© 00O T Wi~

Concepts of Object-Oriented Programming
AS 2022

Task 1

Consider the following Java code:

interface I {}

class C {}

public class Main {

}

Exercise 5

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Behavioral Subtyping and Inheritance

October 28, 2022

public static C getC() {
return new C();

}

public static void main (String[] argv)
C cl = new C();
C c2 = getC{();
I i1l = (I) c1;
I i2 = (I) c2;

{

Try to compile it. If it compiles, try to execute it. What happens? Why? Do you expect to

see the same behavior if T were a class, instead of an interface?

Task 2

Consider the following Java classes:

class Number {
int n;

}

/// requires true

/// ensures n == p
void set (int p)

}

n = pj

{

class UndoNaturalNumber extends Number ({

}

int undo;

/// requires 0 < g
/// ensures n
void set (int q)

}

undo =
n = d;

n;

{

g && undo == old(n)

Is UndoNaturalNumber a behavioral subtype of Number, based on the rules from slide 59 and
617

Task 3

Suppose that we have a database, for which we would like to add an “automated key generation”
feature. This means that each time the user inserts a new tuple, a unique key is automatically
generated for the tuple by the system. A way to do this is to write a counter, which increments
by 1 the value that it returns each time it is called. The method that generates a new key is
called generate.

A) Write a Java class IncCounter and an accompanying specification for such a counter.
B) Annotate the following Java class with specifications and show that it is not a behavioural

subtype of IncCounter.

class DecCounter {

int key;
DecCounter () { key = 0; 1}
int generate () { return key——; }

}

C) Write an abstract class GenerateUniqueKey together with a specification, such that both
IncCounter and DecCounter (with the specifications from tasks A and B) are behavioural
subtypes of GenerateUniqueKey, and such that GenerateUniqueKey.generate generates
unique keys. In the specification, you may use helper methods and fields.

Task 4

From a previous midterm.
Imagine extending the syntax of the Java language to support the following keywords:

e subtypes: used to declare that a class is a subtype of another class (without inheritance)

e inherits: used to declare that a class inherits form another class (without subtyping)

Now consider the following classes:

class A {
public int foo (int n) { return n - 1; }

}

class B {
public int foo (int n) { return n + 1; }
public int bar (int n) { return foo(n) - 1; }

}

class C inherits A subtypes B {
public int bar (int n) { return foo(n); }

}

class Main {
public static void main (String[] args) {
B b = new C();
System.out.println(b.bar (3));

What should happen if we tried to compile the code and execute the method main from the
class Main?

The code should be rejected by the compiler

(a
(

b) The code should compile but the execution should fail

d

)
)
(¢) The code should compile and print 2
(d) The code should compile and print 4
)

(e) None of the above

Task 5

From a previous exam

Consider the following Java classes:

public class B {
public void foo (B obij) {
System.out.print ("B1 ");
}
public void foo (C obij) {
System.out.print ("B2 ");
}
}

class C extends B {
public void foo (B obj) {
System.out.print ("Cl1 ");
}
public void foo (C obj) {
System.out.print ("C2 ");
}

public static void main (String[] args) {
B ¢ = new C{();
B b = new B();
b.foo(c);
c.foo(b);
c.foo(c);

}

What is the output of the execution of method main in class C? Explain your answer.

Task 6 Overloading and Overriding

Consider the following class in Java:

public class Person {
protected double salary;

public Person (double salary) {
this.salary = salary;

}

public boolean haveSameIncome (Person other) {
return this.salary == other.getIncome () ;

}

public double getIncome () {
return salary;
}
}

Consider also the following subclass of Person, a person with a spouse, which takes the salary
of the spouse into account as well:

public class MarriedPerson extends Person {
private double spouseSalary;

public MarriedPerson (double salary, double spouseSalary) {
super (salary);
this.spouseSalary = spouseSalary;

}

public boolean haveSamelIncome (MarriedPerson other) {
return this.getIncome () == other.getIncome () ;

}

public double getIncome () {
return ((salary + spouseSalary) / 2);

}

A) Show an example with the variables p1 and p2, such that pl.haveSameIncome (p2) returns
false, but pl.getIncome () == p2.getIncome () returns true. In other words, fill in the
following blank with valid code, such that the assertion below is also valid. Do not use reflection
and assume that Person has no other subclasses.

Person pl;
MarriedPerson p2;

assert (!pl.haveSameIncome (p2) && pl.getIncome () == p2.getIncome());

B) Propose changes to Person and MarriedPerson such that the assertion will fail.

B.1 Can you change only MarriedPerson.haveSameIncome, such that the assertion will fail
for your solution to subtask A7 If yes, provide the modified method. Otherwise, explain why
this is not possible.

B.2 Can you change only Person.haveSameIncome, such that the assertion will fail for your
solution to subtask A? If yes, provide the modified method. Otherwise, explain why this is not
possible.

