
Concepts of 
Object-Oriented Programming

Peter Müller
Programming Methodology Group

Autumn Semester 2022



2

C-Example Revisited

Peter Müller – Concepts of Object-Oriented Programming

struct sPerson {
String name;
void ( *print )( Person* );
String ( *lastName )( Person* );

};

typedef struct sStudent Student;
struct sStudent {
String name;
int regNum;
void ( *print )( Student* );
String ( *lastName )( Student* );

};

Student *s;
Person *p;
s = StudentC( “Susan Roberts“ );
p = (Person *) s;
p -> name = p -> lastName( p );
p -> print( p );

name
regNum

print
lastName

name
print
lastName

PersonStudent

2. Types and Subtyping



3

Peter Müller – Concepts of Object-Oriented Programming

Message not Understood
§ Objects access fields and 

methods of other objects

§ A safe language detects 
situations where the 
receiver object does not 
have the accessed field or 
method

§ Type systems can be used 
to detect such errors

f1:
f2:

obj1

m(p1,p2) {..}
m1( ) {..}
m2(p) {..}

f:
obj2

m(p1,p2) {..}
n(p,r) {..}

…
r = obj2.m( 0, 1 );
s = obj2.f;

r = obj2.m( );
r = obj2.anotherMethod( 0, 1 );
s = obj2.anotherField;

2. Types and Subtyping



4

Peter Müller – Concepts of Object-Oriented Programming

Java Security Model (Sandbox)
§ Applets get access to 

system resources only 
through an API

§ Access control can be 
implemented in API 
(security manager)

§ Code must be prevented 
from by-passing API

Program

Operating System

API

X

2. Types and Subtyping



5

Peter Müller – Concepts of Object-Oriented Programming

2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

2. Types and Subtyping



6

Peter Müller – Concepts of Object-Oriented Programming

Type Systems
§ Definition:

A type system is a tractable syntactic method for 
proving absence of certain program behaviors by 
classifying phrases according to the kinds of values 
they compute.

[B.C. Pierce, 2002]

§ Syntactic: Rules are based on form, not behavior
§ Phrases: Expressions, methods, etc. of a program
§ Kinds of values: Types

2.1 Types and Subtyping – Types



7

Weak and Strong Type Systems
§ Untyped languages

- Do not classify values into types
- Example: assembly languages

§ Weakly-typed languages
- Classify values into types, but do not strictly enforce 

additional restrictions
- Example: C, C++

§ Strongly-typed languages
- Enforce that all operations are applied to arguments of 

the appropriate types
- Examples: C#, Eiffel, Java, Python, Scala, Smalltalk

Peter Müller – Concepts of Object-Oriented Programming

2.1 Types and Subtyping – Types



8

Weak vs. Strong Typing: Example

§ Strongly-typed languages prevent certain 
erroneous or undesirable program behaviors

Peter Müller – Concepts of Object-Oriented Programming

int main( int argc, char** argv ) {
int i = ( int ) argv[ 0 ];
printf( "%d", i );

} C

int main( String[ ] argv ) {
int i = ( int ) argv[ 0 ];
System.out.println( i );

} Java

1628878672 Compile-time error:
inconvertible types
found    : java.lang.String
required: int

2.1 Types and Subtyping – Types



9

Peter Müller – Concepts of Object-Oriented Programming

Types
§ Definition:

A type is a set of values sharing some properties. 
A value v has type T if v is an element of T.

§ Question: what are the “properties” shared by the 
values of a type?
- Nominal types: 

based on type names
Examples: C++, Eiffel, Java, Scala

- Structural types: 
based on availability of methods and fields
Examples: Go, O’Caml, Python, Ruby, Smalltalk

