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Tasks covered in class
Tasks 1-7 will be covered in the exercise session. The remaining tasks are material for self-study.

Task 1
(from a previous exam)
Consider the following Java code:
class Car<T> {

private List<? extends T> passengers;

public Car(List<? extends T> passengers) {
this.passengers = passengers;

}
}

Remember that List<E> in Java contains a method addAll with the following signature:
boolean addAll(Collection<? extends E> c)

The method addAll adds all elements of the given collection c to the receiver list and returns
true if the receiver list was modified.

A) We want to add a method to Car<T> that takes a list of passengers p to board the car.
After the method is executed, the field passengers should refer to a list containing both the
previous elements and the elements of p.
public void board(List<? extends T> p)

The following implementation is rejected by the compiler:
public void board(List<? extends T> p) {

this.passengers.addAll(p);
}

Assume the body of board is exempted from the type checker. Provide code that calls board
and inserts a string into a list of integers. Your code has to type-check.

solution
List<Integer> list1 = new LinkedList<Integer>();
Car<Object> car = new Car<Object>(list1);
List<String> list2 = new LinkedList<String>();
list2.add("");
car.board(list2);



B) Give a new implementation of board (without modifying its signature) that implements
the expected functionality and type-checks.

solution
public void board(List<? extends T> p) {

List<T> b = new LinkedList<T>();
b.addAll(this.passengers);
b.addAll(p);
this.passengers = b;

}

C) We now want to add a method to class Car<T> that transfers all passengers from this car
to a given car. Fill in the blank to achieve the least restrictive but correct implementation.
public void transferPassengers(Car<__________> other) {

other.board(this.passengers);
}

solution
? super T

Task 2
Consider the following class relations and the definition of the method foo:
class A {}
class B extends A {}
class C extends B {}

B foo(List<? super B> list1, List<? extends B> list2) {
list1.add(0, list2.get(0));
return list2.get(0);

}

in which the signatures of the methods of List<T> are:
public void add(int index, T value) {...}
public T get(int index) {...}

Can the method body be typechecked with respect to the method signature?

solution
The typechecker knows that
∃ T1 >: B ∧ ∃ T2 <: B

and has to prove that
T2 <: T1 // list1.add(0, list2.get(0))

AND
T2 <: B // return list2.get(0);

The assumptions are generated from the method signature, while the proof obligations are
generated from the method body. This implication holds since T2 <: T1 because of the
transitive property of (<:), and T2 <: B directly from the hypothesis. Thus, the program
typechecks.



Task 3
Consider the following Scala definitions:

class PartialFunction[-F, +T]

class A
class B extends A
class C extends B

class X { def foo(): PartialFunction[B, B] }

Which of the following methods would be a valid override of the above method foo?
(a) override def foo(): PartialFunction[A, A]

(b) CORRECT: override def foo(): PartialFunction[A, C]

(c) override def foo(): PartialFunction[C, A]

(d) override def foo(): PartialFunction[C, C]

(e) None of the above

Task 4
(from a previous exam)

A) Suppose we have a simple list interface in Java:
public interface List<T> {

public int length();
public T get(int i);
public void add(T element);

}

We want to implement a class that concatenates two lists while inserting a separator of some
type A between the two lists:
public class Concatenator<A> {

public void concatenate(A separator, List<A> from, List<A> to) {
to.add(separator);
for (int i = 0; i < from.length(); i++) {

to.add(from.get(i));
}

}
}

We are unsatisfied with our signature of the concatenate method because it is too restric-
tive. In the following subtasks, we change the signature of the concatenate method, without
changing its body, while making sure that the body still type-checks and that only instances
of subtypes of A can be passed as separators.
We will try to make the signature less restrictive in the following sense. A signature s1 of
concatenate is less restrictive than another signature s2 if the following holds: for all types
T1, T2, T3, if arguments of static type T1,List<T2>,List<T3> are accepted by s2, they are also
accepted by s1, but the same property does not hold in the opposite direction.
Do not use raw types (e.g. do not use List without a type variable). Do not use more than
one upper bound per generic variable (e.g. do not use X extends A & B).
A.1) Provide the least restrictive signature using wildcards but no additional type parameters.



solution
public void concatenate(A separator,

List<? extends A> from,
List<? super A> to)

A.2) Provide a signature that is less restrictive than the original signature, without using
wildcards, but with one extra type parameter to concatenate.

