
Concepts of Object-Oriented Programming
AS 2022

Exercise 7
Linearization, Bytecode Verification, and Parametric Polymorphism

November 18, 2022

Tasks covered in class
Tasks 1-8 will be covered in the exercise session. The remaining tasks are material for self-study.

Task 1
Consider the following declarations in Scala:
class C
trait T extends C
trait U extends C
class D extends C

Find all the types that can be created with or without traits, as well as the subtype relations
between them.

solution
We can create the following types:
C, D, T, U,
C with T (same type as T, because T extends C),
C with U (same type as U, because U extends C),
C with T with U (same type as C with U with T),
D with T,
D with U,
D with T with U (same type as D with U with T).

The subtype relation is reflexive and transitive. Moreover, let X ′, Y ′ be the two base classes
from which we derive X and Y by mixing in traits. Let A be the set of all traits mixed into
the first class and B the set of all traits mixed into the second class. The rule is as follows:

X <: Y if and only if X ′ <: Y ′ and A ⊇ B.

Note: The above rule applies in our example, but it is not a general rule for subtyping
in the presence of traits. Note that even if D with T with U and D with U with T

are equivalent types (subtypes of each other), they can describe different behavior, causing
subtle problems for behavioral subtyping.
We can also visualize the types and the subtype relations between them (the edges corre-
sponding to reflexive and transitive subtype relations were omitted):

C

C with T = T C with U = U

D

C with T with U = C with U with T

D with T D with U

D with T with U = D with U with T

Task 2
Consider the following Scala code:
class Cell {

private var x:Int = 0
def get() = { x }
def set(i:Int) = { x=i }

}

trait Doubling extends Cell {
override def set(i:Int) = { super.set(2*i) }

}

trait Incrementing extends Cell {
override def set(i:Int) = { super.set(i+1) }

}

A) What is the difference between the following objects?
val a = new Cell
val b = new Cell with Incrementing
val c = new Cell with Incrementing with Doubling
val d = new Cell with Doubling with Incrementing

solution
Object a behaves like a normal cell. Object b is also a cell, but it increases the stored value
by 1. The interesting difference is between c and d. They are both cells. They have mixed
in exactly the same traits. However, calling set(i) has a different effect on them: it stores
2i+1 in the first one and 2(i+1) in the second one.

B) We try to use the following code to implement a cell that stores the argument of the set
method multiplied by four:

val e = new Cell with Doubling with Doubling

Why does it not work? What does it do? How can we make it work?

solution
Trait Doubling will not get mixed in twice. Scala rejects this statically.
A possible attempt to bypass the problem is to create a new trait Doubling2 that behaves
exactly like Doubling:
trait Doubling2 extends Doubling
val e = new Cell with Doubling with Doubling2

The code passes through, but dynamically e behaves as if it were a Cell with Doubling.
Scala lets the code go through, because Doubling2 may introduce new functionalities, but
does not include Doubling twice in the linearization.
Our last try (the one that works), is to create a whole new trait from scratch, without
reusing existing code:
trait Doubling3 extends Cell {

override def set(i:Int) = { super.set(2*i) }
}
val e = new Cell with Doubling with Doubling3

And now e.set quadruples its argument, as expected.

C) Find a modularity problem in the above, or a similar, situation. Hint: a client that is given
a class C does not necessarily know if a trait T has been mixed in that class.

solution
A problem is that a method that accepts Cell with Doubling with Incrementing as
an argument could also be passed a class of the type Cell with Incrementing with

Doubling - so what it can actually assume about its inputs is less than would be expected.

D) We propose the following solution to support traits together with behavioral subtyping:
assume C is a class with specification S. Each time we create a new trait T that extends C, we
must ensure that C with T also satisfies S. Show a counterexample that demonstrates that
this approach does not work.

solution
Consider the following example:
class Cell {

var x:Int = 0
// ensures x <= i + 1
def set(i:Int) = { x=i }

}

trait Incrementing extends Cell {
override def set(i:Int) = { super.set(i+1) }

}

trait Incrementing2 extends Cell {
override def set(i:Int) = { super.set(i+1) }

}

Both Cell with Incrementing and Cell with Incrementing2 are behavioral sub-
types of Cell. But Cell with Incrementing with Incrementing2 is not a behavioral
subtype of Cell, as the following example shows:
val c: Cell = new Cell with Incrementing with Incrementing2
c.set(4)
assert(c.x <= 5) // fails, postcondition of Cell.set not fulfilled

Task 3
Consider a Java class E, which has a method f with the following signature: void f();

The method f has one local variable v and the following body:
0: iconst 5
1: istore 1
2: aload 0
3: astore 1
4: iload 1
5: iconst 1
6: iadd
7: istore 1
8: return

The maximal stack size is equal to 1. Can the provided bytecode be verified? If so then verify
it, otherwise explain which line of code causes the problem and why.

solution
In the following, we try to verify the bytecode. T is an uninitialized register. A state is
represented by a pair (S,R) where S describes the content of the stack and R describes the
content of the registers.
// ([],[E,T]) -- initial state
iconst 5
// ([int],[E,T])
istore 1
// ([], [E,int])
aload 0
// ([E], [E,int])
astore 1
// ([], [E,E])
iload 1
// ERROR!
...