2.1 Types and Subtyping – Types



10

§ Type membership

§ Type equivalence
- S and T are different 

in nominal systems
- S and T are equivalent

in structural systems

Nominal and Structural Types

Peter Müller – Concepts of Object-Oriented Programming

obj2: T
m( int ) {..}
n( ) {..}

obj0: S
m( int ) {..}
n( ) {..}

obj1: T
m( int ) {..}
n( ) {..}

class S {
m( int ) {…}
n( ) {…}

}

class T {
m( int ) {…}
n( ) {…}

}

Two nominal 
types

Two nominal 
types One structural 

type

2.1 Types and Subtyping – Types



11

Peter Müller – Concepts of Object-Oriented Programming

Static Type Checking
§ Each expression of a 

program has a type
§ Types of variables and 

methods are declared
explicitly or inferred

§ Types of expressions can 
be derived from the types 
of their constituents

§ Type rules are used at 
compile time to check 
whether a program is 
correctly typed

“A string”
5 + 7

Java

int a;
boolean equals( Object o )

Java

a + 7
“A number: “ + 7
“A string”.equals( null )

Java

a = “A string”;
“A string”.equals( 1, 2 )

Java

2.1 Types and Subtyping – Types

Compile-time 
errors



12

Peter Müller – Concepts of Object-Oriented Programming

Dynamic Type Checking
§ Variables, methods, and

expressions of a program 
are typically not typed

§ Every object and value 
has a type

§ Run-time system checks 
that operations are 
applied to expected 
arguments

“A string”
5 + 7

Python

a = …;
def foo( o ): …

Python

a + 7
“A number: “ * 7
foo( None )

Python

a = “A string” / 5
foo( 5, 7 )

Python

a = “A string”
a = 7

Python

Run-time 
errors

2.1 Types and Subtyping – Types



13

Peter Müller – Concepts of Object-Oriented Programming

Static Type Safety
§ Definition:

A programming language is called type-safe if its 
design prevents type errors.

§ Statically type-safe object-oriented languages 
guarantee the following type invariant:
In every execution state, the value held by variable 
v is an element of the declared type of v

§ Type safety guarantees the absence of certain 
run-time errors

2.1 Types and Subtyping – Types



14

Peter Müller – Concepts of Object-Oriented Programming

Run-Time Checks in Static Type Systems
§ Most static type systems 

rely on dynamic checks 
for certain operations

§ Common example: type 
conversions by casts

§ Run-time checks throw 
an exception in case of 
a type error

Object[ ] oa = new Object[ 10 ];
String s = “A String”;

oa[ 0 ] = s;

…

s = oa[ 0 ];

s = s.concat( “Another String” );

s = (String) oa[ 0 ];
if ( oa[ 0 ] instanceof String )
s = (String) oa[ 0 ];

2.1 Types and Subtyping – Types



15

Expressiveness of Dynamic Type Systems

§ Static checkers need to 
approximate run-time 
behavior (conservative 
checks)

§ Dynamic checkers 
support features that 
would be hard to type-
check statically, e.g., 
dynamic code generation

Peter Müller – Concepts of Object-Oriented Programming

eval(
"x=10; y=20; document.write( x*y )" 

);

JavaScript

def divide( n, d ):
if d != 0: res = n / d
else: res = “Division by zero”
print res

Python

2.1 Types and Subtyping – Types



16

Bypassing Static Type Checks
§ Some statically-typed 

languages provide ways 
to bypass static checks
- C#, Scala
- Useful to interoperate 

with dynamically-typed 
languages or the HTML 
Document Object Model 
(DOM)

§ Type safety is preserved 
via run-time checks

Peter Müller – Concepts of Object-Oriented Programming

2.1 Types and Subtyping – Types

dynamic v = getPythonObject( );

dynamic res = v.Foo( 5 ); C#

Existence of method 
not checked at 
compile time

Result is 
dynamic



17

Gradual Typing
§ Some dynamically-typed 

languages provide optional 
static type checking
- mypy for Python
- TypeScript for JavaScript

§ Typically, an “Any” type 
indicates that an expression 
is not statically typed
- No static type checks for “Any”
- Type safety is guaranteed by 

run-time checks

Peter Müller – Concepts of Object-Oriented Programming

def foo(s: str) -> str Python

def bar1(x: Any) -> Any:
return foo(x)

def bar3( ):
return foo(1)

def bar2(x):
return foo(x)

def bar4( ) -> int:
return foo(‘Hello’)

Optional type 
annotation



18

Static vs. Dynamic Type Checking
Advantages of 
static checking
§ Static safety: More errors 

are found at compile time
§ Readability: Types are 

excellent documentation
§ Efficiency: Type 

information enables 
optimizations

§ Tool support: Types enable 
auto-completion, support 
for refactoring, etc. 