solution
Solution 1:
public <B extends A> void concatenate(A separator,

List<B> from,
List<A> to)

or Solution 2:
public <B extends A> void concatenate(B separator,

List<B> from,
List<B> to)

or Solution 3:
public <B extends A> void concatenate(B separator,

List<B> from,
List<A> to)

A.3) Provide the least restrictive signature without using wildcards, but using any number of
type parameters to concatenate.

solution
public <C extends A, B extends C> void concatenate(C separator,

List<B> from,
List<C> to)

B)Provide the least restrictive signature without using wildcards or additional type parameters.
For this subtask, assume that Java provides the variance modifiers known from Scala. Besides
modifying the signature of concatenate, you may add interfaces and let existing interfaces
implement them.

solution
public interface GetList<+A> {

public int length();
public A get(int i);

}
public interface AddList<-A> {

public void add(A element);
}
public interface List<A> extends AddList<A>, GetList<A> {

//...
}
public void concatenate(A separator, GetList<A> from, AddList<A> to) {

//...
}



C) In each the following subtasks (C.1-C.3), compare the restrictiveness of the given pair of
signatures from the previous subtasks (A.1-B). If one signature is less restrictive than the other,
provide an example of static types which are accepted by one but not by the other signature.
For illustration, you can assume that we have three classes X,Y,Z with X <: Y <: Z, and
we are calling concatenate on a class of type Concatenator<Y>. An example which shows
differing restrictiveness then consists of a triple T1, T2, T3 ∈ {X,Y,Z}, such that arguments of
types T1,List<T2>,List<T3> are accepted by one, but not by the other signature.
C.1) Compare solutions A.1 and A.3.

solution
A.3 is incomparable to A.1:

• We can call concatenate(Y, List<X>, List<Z>) in solution A.1, but not in so-
lution A.3.

• We can call concatenate(X, List<X>, List<X>) in solution A.3, but not in so-
lution A.1.

C.2) Compare solutions A.2 and A.3.

solution
• For Solution 1 and 3 in A.2: A.2 is strictly more restrictive than A.3: We can call

concatenate(X, List<X>, List<X>) in solution A.3, but not in solution A.2.

• For Solution 2 in A.2: A.2 is strictly more restrictive than A.3: We can call
concatenate(Y, List<X>, List<Y>) in solution A.3, but not in solution A.2.

C.3) Compare solutions A.1 and B.

solution
A.1 and B have the same restrictiveness.

Task 5
Consider the following Java method:
String concatenate(List<?> list) {

String result = "";
String separator = "";
if(list instanceof List<String>) {

result = "String:";
separator = " ";

}
else if(list instanceof List<Integer>) {

result = "Integers:";
separator = "+";

}
for(Object el : list)

result = result + separator + el.toString();
return result;

}



A) This program is rejected by the Java compiler. Why?
solution

The Oracle and the Open JDK compilers both produce these short errors:

illegal generic type for instanceof
illegal generic type for instanceof

The Eclipse compiler tries to be more helpful:

Cannot perform instanceof check against parameterized type
List<String>. Use the form List<?> instead since further
generic type information will be erased at runtime

Cannot perform instanceof check against parameterized type
List<Integer>. Use the form List<?> instead since further
generic type information will be erased at runtime

This happens because of type erasure in Java.

B) Using the advice given by the Eclipse Java compiler (replace List<...> with List<?>),
rewrite and compile the program. What are the results of executing the method passing each
of the following:

• A list of strings containing only one element "word"?

• A list of Integers containing only one element Integer(1)?

• A list of Objects containing only one element (initialized by new Object())?
solution

First of all, we follow the output of the compiler, and so we rewrite the method to:
String concatenate(List<?> list) {

String result = "";
String separator = "";
if(list instanceof List<?>) {

result = "String:";
separator = " ";

}
else if(list instanceof List<?>) {

result = "Integers:";
separator = "+";

}
for(Object el : list)

result = result + separator + el.toString();
return result;

}

The Java compiler will compile this program without any warning. The output of the
method is:

String: word
String: 1
String: java.lang.Object@3e25a5



C) Is this behaviour consistent with what you would expect from the initial program? If not,
how can you fix it?

solution
No, in the original program we expected:

String: word
Integers:+1
java.lang.Object@3e25a5

We can try to fix it in the following way:
String concatenate(List<?> list) {

String result = "";
String separator = "";
if(list.size() >= 1 )

if(list.get(0) instanceof String) {
result = "Strings:";
separator = " ";

}
else if(list.get(0) instanceof Integer) {

result = "Integers:";
separator = "+";

}
for(Object el : list)

result = result + separator + el.toString();
return result;

}

But this requires to have at least one element in the list. Moreover, there is no guarantee
that if the first element is, for example, a String, that this is not a list of Objects. Therefore,
an improved solution would be to iterate over all the elements of the list and to compute
their smallest common supertype.