The error happens because iload 1 expects that the local variable has the type integer,
but its type is E.

Task 4
The Java bytecode verifier is more permissive than the Java type system. Provide a program
that demonstrates this.

solution
Here is an example of such a program:

x = true;
x = 5;

The type of the variable can change in the bytecode but not in the source code.

Task 5
(from a previous exam)
Assume two Java classes A and B, where B is a subclass of A. Consider the following bytecode:
0: aload 1
1: astore 2
2: goto 0

and assume that the input to the initial node of this code is ([],[A,A,B]), where the first
list indicates the content of the stack and the second list indicates the content of the registers.
After running the bytecode type inference algorithm, what is the inferred input to the initial
node?

(a) CORRECT: ([],[A,A,A])

(b) ([],[A,A,B])

(c) ([],[A,B,B])

(d) Nothing is inferred – the type inference does not terminate

(e) Nothing is inferred – the type inference rejects the program

solution
Running the bytecode type inference algorithm once from instruction 0 to instruction 2
results in retrieving the object in the second register and storing it in the third register.
This object is of type A, so the result propagated to instruction 0 after the jump is ([],[A,
A,A]). We now need to join this state with the initial state ([],[A,A,B]), by computing
the pointwise smallest common supertype (scs). Since B is a subclass of A, (scs(A, B))

= A. Therefore the resulting input to the next iteration of the algorithm is ([],[A,A,A]).
This is then propagated to the jump instruction, reaching the fixed point. (The inference
algorithm runs twice through instructions 0 and 1, and once through instruction 2, before
reaching the fixed point.)

Task 6
Consider the following Java code:
interface IFace { void m(); }

class Cl1 implements IFace {
public void m() { System.out.println("Cl1.m"); }

}
class Cl2 implements IFace {

public void m() { System.out.println("Cl2.m"); }
}

public class Test {
public static void main(String[] args) {

foo(true);
foo(false);

}
public static void foo(boolean param) {

IFace iface = null;
if (param) { iface = new Cl1(); }
else { iface = new Cl2(); }
iface.m();

}
}

A) What type will be calculated for the variable iface of the method foo during bytecode
verification?

solution
The inference algorithm does not take interfaces into consideration, so the calculated type
for the variable iface is Object.

B) When can we decide that iface.m() is safe to call, during bytecode verification or during
execution?

solution
As the inferred type of the iface is Object, the decision can be made only during execution.

C) Would your answer from B be the same if IFace were a class instead of an interface? What
if IFace were an abstract class?

solution
In both cases the inferred type of the iface would be IFace. The decision about the safety
of the call could be made during bytecode verification.

Task 7
(from a previous midterm)
Consider the following Java program, which is rejected by the Java compiler:
class Logger<T> {

public void log(T t) {
System.out.println(t.loggerString());

}
}

A) If the code above were allowed to compile without errors, what could go wrong? To answer,
write a brief code sample that uses Logger in a way which causes a failure at runtime.

solution
Logger<Object> l = new Logger<Object>();
l.log(new Object());

B) How can we fix the class Logger so that it compiles, while preserving its functionality? You
should not modify the method log, but otherwise can change or add any code. Your solution
should include all details required to check that Logger is a valid Java class.

solution
interface Loggable {

String loggerString();
}

class Logger<T extends Loggable> { ... }

C) Assume that class Logger has been fixed to resolve the problem from point A. Let A and
B be two classes such that A is a supertype of B and Logger<A> and Logger are valid
instantiations. Consider the following method:
void foo(Logger<A> logA) {

Logger logB = logA;
logB.log(new B());

}

The Java compiler rejects this code. Is the code safe? That is, if it were allowed to compile,
would it run without failure?

solution
Yes, the code is safe.

D) Suppose we relax the Java type system rules to allow contravariant generics.
• Will the method foo compile now?

solution

Yes.