Advantages of 
dynamic checking
§ Expressiveness: No correct 

program is rejected by the 
type checker

§ Low overhead: No need to 
write type annotations

§ Simplicity: Static type 
systems are often 
complicated

Peter Müller – Concepts of Object-Oriented Programming

2.1 Types and Subtyping – Types



19

Type Systems in OO-Languages

C++, C#, Eiffel, Java, 
Scala Objective-C

Go, OCaml JavaScript, Python, Ruby, 
Smalltalk

Peter Müller – Concepts of Object-Oriented Programming

Static Dynamic

N
om

in
al

St
ru

ct
ur

al

Often called 
“duck typing”

“When I see a bird that walks 
like a duck and swims like a 
duck and quacks like a duck, 

I call that bird a duck.“
[James Whitcomb Riley]

2.1 Types and Subtyping – Types



20

Peter Müller – Concepts of Object-Oriented Programming

2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

2. Types and Subtyping



21

Peter Müller – Concepts of Object-Oriented Programming

Classification in Software Technology
§ Substitution principle

Objects of subtypes can be used wherever objects 
of supertypes are expected

§ Syntactic classification
- Subtype objects can understand at least the messages 

that supertype objects can understand

§ Semantic classification
- Subtype objects provide at least the behavior of 

supertype objects

2.2 Types and Subtyping – Subtyping



22

Peter Müller – Concepts of Object-Oriented Programming

Subtyping
§ Definition of “Type”:

A type is a set of values sharing some properties. 
A value v has type T if v is an element of T.

§ The subtype relation corresponds to the subset 
relation on the values of a type

Object

String
Object String

2.2 Types and Subtyping – Subtyping



23

Nominal and Structural Subtyping
§ Nominal type systems

- Determine type 
membership based on 
type names

- Determine subtype 
relations based on 
explicit declarations

§ Structural type systems
- Determine type 

membership and
subtype relations based
on availability of 
methods and fields

Peter Müller – Concepts of Object-Oriented Programming

class T 
extends S {
m( int ) {…}

}

class U {
m( int ) {…}
n( ) {…}

}

class T {
m( int ) {…}

}

class U {
m( int ) {…}
n( ) {…}

}

class S { m( int ) {…} }

Only T is a nominal 
subtype of S

T’s and U’s type are structural 
subtypes of S’s type

2.2 Types and Subtyping – Subtyping



24

Nominal Subtyping and Substitution
§ Subtype objects can understand at least the 

messages that supertype objects can understand
- Method calls
- Field accesses

§ Subtype objects have wider interfaces than 
supertype objects
- Existence of methods and fields
- Accessibility of methods and fields
- Types of methods and fields

Peter Müller – Concepts of Object-Oriented Programming

2.2 Types and Subtyping – Subtyping



25

Peter Müller – Concepts of Object-Oriented Programming

Existence
§ Sub narrows Super’s 

interface

§ If m is called with a 
Sub object as 
parameter, execution 
fails

§ Subtypes may add, but 
not remove methods 
and fields

class Super {
void foo( ) { … } 
void bar( ) { … } 

}

class Sub <: Super {
void foo( ) { … } 
// no bar( )

}

void m( Super s ) { s.bar( ); }

2.2 Types and Subtyping – Subtyping



26

Peter Müller – Concepts of Object-Oriented Programming

Accessibility
§ At run time, m could 

access a private 
method of Sub, 
thereby violating 
information hiding

§ An overriding method 
must not be less 
accessible than the 
methods it overrides

class Super {
public void foo( ) { … } 
public void bar( ) { … } 

}

class Sub <: Super {
public void foo( ) { … } 
private void bar( ) { … } 

}

void m( Super s ) { s.bar( ); }

2.2 Types and Subtyping – Subtyping



27

Overriding: Parameter Types
§ Calling m with a Sub object 

demonstrates a violation of 
static type safety
- o in Sub.bar is not a String

§ Contravariant parameters: 
An overriding method must 
not require more specific 
parameter types than the 
methods it overrides

