
Concepts of
Object-Oriented Programming

Peter Müller
Programming Methodology Group

Autumn Semester 2022

2

Peter Müller – Concepts of Object-Oriented Programming

Reuse
§ Inheritance

- Only one object at run time
- Relation is fixed at compile time
- Often coupled with subtyping

§ Aggregation
- Establishes “has-a” relation
- Two objects at run time
- Relation can change at run time
- No subtyping in general

Person

Student

a1:
a2:

hans

…

Car Motor

m:
x:

myCar

…

zy:
a:

V8

…

3. Inheritance

3

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Linearization

3. Inheritance

4

Peter Müller – Concepts of Object-Oriented Programming

Inheritance versus Subtyping
§ Subtyping expresses classification

- Substitution principle
- Subtype polymorphism

§ Inheritance is a means of code reuse
- Specialization

§ Inheritance is usually coupled with subtyping
- Inheritance of all methods leads to structural subtypes
- Coupling is also a useful default for nominal subtyping

§ Terminology: Subclassing = Subtyping + Inheritance

3.1 Inheritance – Inheritance and Subtyping

5

Peter Müller – Concepts of Object-Oriented Programming

Simulation of Subclassing with Delegation
§ Subclassing can be

simulated by a
combination of subtyping
and aggregation
- Useful in languages with

single inheritance
§ OO-programming can do

without inheritance, but
not without subtyping

§ Inheritance is not a core
concept

Person

Student
extends

Student

StudentImpl

Person

PersonImplHas-a

<:
<:

<:

3.1 Inheritance – Inheritance and Subtyping

6

Peter Müller – Concepts of Object-Oriented Programming

Simulation of Subclassing: Example
interface Person {
void print();

}

class PersonImpl
implements Person {

String name;
void print() { … }
PersonImpl(String n) { name = n; }

}

interface Student extends Person {
int getRegNum();

}

class StudentImpl implements Student {
Person p;
int regNum;
StudentImpl(String n, int rn) { p = new PersonImpl(n); regNum = rn; }
int getRegNum() { return regNum; }
void print() { p.print(); System.out.println(regNum); }

}

Subtyping

Subtyping

Subtyping

Delegation

Aggregation

Specialization

3.1 Inheritance – Inheritance and Subtyping

27

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Linearization

3. Inheritance

28

Peter Müller – Concepts of Object-Oriented Programming

Method Binding
§ Static binding:

At compile time, a method declaration is selected
for each call based on the static type of the receiver
expression

§ Dynamic binding:
At run time, a method declaration is selected for
each call based on the dynamic type of the receiver
object

3.2 Inheritance – Dynamic Method Binding

29

Peter Müller – Concepts of Object-Oriented Programming

Static vs. Dynamic Method Binding
§ Dynamic method binding enables specialization

and subtype polymorphism
§ However, there are important drawbacks

- Performance: Overhead of method look-up at run time
- Versioning: Dynamic binding makes it harder to evolve

code without breaking subclasses
§ Defaults

- Dynamic binding: Eiffel, Java, Scala, dynamically-typed
languages

- Static binding: C++, C#

3.2 Inheritance – Dynamic Method Binding

30

Peter Müller – Concepts of Object-Oriented Programming

Fragile Baseclass Scenario
§ Software is not static

- Maintenance
- Bugfixing
- Reengineering

§ Subclasses can be affected
by changes to superclasses

§ How should we apply
inheritance to make our code
robust against revisions of
superclasses?

Develop
Superclass

Implement
Subclass

Modify
Superclass

3.2 Inheritance – Dynamic Method Binding

31

Peter Müller – Concepts of Object-Oriented Programming

class CountingBag extends Bag {
int size;

int getSize()
{ return size; }

void add(Object o)
{ super.add(o); size++; }

}

Example 1: Selective Overriding
class Bag {
…
int getSize() {
… // count elements

}

void add(Object o)
{ … }

void addAll(Object[] arr) {
for(int i=0; i < arr.length; i++)
add(arr[i]);

}
}

Object[] oa = … // 5 elements
CountingBag cb =

new CountingBag();
cb.addAll(oa);
System.out.println(cb.getSize());

3.2 Inheritance – Dynamic Method Binding

32

Peter Müller – Concepts of Object-Oriented Programming

class CountingBag extends Bag {
int size;

int getSize()
{ return size; }

void add(Object o)
{ super.add(o); size++; }

}

Example 1: Selective Overriding (cont’d)
class Bag {
…
int getSize() {
… // count elements

}

void add(Object o)
{ … }

void addAll(Object[] arr) {
// add elements of arr
// directly (not using add)