D) What would happen if you tried to implement the different cases using method overloading
instead of just one method? Why is this the case?

solution
If we introduce separate methods which differ only by the generic types of their arguments,
we get compile-time errors such as:

Method concatenate(List<? extends Object>) has the same
erasure concatenate(List<E>) as another method in type C

This restriction is imposed to ensure that when choosing which of the overloaded method
definitions to call, we always have a “best fit”. Java class files do however include generic ver-
sions of the method signatures in the class (to enable separate compilation and type-checking
of generic code). For this reason, it might seem surprising that we cannot disambiguate
between these different overloaded methods, since at compile-time the type information is
all available. However, Java also supports raw types - versions of generic classes in which
no type parameter is provided (e.g., List for a List<X> class). These are supported for
backwards compatibility with pre-generics Java code. For this reason, we need to consider
the possibility that a client calling our method provides an argument of raw type List. In
this case, we would not be able to choose between our different method overloads.



E) What happens if you compile and execute the initial program in C# ? Why? (Assume that
we replace the wildcard by a method type parameter T to make it work in C#.)

solution
The program is compiled and we obtain the expected results (“String: word”, “Integers:+1”,
“...”), since in C# there is no type erasure and the information about generics is preserved
at runtime.

Task 6
From a previous exam
Consider the following Java program, which compiles correctly and makes use of generics:

1 class Animal {}
2 class Mammal extends Animal {}
3 class Tiger extends Mammal {}
4
5 class Ship<T extends Animal> {
6 public T content;
7 }
8
9 class Cage<T extends Mammal> {

10 public T content;
11
12 void takeFromShip(Ship<T> other) {
13 this.content = other.content;
14 other.content = null;
15 }
16 }
17
18 class Zoo<T extends Mammal> {
19 void swapTigers(Ship<T> mammalShip, Cage<Tiger> tigerCage) {
20 Tiger tiger = tigerCage.content;
21 Cage<Tiger> tmpCage = new Cage<Tiger>();
22 tmpCage.takeFromShip((Ship<Tiger>) mammalShip);
23 mammalShip.content = (T) tiger;
24 tigerCage.content = tmpCage.content;
25 }
26 }

A) List all the typecasts that the virtual machine will perform at runtime, when executing the
methods takeFromShip and swapTigers. For each cast, write at which line number in the
original program it is performed, and what expression is cast to which type. Do not optimize
away casts that are statically known to succeed.

solution
• At line 13: (Mammal) other.content

• At line 20: (Tiger) tigerCage.content

• At line 22 (Ship) mammalShip

• At line 23: (Mammal) tiger

B) For each of the following two methods (from B.1 and B.2), write if they would compile
without errors if added to the class Cage. If they do not compile, briefly explain why.
B.1



Cage<Tiger>[] getTigers(int number) {
Cage<Tiger>[] cages = new Cage<Tiger>[number];
for (int i = 0; i < number; i++) {

cages[i] = new Cage<Tiger>();
cages[i].content = new Tiger();

}
return cages;

}

B.2
int numCageFields() {

Class cl = Cage<Animal>.class;
return cl.getFields().length;

}

solution
1. Compiler error: array of generic types not allowed.

2. Compiler error: class object of generic types not available, or the type parameter does
not respect the constraint of class Cage.

Task 7
A C++ template class can inherit from its template argument:
template <typename T>
class SomeClass : public T { ... }

A) Using this technique and given the following class definition
class Cell {
public:

virtual void setVal(int x) { x_ = x; }
virtual int value() { return x_; }

private:
int x_;

}

write two template classes that can be used as “mixins” for the class Cell:
• Doubling - doubles the value stored in the cell.

