Concepts of Object-Oriented Programming E'H

AS 2022 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Eixercise 7
Linearization, Bytecode Verification, and Parametric Polymorphism
November 18, 2022

Tasks covered in class

Tasks 1-8 will be covered in the exercise session. The remaining tasks are material for self-study.

Task 1

Consider the following declarations in Scala:

class C

trait T extends C
trait U extends C
class D extends C

Find all the types that can be created with or without traits, as well as the subtype relations
between them.

Task 2

Consider the following Scala code:

class Cell {
private var x:Int = 0
def get () = { x }
def set(i:Int) = { x=i }
}

trait Doubling extends Cell {
override def set (i:Int) = { super.set (2x1i) }

}

trait Incrementing extends Cell {
override def set (i:Int) = { super.set (i+1l) }

}

A) What is the difference between the following objects?

val a = new Cell

val b = new Cell with Incrementing

val ¢ = new Cell with Incrementing with Doubling
val d = new Cell with Doubling with Incrementing

B) We try to use the following code to implement a cell that stores the argument of the set
method multiplied by four:

val e = new Cell with Doubling with Doubling

Why does it not work? What does it do? How can we make it work?

C) We propose the following solution to support traits together with behavioral subtyping:
assume C is a class with specification s. Each time we create a new trait T that extends C, we
must ensure that ¢ with T also satisfies S. Show a counterexample that demonstrates that
this approach does not work.

Task 3

Consider a Java class E, which has a method £ with the following signature: void £ ();

The method £ has one local variable v and the following body:

iconst 5
istore 1
aload O
astore 1
iload 1
iconst 1
iadd
istore 1
return

O Joy Ul WwWDNDE O

The maximal stack size is equal to 1. Can the provided bytecode be verified? If so then verify
it, otherwise explain which line of code causes the problem and why.

Task 4

The Java bytecode verifier is more permissive than the Java type system. Provide a program
that demonstrates this.

Task 5

(from a previous exam)

Assume two Java classes A and B, where B is a subclass of A. Consider the following bytecode:

0: aload 1
1: astore 2
2: goto O

and assume that the input to the initial node of this code is ([]1, [A,A,B]), where the first
list indicates the content of the stack and the second list indicates the content of the registers.

After running the bytecode type inference algorithm, what is the inferred input to the initial
node?

(a) (11, [A,A,A])

(b [A,A,B])

c [A,B,B])

(
(d) Nothing is inferred — the type inference does not terminate

)
)
)
)

(e) Nothing is inferred — the type inference rejects the program

Task 6

Consider the following Java code:

interface IFace { void m(); }

class Cll implements IFace ({
public void m() { System.out.println("Cll.m"); 1}
}

class Cl2 implements IFace ({
public void m() { System.out.println("Cl2.m"); }
}

public class Test {

public static void main(String[] args) {
foo(true);
foo (false) ;

}

public static void foo (boolean param) {
IFace iface = null;
if (param) { iface = new Cl1(); }
else { iface = new Cl2(); }
iface.m();

A) What type will be calculated for the variable iface of the method foo during bytecode
verification?

B) When can we decide that iface.m() is safe to call, during bytecode verification or during
execution?

C) Would your answer from B be the same if IFace were a class instead of an interface? What
it IFace were an abstract class?

Task 7
(‘from a previous midterm)

Consider the following Java program, which is rejected by the Java compiler:

class Logger<T> {
public void log (T t) {
System.out.println(t.loggerString());
}

A) If the code above were allowed to compile without errors, what could go wrong? To answer,
write a brief code sample that uses Logger in a way which causes a failure at runtime.

B) How can we fix the class Logger so that it compiles, while preserving its functionality? You
should not modify the method 1og, but otherwise can change or add any code. Your solution
should include all details required to check that Logger is a valid Java class.

C) Assume that class Logger has been fixed to resolve the problem from point A. Let A and
B be two classes such that A is a supertype of B and Logger<A> and Logger are valid
instantiations. Consider the following method:
void foo (Logger<A> logA) {

Logger logB = logA;

logB.log(new B());
}

The Java compiler rejects this code. Is the code safe? That is, if it were allowed to compile,
would it run without failure?

D) Suppose we relax the Java type system rules to allow contravariant generics.

o Will the method foo compile now?

o What are two situations that will require dynamic checks in order to enable contravariant
generics in a language, without limiting what a developer can write in a generic class?

Task 8

(from a previous exam)

A) Recall the Java interface Comparable<T> that was shown in the lecture:

public interface Comparable<T> {
public int compareTo (T other);

}

1 if this is greater than other
The method compareTo returns 0 if this is equal to other
—1 if this is less than other

Suppose we want to turn Comparable into an abstract class with an additional helper method
greaterThan, that returns true if and only if this is greater than other.
Assume the following implementation:

public abstract class Comparable<T> {
public abstract int compareTo (T other);

public boolean greaterThan (T other) {
return other.compareTo (this) < 0;
}
}

A.1) Why does this implementation not type check?

A.2) Fix the type error by changing only the body of greaterThan, while preserving the
intended semantics of the method.

A.3) Fix the type error by changing only the class signature and the signature of the method
compareTo.

B) Suppose we have the following class:

class A<X ;Y > |
X aj;
Y b;

}

Consider a variable v whose type is A<S, T> where S and T satisfy the type bounds that you
have to insert above. Your type bounds have to guarantee that for all sequences of a and b
accesses on v (e.g., v.b.a.b.a.a.b.b) the following two properties hold:

» The static type of a sequence ending in a is S.

o The static type of a sequence ending in b is T.