}
}

Object[] oa = … // 5 elements
CountingBag cb =

new CountingBag();
cb.addAll(oa);
System.out.println(cb.getSize());

3.2 Inheritance – Dynamic Method Binding

33

Peter Müller – Concepts of Object-Oriented Programming

class CountingBag extends Bag {
int size;
// invariant size==super.getSize()
…
void add(Object o)
{ super.add(o); size++; }

}

Example 1: Discussion
class Bag {
…
int getSize() {
… // count elements

}

// requires true
// ensures "i. 0 <= i < arr.length:
// contains(arr[i])
void addAll(Object[] arr) {
for(int i=0; i < arr.length; i++)
add(arr[i]);

}
}

Subclass: Using
inheritance, rely on

interface documentation,
not on implementation

Subclass: Override all
methods that could

break invariants

void addAll(Object[] arr) {
for(int i=0; i < arr.length; i++)
add(arr[i]);

}

Superclass: Do not change
calls to dynamically-bound

methods

3.2 Inheritance – Dynamic Method Binding

34

Peter Müller – Concepts of Object-Oriented Programming

class Math {

float squareRt(float f) {
return Ö f;

}

float fourthRt(float f) {
return ÖÖ f;
}

}

class MyMath extends Math {

float squareRt(float f) {
return –Ö f;

}
}

Example 2: Unjustified Assumptions

MyMath m = new MyMath();
System.out.println

(m.fourthRt(16));

3.2 Inheritance – Dynamic Method Binding

35

Peter Müller – Concepts of Object-Oriented Programming

class Math {

float squareRt(float f) {
return Ö f;

}

float fourthRt(float f) {
return squareRt(squareRt(f));
}

}

class MyMath extends Math {

float squareRt(float f) {
return –Ö f;

}
}

Example 2: Unjustified Assumptions (c’d)

MyMath m = new MyMath();
System.out.println

(m.fourthRt(16));

3.2 Inheritance – Dynamic Method Binding

class Math {
// requires f >= 0
// ensures result ^ 2 = f
float squareRt(float f) {
return Ö f;

}
// requires f >= 0
// ensures result ^ 4 = f
float fourthRt(float f) {
return squareRt(squareRt(f));
}

} Rely on interface
documentation of

dynamically-bound method,
not on implementation

class MyMath extends Math {
// requires f >= 0
// ensures result ^ 2 = f
float squareRt(float f) {
return –Ö f;

}
}Superclass: Do not change

calls to dynamically-bound
methods

36

Peter Müller – Concepts of Object-Oriented Programming

class CS extends C {

void inc2() {
inc1();

}
}

Example 3: Mutual Recursion
class C {
int x;

void inc1() {
x = x + 1;

}

void inc2() {
x = x + 1;

}
}

CS cs = new CS();
cs.x = 5;
cs.inc2();
System.out.println(cs.x);

3.2 Inheritance – Dynamic Method Binding

37

Peter Müller – Concepts of Object-Oriented Programming

class CS extends C {

void inc2() {
inc1();

}
}

Example 3: Mutual Recursion (cont’d)
class C {
int x;

void inc1() {
inc2();

}

void inc2() {
x = x + 1;

}
}

CS cs = new CS();
cs.x = 5;
cs.inc2();
System.out.println(cs.x);

3.2 Inheritance – Dynamic Method Binding

class C {
int x;
// requires true
// ensures x = old(x) + 1
void inc1() {
inc2();

}
// requires true
// ensures x = old(x) + 1
void inc2() {
x = x + 1;

}
}

class CS extends C {
// requires true
// ensures x = old(x) + 1
void inc2() {
inc1();

}
}

Subclass: Avoid
specializing classes

that are expected to be
changed (often)Superclass: Do not change

calls to dynamically-bound
methods

38

Peter Müller – Concepts of Object-Oriented Programming

class MyMgr extends DiskMgr {
void delete() {
… // erase whole hard disk

}
}

Example 4: Additional Methods
class DiskMgr {

void cleanUp() {
… // remove temporary files

}
}

MyMgr mm = new MyMgr();
…
mm.cleanUp();

3.2 Inheritance – Dynamic Method Binding

39

Peter Müller – Concepts of Object-Oriented Programming

class MyMgr extends DiskMgr {
void delete() {
… // erase whole hard disk

}
}

Example 4: Additional Methods (cont’d)

MyMgr mm = new MyMgr();
…
mm.cleanUp();

Subclass: Avoid
specializing classes

that are expected to be
changed (often)