Peter Müller – Concepts of Object-Oriented Programming

class Super {
void foo( String s ) { … } 
void bar( Object o ) { … } 

}

class Sub <: Super {
void foo( Object s ) { … } 
void bar( String o ) { … } 

}

void m( Super s ) { 
s.foo( “Hello” );
s.bar( new Object( ) );

}

2.2 Types and Subtyping – Subtyping



28

Overriding: Result Types
§ Calling m with a Sub object 

demonstrates a violation of 
static type safety
- t in m is not a String

§ Covariant results:
An overriding method must 
not have a more general 
result type than the 
methods it overrides
- Out-parameters and 

exceptions are results

Peter Müller – Concepts of Object-Oriented Programming

class Super {
Object foo( ) { … } 
String bar( ) { … } 

}

class Sub <: Super {
String foo( ) { … } 
Object bar( ) { … } 
}

void m( Super s ) { 
Object o = s.foo( );
String t = s.bar( );

}

2.2 Types and Subtyping – Subtyping



29

Overriding: Fields
§ Calling m with a Sub object 

demonstrates a violation of 
static type safety
- s.f is not a String
- t is not a String

§ Subtypes must not change 
the types of fields
- Fields are bound statically

Peter Müller – Concepts of Object-Oriented Programming

class Super {
Object f;
String g;

}

class Sub <: Super {
String f;
Object g;
}

void m( Super s ) { 
s.f = new Object( );
String t = s.g;

}

2.2 Types and Subtyping – Subtyping



30

class Super {
T f;
void setF( T f ) { this.f = f; }
T getF( ) { return f; }

}

class Sub <: Super {
S f;
void setF( S f ) { this.f = f; }
S getF( ) { return f; }

}

Overriding: Fields (cont’d)
§ Regard field as pair of 

getter and setter methods
- Specializing a field type 

(S <: T) corresponds to 
specializing the argument of 
the setter (violates 
contravariant parameters)

- Generalizing a field type 
(T <: S) corresponds to 
generalizing the result of the 
getter (violates covariant 
results)

Peter Müller – Concepts of Object-Oriented Programming

2.2 Types and Subtyping – Subtyping



31

Overriding: Immutable Fields
§ Immutable fields do not 

have setters
§ Types of immutable fields 

can be specialized in 
subclasses (S <: T)
- Works only if the supertype

constructor does not 
initialize f for subtype objects 
(with a T-value)!

§ Not permitted by 
mainstream languages

Peter Müller – Concepts of Object-Oriented Programming

class Super {
final T f;
void setF( T f ) { this.f = f; }
T getF( ) { return f; }

}

class Sub <: Super {
final S f;
void setF( S f ) { this.f = f; }
S getF( ) { return f; }

}

2.2 Types and Subtyping – Subtyping



32

§ In Java and C#, arrays are 
covariant
- If S <: T then S[ ] <: T[ ]

§ Each array update requires a
run-time type check

Covariant Arrays

Peter Müller – Concepts of Object-Oriented Programming

class C {
void foo( Object[ ] a ) {
if( a.length > 0 )
a[ 0 ] = new Object( );

}
}

void client( C c ) {
c.foo( new String[ 5 ] );

}

class Object[ ] {

public Object 0;
public Object 1;
…

}

class String[ ] 
<: Object[ ] {

public String 0;
public String 1;
…

}

2.2 Types and Subtyping – Subtyping



33

Covariant Arrays (cont’d)
§ Covariant arrays allow one to write methods that 

work for all arrays such as

§ Here, the designers of Java and C# resolved the 
trade-off between expressiveness and static safety 
in favor of expressiveness 

§ Generics allow a solution that is expressive and 
statically safe (more later)

Peter Müller – Concepts of Object-Oriented Programming

class Arrays {  
public static void fill( Object[ ] a, Object val ) { … }

}

2.2 Types and Subtyping – Subtyping



34

Shortcomings of Nominal Subtyping (1)
§ Nominal subtyping can impede reuse
§ Consider two library classes

