Concepts of Object-Oriented Programming E'H

AS 2022 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Exercise 11
Ownership Types, Non-Null Types and Object Initialization
December 16, 2022

Note: Please wait until the lecture on the 15th of December before attempting tasks 6 and 7
because they exercise Construction Types which were not covered in the lecture yet.

Task 1 (from a previous exam)

Consider the following declarations:
class A {

rep B first;

rep B second;

}

class B {
any A obij;
peer B sibling;
}

Which of the following programs are allowed in the topological ownership system? For any
program that is accepted in the topological system, is it also accepted in the owner-as-modifier
system? Assume that none of the objects involved are null. Briefly explain each of your
answers.

Program 1 Program 2 Program 3 Program 4
rep B b; peer A a; rep B b; | any A a; peer A 3;
b = b.sibling; | a = b.obj; a.first.obj = a; | a.first = a.first;

Task 2 (from a previous exam)
The topological ownership system guarantees the following property: if a reference a.f to an

object b is of ownership type rep C, then the object a is the owner of b. Moreover, each object
has at most one owner.

The topological ownership system has a weakness: it does not support ownership transfer, which
is desirable in many situations. Let us try to remedy this situation. Consider the following
incomplete definition of a class T:

class T {
public rep U £, g;
}

and the following program P, which, in addition to the field assignments, implicitly also changes
the owner of the object e2.g from e2 to el:

// implicitly: e2.g.owner = el;

el.f = e2.g;

e2.g = null;

where e1, e2 are two non-null objects of type T.

A) The code P is not allowed in the topological ownership system. Which rule disallows it?

B) Write a code snippet C, such that executing C; P is guaranteed to break the property
described in the first paragraph of this task, after P has finished executing. Do not rely on
any specific implementation of the class U (but you may assume the existence of a constructor
without parameters). You may also add constructors to the class T.

Note that:

e you can assume that P is accepted by the compiler.

e all the code that you write must respect the topological ownership system. P is the only
code that breaks the rules.

e you may not use reflection in your solution.

e you may not use P anywhere in the code that you write.

Task 3

The ownership type system allows the following ownership modifiers: peer, rep, self, lost
and any - to structure the object store and to restrict how references can be passed and used.
We want to extend the ownership type system by adding one more modifier, down. This
modifier is introduced to denote references to objects in the same context as this or in the
context (transitively) owned by an object in the same context as this.

A) Redraw the subtype relation diagram below to include the newly introduced type of the

universe type system.

B) Define the viewpoint adaptation function », such that it is the most specific in terms of
the context information it conveys (i.e., it conveys as much context information as possible),
by filling the table below (for a combination 7, » T the modifier 7, specifies the row and the
modifier Ty the column of the table used).

Recall that the viewpoint adaptation function » is used, in particular, to determine the owner
of an object referenced by a field access. More exactly, if the ownership modifier of e is T,
and the ownership modifier of a field £ is 7%, then the ownership modifier assigned to the field
access e. f is determined as 7. » T}. Note that this applies to field updates as well as field
reads.

> peer | rep any down
self
peer

rep
lost
any

down

C) Consider the following example:

public class Node {
rep Node c;
down Node d;

public void foo () {
this.d.d = this; // should this line typecheck?
this.c.d = this.d; // should this line typecheck?

}

Which of the assignments above should be allowed by the type system? Why?

D) Assuming that you only need to enforce the topological constraints of the type system, how
should the field update rule from lecture 6 slide 64 be adapted to the system extended with the
down modifier? Do you need to make any changes?

Task 4
Consider the following classes, written in a Java-like language with non-null type annotations:

public class Vector ({
public Number! x; // Remark: Number is a supertype for
public Number! vy; // Integer, Double, etc.

public Vector (Number! x, Number! y) {
this.x = x;
this.y = y;
}

public class Vector3D extends Vector {
public Number! z;

public Vector3D (Number! x, Number! y, Number! z) {
super (x, Vy);

this.z = z;
}
double volume () {
return x.doubleValue() x y.doubleValue() x z.doubleValue();

}
}

Which of the following method definitions compile, assuming that the data-flow analysis for
non-null types doesn’t consider the semantics of instanceof? Which would always run safely,
if compiled without typechecking? Explain your answers.