3.2 Inheritance – Dynamic Method Binding

class DiskMgr {
void delete() {
… // remove temporary files

}

void cleanUp() {
delete();

}
} Superclass: Do not change

calls to dynamically-bound
methods

40

Example 4: Additional Methods (cont’d)

§ In C#, methods are bound statically by default
§ Potential overrides must be declared as either

override or new
- Prevents accidental overriding

Peter Müller – Concepts of Object-Oriented Programming

MyMgr mm = new MyMgr();
…
mm.cleanUp();

3.2 Inheritance – Dynamic Method Binding

class DiskMgr {
void delete() {
… // remove temporary files

}

void cleanUp() {
delete();

}
}

C# C#

class MyMgr : DiskMgr {
void delete() {
… // erase whole hard disk

}
}

C#

class DiskMgr {
virtual void delete() {
… // remove temporary files

}

void cleanUp() {
delete();

}
}

C#

class MyMgr : DiskMgr {
new void delete() {
… // erase whole hard disk

}
}

C#

41

Example 5: Additional Methods

Peter Müller – Concepts of Object-Oriented Programming

3.2 Inheritance – Dynamic Method Binding

class Super {

} Java

class Sub extends Super {
void foo(Object o) { … }
void bar(double i) { … }

} Java

Sub s = new Sub();
s.foo(“Java”);
s.bar(5); Java

42

Example 5: Additional Methods (cont’d)
§ Overloading resolution

in Java chooses most
specific method
declaration

§ Adding methods to a
superclass may affect
clients of subclasses
- Even without overriding
- When the client is re-

compiled

Peter Müller – Concepts of Object-Oriented Programming

3.2 Inheritance – Dynamic Method Binding

class Sub extends Super {
void foo(Object o) { … }
void bar(double i) { … }

} Java

Sub s = new Sub();
s.foo(“Java”);
s.bar(5); Java

class Super {
void foo(String o) { … }
void bar(int i) { … }

} Java

43

Example 5: Additional Methods (cont’d)
§ Overloading resolution

in C# chooses most
specific method
declaration in the class
of the receiver
- Then superclass, etc.

§ Adding methods to a
superclass does not
affect overloading
resolution

Peter Müller – Concepts of Object-Oriented Programming

3.2 Inheritance – Dynamic Method Binding

class Sub : Super {
void foo(object o) { … }
void bar(double i) { … }

} C#

Sub s = new Sub();
s.foo(“C#”);
s.bar(5); C#

class Super {
void foo(string o) { … }
void bar(int i) { … }

} C#

44

Peter Müller – Concepts of Object-Oriented Programming

Summary: Rules for Proper Subclassing
§ Use subclassing only if there is an “is-a” relation

- Syntactic and behavioral subtypes
§ Do not rely on implementation details

- Use precise documentation (contracts where possible)
§ When evolving superclasses, do not mess around

with dynamically-bound methods
- Do not add or remove calls, or change order of calls

§ Do not specialize superclasses that are expected to
change often

3.2 Inheritance – Dynamic Method Binding

45

Binary Methods
§ Binary methods take

receiver and one explicit
argument

§ Often behavior should be
specialized depending on
the dynamic types of both
arguments

§ Recall that covariant
parameter types are not
statically type-safe

Peter Müller – Concepts of Object-Oriented Programming

class Object {
boolean equals(Object o) {
return this == o;

}
}

class Cell {
int val;
boolean equals(Cell o) {
return this.val == o.val;

}
}

3.2 Inheritance – Dynamic Method Binding

46

Binary Methods: Example

§ Dynamic binding for
specialization based on
dynamic type of
receiver

§ How to specialize
based on dynamic type
of explicit argument?

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
Shape intersect(Shape s) {
// general code for all shapes

}
}

class Rectangle extends Shape {
Shape intersect(Rectangle r) {
// efficient code for two rectangles

}
}

3.2 Inheritance – Dynamic Method Binding

47

Solution 1: Explicit Type Tests
§ Type test and

conditional for
specialization based
on dynamic type of
explicit argument

§ Problems
- Tedious to write
- Code is not extensible
- Requires type cast

Peter Müller – Concepts of Object-Oriented Programming

class Rectangle extends Shape {
Shape intersect(Shape s) {
if(s instanceof Rectangle) {
Rectangle r = (Rectangle) s;
// efficient code for two rectangles

} else {
return super.intersect(s);

}
}

}

3.2 Inheritance – Dynamic Method Binding

48

Solution 2: Double Invocation

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
Shape intersect(Shape s)
{ return s.intersectShape(this); }

