.

z

—

_[E.b,b,C1,C2,A))

[b], [E,b,b,C1,C2,A])
b

15 | aload 5

]
_[E.b,b.B,C2,A))
[E,b,b,A,A,A])

[—

AJ, [E,b,b,B,C2,A])
Al, [E,b,b,AJAA])

 [EbbAAA)

17 | astore 4 A, [E,b,b,B,C2,A]) J, [E,b,b,B,AAJ)
A, [E,b,b,A,AA])], [E,b,b,AAA])
19 | goto o |, [E,b,b,B,AAl)], [E,b,b,B,AA])
o J, [E,b,b,A A A])], [E,b,b,A,A A])
I, [B,b,b,C1,C2,A])
22 | aload 3], [E,b,b,B,AA]) -
],

([A], [E,b,b,A A A])

23 | areturn

([A], [E,b,b,AA A])

(I [(bl [
0 |iload 1 (I, [E,b,b,B,AA]) ([b], [E,b,b,B,A A])

(0. [EbbAAA) (1b) [EbbA AA)

([b], [E,b,b,C1,C2,A]) (I, [E,b,b,C1,C2,A])
1 |ifeq 22 ([b], [E,b,b,B,A,A]) (1, [E,b,b,B,AA])

([b], [E,b,b,A,A A]) (1, [E,b,b,A A Al)

(1, [E,b,b,C1,C2,A]) ([b], [E,b,b,C1,C2,A])
4 |iload 2 (1, [E,b,b,B,AJA]) ([b], [E,b,b,B,A Al)

(I, [E,b,b,A A A]) ([b], [E,b,b,A,A A])

([b], [E,b,b,C1,C2,A]) (1, [E,b,b,C1,C2,A])
5 | ifeq 12 ([b], [E,b,b,B,A A]) (I, [E,b,b,B,AA])

([b], [E,b,b,A,A A]) (1, [E,b,b,A A A])

(1, [E,b,b,C1,C2,A]) ([C1], [E,b,b,C1,C2,A))
8 | aload 3 (I, [E,b,b,B,AA]) ([B], [E,b,b,B,AA])

(I, [E,b,b,A A Al) ([A], [E,b,b,A,AA))

([C1], [E,b,b,C1,C2,A]) ([C1], [E,b,b,C1,C2,A))
9 | goto 14 ([B], [E,b,b,B,AA]) ([B], [E,b,b,B,AA])

([A], [E,b,b,A,AA)) ([A], [E,b,b,A,AA))

(1, [E,b,b,C1,C2,A]) ([C2], [E,b,b,C1,C2,A))
12 | aload 4 (1, [E,b,b,B,AJA]) ([A], [E,b,b,B,A A])

(I, [E,b,b,A A A]) ([A], [E,b,b,A,A A))

([C1], [E,b,b,C1,C2,A]) -

([B], [E,b,b,C1,C2,A]) (1, [E,b,b,B,C2,A])
14 | astore 3| ([B], [E,b,b,B,AA]) -

([A], [E,b,b,B,A A]) (I, [E,b,b,A A A])

([A], [E,b,b,A,AA)) (1, [E,b,b,A A Al)

(I (

(I (

(I (

(I (

(I (

(I (

(I -

(I

(I

(. [Eb,b,ALAA)

B) Provide the minimal type information that enables the type checking algorithm (i.e., the
algorithm that does not perform a fixpoint computation) to verify the bytecode.

— solution

In the following code, we show the types that are given by the user and those inferred by
the type checker.

// given: ([],I[E,b,b,A,A,A])
O0: iload 1
// ([bl, E,b,b,A,A,A])

1: ifeq 22

// (11, [E,b,b,AARA])

4: iload 2

// [b] 14 [EIbIbIAIAlA]
5: ifeq 12

// (11, [E,b,b,A,A,A])
8: aload 3

// ([A]l, [E,b,b,A,A,A])
9: goto 14

// ([]l [EIbIbIAIAIA])
12: aload 4

// given: ([A]l, [E,b,b,A,A,A7A])
14: astore 3

// ([1, [E,b,b,A,AA])
15: aload 5

// ([A]l, [E,b,b,A,A,A])
17: astore 4

// ([1, [E,b,b,A,AA])
19: goto O

// ([1, [E,b,b,A,AA])
22: aload 3

// ([A]l, [E,b,b,A,A,A])
23: areturn

// ([1, [E,b,b,A,AA])

The requirement to have type information at all basic blocks is a simplification that makes
it easier to determine where the compiler should output the information. Note that some
basic blocks have only a single preceding instruction, but determining this statically could
be hard. Such basic blocks, in theory, do not need type information. Only basic blocks that
are also join points definitely need type information. In our example, the instructions 4, 8,
12, and 22 are indeed the beginnings of basic blocks, but there is exactly one path to enter
these blocks and therefore type information is not really needed since this information will
be identical to the out-state of the single preceding instruction.