• What are two situations that will require dynamic checks in order to enable contravariant
generics in a language, without limiting what a developer can write in a generic class?

solution

– When calling methods of generic classes, it would be necessary to check whether
the dynamic type of the result is a subtype of the static type of the variable
where the result is stored.

– When reading fields of generic classes, it would be necessary to check whether
the dynamic type of the field is a subtype of the static type of the variable where
the object is stored.

Task 8
(from a previous exam)

A) Recall the Java interface Comparable<T> that was shown in the lecture:
public interface Comparable<T> {

public int compareTo(T other);
}

The method compareTo returns


1 if this is greater than other
0 if this is equal to other

−1 if this is less than other

Suppose we want to turn Comparable into an abstract class with an additional helper method
greaterThan, that returns true if and only if this is greater than other.
Assume the following implementation:
public abstract class Comparable<T> {

public abstract int compareTo(T other);

public boolean greaterThan(T other) {
return other.compareTo(this) < 0;

}
}

A.1) Why does this implementation not type check?

solution
T requires an upper bound that provides compareTo.

A.2) Fix the type error by changing only the body of greaterThan, while preserving the
intended semantics of the method.

solution
return this.compareTo(other) > 0;

A.3) Fix the type error by changing only the class signature and the signature of the method
compareTo.

solution
Let the class signature be Comparable<T extends Comparable<T>> and the signature
of compareTo be compareTo(Comparable<T> other).

B) Suppose we have the following class:
class A<X ,Y > {

X a;
Y b;

}

Consider a variable v whose type is A<S,T> where S and T satisfy the type bounds that you
have to insert above. Your type bounds have to guarantee that for all sequences of a and b

accesses on v (e.g., v.b.a.b.a.a.b.b) the following two properties hold:
• The static type of a sequence ending in a is S.

• The static type of a sequence ending in b is T.

solution
class A<X extends A<X,Y>,Y extends A<X,Y>> {

X a;
Y b;

}

Tasks not covered in class

Task 9
(from a previous exam)
Consider the following Scala code:
class A { def bar() = "" }
trait B extends A { override def bar() = super.bar() + "B" }
trait C extends B { override def bar() = super.bar() + "C" }
trait D extends B { override def bar() = super.bar() + "D" }

object Main {
def main() { foo(new A with D with C with B) }
def foo(x: A with D) { println(x.bar()) }

}

What would be the output of the call Main.main()?
(a) BDB

(b) BBDBC

(c) BBCBD

(d) DB

(e) CORRECT: BDC

(f) BCD

(g) None of the above

solution
The super calls are resolved based on the linear order.
L(new A with D with C with B) = L(B), L(C), L(D), L(A) (*)
L(A) = A

L(D) = D, B, A

L(C) = C, B, A

L(B) = B, A

We now substitute the linearizations of A, D, C, B in (*) (in this order) and make sure
the same class/trait is not included twice:
L(new A with D with C with B) = L(B), L(C), L(D), A

L(new A with D with C with B) = L(B), L(C), D, B, A

L(new A with D with C with B) = L(B), C, D, B, A

L(new A with D with C with B) = C, D, B, A

The call x.bar() corresponds to C.bar(), as C is the first in the linear order.
C.super().bar() is D.bar(), as D follows after C in the linear order.

Task 10 (from a previous exam)
Consider the following Scala code, which compiles correctly and models some jobs a Person

may have. To work as a Lawyer or as a TaxiDriver, one needs to have a valid license. This
requirement can be expressed through self type annotations added to the traits Lawyer and
TaxiDriver (as in the given code). These annotations are checked by the compiler and allow

the traits Lawyer and TaxiDriver to be mixed only into subtypes of PersonWithLicense.
Self type annotations enable code reuse without subtyping, that is, Lawyer and TaxiDriver

��<: PersonWithLicense, but the methods of the class PersonWithLicense are available and
can be overridden inside these two traits.
class Person { def work(): String = { return "working"; }}

class Student { def work(): String = { return "studying"; }}

class PersonWithLicense extends Person {
def hasValidLicense(): Boolean = { return false; }

}

trait Gardener extends Person {
override def work(): String = { return super.work() + " in the garden";}

}

trait Lawyer extends Person {
this: PersonWithLicense => // self type annotation

override def work(): String = {
if(this.hasValidLicense()) return super.work() + " in court";
return "not " + super.work();

}

override def hasValidLicense(): Boolean = { return true; }
}

trait TaxiDriver extends Person {
this: PersonWithLicense => // self type annotation

override def work(): String = { return super.work() + " in Zurich"; }
}

A) For each of the following two code fragments (A.1 and A.2), if they compile, write the
output of their execution. Otherwise, briefly explain why they are rejected by the compiler.
A.1
val lawyer: Lawyer = new PersonWithLicense with Lawyer with TaxiDriver;
println(lawyer.work());

solution
The code compiles: the traits Lawyer and TaxiDriver are mixed into a sub-
type of PersonWithLicense, as required by the self type annotation and new