Shape intersectShape(Shape s)
{ // general code for all shapes }

Shape intersectRectangle(Rectangle r)
{ return intersectShape(r); }

} class Rectangle extends Shape {
Shape intersect(Shape s)
{ return s.intersectRectangle(this); }

Shape intersectRectangle(Rectangle r)
{ // efficient code for two rectangles }

}

§ Additional
dynamically-bound
call for specialization
based on dynamic
type of explicit
argument

3.2 Inheritance – Dynamic Method Binding

49

Solution 2: Double Invocation (cont’d)

§ Double invocation
is also called
Visitor Pattern

§ Problems
- Even more tedious to write
- Requires modification of superclass

(not possible for equals method)

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
Shape intersect(Shape s)
{ return s.intersectShape(this); }

Shape intersectShape(Shape s)
{ // general code for all shapes }

Shape intersectRectangle(Rectangle r)
{ return intersectShape(r); }

}

Corresponds to
Node.accept

Corresponds to
Visitor.visitX

Corresponds to
Node and Visitor

3.2 Inheritance – Dynamic Method Binding

50

Solution 3: Overloading plus Dynamic

Peter Müller – Concepts of Object-Oriented Programming

3.2 Inheritance – Dynamic Method Binding

class Rectangle : Shape {
Rectangle intersect(Rectangle r)
{ // efficient code for two rectangles }

} C#

class Shape {
Shape intersect(Shape s)
{ // general code for all shapes }

} C#

Overloads
Shape’s method

static Shape intersect(Shape s1, Shape s2) {
return s1.intersect(s2);

}
C#

static Shape intersect(Shape s1, Shape s2) {
return (s1 as dynamic).intersect(s2);

}
C#

Since the receiver has
static type Shape, this call

is statically resolved to
Shape’s method

static Shape intersect(Shape s1, Shape s2) {
return (s1 as dynamic).intersect(s2 as dynamic);

}
C#Since the argument has

static type Shape, this call
is dynamically resolved to

Shape’s method

Dynamic resolution
depends on dynamic

types of both arguments

51

Solution 3: Overloading plus Dynamic (c’d)

§ Concise
§ No change to

superclass
required

§ Problems
- Not entirely

type safe
- Overhead for

run-time
checks

Peter Müller – Concepts of Object-Oriented Programming

3.2 Inheritance – Dynamic Method Binding

class Rectangle : Shape {
Rectangle intersect(Rectangle r)
{ // efficient code for two rectangles }

} C#

class Shape {
Shape intersect(Shape s)
{ // general code for all shapes }

} C#

static Shape intersect(Shape s1, Shape s2) {
return
(s1 as dynamic).intersect(s2 as dynamic);

} C#

52

Solution 4: Multiple Dispatch
§ Some research

languages allow
method calls to be
bound based on the
dynamic type of
several arguments

§ Examples: CLU,
Cecil, Fortress,
MultiJava

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
Shape intersect(Shape s) {
// general code for all shapes

}
}

class Rectangle extends Shape {
Shape intersect(Shape@Rectangle r) {
// efficient code for two rectangles

}
} Static type

of r
Dispatch

on r

3.2 Inheritance – Dynamic Method Binding

53

Solution 4: Multiple Dispatch (cont’d)
§ Multiple dispatch is statically type-safe

§ Problems
- Performance overhead of method look-up at run time
- Extra requirements are needed to ensure there is a

“unique best method” for every call

Peter Müller – Concepts of Object-Oriented Programming

Shape client(Shape s1, Shape s2) {
return s1.intersect(s2);

}
Calls Rectangle.intersect
only if s1 and s2 are of

type Rectangle

3.2 Inheritance – Dynamic Method Binding

54

Binary Methods: Summary
§ The behavior of binary methods often depends on

the dynamic types of both arguments

§ Type tests
- One single-dispatch call and one case distinction

§ Double invocation (Visitor Pattern)
- Two single-dispatch calls

§ Overloading plus dynamic
- Dynamic resolution based on dynamic argument types

§ Multiple dispatch
- One multiple-dispatch call

Peter Müller – Concepts of Object-Oriented Programming

3.2 Inheritance – Dynamic Method Binding

55

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Linearization

3. Inheritance

56

Motivation
§ All object-oriented

languages support
multiple subtyping
- One type can have

several supertypes
- Subtype relation forms a

DAG
§ Often it is also useful to

reuse code from
several superclasses
via multiple inheritance

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

§ Enroll in classes
§ Study
§ Maintain credit points

§ Salary
§ Office
§ Teach

3.3 Inheritance – Multiple Inheritance

57

Simulating Multiple Inheritance
§ Java and C# support only single inheritance
§ Multiple inheritance is simulated via delegation

- Not elegant

Peter Müller – Concepts of Object-Oriented Programming

Student

StudentImpl
Has-a

<:

PhDStudent

Assistant

extends

Single
inheritance

Aggregation
+ delegation

<:

Interface

3.3 Inheritance – Multiple Inheritance

58

Problems of Multiple Inheritance
§ Ambiguities

- Superclasses may contain fields and methods with
identical names and signatures

- Which version should be available in the subclass?