Task 9

The bytecode type inference algorithm rejects a verified program if there are different stack
sizes for input values of a join point.

A) Provide a bytecode program that is rejected because of this limitation but that does not
cause runtime errors.

— solution

aload 0
iconst 1
ifne 4
aload O
astore 1

DS w e O

Note: ifne jumps to the given index if the integer value at the top of the stack is not equal
to zero. It pops the value at the top of the stack.

There are two possibilities for the stack size after executing this program. In any of the two
cases, the height of the stack at point 4 is at least 1, and there will be surely a reference
value at the top of the stack.

B) Is it possible to construct a bytecode verification algorithm that avoids this limitation? If
yes, then provide an updated algorithm. If no, then show that this cannot be done.

— solution
We distinguish between two different cases:

1. If the stack sizes are statically known we can construct such an algorithm. The update
is as follows: when joining stacks of different sizes, pick the smallest one, but carry as
extra information the size of the largest one to be used when checking for overflow.
Note that if we just picked the smaller one and used that, we would not prevent stack
overflows at runtime. If we just picked the largest one and made the “extra” values
into dummy values by giving them the “top” type, we might not prevent underflows
when using instructions such as pop () .

2. In general it is not possible to implement an algorithm that can deal with stack sizes
which could vary at runtime. For example, if we push elements on top of the stack
in a loop, then the verifier will have no way of deciding what an upper bound for the
size is. Conversely for loops which pop elements from the stack, the verifier will not
be able to deduce a lower bound for the stack size. These situations can easily result
in over /underflows and should be rejected.

C) How serious is this restriction from a pragmatic perspective?

— solution

This limitation is not essential. If there are two states { [headl, x], [head2]} where
headl and head2 are stacks of the same size, then any following code cannot access x and
it would have been possible to remove x already during bytecode generation. This is indeed
what the Java compiler does. Consider the following Java code:

public int bar () { return 42; }

public int foo (int x) {
if (x == 0) { bar(); 1}
return x;

}

If bar is called then it will put 42 on the stack, but this value is not actually needed for
the final return instruction. The Java compiler would emit as many pop instructions as
necessary to remove unneeded stack elements and make sure that all the paths that reach
return have the same stack length. Here is the bytecode that corresponds to the foo
method:

iload 1

ifne 9

aload O

invokevirtual bar // Call to bar(), puts an int on the stack

: pop // Pop the stack to remove the unnecssary int
iload 1 // Here we get equal stack sizes from both paths
ireturn

O W O U PO

Parametric Polymorphism

Task 10

Consider the following Java code:

class Box<T extends Number> {
private T t;

public void set (T t) { this.t = t; }
public T get() { return t; }
}

class Main {
public static void main(String[] args) {
Box<Number> b = new Box< >();
b.set (new) ;
c = b.get();
System.out.println(c);

}

and recall that Integer <: Number <: Object. How can you fill in the blanks in the Main
.main method so that the code compiles and executes successfully?

Integer, Integer (9), Integer

(a
(

b) Integer, Integer (9), Object

)
)

(c) Number, Integer (9), Integer

(d) CORRECT: Number, Integer (9), Object
)

(e) None of the above

— solution

Choices (a) and (b) are not valid as generic types are invariant in Java. Therefore,
assigning a Box<Integer> to a Box<Number> is illegal.

Choice (c) is not valid since b.get () would return a Number, hence dissallowing the
assignment Integer c = b.get ().

Choice (d) is valid. In the first gap, Number is clearly a valid option. In the second, by the
substitution principle, we can pass an Integer as it is a subtype of Number. Finally, the
assignment Object c = b.get () simply adds an implicit upcast from Number to Object,
which is valid as Number is a subtype of Object.

Choice (e) is not valid as choice (d) is valid.

Task 11 (extended version of a previous exam question)

Consider the following Java code:

interface Food {}
interface Grass extends Food {}
interface Meat extends Food {}

abstract class Animal<F extends Food> implements Meat {
abstract void eat (F food);
F getLunchBag () { return lunchBag; };
F lunchBag;

}

final class Sheep extends Animal<Grass> { wvoid eat (Grass f) {} }

final class Wolf extends Animal<Meat> { void eat (Meat £f) {} }

class Cage { // You are allowed to modify this class
Cage (Animal<?> animal){ this.animal = animal; }
Animal<?> getAnimal () { return animal; }
Animal<?> animal;

}

class Zoo {
void feedAnimal (Cage cage){ /* code given in each section =/ }

<F extends Food> wvoid feed(F food, Animal<F> animal) {
animal.eat (food);

}

void manage () { /* your code here %/ }

}

Clearly a Wolf can eat a Sheep but not the other way around. In the following subtasks we
explore if relaxing some of the Java type rules can lead to a situation where a Sheep can eat
a Wolf - that is, the method eat is called on an object of the dynamic type Sheep with an
argument object of the dynamic type wolf. All the code you give in the answers to the following
sections is in the same package as the code above, and must type check in standard Java. The
top method that is called in all sections is Zoo.manage. You can assume that method call
arguments are evaluated left to right, and that the program is sequential. You are not allowed
to use reflection, raw types, or type-casts.

A) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type checker:

{ feed(cage.getAnimal () .lunchBag, cage.getAnimal()); }

Make a Sheep eat a Wolf assuming the body of feedAanimal is exempted from the type checker.
Show all necessary code. You are only allowed to change the cage class and provide the body
of the Zoo.manage method

— solution

Note that in order to have a Sheep eat a Wolf, Cage.getAnimal () . lunchbag needs to
return a Wolf, and the second call to Cage.getAnimal () to return a Sheep. This is not
possible with the current implementation of Cage.getAnimal (). Therefore the solution is
to change the implementation of said function to return different objects for different calls.
This can be done in several ways.

The following code uses an implicit flag (null field), but using an explicit flag is also
possible. Another possible solution is to count the number of times the function was called
and alternate the objects that are returned.

class Cage {

Animal<?> getAnimal () {

if (animal != null) return animal;
else {
animal = new Sheep();

Wolf wolf = new Wolf ();
wolf.lunchBag = wolf;
return wolf;

class Zoo {

void manage () {
feedAnimal (new Cage (null));

}

B) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type checker:

{ feed(cage.animal.getLunchBag(),cage.animal); }

Can you make a Sheep eat a Wolf if the body of feedAnimal is exempted from the type
checker? If so, show all necessary code, otherwise explain why not. You are only allowed to
change the cage class, provide the body of the zoo.manage method, and add new classes.

— solution

The solution here is to realize that the only code that can be modified that will run be-
tween the two accesses of cage.animal is in the call to cage.animal.getLunchbag ().
Somehow the code will need to change the animal contained in the cage so that the access
of cage.animal returns a Sheep. Clearly the animal cannot be a Sheep all along, as this
would disallow returning a Wwolf from getLunchbag (). The idea is to have an animal ca-
pable of eating a Wolf (a subtype of Animal<Meat> that contains a reference to its cage, in
order to change the contents of its own cage to a Sheep during the call to get Lunchbag () :
class Fox extends Animal<Meat> {

Cage cage;

Fox () {}

void eat (Meat m) {}

) {

Wolf getLunchBox (cage.animal = new Sheep(); return new Wolf (); }
}
class Zoo{
void manage () {
Fox fox = new Fox();
Cage cage = new Cage (fox);

fox.cage = cage;
feedAnimal (cage) ;

C) Answer the question in the previous section, assuming the field Cage.animal is final.
Explain your answer. Reminder: Java’s final fields can be assigned to only in the constructor
of the class that declares them.

— solution
Here we cannot make a sheep eat a wolf.

The reason is that cage.animal evaluates to the same value in both expressions cage
.animal and cage.animal.getLunchBox () and so type safety is not broken and the
Sheep can only be fed with Grass, which the wolf is not.

D) Assume the following body of Zoo.feedAnimal (Cage cage), which is rejected by the
Java type checker:

{ feed(cage.animal.lunchBag, cage.animal); }

Can you make a Sheep eat a Wolf if the body of feedanimal is exempted from the type-
checker? If so, show all necessary code, otherwise explain why not.

solution

This is safe as no methods are called during the evaluation of the arguments, so cage.
animal cannot change.

E) Which of the above cases, that is safe in the sequential case, is unsafe in a multithreaded
program? For each such case, explain what can happen in the multithreaded case that cannot
happen in the sequential case.

solution

The version of feedAnimal in section D is unsafe as another thread might modify cage.
animal between the evaluation of the two expressions. The version in section C is safe.

Information Hiding and Encapsulation

Task 12

Consider the class Hour, defined as follows:

public class Hour {
protected int h = 0;
/// invariant h >= 0 && h < 24

public void set (int h) {
if (h >= 0 && h < 24) this.h = h;
}
}

What is the external interface of Hour?

solution

The external interface is composed only of the method public set (int) since this is the
only public element of the class Hour.

Can we extend the code, without changing the class, so that the invariant is broken? If yes,
provide an example and propose how to fix the class.

— solution

The invariant can be broken easily by extending class Hour and accessing the field h directly.
For instance:

public WrongHour extends Hour ({
public WrongHour () { super.h = -1; }
}

This can be prevented by making the field h private.