§ Now we would like to store Resident and 
Employee-objects in a collection of type Person[ ]
- Neither Resident nor Employee is a subtype of Person

Peter Müller – Concepts of Object-Oriented Programming

class Resident {
String getName( ) { … }
Data dateOfBirth( ) { … }
Address getAddress( ) { … }

}

class Employee {
String getName( ) { … }
Data dateOfBirth( ) { … }
int getSalary( ) { … }

}

2.2 Types and Subtyping – Subtyping



35

Reuse: Adapter Pattern
§ Implement Adapter (wrapper)

- Subtype of Person
- Delegate calls to adaptee (Resident or Employee)

§ Adapter requires boilerplate code
§ Adapter causes memory and run-time overhead
§ Works also if Person is reused

Peter Müller – Concepts of Object-Oriented Programming

class EmployeeAdapter implements Person {
private Employee adaptee;
String getName( ) { return adaptee.getName( ); }
Data dateOfBirth() { return adaptee.dateOfBirth( ); }

}

interface Person {
String getName( );
Data dateOfBirth( );

}

2.2 Types and Subtyping – Subtyping



36

Reuse: Generalization
§ Most OO-languages support specialization of 

superclasses (top-down development)
§ Some research languages (e.g., Sather, Cecil) also 

support generalization (bottom-up development)

§ Supertype can be declared after subtype has been 
implemented

Peter Müller – Concepts of Object-Oriented Programming

interface Person generalizes Resident, Employee {
String getName( );
Data dateOfBirth( );

}

2.2 Types and Subtyping – Subtyping



37

Reuse: Generalization (cont’d)
§ Generalization does 

not imply inheritance

§ Subclass-to-be already 
has a superclass
- Single inheritance: 

exchanging the 
superclass might affect 
the subclass

- Multiple inheritance: 
additional superclass
may cause conflicts

Peter Müller – Concepts of Object-Oriented Programming

abstract class DataPoint
generalizes Cell {

abstract int getData( );
boolean equals( Object o ) {
… // check type of o
return getData( ) == 

( (DataPoint) o ).getData( );
}

}

class Cell {
int value;
int getData( ) { return value; }

}

2.2 Types and Subtyping – Subtyping



38

Shortcomings of Nominal Subtyping (2)
§ Nominal subtyping can limit generality
§ Many method signatures are overly restrictive

§ printData uses only two methods of c, but requires 
a type with 13 methods

Peter Müller – Concepts of Object-Oriented Programming

void printData( Collection<String> c ) {
if( c.isEmpty() ) System.out.println( “empty” ); 
else { 
Iterator<String> iter = c.iterator( );
while( iter.hasNext() ) System.out.println( iter.next() );

}
}

2.2 Types and Subtyping – Subtyping



39

Generality: Additional Supertypes
§ Make type requirements 

weaker by declaring 
interfaces for useful 
supertypes

§ But: many useful subsets 
of operations
- Read-only collection
- Write-only collection (log file)
- Convertible collection
- Combinations of the above

Peter Müller – Concepts of Object-Oriented Programming

interface Iterable<E> {
Iterator<E> iterator( );

}

interface Collection<E> 
extends Iterable<E> {

// 13 methods
}

§ Overhead for declaring supertypes and subtyping

2.2 Types and Subtyping – Subtyping



40

Generality: Optional Methods
§ Java documentation 

marks some methods 
as “optional”
- Implementation is 

allowed to throw an 
unchecked exception

- For Collection: all 
mutating methods

§ Static safety is lost

Peter Müller – Concepts of Object-Oriented Programming

interface Collection<E> 
extends Iterable<E> {

/* 13 methods, out of which 6 are 
optional */

}

class AbstractCollection<E> 
implements Collection<E> {

boolean add( E e ) {
throw new

UnsupportedOperationException( );
}
…

}

2.2 Types and Subtyping – Subtyping



41

Structural Subtyping and Substitution
§ Subtype objects can understand at least the 

messages that supertype objects can understand
- Method calls
- Field accesses

§ Structural subtypes have by definition wider 
interfaces than their supertypes

Peter Müller – Concepts of Object-Oriented Programming

2.2 Types and Subtyping – Subtyping



42

Reuse: Structural Subtyping
§ All types are “automatically” 

subtypes of types with 
smaller interfaces
- No extra code or declarations 

required

§ Subtyping does not imply 
inheritance (like 
generalization)