• Counting - counts the number of times the value of the cell was read.
Do not use multiple inheritance. It should be possible to use the classes like this:
auto c = new Doubling<Counting<Cell>>(); // instantiation
c->setVal(5);
c->value(); // returns 10
c->numRead(); // returns 1

solution
template <typename T> class Doubling : public T {
public:

virtual void setVal(int x) override {
T::setVal(x * 2);

}
}



template <typename T> class Counting : public T {
public:

virtual int value() override {
++numRead_;
return T::value();

}
int numRead() { return numRead_; }

private:
int numRead_;

}

B) Describe how the instantiation above will look like.

solution
When the mix-ins are instantiated the following two classes will be generated:
class CountingCell : public Cell {
public:

virtual int value() override {
++numRead_;
return Cell::value();

}
int numRead() { return numRead_; }

private:
int numRead_;

}

class DoublingCountingCell
: public CountingCell {

public:
virtual void setVal(int x) override {

CountingCell::setVal(x * 2);
}

}

C) How does this concept of mixins in C++ differ from Scala traits?

solution
While this concept is similar to Scala traits there are some notable differences. In Scala it
is possible to mix any number of traits in a class and use this in any location of the code
that requires the same class and a subset of the traits:
var x = new X with A with B with C with D
var x1: (X) = x // OK
var x2: (X with A) = x // OK
var x3: (X with B) = x // OK
var x4: (X with A with D with C) = x // OK

Using the proposed solution in C++ however is more restrictive, as there is no way to refer
to the class X with arbitrary mix-ins:
auto x = new D<C<B<A<X>>>>();
X* x1 = x; // OK
A<X>* x2 = x; // OK
B<X>* x3 = x; // Does not compile
C<D<A<X>>>* x4 = x; // Does not compile



This is particularly important for traits that introduce new methods like Counting.

numRead() since any client code that uses this new behavior would have to know exactly
how the trait was mixed-in.
Another problem of the C++ solution is object construction. If the base class does not
have a default constructor then the mix-ins should know to call the correct constructor and
provide appropriate parameters. An alternative here is for the mixin to just inherit the base
class constructors: using T::T; which will allow clients of the mixin to use all constructor
available in the base class. This works fine if the state of the mixin can be initialized with
default values.
A further difference to Scala is that in the C++ solution it is possible to include the same
“trait” more than once:
auto x = new Doubling<Doubling<X>>();
x->setVal(5);
x->value(); // returns 20

An advantage of the C++ solution is that we do not need to declare the base class that the
mix-ins extend. Thus it is possible to use them with different base classes as long as they
have matching virtual methods.



Tasks not covered in class

Task 8
Consider the following Java method:
public void add(Object value, List<?> list) {

list.add(value);
}

The Java compiler rejects this program, with the following message:

The method add(capture#1-of ?) in the type List<capture#1-of ?> is
not applicable for the arguments (Object)

A) Explain why we obtain such an error.

solution
We do not have any relation between the wildcard of List and the types of the values that
we are going to store.

B) Fix the program by using a generic type for the parameter of the method add and con-
straining the wildcard appropriately.

solution
public <V> void add(V value, List<? super V> list) {

list.add(value);
}

We have to use a lower bound constraint because we want the argument of list.add to
be a supertype of V, otherwise we cannot pass it as a parameter.

C) We can use the following alternative signature for add:
public <V> void add(V value, List<V> list)

Is this solution more restricted than the one obtained using the wildcard?

solution
This method has exactly the same constraints as the one obtained using a wildcard. In fact,
the type of value can be a subtype of the type parameter of list, since it is a method
argument. In practice, this means that the generic type of list is a supertype of the type
of value. For instance, consider the following program:
List<Object> list = new ArrayList<Object>();
add("x", list);

This program is accepted because String <: Object, thus V=Object is inferred by the
type checker.

D) Consider the following methods:



public <V> void addAllX(List<V> v, List<? super V> l) {
for(V el : v) l.add(el);

}
public <V> void addAllY(List<V> v, List<V> l) {

for(V el : v) l.add(el);
}

The method addAllX is less restrictive than addAllY. Provide an example to prove this claim.

solution
List<String> listStr = new ArrayList<String>();
List<Object> listObj = new ArrayList<Object>();
addAllX(listStr, listObj);
addAllY(listStr, listObj);

The call to addAllX is accepted by the compiler, while the one to addAllY is rejected,
since it requires that the parametric type of List is exactly String. This happens because
the type parameters are invariant in Java, so V has to be String, but the generic type of
listObj is Object.