PersonWithLicense with Lawyer with TaxiDriver <: Lawyer.
The linearization of new PersonWithLicense with Lawyer with TaxiDriver is
TaxiDriver, Lawyer, PersonWithLicense, Person. When executed, the code prints:
working in court in Zurich

A.2
val student: Gardener = new Student with Gardener;
println(student.work());

solution
The code does not compile, because Student is not a subclass of Person (the superclass
of the trait Gardener)

B) Add one method to any of the given classes or traits except PersonWithLicense (ex-
plicitly write to which one) and fill in the instantiation from the client code below, such that it
compiles and when executed prints not working in Zurich in the garden. You are not
allowed to directly return this string, to use reflection, to define new classes or traits, nor to
modify the given code. If this is not possible, briefly explain why.
// Client code:
val person = new __
println(person.work());

The following method should be added to: H

solution
// Client code:
val person = new PersonWithLicense with Lawyer with TaxiDriver with

Gardener;
println(person.work());

trait TaxiDriver extends Person {
...
// additional method:
override def hasValidLicense(): Boolean = { return false; }

}

Note that if we try to add the method hasValidLicense to the trait Gardener, the client
code does not compile, as new PersonWithLicense with Lawyer with TaxiDriver

with Gardener inherits two methods with the same signature.

Task 11
Assume we have two Java classes A and B. Consider the following Java class C:
class C {

void foo(A x) {
int y = 7;
this.bar(y, x);

}

B bar(int u, A v) {
...

}
}

Assume that the method foo gets compiled into bytecode as follows:
0: iconst 7
1: istore 2
2: aload 0
3: aload 2
4: aload 1
5: invokevirtual C.bar.B(int,A)

Can this bytecode be verified? If so, what is the final state (after line 5)?

solution
We assume that the maximal stack size is 3 and that MR = 3 (since we have three parame-
ters/local variables): this, one argument (x), and one local variable (y). The initial state
is ([], [C, A, T]), where C is the type of this, A is the type of the argument x and the
local variable y is uninitialized.
// ([],[C,A,T])
0: iconst 7
// ([int],[C,A,T])
1: istore 2
// ([],[C,A,int])
2: aload 0
// ([C],[C,A,int])
3: aload 2
// ERROR!
...

The error happens because aload 2 expects that the local variable (from register 2) has a
reference type, but its type is int.
Let’s now assume that we correct the given bytecode, such that in line 3 we have iload 2.
All the other instructions remain unchanged. We then obtain:
... // as before
3: iload 2
// ([int,C],[C,A,int])
4: aload 1
// ([A,int,C],[C,A,int])
5: invokevirtual C.bar.B(int,A)
// ([B],[C,A,int])

So the bytecode successfully verifies.

Task 12
(from a previous exam)
Consider an incorrect bytecode verifier called BuggyVerifier, in which due to a bug the aload
rule assumes that the loaded element is stored at the bottom of the stack instead of at the top
(see the formal description below), while all the other rules are implemented correctly.

aload n :

(S,R) → (S.R(n), R),

if 0 ≤ n < MR ∧ R(n) <: Object ∧ |S| < MS

Assume that the initial state (stack and registers) is ([], [A,B]), with the maximum number of
registers MR = 2 and the maximum stack size MS = 2. A and B are classes such that B <: A.

A) Write a short bytecode program that is accepted by BuggyVerifier, but is not accepted by
a correct bytecode verifier. Clearly mark the line at which the correct verifier detects an error,
and briefly describe the error.

solution

0: iconst 42

1: aload 0

2: istore 0 // ERROR: the head of the stack is not an integer

You can use in your solution all the bytecode operations seen during the lectures. As a reminder,
here are some of them:

• iconst n: create on the stack a value n of type int.

• iload n: load on top of the stack an element of type int from the n-th register.

• astore n: remove an object from the top of the stack and store it in the n-th register.

• goto n: continue the execution from the operation at label n.

B) Is it possible that BuggyVerifier incorrectly accepts a program that overflows the stack, by
pushing more than MS elements? Write yes or no, then motivate your answer.

solution
No. The rule still correctly checks that the stack size is less than MS.

