
Concepts of Object-Oriented Programming
AS 2022

Exercise 3
Subtyping

October 14, 2022

Task 1
Consider the following types written in Java-like syntax:
class D { A a; B foo(A a) throws RuntimeException; }

class F { C a; A foo(B a) throws RuntimeException; }

class G { A a; A foo(C a) throws Exception; }

class H { A a; A foo(A a) throws IndexOutOfBoundsException; }

Assume that B <: A, C <: A, and IndexOutOfBoundsException <: RuntimeException

<: Exception. Which of the following subtype relations could be allowed by a sound type
system?

(a) D <: H and H <: G

(b) D <: G and H <: F

(c) D <: G and H <: G

(d) H <: D and H <: F

(e) None of the above

Task 2
Assume the following class definitions in a nominally typed language:
class A {...}
class B extends A {...}

Consider now the following two classes:
class Super {
B foo(B x) { return x; }

}

class Sub extends Super {
A foo(A x) { return x; }

}

According to the rules presented in the lecture, this subtyping is illegal. Briefly explain why
this is the case. However, considering the substitution principle, this subtyping is safe. Why?



Task 3
In this question, we are in a nominal subtyping setting. Some languages have a special type
MyType that represents the dynamic type of this object.

(a) Consider the following code:
class Point {

int x,y;
boolean equals(MyType other) {

return x == other.x && y == other.y;
}

}

class ColorPoint extends Point {
int color;
override boolean equals(MyType other) {

return super.equals(other) && color == other.color;
}

}

This definition requires that the dynamic type of the parameter of equals is a subtype
of the dynamic type of this.

Consider the following definitions that give static types to some variables:
Point p;
ColorPoint cp1, cp2;

and the following calls:
p.equals(cp1) // A
p.equals(cp2) // B
cp1.equals(p) // C
cp2.equals(cp1) // D
cp1.equals(cp2) // E

Assume a sound, statically-checked type system. Which of the calls above must be for-
bidden and which may be allowed? Why?

(b) Answer the same question, assuming that ColorPoint is final, i.e., we may not declare
new classes as its subtypes.

(c) Assume now that the language includes the feature of exact types. An exact type is
written @C where C is a normal type. When we declare that an object o is of type @C,
then o is of type C, but does not belong to any of the other subtypes of C. Assume that
the definitions of our variables are changed as follows:
@Point p;
@ColorPoint cp1;
ColorPoint cp2;

Do not assume that ColorPoint is final. Which calls should be forbidden now? Why?

Hint. The classes shown here may be subclassed in code that is not available. The type-checker
cannot make the assumption that there are no other class definitions elsewhere.

Task 4
Assume we have a Java-like language with contravariant parameters where methods can declare
default values for some of their parameters as follows:



class Person {
public static Person create(

String firstName,
String lastName = "None",
int age = -1

) { ... }
}

After the first parameter that has a default value, all subsequent parameters must also have a
default value. If a method call has i arguments and the called method has j parameters, where
i ≤ j, the default values are used for the parameters i + 1, . . . , j. A call Person.create("
Emma") is therefore equivalent to the call Person.create("Emma", "None", -1).

A call with fewer arguments than parameters without default values leads to an error, and so
does a call with more arguments than there are parameters. Note that a method with default
arguments is a single method, not a set of methods with different numbers of parameters. You
can assume that String is a final class.

A)Consider the following code. Assume C <: B <: A, and that there are the public constants
A_OBJ of type A, B_OBJ of type B, and C_OBJ of type C.
class E {

public B m(B b, A a = C_OBJ) { ... }
}

class E1 extends E {
public C m(A b, A a) { ... }

}

class E2 extends E {
public B m(B b = C_OBJ, A a = A_OBJ, C c = C_OBJ) { ... }

}

class E3 extends E {
public C m(A b = B_OBJ) { ... }

}

A.1 Name all of the subclass declarations shown above that should be rejected by the compiler.
For each of them, write a code snippet that results in a runtime type error if the code is admitted.

A.2 What should be the general type rule for overriding in this language?

B) Now assume the same language also has a new way of passing arguments: When using the
star operator * on an array in an argument list, the elements of the array will be passed as
single arguments. For example, if a is an array containing the values v1 and v2, the call m(x,
y, *a) is equivalent to m(x, y, v1, v2). The expansion of arguments with star operators

happens before default arguments are added to the call.

Consider the following class:
class Foo {

public void bar(A a, B b1, C c = C_OBJ) {...}
}

Let foo be a reference to an object of type Foo. The constants A_OBJ etc. exist as before
and the subtype relation is still C <: B <: A. Assume that the compiler accepts each of the
following code snippets B.1, B.2, and B.3. Consider only cases where the array references
are not null and the arrays do not contain null. For each of them, answer the following two
questions:



1. Is it possible that the call will succeed at runtime? If so, give an example of an array that
will make the call succeed.

2. Is it possible that the call will fail at runtime? If so, specify the properties that must
be checked at runtime and cannot be checked statically to catch all possible type errors
resulting from the call.

B.1
void baz(C[] cArray) {

foo.bar(A_OBJ, *cArray);
}

B.2
void baz(A[] aArray) {

foo.bar(*aArray);
}

B.3
void baz(String[] stringArray) {

foo.bar(A_OBJ, B_OBJ, *stringArray);
}

Task 5
Consider the following code written in a programming language supporting structural subtyping
and the access modifiers from Java:
class A { private A foo(A o) {...} }

class B { protected A foo(A o) {...} }

class C { A foo(A o) {...} }

class D { protected B foo(A o) {...} }

class E { A foo(B o) {...} }

The {...} blocks represent the actual implementation of foo, which you can assume to be
correct, but not necessary identical for all the classes. Which of the following subtype relations
does not hold?

(a) B <: A

(b) E <: A

(c) C <: E

(d) D <: C

(e) More than one of the above

Now also consider the following class:
class F { }

Explain why F ��<: A. Write a client code that would result in a runtime error if subtypes were
allowed to remove private methods from their supertypes (that is, if F were a subtype of A). In
your solution, you can add one new method with the same signature to both A and F.



Task 6
Consider the following declarations in Java:
interface List {

int getSize();
}

interface Iterator {
boolean done();
int getCurrent();
void next();
void attach(List l);

}

List represents sequences of integers and Iterator represents a specific traversal of a list. An
implementation of an iterator starts iterating over the elements of a list by first calling method
attach. The following example prints all the elements found during the iteration:
void foo(Iterator iter, List list) {

iter.attach(list);
while (!iter.done()) {

print(iter.getCurrent());
iter.next();

}
}

Does foo typecheck in Java?

Suppose that we want to have different implementations of lists. For example a linked list and
an array are two different ways to implement the List interface. What problem would that
cause to the implementers of the iterators? What problem would that cause to the method
foo?


