Concepts of Object-Oriented Programming E'H

AS 2022 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Exercise 7

Solution for Task 13

A) Compare dynamic type checking with the dynamic keyword to static type inference with
var in C#:

e Give a correct program which can be realized with dynamic but not with var.
solution

static void Main () {
dynamic x;
if (condition()) {
x = 5;
} else {
x = "hello";
}

Print (x);

}

static void Print (string str) {
Console.WritelLine (str);

}

static void Print (int wvalue) {
Console.WriteLine (value) ;

}

e Give an incorrect program which will be accepted by the compiler with dynamic but not
with var.

solution

var x = 3;
X.substring(...);

B) C#’s most general type is object. Similar to var and dynamic, you can write object x
= ... with an expression of any type on the right-hand side.

o Given a compiling program using var. Can we replace all var keywords by object and
add explicit casts in the right places so that the program compiles and runs as before?
solution

This will be possible in all cases where we know what the type of the variable declared
with var is. In those cases we can just cast the declared variable in all places where it is
used to the most general type fulfilling all static type constraints on the corresponding
variable. Since the original program compiled, such a type must exist.




In the case of anonymous types however, we do not know the name of the type to
cast to. Consider:

var x = new { a = 108, b = "Hello" };
Console.WritelLine (x.b);

Here, we could change var to object, but we will not be able to cast x in the second
line, because we do not know the type name which the compiler generates for this
anonymous type.

o Given a compiling program using dynamic. Can we replace all dynamic keywords by
object and add explicit casts in the right places so that the program compiles and runs
as before?

solution

Generally we cannot do this, as shown in the following example:

static void Main () {
dynamic x;
if (condition()) {
x = 5;
} else {
x = "hello";

}

Print (x);
}

static void Print (string str) {
Console.WritelLine (str);

}

static void Print (int wvalue) {
Console.WriteLine (value) ;

}

To make this code work with object, we would need to add explicit type checks and
cast the argument to the proper static type.

For both questions, either informally describe how to do the replacement, or give a counter-
example where the transformation will always produce a program that does not compile or
behaves differently. Note that explicit casts to dynamic are not allowed in the transformation.

C) Assume now a language like C#, but with covariant return types and contravariant param-
eter types. Given four classes A, B, C and D:

class A { int m (int x); }

class B { void m (dynamic x); }

class C { dynamic m (int x); }

class D { dynamic m (dynamic x); }

Develop a subtyping rule for the dynamic type annotation and informally explain the reasoning
behind it. What are the potential subtypes among the four classes above?

solution

Following the Substitution principle, dynamic is equivalent to object, in that it accepts
any type. Therefore, the usual subtyping rules apply, treating dynamic as the most general




supertype of all other types. The potential subtyping relations are A <: Ccand D <: C.

There are two different ways of looking at class B. On the one hand, we could just say that
void is a special keyword that indicates the absence of a return value, and thus the method
B.m is unrelated to the other methods. Alternatively, we can allow methods with void
return type to be overwritten by methods with any return type (assuming the parameter
variance rules are satisfied): if a client code is written to expect void (no return value),
then we could instead use a method which returns an arbitrary value and just discard it.
In this second interpretation we will additionally have D <: B.