Task 13
A) Compare dynamic type checking with the dynamic keyword to static type inference with
var in C#:

• Give a correct program which can be realized with dynamic but not with var.
solution
static void Main() {

dynamic x;
if(condition()) {

x = 5;
} else {

x = "hello";
}

Print(x);
}

static void Print(string str) {
Console.WriteLine(str);

}

static void Print(int value) {
Console.WriteLine(value);

}

• Give an incorrect program which will be accepted by the compiler with dynamic but not
with var.

solution
var x = 3;
x.substring(...);

B) C#’s most general type is object. Similar to var and dynamic, you can write object x

= ... with an expression of any type on the right-hand side.
• Given a compiling program using var. Can we replace all var keywords by object and

add explicit casts in the right places so that the program compiles and runs as before?
solution

This will be possible in all cases where we know what the type of the variable declared
with var is. In those cases we can just cast the declared variable in all places where it is
used to the most general type fulfilling all static type constraints on the corresponding
variable. Since the original program compiled, such a type must exist.

In the case of anonymous types however, we do not know the name of the type to
cast to. Consider:
var x = new { a = 108, b = "Hello" };
Console.WriteLine(x.b);

Here, we could change var to object, but we will not be able to cast x in the second
line, because we do not know the type name which the compiler generates for this
anonymous type.

• Given a compiling program using dynamic. Can we replace all dynamic keywords by
object and add explicit casts in the right places so that the program compiles and runs
as before?

solution

Generally we cannot do this, as shown in the following example:
static void Main() {

dynamic x;
if(condition()) {

x = 5;
} else {

x = "hello";
}

Print(x);
}

static void Print(string str) {
Console.WriteLine(str);

}

static void Print(int value) {
Console.WriteLine(value);

}

To make this code work with object, we would need to add explicit type checks and
cast the argument to the proper static type.

For both questions, either informally describe how to do the replacement, or give a counter-
example where the transformation will always produce a program that does not compile or
behaves differently. Note that explicit casts to dynamic are not allowed in the transformation.

C) Assume now a language like C#, but with covariant return types and contravariant param-
eter types. Given four classes A, B, C and D:
class A { int m (int x); }

class B { void m (dynamic x); }
class C { dynamic m (int x); }
class D { dynamic m (dynamic x); }

Develop a subtyping rule for the dynamic type annotation and informally explain the reasoning
behind it. What are the potential subtypes among the four classes above?

solution
Following the Substitution principle, dynamic is equivalent to object, in that it accepts
any type. Therefore, the usual subtyping rules apply, treating dynamic as the most general
supertype of all other types. The potential subtyping relations are A <: C and D <: C.
There are two different ways of looking at class B. On the one hand, we could just say that
void is a special keyword that indicates the absence of a return value, and thus the method
B.m is unrelated to the other methods. Alternatively, we can allow methods with void

return type to be overwritten by methods with any return type (assuming the parameter
variance rules are satisfied): if a client code is written to expect void (no return value),
then we could instead use a method which returns an arbitrary value and just discard it.
In this second interpretation we will additionally have D <: B.

Task 14
In this task, you have to implement (using three different approaches) a list in Java that
supports the following two methods (where i represents an index):
public void add(int i, Object el)
public Object get(int i)

Discuss the advantages and the limitations of the three different approaches below.

A) Implement the list using only one class without generics.

solution
public class List {

Object[] elements = new Object[100];
public void add(int i, Object el) {elements[i] = el;}
public Object get(int i) {return elements[i];}

}

Advantages: short implementation.
Limitations: the return type of the method get is Object; when using it, we usually have
to dynamically cast its return values.

B) Implement the list using one abstract class/interface and then (some) subclasses that
implement it for different types.

solution
public interface List {

public void add(int i, Object el);
public Object get(int i);

}

public class IntList implements List {
Integer[] elements = new Integer[100];

public void add(int i, Object el) {elements[i] = (Integer) el;}

public Integer get(int i) {return elements[i];}
}

Advantages: the method get returns an Integer, thus we do not need dynamic casting of
its return values.
Limitations: we have the same limitations as before (if programming against the interface),
and in addition code duplication and further type casts/checks in the implementation of
concrete list classes, e.g., in add. Moreover, we do not have behavioural subtyping, since
the method IntList.add may not respect the expected contracts of List (due to the
additional cast). For example, if we invoked add passing an object that is not an instance
of Integer, the runtime environment would raise an exception and the element would not
be added to our list.

C) Implement the list using generic types.

solution
public class List<T> {

T[] elements = (T[]) new Object[100];
public void add(int i, T el) {elements[i] = el;}
public T get(int i) {return elements[i];}

}

Advantages: short implementation, statically type safe.
Limitations: none, we have only advantages :)