O J oy Ul wRE

NeJ

10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

Task 13 (from a previous exam)

Consider the following Java program consisting of two packages BTC and B2x:

package BTC;
public class Chain {

/// ensures result <= 2
int max_size () {
return 2;

}

package B2X;
import BTC. x;

public class Chain2x extends Chain {

/// ensures result <= 4
protected int max_size () {
return 4;

}

A) What is the most permissive access modifier for the method max_size () in class Chain such
that class Chain2x is a behavioral subtype of Chain? Assume that we do not use specification
inheritance. Fill the blank above with your answer. Explicitly write default for a default
access modifier. Write none if no choice of access modifier allows Chain2x to be a behavioral
subtype of Chain.

— solution

The method max_size () in class Chain should have a default access modifier, so that
the method max_size () in class Chain2x does not override it but only hides it. In this
way, even if the method max_size () in class Chain2x has a weaker postcondition than
the method max_size () in class Chain, we still vacuously have behavioral subtyping.

B) We now add a class Block and a subclass Block2x to package BTC:

package BTC;
public class Block {

protected int num;
/// invariant: 1 <= num

public Block (int n) {
num = (n <1 2?2 1 : n);
}
}
public class Block2x extends Block ({
/// invariant: 2 <= num
protected Block pred;

/// invariant: pred != null ==> pred.num < num

public Block2x (int n, Block b) {

21
22
23
24
25

super(n < 1 ? 2 : 2%n);
pred = (b !'= null && 2 <= b.num && b.num < num ? b : null);

}

B.1) Do the invariants in Block and Block2x satisfy the requirements of behavioral subtyping?
Assume that we do not use specification inheritance. Briefly explain your answer.

solution

Yes, the invariants satisfy the requirements of behavioral subtyping because the invariants
in class Block2x are stronger than the invariants in class Block.

B.2) A class C is correct with respect to its invariants if all constructors of C establish the
invariants of the new object and all exported methods m of C preserve the invariants of the
receiver object, that is, the invariant holds in the poststate of m provided that it held in the
prestate of m. Are the classes Block and Block2x correct with respect to their invariants?
Briefly explain your answer.

solution

Yes, classes Block and Block2x are correct with respect to their invariants because their
constructors establish the invariants of the newly created objects (and there are no methods
in the two classes).

C) We now want to extend the code in part B with methods that preserve the invariants of the
class in which they are declared but that make it possible to violate the invariants of Block2x
from client code in another package.

C.1) Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the first invariant of class Block2x (i.e.,
2 <= num) from client code in package B2x. Specify in which class you want to declare
the method, write the method, and write the client code that violates the invariant.

— solution

It is possible to break the invariant by adding the following method to class Block:

public void reset () { num = 1; }

The client code that breaks the invariant is the following:

class Client {
public static void main (String[] args) {
Block2x b2x = new Block2x (1, null);
b2x.reset () ;

C.2) How can you prevent the code that you wrote in part C.1 from violating the invariant
by further extending the code in part B? You are not allowed to modify existing code. Write
the code that fixes the specific problem you exploited in part C.1.

— solution

It is possible to prevent the above problem by overriding the newly added method reset
in class Block2x:

public void reset () { num = 2; }

C.3) Extend the code in part B with a method that preserves the invariants of the class in
which it is declared but makes it possible to violate the second invariant of the class Block2x
(i.e., pred != null ==> pred.num < num) from client code in package B2X in a way that
cannot be prevented by further extending the code in part B. Specify in which class you want
to declare the method, write the method, and write the client code that violates
the invariant.

— solution

It is possible to break the invariant by adding the following method to class Block:

public void incr () { num = num + 1; }

The client code that breaks the invariant is the following:

class Client {
public static void main (String[] args) {
Block b = new Block (2);
Block2x ¢ = new Block2x (2, Db);
b.incr();
b.incr();

Aliasing, Readonly Types, and Ownership Types

Task 14

Consider the following class definitions in the context of the read-only type system taught in
the course:

class C {

public D f;

void foo (readonly C other) {...}
}

class D { E g; }
class E {}

Let a and b be non-null references of type c. Which of the following statements is true:

(a) The call a.foo (b) is guaranteed not to change the value of b.f, but may change the
value of b.f.g

(b) The call a. foo (b) is guaranteed not to change the value of b. £ and neither the value of
b.f.g

(¢) The assignment other.f.g = new E(); may appear in the code of foo

(d) CORRECT: None of the above is correct

— solution

Choices (a) and (b) are not true since we can have aliasing (a and b point to the same
object) and foo () has no restriction on modifying its receiver, therefore it might modify
the value of b. f via the alias a.

Choice (c) is not true since readonly types are transitive, meaning that other.f.g is
readonly since other is readonly. Therefore the assignment is not allowed.