§ Repeated inheritance (diamonds)
- A class may inherit from a superclass more than once
- How many copies of the superclass members are there?
- How are the superclass fields initialized?

Peter Müller – Concepts of Object-Oriented Programming

3.3 Inheritance – Multiple Inheritance

59

Ambiguities: Example

Peter Müller – Concepts of Object-Oriented Programming

void client(PhDStudent p) {
int w = p.workLoad();
p.mentor = NULL;

}

Which method
should be called?

Which field
should be
accessed?

class Student {
public:
Professor* mentor;
virtual int workLoad() { … }
… };

C++

class Assistant {
public:
Professor* mentor;
virtual int workLoad() { … }
… };

C++

class PhDStudent :
public Student, public Assistant {

};

C++

3.3 Inheritance – Multiple Inheritance

60

Ambiguity Resolution: Explicit Selection

§ Subclass has two
members with
identical names

§ Ambiguity is resolved
by client

§ Clients need to know
implementation details

Peter Müller – Concepts of Object-Oriented Programming

void client(PhDStudent p) {
int w = p.Assistant::workLoad();
p.Student::mentor = NULL;

}

class Student {
public:
Professor* mentor;
virtual int workLoad() { … }
… };

C++

class Assistant {
public:
Professor* mentor;
virtual int workLoad() { … }
… };

C++

class PhDStudent :
public Student, public Assistant {

};

C++

3.3 Inheritance – Multiple Inheritance

61

Ambiguity Resolution: Merging Methods

§ Related inherited
methods can be
merged into one
overriding method

§ Usual rules for
overriding apply
- Type rules
- Behavioral subtyping

Peter Müller – Concepts of Object-Oriented Programming

class PhDStudent :
public Student, public Assistant {

public:
virtual int workLoad() {
return Student::workLoad() +

Assistant::workLoad();
}

};

C++

void client(PhDStudent p) {
int w = p.workLoad();

}

Overrides both
inherited methods

Correspond to
super-calls in Java

3.3 Inheritance – Multiple Inheritance

62

Merging Unrelated Methods
§ Unrelated methods

cannot be merged in
a meaningful way
- Even if signatures

match

§ Subclass should
provide both
methods, but with
different names

Peter Müller – Concepts of Object-Oriented Programming

class Student {
public:
virtual bool test() { // take exam }
… };

C++

class Assistant {
public:
virtual bool test() { // unit test }
… };

C++

class PhDStudent :
public Student, public Assistant {

public:
virtual bool test()
{ return Student::test(); }

};

C++

Clients can call
Assistant::test

Violates
behavioral
subtyping

3.3 Inheritance – Multiple Inheritance

63

Ambiguity Resolution: Renaming
§ Inherited methods can

be renamed
§ Dynamic binding takes

renaming into account

§ C++/CLI provides similar
features

Peter Müller – Concepts of Object-Oriented Programming

class Student
feature
test: BOOLEAN do … end

end

Eiffel

class Assistant
feature
test: BOOLEAN do … end

end

Eiffel

class PhDStudent inherit
Student
rename test as takeExam
redefine takeExam end

Assistant
end

Eiffel

client(s: Student): BOOLEAN
do
Result := s.test()

end
For PhDStudent

bound to takeExam

3.3 Inheritance – Multiple Inheritance

64

Repeated Inheritance: Example

§ How many address
fields should
PhDStudent have?

§ How are they
initialized?

Peter Müller – Concepts of Object-Oriented Programming

class Student : public Person {
…

}; C++

class Assistant : public Person {
…

}; C++

class Person {
Address address;
…

};

C++

PhDStudent

Assistant

extends

Student

Person

extends

class PhDStudent :
public Student, public Assistant {

}; C++

3.3 Inheritance – Multiple Inheritance

65

How Many Copies of Superclass Fields?