A)

double getVolumel (Vector? c) {
if (¢ instanceof Vector3D) {
return c.volume () ;
} else { return 0.0; }

B)

double getVolume2 (Vector? c) {
if (c instanceof Vector3D) {
return ((!) c).volume();

} else { return 0.0; }

C)

double getVolume3 (Vector? c) {
if (c instanceof Vector3D) {
return ((Vector3D!) c¢).volume();
} else { return 0.0; }

D)
double getVolumed (Vector? c) {
if(c !'= null && (c instanceof Vector3D)) {
return c.volume () ;
} else { return 0.0; }
}
E)
double getVolumeb (Vector? c) {
if(c !'= null && (c instanceof Vector3D)) {
return ((!) c).volume();
} else { return 0.0; }
}
F)
double getVolume6 (Vector? c) {
if(c !'= null && (c instanceof Vector3D)) {
return ((Vector3D!) c).volume ();
} else { return 0.0; }
}
Task 5

Consider the following abstract class, representing a node of a singly-linked list:

public abstract class ListNode<X> {
public abstract void setlItem(X x);
public abstract X getItem();
public abstract ListNode<X> getNext ();
}

Consider now the following implementation using a simple (acyclic) list:

public class AcyclicListNode<X> extends ListNode<X> {
protected X item;
protected AcyclicListNode<X> next;

public AcyclicListNode<X> (X item) {
this.item = item;
this.next = null;

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public AcyclicListNode<X> getNext () { return next; }

}

In this implementation, suppose that an empty list is represented simply by a null reference.
Suppose that a further design intention of this implementation is that each node is guaranteed
to store an X object in its item field.

A) Annotate the class AcyclicListNode<x> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from the
construction type system (free or unc annotations).

B) Now consider an alternative implementation using a cyclic list:

public class CyclicListNode<X> extends ListNode<X> {
protected X item;
protected CyclicListNode<X> next;

public CyclicListNode<X> (X item) {
this.item = item;
this.next = this;

}

public void setItem(X x) { item = x; }

public X getItem() { return item; }

public CyclicListNode<X> getNext () { return next; }
}

In this implementation, the design intention is that every node will always have a next object
in the list (sometimes itself). In this design, we choose to represent an empty list by a single
node whose next field points to itself, but whose item field is nu11. All non-empty lists will
be represented using only nodes whose item fields are non-null.

Annotate the class CyclicListNode<x> with appropriate non-null type annotations to express
these design intentions as far as possible. You do not need any annotations from the construction
type system (free or unc annotations).

C) Now annotate the method signatures in ListNode<x> so that both implementations can
be accommodated. Your solution should be compatible with the usual co/contra-variance rules
for subclass method signatures in a type-safe language.

Task 6

With non-null types, any class type T can be annotated to explicitly declare non-nullity (T!)
and possible-nullity (T?2). In the construction type system, further variants of these types are
introduced, for free, “committed” (the default), and “unclassified” (unc) types. These types
are all treated differently by the type system taught in the lectures.

A) Explain at least one difference between the treatments of a reference of type T! and a
reference of type T2, giving an illustrative example.

B) Explain at least one difference between the treatments of a reference of type free T! and
a reference of type unc T!, giving an illustrative example.

C) Explain at least one difference between the treatments of a reference of type T! (a committed
reference) and a reference of type unc T!, giving illustrative examples.

D) Explain at least two differences between the treatments of a reference of type T! and a
reference of type free T!, giving illustrative examples.

Task 7 (from a previous exam)

Consider the following code in a Java-like language enriched with the non-null type system of
the course:
class Node {

int depth;

public Node! parent;

public Node! left;
public Node! right;

Node (int d) { ... }
}

The constructor shown above, when invoked with a positive integer, as in

new Node (d)

must create a complete binary tree (type Node!) of depth d containing exactly 247! — 1 nodes.
The root node has depth 0. The depth field of every node in the constructed tree must be
initialized to the depth of that node in the tree. The parent field of the root node should
point to the root node itself. Similarly the 1eft and right fields of leaf nodes should point to
the leaf nodes themselves.

A) Write the body of the constructor. You may introduce other constructors and methods.
Make sure that you adhere to the rules of the non-null type system including construction

types.

B) Consider the following method:

void foo (unc Node! o) {
unc Node! x = new Node (2);
free Node! y = new Node(2);
Node! z = new Node (2);
o.right new Node (2) ;

}

Which of these assignments would typecheck? Explain your answer.