Task 15

Annotate the following program with appropriate ownership type modifiers (according to the
topological ownership system) in order to maximize the buffer, the producer, and the con-
sumer encapsulation. This means that the modifiers you choose should increase the depth of
nested ownership context and reduce the number of (non-rep) edges/pointers between different
contexts.

class Producer { class Consumer { class Context {
int[] buf; int[] buf; Producer pj;
int n; int n; Consumer cj;
Consumer con; Producer pro;

Context () {
Producer () { Consumer (Producer p) { Pp = new Producer (

)
buf = new int[10]; buf = p.buf; c = new Consumer (p);
} pro = p; }
p.con = this;
void produce (int x) { } public void run() {
buf[n] = x; for (int i=-5; 1i<=5;
n = (n+1) int consume () { ++1) |
% buf.length; n = (n+l) p.produce (1) ;
} % buf.length; if(i%2 == 0)
} return buf[n]; c.consume () ;

} }
} }
}

T solution

class Producer { class Consumer { class Context {

rep int[] buf; any int|[] buf; rep Producer pj;
int n; int n; rep Consumer c;
peer Consumer con; peer Producer pro;
Context () {
Producer () { Consumer (peer P = new rep Producer
buf = new rep int Producer p) { ()
[1071; buf = p.buf; c = new rep Consumer
} pro = p; (p);
p.con = this; }
void produce (int x) { }
buf[n] = Xx; public void run() {
n = (n+l) int consume () { for (int i=-5; 1i<=5;
% buf.length; n = (n+l) ++1) |
} % buf.length; p.produce (i) ;
} return buf([n]; if(1%2 == 0)
} c.consume () ;

} }
}
}

We do not have to add ownership modifiers to primitive types. We could have annotated
con in Producer and pro in Consumer as any — in general, this would even allow one
modification less (in the topological system): of an any receiver, only an any field can
be modified, whereas of a peer receiver, both a peer and an any field can be modified.
However, our goal is to maximize encapsulation and therefore peer is the best choice here.

Task 16

Assume the topological ownership framework taught in the course. Suppose that we want to
create a class SortedLinkedList, with the internal invariant that the values stored in the
nodes are sorted in ascending order.

package SortedLinkedList;

public class SortedLinkedList {
private rep Node head;

/// invariant head != null ==> head.sorted()

}

private class Node {
protected peer Node next;
protected int value;

/// pure
boolean sorted() {
return next != null ==> value < next.value && next.sorted()

}
}

Suppose that all the methods in SortedLinkedList are guaranteed to preserve the invariant
of the class. Furthermore, suppose that we want to create iterators for such lists (defined in

the same package):

public class LinkedListIterator { private any Node current_item; ... }

A) Why is the field current_item annotated as any? What drawbacks would the other
possible annotations have?

— solution

If current_item were annotated as rep, then the owner of the node it refers to is the
iterator itself. In this case, the iterator cannot iterate over a SortedLinkedList object [,
because [also owns its nodes. The ownership topology allows at most one owner per object.

If current_item were annotated as peer, then, assuming that current_item has a list
owner [, the owner of the iterator must also be [. This may be OK in topological ownership.
However, if we add “owners as modifiers”, the iterator’s methods that traverse [cannot be
called directly from an object outside [, which defeats the purpose of iterators.

B) We would like to have the following features:

(i) the invariant of a SortedLinkedList object is guaranteed to hold in any program, except
when one of its methods executes

(ii) LinkedListIterator is a modifying iterator, i.e., it may change the value of the object
it is pointing to

We can’t have both features. Depending on whether or not we impose the “owners as modifiers”
discipline, we can have either (i) or (ii). Explain why this is the case.

— solution

If we don’t have “owners as modifiers”, an object may get/hold an any reference to a node
of the list, modify its value field, and break the invariant: (i) is not achieved.

If we do have “owners as modifiers”, then the iterator may not modify the value of the node
it is pointing at, because it holds an any reference to it: (ii) is not achieved.

C) The fact that (i) and (ii) cannot both hold together is not surprising. A modifying iterator
can break the invariant of the list it is iterating over. However, the “owners as modifiers”
discipline may disallow harmless designs. Write a benign class (perhaps a restricted modifying
iterator), which would not break the invariant of any object of sortedLinkedList, but still
does not compile under “owners-as modifiers”.

— solution

We could have an iterator that performs the requested modification iff this does not violate
the invariant:

public class LinkedListIterator {
private any Node f£f;

// some non-modifying methods

public void modifyCarefully (int x) {
if (f.value <= x && (f.next == null || x < f.next.value))
f.value = x;
// benign but does not type check under "owners as modifiers"

}

Non-null Types and Initialization

Task 17

Consider a Java class Vector, representing a 2 dimensional vector:

public class Vector ({
public Number x; // Remark: Number is a super-interface for
public Number y; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y = vy;

}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:
public double vectorLength (Vector c) {

double x = c.x.doubleValue ();

double y = c.y.doubleValue () ;
return Math.sqgrt(x » x + v * Vy);

A) This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

— solution

If ¢ were null, the field dereferences c.x and c.y would generate exceptions. Furthermore,
if c.x were null then method call c.x.doublevalue () would generate an exception.
Similarly, if c¢.y were null.