§ Eiffel: default
§ C++: virtual inheritance

§ Eiffel: via renaming
§ C++: non-virtual

inheritance

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends
Address

3.3 Inheritance – Multiple Inheritance

LoggingSensor

Sensor

extends

Loggable

FileWriter

extends
File

FileWriter

File
extends

66

Inheritance and Object Initialization
§ Superclass fields are

initialized before subclass
fields
- Helps preventing use of

uninitialized fields, e.g., in
inherited methods

§ Order is typically
implemented via mandatory
call of superclass
constructor at the beginning
of each constructor

Peter Müller – Concepts of Object-Oriented Programming

3.3 Inheritance – Multiple Inheritance

PhDStudent

extends

Student

Person

extends

super-call

super-call

67

Initialization and Non-Virtual Inheritance
§ With non-virtual

inheritance, there are
two copies of the
superclass fields

§ Superclass
constructor is called
twice to initialize both
copies
- Here, create two file

handles for two files

Peter Müller – Concepts of Object-Oriented Programming

LoggingSensor

Sensor

extends

Loggable

FileWriter

extends

FileWriter

extends

3.3 Inheritance – Multiple Inheritance

68

Initialization and Virtual Inheritance

§ With virtual
inheritance, there is
only one copy of the
superclass fields

§ Who gets to call the
superclass
constructor?

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends

3.3 Inheritance – Multiple Inheritance

69

Initialization: C++ Solution
§ Constructor of

repeated superclass is
called only once

§ Smallest subclass
needs to call the
constructor of the
virtual superclass
directly

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends

3.3 Inheritance – Multiple Inheritance

Call is not
performed
at run time

70

C++ Solution: Example

Peter Müller – Concepts of Object-Oriented Programming

class Person {
Address* address;
int workdays;

public:
Person(Address* a, int w) {
address = a;
workdays = w;

};
};

class Student : virtual public Person {
public:
Student(Address* a) : Person(a, 5) { };

};

class Assistant: virtual public Person {
public:
Assistant(Address* a) : Person(a, 6) { };

};

class PhDStudent : public Student, public Assistant {
public:
PhDStudent(Address* a) : Person(a, 7), Student(a), Assistant(a) { };

};

3.3 Inheritance – Multiple Inheritance

71

C++ Solution: Discussion

§ Non-virtual inheritance is the default
- Virtual inheritance leads to run-time overhead
- Programmers need foresight!

§ Constructors cannot rely on the virtual superclass
constructors they call
- For instance, to establish invariants

Peter Müller – Concepts of Object-Oriented Programming

class Student : virtual public Person {
public:
Student(Address* a) : Person(a, 5) {

};
};

class Student : virtual public Person {
public:
Student(Address* a) : Person(a, 5) {
assert(workdays == 5);

};
};

Might
fail

3.3 Inheritance – Multiple Inheritance

72

Multiple Inheritance
Pros
§ Increases

expressiveness

§ Avoids overhead of
delegation pattern

Cons
§ Ambiguity resolution

- Explicit selection
- Merging
- Renaming

§ Repeated inheritance
- Complex semantics
- Initialization
- Renaming

§ Complicated!

Peter Müller – Concepts of Object-Oriented Programming

3.3 Inheritance – Multiple Inheritance

73

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Linearization

3. Inheritance

74

Mixins and Traits
§ Mixins and traits provide a form of reuse

- Methods and state that can be mixed into various classes
- Example: Functionality to persist an object

§ Main applications
- Making thin interfaces thick
- Stackable specializations

§ Languages that support mixins or traits:
Python, Ruby, Scala, Squeak Smalltalk
- We will focus on Scala’s version of traits

Peter Müller – Concepts of Object-Oriented Programming

3.4 Inheritance – Linearization

75

Scala: Trait Example

Peter Müller – Concepts of Object-Oriented Programming

class Cell {
var value: Int = 0

def put(v: Int) = { value = v }
def get: Int = value

}
Scala

object Main1 {
def main(args: Array[String]) = {
val a = new Cell with Backup
a.put(5)
a.put(3)
a.undo
println(a.get)

}
}

trait Backup extends Cell {
var backup: Int = 0;

override def put(v: Int) = {
backup = value
super.put(v)

}
def undo = { super.put(backup) }

}
Scala

Scala

3.4 Inheritance – Linearization

76

Scala: Declaration of Traits

Peter Müller – Concepts of Object-Oriented Programming

trait Backup extends Cell {
var backup = 0;

override def put(v: Int) = {
backup = value
super.put(v)

}
def undo = { super.put(backup) }

}
Scala

Traits extend exactly
one superclass (and
possibly other traits)Traits may

have fields

Traits may
declare
methods

Traits may
override

superclass
methods

3.4 Inheritance – Linearization

77

Scala: Mixing-in Traits

§ Class must be a subclass of its traits’ (direct)
superclasses
- To avoid multiple inheritance among classes