Tasks not covered in class

Task 9

(from a previous exam)

Consider the following Scala code:

mwwnw

super.bar () + "B"
super.bar () + "C"
= super.bar() + "D"

class A { def bar
trait B extends A { override def bar
trait C extends B { override def bar
trait D extends B { override def bar

—~ o~~~

—_— — — —
Il

e

object Main {
def main() { foo(new A with D with C with B) }
def foo(x: A with D) { println(x.bar()) }

}

What would be the output of the call Main.main ()7

(a) BDB

(b) BBDBC

(c) BBCBD

(d) DB

(e) BDC

(f) BCD

(g) None of the above

Task 10 (from a previous exam)

Consider the following Scala code, which compiles correctly and models some jobs a Person
may have. To work as a Lawyer or as a TaxiDriver, one needs to have a valid license. This
requirement can be expressed through self type annotations added to the traits Lawyer and
TaxiDriver (as in the given code). These annotations are checked by the compiler and allow
the traits Lawyer and TaxiDriver to be mixed only into subtypes of PersonWithLicense.
Self type annotations enable code reuse without subtyping, that is, Lawyer and TaxiDriver
<7 PersonWithLicense, but the methods of the class PersonWithLicense are available and
can be overridden inside these two traits.

class Person { def work(): String = { return "working"; }}
class Student { def work(): String = { return "studying"; }}

class PersonWithLicense extends Person {
def hasValidLicense(): Boolean = { return false; }

}

trait Gardener extends Person {
override def work(): String = { return super.work() + " in the garden";}

}

trait Lawyer extends Person ({
this: PersonWithLicense => // self type annotation

override def work(): String = {

if (this.hasValidLicense ()) return super.work() + " in court";
return "not " + super.work();

}

override def hasValidLicense(): Boolean = { return true; }

}

trait TaxiDriver extends Person ({
this: PersonWithLicense => // self type annotation

override def work(): String = { return super.work() + " in Zurich"; }

}

A) For each of the following two code fragments (A.1 and A.2), if they compile, write the
output of their execution. Otherwise, briefly explain why they are rejected by the compiler.

A.l

val lawyer: Lawyer = new PersonWithLicense with Lawyer with TaxiDriver;
println (lawyer.work ());

A.2

val student: Gardener = new Student with Gardener;

println (student.work());

B) Add one method to any of the given classes or traits except PersonWithLicense (ex-
plicitly write to which one) and fill in the instantiation from the client code below, such that it
compiles and when executed prints not working in Zurich in the garden. You are not
allowed to directly return this string, to use reflection, to define new classes or traits, nor to
modify the given code. If this is not possible, briefly explain why.

// Client code:

val person = new
println (person.work());

The following method should be added to: |

Task 11

Assume we have two Java classes A and B. Consider the following Java class C:

class C {
void foo (A x) {
int y = 7;
this.bar(y, x);

}

B bar(int u, A v) {

}
}

Assume that the method foo gets compiled into bytecode as follows:

iconst 7
istore 2
aload O
aload 2
aload 1
invokevirtual C.bar.B(int,A)

g WP O

Can this bytecode be verified? If so, what is the final state (after line 5)?

Task 12
(from a previous exam)

Consider an incorrect bytecode verifier called Buggy Verifier, in which due to a bug the aload
rule assumes that the loaded element is stored at the bottom of the stack instead of at the top
(see the formal description below), while all the other rules are implemented correctly.

aload n :

(S,R) = (S.R(n), R),

if0<n< MR A R(n) <: Object A\ |S| < MS

Assume that the initial state (stack and registers) is ([], [4, B]), with the maximum number of
registers MR = 2 and the maximum stack size MS = 2. A and B are classes such that B <: A.

A) Write a short bytecode program that is accepted by Buggy Verifier, but is not accepted by
a correct bytecode verifier. Clearly mark the line at which the correct verifier detects an error,
and briefly describe the error.

You can use in your solution all the bytecode operations seen during the lectures. As a reminder,
here are some of them:

e iconst n: create on the stack a value n of type int.

iload n: load on top of the stack an element of type int from the n-th register.

astore n: remove an object from the top of the stack and store it in the n-th register.

goto n: continue the execution from the operation at label n.

B) Is it possible that Buggy Verifier incorrectly accepts a program that overflows the stack, by
pushing more than MS elements? Write yes or no, then motivate your answer.

Task 13
A) Compare dynamic type checking with the dynamic keyword to static type inference with
var in C#:

o Give a correct program which can be realized with dynamic but not with var.

« Give an incorrect program which will be accepted by the compiler with dynamic but not
with var.

B) C#’s most general type is object. Similar to var and dynamic, you can write object x
= ... with an expression of any type on the right-hand side.

o Given a compiling program using var. Can we replace all var keywords by object and
add explicit casts in the right places so that the program compiles and runs as before?

e Given a compiling program using dynamic. Can we replace all dynamic keywords by
object and add explicit casts in the right places so that the program compiles and runs
as before?

For both questions, either informally describe how to do the replacement, or give a counter-
example where the transformation will always produce a program that does not compile or
behaves differently. Note that explicit casts to dynamic are not allowed in the transformation.

C) Assume now a language like C#, but with covariant return types and contravariant param-
eter types. Given four classes A, B, C and D:

class A { int m (int x); }

class B { void m (dynamic x); }
class C { dynamic m (int x); }
class D { dynamic m (dynamic x); }

Develop a subtyping rule for the dynamic type annotation and informally explain the reasoning
behind it. What are the potential subtypes among the four classes above?

Task 14

In this task, you have to implement (using three different approaches) a list in Java that
supports the following two methods (where i represents an index):

public void add(int i, Object el)
public Object get (int 1i)

Discuss the advantages and the limitations of the three different approaches below.
A) Implement the list using only one class without generics.

B) Implement the list using one abstract class/interface and then (some) subclasses that
implement it for different types.

C) Implement the list using generic types.