There is no reasonable answer for the method to return if it encounters null values - any
attempt to deal with these cases would have to return some arbitrary value, since the
question the method is meant to answer is undefined in these cases.

B) Add a pre-condition for the method, specifying what is required to be safe.

solution
(requires: c#null A c.x#null A c.y#null

C) Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary precondition?

— solution
public double vectorLength (Vector! c)
would make the following precondition sufficient:

requires: c.x#null A c.y#null

D) Suppose that you are also allowed to upgrade the class Vector to include reasonable non-
null type annotations. How does this affect your previous answer? Do these changes to the
class seem reasonable?

solution

By changing the types of the fields x and y to be Number! we could guarantee that no
precondition would be required. This seems a reasonable change, since a null Vector
doesn’t seem to be meaningful anyway:.

Task 18 (from a previous exam)

This question is about extending the non-null type system to handle arrays (ignoring initializa-
tion). Array types can have two type modifiers, declaring independently the nullity expectations
for the array itself and for the array elements. For any array type T[] the corresponding vari-
ants are T2 [12, T2 []!, T![12, T![]! (the first modifier applies to the type of objects stored
in the array, while the second modifier concerns the reference to the array object itself).

Assuming that we want to guarantee a statically sound approach to subtyping (that is, we
want to enforce safety at compile time, without using runtime checks), explain whether or not
the following subtype relations are safe. For each relation you consider unsafe, provide a code
snippet illustrating that allowing such a subtype relationship would break the safety guarantees
of the type system (e.g. call a method on a null receiver). For these unsafe cases, explain also
what runtime checks could be made to restore safety.

o T?2[]! <: T?[]7
o T![]! <z T![17
o T![]? <: T?[]7

e TI[]! <: T?2[]!

— solution
e T?[]! <: T?[]172 - Safe
e TI![]! <: T![]7? - Safe

e T![]1?2 <: T?[]12 - Unsafe

Object![]? x = new Object![1]7? {

new Object () // initialization of the first element in the array
bi
Object?[]1? v = Xx;
if (y != null) y[0] = null;
if (x != null) x[0].toString();

Note: in the last two lines we check the non-nullness of x and y because we assume
that the dataflow analysis does not infer that x is non-null after the first statement.

e T![]! <: T?[]1! - Unsafe

Object![]! x = new Object![1]! {
new Object () // initialization of the first element in the array
}i
Object?[]! v = x;
y[0] = null;
x[0].toString();

In both the last two cases, we need to check at runtime if a value stored in an array
with dynamic non-null type for the elements stored in the array is not the null value.
Alternatively, we can check at runtime if a value read from an array with dynamic non-null
type is not the null value.

NOTE: Object Initialization was discussed only briefly during the lectures and
exercise sessions. The following exercises are left here in case you are interested,
but this topic will not be examined.

Task 19

In the construction type system, when we read from the field of an expression of a committed
type, we obtain a reference of a committed type, i.e., if e; has a committed type then e;.f
has a committed type as well. Similarly, if e; has an unclassified type then e;.f also has an
unclassified type. However, if e; has a free type then e;.f does not have a free type, but
instead has an unclassified type. Explain why the alternative choice would be unsound (given
the existing rules of the system), giving an example of what would go wrong.

— solution

Because anything (in terms of construction type annotations) can be stored in the fields
of a free reference, when we read something back from such a field we do not have any
guarantees. In particular, it is possible to store a committed reference in the field of a free
reference and if we could then read it back as free, this would be unsound. For example,
the following code would type-check:

public class C {

cl £, g;
public C(C! x) { // x 1s committed, this is free
this.f = x; // assigning committed to free - ok
free C? y = this.f; // this.f is free - ok
if (y != null) {
y.f = this; // y.f is free, this is free - ok
this.g = x.f.g; // what happens here?

}

public C() { £ = this; g = this; }
}

void client () {
C! ¢ = new C(new C());
c = c.g.g; // NullPointerException

Task 20

In the construction type system, a field assignment e;.f = ey is permitted if the usual sub-
typing holds, and if, in addition either e; has a free type, or es has a committed type.

In particular (in terms of construction types), it is ok for an expression with committed type to
be assigned to the field of an expression with committed type and it is also ok for an expression
of free type to be assigned to the field of an expression of free type. However, it is not permitted
for an expression of unclassified type to be assigned to the field of an expression of unclassified
type. Explain why not, giving an example of what would go wrong if we were to allow this.