Peter Müller – Concepts of Object-Oriented Programming

class FancyCell extends Cell with Backup {
…

} Scala

def main(args: Array[String]) {
val a = new Cell with Backup
…

} Scala
Traits can be mixed-
in when classes are

instantiated

Traits can be mixed-
in when classes are

declared

3.4 Inheritance – Linearization

78

Traits and Types
§ Each trait defines a type

- Like classes and
interfaces

- Trait types are abstract

§ Extending or mixing-in a
trait introduces a
subtype relation

Peter Müller – Concepts of Object-Oriented Programming

trait Backup extends Cell {
…

} Scala

class FancyCell
extends Cell with Backup {

…
} Scala

val a: Backup = new FancyCell
val b: Cell = a Scala

3.4 Inheritance – Linearization

79

Example: Thin and Thick Interfaces
§ Traits can extend

thin interfaces by
additional
operations

§ Allows very specific
types with little
syntactic overhead
- See structural

subtyping

Peter Müller – Concepts of Object-Oriented Programming

class ThinCollection {
def add(s: String) = { … }
def contains(s: String): Boolean = { … }

}

trait AddAll extends ThinCollection {
def addAll(a: Array[String]) = {
val it = a.iterator
while(it.hasNext) { add(it.next) }

}
}

def client (p: ThinCollection with AddAll, a: Array[String]) = { p.addAll(a) }

3.4 Inheritance – Linearization

80

Ambiguity Resolution

§ Ambiguity is resolved by
merging
- No scope-operator like in

C++
- No renaming like in Eiffel

Peter Müller – Concepts of Object-Oriented Programming

trait Student {
var mentor: Professor
def workLoad: Int = 5

}

trait Assistant {
var mentor: Professor
def workLoad: Int = 6

}

class PhDStudent
extends AnyRef
with Student
with Assistant { }

PhDStudent

Student Assistant

3.4 Inheritance – Linearization

81

Ambiguity Resolution (cont’d)
§ Subclass overrides both

mixed-in methods
§ Does not work for mutable

fields

Peter Müller – Concepts of Object-Oriented Programming

trait Student {
def workLoad: Int = 5

}

trait Assistant {
def workLoad: Int = 6

}

class PhDStudent extends AnyRef with Student with Assistant {
override def workLoad: Int = {
super[Student].workLoad +
super[Assistant].workLoad

}
}

3.4 Inheritance – Linearization

82

class Person {
def workLoad: Int = 0

}

Ambiguity Resolution and Diamonds

§ If two inherited methods
override a common
superclass method,
merging is not required

§ What is the behavior of
workLoad in PhDStudent?

Peter Müller – Concepts of Object-Oriented Programming

trait Student extends Person {
override def workLoad: Int = 5

}

trait Assistant extends Person {
override def workLoad: Int = 6

}

class PhDStudent
extends Person
with Student
with Assistant { }

Person

PhDStudent

Student Assistant

3.4 Inheritance – Linearization

83

Linearization
§ The key concept to understanding the semantics of

Scala traits: bring types in a linear order
- Define overriding and super-calls according to this order

§ For a class or trait
C extends C’ with C1 … with Cn

the linearization L(C) is
C, L(Cn) • … • L(C1) • L(C’)

§ Do not include types more than once
e • B = B

a, (A • B) if a Ï B
A • B otherwise

Peter Müller – Concepts of Object-Oriented Programming

3.4 Inheritance – Linearization

(a, A) • B = {

84

Linearization Example

L(Person) = Person
L(Student) = Student, Person
L(Assistant) = Assistant, Person
L(PhDStudent) = PhDStudent, L(Assistant) • L(Student) • L(Person)

Peter Müller – Concepts of Object-Oriented Programming

class Person

trait Student extends Person

trait Assistant extends Person

class PhDStudent
extends Person
with Student
with Assistant

3.4 Inheritance – Linearization

Person

PhDStudent

Student Assistant

For a class or trait
C extends C’ with C1 … with Cn

the linearization L(C) is
C, L(Cn) • … • L(C1) • L(C’)

85

class Person {
def workLoad: Int = 0

}

Overriding

§ PhDStudent’s workLoad
method is inherited from
Assistant
- Assistant’s workLoad

overrides Student’s
- Student’s workLoad

overrides Person’s
Peter Müller – Concepts of Object-Oriented Programming

trait Student extends Person {
override def workLoad: Int = 5

}

trait Assistant extends Person {
override def workLoad: Int = 6

}

Person

PhDStudent

Student Assistant

3.4 Inheritance – Linearization

class PhDStudent
extends Person
with Student
with Assistant { }

87

Repeated Inheritance

§ Subclass inherits only
one copy of repeated
superclass
- Like Eiffel and virtual

inheritance in C++

Peter Müller – Concepts of Object-Oriented Programming

class A {
var f = 0
def foo = println("A::foo“)