Task 9
Consider the following Scala classes:
class A
class B extends A
class P1[+T]
class P2[T <: A]

What are the possible instantiations of P1 and P2? What is the difference between P1[A]

and P2[A] from the perspective of a client? Provide an example to show which class is more
restrictive.

solution
Class P1 can be instantiated with any type, while P2 has to be instantiated with subtypes
of A.
val x : P1[AnyRef] // correct
val y : P2[AnyRef] // wrong: AnyRef is not a subtype of A

Furthermore, class P1 is covariant in its argument:
val x : P1[A] = new P1[B] // correct
val y : P2[A] = new P2[B] // wrong: found P2[B], required P2[A]

Task 10
The type correctness of a C++ template class is checked only when the template is instantiated.
This makes it difficult to develop templates modularly. We can try to make templates more
modular by extending C++ with a new way to declare type arguments:
template<T s_extends SomeClass>
class TemplateClass {...}

Here T is the template argument and SomeClass is the name of a class which is an upper
type bound for T. A template defined in this way may only be instantiated with a class T

that is a structural subtype of SomeClass. Assume that the type checker checks such a



template definition without having any concrete instantiation, under the assumption that T is
a structural subtype of SomeClass.
This new feature is the only place where we introduce structural subtyping in C++, all other
subtype relations in the language remain nominal as usual. Assume in general for any subtyping
mode that method argument types are contravariant and method return types are covariant.
Also, assume that all the methods are public and virtual.

A) Provide a declaration of the Operation class such that the class Compose can be type-
checked before it is instantiated.
template<T s_extends Operation , U s_extends Operation>
class Compose : public Operation {

public:
T* t;
U* u;
int compute(int x) {

return t->compute(u->compute(x));
}

}

solution
class Operation {

int compute(int x);
}

B) We also allow template parameters to occur as type arguments in upper bounds of the same
template:
template<T s_extends Bound<T>>
class TemplateClass{...}

The above limits the possibilities for T to only structural subtypes of Bound<T>.
Consider the classes below:
class A : { void foo(A* a); };
class B : public A { B* bar(); };
class C : public B {};

template <class T>
class FOO {

void foo(T* t){...}
};

template <T s_extends FOO<T>>
class X { ... };

template <class T>
class BAR {

T* bar(){...}
};

template <T s_extends BAR<T>>
class Y { ... };

Which of the following instantiations typecheck:
X<B>
X<C>



Y<B>
Y<C>

Explain why each combination does or does not typecheck.

solution
X can be instantiated with both classes:

• B: B.foo(A*) overrides FOO<B>.foo(B*)

• C: C.foo(A*) overrides FOO<C>.foo(C*)
Y can be instantiated only with B:

• B: B* B.bar() overrides B* BAR<B>.bar()

• C: B* C.bar() does not override C* BAR<C>.bar(), therefore C is not a structural
subtype of BAR<C>

C) As a bound we also allow the template that is being declared:
template <T s_extends X<T>>
class X {

int foo(T* t) {...}
}

Let the class A be:
class A {};

• Write an implementation of the body of the foo method of X such that X typechecks with
the bound above (T s_extends X<T>) and also typechecks if the bound is changed to
T s_extends A.

• Write an implementation of the body of the foo method of X such that X typechecks with
the bound above (T s_extends X<T>), but does not typecheck if the bound is changed
to T s_extends A.

• Write a class B that can be used to instantiate X.

solution
• int foo(T* t) { return t ? 1 : 0; }

• int foo(T* t) { return t->foo(t); }

• class B { int foo(B* b) { return 0; } }

D) A C++ template class can inherit from its template argument:
template <class T>
class Mixin : public T { ... }

Such a template is called a mixin. We want to use the newly introduced template bound feature
<T s_extends ...> in order to create a mixin that is guaranteed only to override existing
methods but not introduce new ones. Show how this can be done.



solution
template <T s_extends Mixin<T>>
class Mixin : public T

Here we restrict the base class T to be a structural subtype of Mixin<T>. Thus all admissible
base classes T, have at least the methods that Mixin<T> defines in its body.
If the mixin tried to add a new method, this would fail. For example:
template <T s_extends Mixin<T>> class Mixin : public T {

public: int foo(int x) { return x + T::foo(x); } // overriden method
int bar(int y) { return 2 + y; } // newly-added method

}

class A { public: int foo(int x) { return 2 * x; } }

The instantiation Mixin<A> fails, because A is not a structural subtype of Mixin<A>, since
A does not have the bar method.