— solution

Because unclassified references are supertypes of the corresponding free and committed
references, then if we were to allow this, we might “disguise” the assignment of a free
reference to the fields of a committed reference. For example, the following code would
then type-check, which is unsound:

public class C {

cl £, g;

public C(C! x) { // X 1s committed, this is free
unc C! y = x; // cast committed to unclassified - ok
unc C! z = this; // cast free to unclassified - ok
v.f = z; // assign unc to field of unc (?)
this.g = x.f.g; // what happens here?
this.f = this;

Task 21 (from a previous exam)

Consider the following two different implementations of a cyclic list that use the construction
type system taught in the course. The type system rejects both of them. The constructors are
used to clone an existing list. In both cases we establish a link between a node and its clone.

A) Are there lines of code where we are trying to incorrectly assign to a field of a committed
object? If so, in which implementation (left or right) and on which lines?

solution
left: 15, 26

Note that furthermore line 29 does not type-check according to the non-null type system
(not required as an answer to this question).

B) If we allowed these implementations to run, is it possible that a committed object would
become not locally initialized, while a constructor is executing? If so, in which implementation
(left or right) and on which line is there an assignment where this happens?

solution
(It is not possible for a committed object to become not locally initialized.

C) If we allowed these implementations to run, is it possible that a committed object would
become not transitively initialized, while a constructor is executing? If so, in which implemen-
tation (left or right) and on which line is there an assignment where this happens?

solution
(left: 15, 26

D) Without changing the constructor signatures in any way, which two lines of the implemen-
tation on the right can you change and how, so that it typechecks in the construction type
system and achieves the expected result? Write the line numbers and the new content of the
lines.

solution

20: next = new Node (this, this, other.next);
33: next = new Node (first, this, other.next);

O J oUW

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

1 class Node {
class Node { 2 Node! next; // cyclic
Node! next; // cyclic 3 Node? original;
Node? copy; 4 int value;
int value; 5
6 Node (int x)
Node (int x) 7 |
{ 8 next = this;
next = this; 9 value = x;
value = Xx; 10 }
} 11
12 Node(Node! other)
Node (Node! other) 13 |
{ 14 value = other.value;
value = other.value; 15 original = other;
other.copy = this; 16
17 if (other.next == other)
if (other.next == other) 18 next = this;
next = this; 19 else
else 20 new Node (this, this, other.next);
next = new Node (other, other.next); 21 1}
} 22
23 Node(free Node! first,
Node (Node! first, Node! other) 24 free Node! prev, Node! other)
{ 25 |
value = other.value; 26 value = other.value;
other.copy = this; 27 original = other;
28 prev.next = this;
if (other.next == first) 29
next = other.next.copy; 30 if (other.next == first.original)
else 31 next = first;
next = new Node (first, other.next); 32 else
} 33 new Node (first, this, other.next);
} 34}
35 }
Task 22

Consider the following three classes (declared in the same package):

public class Person {
Dog? dog; // people might have a dog

public Person() { }
}

public class Dog {

Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog (Person owner, String breed) {

this.owner = owner;
this.bone = new Bone (this);
this.breed = breed;

}

public class Bone {

Dog! dog; // Bones must belong to

public Bone (Dog toOwn) {

a dog

this.dog = toOwn;

A) Annotate the code with non-null and construction type annotations where they are neces-
sary. Explain why the code now type-checks according to construction types.

— solution

Here are the annotations for the first version of the code:

public class Person {
Dog? dog; // A person might have a dog

public Person() { }
}

public class Dog {
Person! owner; // A dog must have an owner
Bone! bone; // A dog must have a bone
String! breed; // A dog must have a breed

public Dog (unc Person! owner, unc String! breed) {
this.owner = owner;
this.bone = new Bone (this);
this.breed = breed;

}

public class Bone {
Dog! dog; // Bones must belong to a dog

public Bone (unc Dog! toOwn) {
this.dog = toOwn;
}
}

Note that we choose the parameter to the constructor of Bone to be unclassified - since it
is public, then it probably should be callable with a committed parameter from client code,
but it is also called inside the body of the constructor of Dog with a free parameter. Note
that the returned reference from these two kinds of call will be different - committed in the
former case, and free in the latter. For the Dog constructor, we can also choose to make
the parameters unclassified. Although in this case we do not directly need to permit “free”
arguments being passed to the constructor, we may as well be as permissive as possible.
In general, if it is possible to type a constructor body using “unclassified” argument types
then this should be the preferred choice of signature as it is the most permissive. Note that
the same does not apply for method signatures, since any overriding method definitions are
then also be forced to cope with unclassified arguments, which may be much less convenient
than using committed ones.

B) Could we provide constructors for the classes Dog and Bone with no parameters?