}

trait B extends A {
override def foo = println(“B::foo“)

}

trait C extends A {
override def foo = println(“C::foo“)

}

class D extends A with B with C {
}

A

D

B C

3.4 Inheritance – Linearization

88

Initialization Order

§ Classes and traits are
initialized in the
reverse linear order

Peter Müller – Concepts of Object-Oriented Programming

class A {
println("Constructing A")

}

trait B extends A {
println("Constructing B")

}

trait C extends A {
println("Constructing C")

}

class D extends A with B with C {
println("Constructing D")

}

A

D

B C

3.4 Inheritance – Linearization

89

Initialization of Repeated Superclasses
§ Each constructor is called

exactly once
- Good if constructor has

side-effects

§ Arguments to superclass
constructors are supplied
by immediately preceeding
class in the linearization
order

Peter Müller – Concepts of Object-Oriented Programming

class A(x: Int) {
println("Constructing A“ + x)

}

trait B extends A { … }

trait C extends A { … }

class D extends A(5)
with B with C { … }

A

D

B C

3.4 Inheritance – Linearization

90

Overriding and Super-Calls

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

class A {
def foo = println("A::foo“)

}

trait B extends A {
override def foo =
{ println(“B::foo“); super.foo }

}

trait C extends A {
override def foo =
{ println(“C::foo“); super.foo }

}

class D extends A with B with C { }

def client (d: D) = { d.foo }

3.4 Inheritance – Linearization

91

Stackable Specializations
§ With traits,

specializations can be
combined in flexible
ways

§ With multiple
inheritance, methods of
repeated superclasses
are called twice

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

A

D

B C

Specialized
method contains

super-call

Merged
method

3.4 Inheritance – Linearization

92

Stackable Specializations: Example

Peter Müller – Concepts of Object-Oriented Programming

Queue

Sensor

Filter Timer

class Queue {
…
def put(x: Data) { … }

}

trait Timer extends Queue {
override def put(x: Data)
{ x.SetTime(…); super.put(x) }

}

class Sensor extends Queue
with Filter with Timer { }

3.4 Inheritance – Linearization

trait Filter extends Queue {
override def put(x: Data)
{ if(x.Time > …) super.put(x) }

}

93

Traits and Behavioral Subtyping

§ Overriding of trait
methods depends on
order of mixing

§ Behavioral subtyping
could be checked only
when traits are mixed in

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

trait B extends A {
override def foo =
{ println(“B::foo“); super.foo }

}

trait C extends A {
override def foo =
{ println(“C::foo“); super.foo }

}

class D extends A with B with C { }

class D extends A with C with B { }

3.4 Inheritance – Linearization

94

Reasoning About Traits
§ Traits are very dynamic,

which complicates static
reasoning

§ Traits do not know how
their superclasses get
initialized

§ Traits do not know which
methods they override

§ Traits do not know where
super-calls are bound to

Peter Müller – Concepts of Object-Oriented Programming

trait B extends A {
override def foo =
{ println(“B::foo“); super.foo }

}

trait C extends A {
override def foo =
{ println(“C::foo“); super.foo }

}

3.4 Inheritance – Linearization

95

Linearization: Summary
§ Linearization partly solves problems of multiple

inheritance
- Solves some issues with ambiguities and initialization

§ Other problems remain
- Resolving ambiguities between unrelated methods

§ And new problems arise
- Behavioral subtyping cannot be checked modularly
- What to assume about superclass initialization and

super-calls
§ Linearization poses several research challenges

Peter Müller – Concepts of Object-Oriented Programming

3.4 Inheritance – Linearization

96

References
§ Leonid Mikhajlov, Emil Sekerinski: A Study of the Fragile

Base Class Problem. LNCS 1445, Springer-Verlag, 1998
§ Donna Malayeri and Jonathan Aldrich: CZ: Multiple

Inheritance without Diamonds. OOPSLA 2009
§ Bertrand Meyer: Eiffel: The Language. Prentice Hall, 1991
§ Bjarne Stroustrup: The C++ Programming Language.

Addison Wesley, 2013
§ Martin Odersky, Lex Spoon, and Bill Venners:

Programming in Scala. Artima, 2008

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