— solution

It isn’t reasonable to have constructors for Dog and Bone without parameters, since we
need some way of initializing their non-null fields. Although it would be possible to do this
by calling e.g., the Person constructor from the Dog constructor, this doesn’t seem very
intuitive (nor would it be easy to establish the intuitive invariants of the code - that a Dog’s

owner refers back to the same Dog, etc.). In particular, if all of the constructors need to
take no parameters, they would need to call each other infinitely. This is because, we can’t
set up a cyclic object structure without some kind of mutual initialization (in this case we
can only build an infinite object structure to satisfy the non-null requirements of all the
objects).

C) Now, suppose a (possibly mad) scientist wants to extend the implementations of these
classes with some genetic engineering. Firstly, we want to be able to “clone” a bone. We can
add the following method to the class Bone to make a copy of an existing bone and assign it
to another Dog:
public Bone clone (Dog toOwn) {

return new Bone (toOwn) ;

}

However, our scientist would like to go further and be able to clone dogs. A cloned Dog should
also have its bone cloned along with it, but may be assigned to a new owner: we add the
following extra constructor and method to the class Dog:
Dog (Dog toClone, Person newOwner) {

this.owner = newOwner;

this.breed = toClone.breed;

this.bone = new Bone (this);

}

public Dog clone (Person toOwn) {
return new Dog(this, toOwn);

}

However, our scientist would like to still go further and be able to clone people. A cloned
person should also have its dog (if any) cloned along with it: we add the following extra
constructor and method to the class Person:
Person (Person toClone) {

Dog? d = toClone.dog;

if (d!=null) {

this.dog = new Dog(d, this);

}

}

public Person clone() {
return new Person (this);

}

Annotate this extra code with appropriate non-null and construction types annotations. You
should guarantee that each of the clone methods (which belong to the public interface) return
a committed reference. You should ensure that your answers guarantee that all of the code
type-checks. Explain your choices.

Hint: think carefully about how constructor calls are typed and what happens if the constructors
are called in more than one situation.

— solution

Here is the fully annotated code for the cloning case:

public class Person {
Dog? dog; // A person might have a dog

public Person () { }

Person (Person! toClone) {
Dog d? = toClone.dog;
if(d !'= null) {
this.dog = new Dog(d, this);
}
}

public Person! clone() {
return new Person (this);
1
}
public class Dog {
Person! owner; // A dog must have an owner
Bone! bone; // A dog must have a bone
String! breed; // A dog must have a breed

public Dog(unc Person! owner, unc String! breed) {
this.owner = owner;
this.bone = new Bone (this);
this.breed = breed;

}

Dog(Dog! toClone, unc Person! newOwner) {
this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone (this);

}

public Dog! clone (Person! toOwn) {
return new Dog(this, toOwn);

}
}

public class Bone {
Dog! dog; // A bone must belong to a dog

public Bone (unc Dog ! toOwn) {
this.dog = toOwn;
}

public Bone! clone (Dog! toOwn) {
return new Bone (toOwn) ;
}
}

Note that all parameters to the new constructors and methods need to have non-null type
annotations, since they are each either dereferenced, used to initialize non-null-declared
fields, or passed on as further parameters to calls that require non-null parameters.

The toClone parameter of the new constructor of Person needs to be a committed pa-
rameter, otherwise when we dereference toClone.dog we will obtain an unclassified value,
which will not be suitable to use as a parameter for the new Dog constructor.

The toClone parameter of the new constructor of Dog needs to be a committed parameter,
since when a field is read from it, we need to obtain a result with a non-null type. How-
ever, the newOwner parameter of the new constructor of Dog needs to be an unclassified
parameter. This is because this parameter is sometimes supplied from a free reference (in
the new constructor of Person) and sometimes from a committed reference (in the clone

method of Dog).

For similar reasons, the toOwn parameter of the constructor of Bone needs to be an unclas-
sified parameter (as was suggested for the previous part of the question). This is because
this parameter is sometimes supplied from a free reference (in the new constructor of Dog)
and sometimes from a committed reference (in the clone method of Bone).

This is an important usage of the unclassified types in the construction types system -
they are useful for constructors which get called sometimes with free and sometimes with
committed parameters. Recall that the type of a new expression is determined from the
static types of the actual parameters at a particular call and not from the formal parameters
in the constructor signature. For example, in the clone method of the Bone class, the new
expression new Bone (toOwn) is given a committed type because the actual parameter
toOwn has a static type which is committed, despite the fact that the constructor argument
type is declared as unclassified in its signature. This means that the same constructor can
produce committed/free results depending on the particular arguments provided in each call
(new expression). In particular, the return type of the clone method can be a committed
reference, as required in the question (the same applies to all of the clone methods in the
code, since they each call constructors with only committed arguments).