§ Person is a supertype of 
Resident and Employee

Peter Müller – Concepts of Object-Oriented Programming

class Resident {
String getName( ) { … }
Data dateOfBirth( ) { … }
… }

class Employee {
String getName( ) { … }
Data dateOfBirth( ) { … }
… }

interface Person {
String getName( );
Data dateOfBirth( );

}

2.2 Types and Subtyping – Subtyping



43

Generality: Structural Subtyping

§ Static type checking
- Additional-supertypes approach applies
- Additional supertypes must be declared, but not the 

subtype relation
§ Dynamic type checking

- Arguments to operations are not restricted
- Similar to optional-methods approach (possible run-time 

error)

Peter Müller – Concepts of Object-Oriented Programming

void printData( Collection<String> c ) {
// uses only c.isEmpty() and c.iterator()

}

2.2 Types and Subtyping – Subtyping



44

Type Systems in OO-Languages

Sweetspot:
Maximum static safety

Why should one declare all 
the type information but 

then not check it statically?

Overhead of declaring 
many types is inconvenient;
Problems with semantics of 

subtypes (see later)

Sweetspot:
Maximum flexibility

Peter Müller – Concepts of Object-Oriented Programming

Static Dynamic

N
om

in
al

St
ru

ct
ur

al
2.2 Types and Subtyping – Subtyping



45

Peter Müller – Concepts of Object-Oriented Programming

2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

2. Types and Subtyping



46

Peter Müller – Concepts of Object-Oriented Programming

Types
§ Definition:

A type is a set of values sharing some properties. 
A value v has type T if v is an element of T.

§ Question: what are the “properties” shared by the 
values of a type?
- So far we focused on syntax

§ “Properties” should also include the behavior of the 
object
- Expressed as interface specifications (contracts)

2.3 Types and Subtyping – Behavioral Subtyping



47

Peter Müller – Concepts of Object-Oriented Programming

Method Behavior

§ Preconditions have to 
hold in the state 
before the method 
body is executed

§ Postconditions have 
to hold in the state 
after the method body 
has terminated

§ Old-expressions can 
be used to refer to 
prestate values from 
the postcondition

class BoundedList {
Object[ ] elems;
int free;  // next free slot
…

void add( Object e )  { … }
}

// requires free < elems.length
// ensures elems[ old( free ) ] == e 

2.3 Types and Subtyping – Behavioral Subtyping



48

Peter Müller – Concepts of Object-Oriented Programming

Object Invariants
§ Object invariants 

describe consistency 
criteria for objects

§ Invariants have to hold 
in all states, in which an 
object can be accessed 
by other objects

class BoundedList {
Object[ ] elems;
int free;  // next free slot

…
// requires free < elems.length
// ensures elems[ old( free ) ] == e 
void add( Object e )  { … }

}

/* invariant 
elems != null &&
0 <= free && 
free <= elems.length */

2.3 Types and Subtyping – Behavioral Subtyping



49

Peter Müller – Concepts of Object-Oriented Programming

Visible States

§ Invariants have to hold in 
pre- and poststates of 
methods executions but 
may be violated 
temporarily in between

§ Pre- and poststates are 
called “visible states”

class Redundant {
private int a, b;
// invariant a == b

public void set( int v ) { 
// invariant of this holds
a = v;
// invariant of this violated
b = v;
// invariant of this holds

}
}

2.3 Types and Subtyping – Behavioral Subtyping



50

Peter Müller – Concepts of Object-Oriented Programming

History Constraints
§ History constraints 

describe how objects 
evolve over time

§ History constraints 
relate visible states

§ Constraints must be 
reflexive and transitive

class Person {
int age;

// constraint old( age ) <= age

Person( int age ) {
this.age = age;

}

…
}

2.3 Types and Subtyping – Behavioral Subtyping

Person p = new Person( 7 );
…
…
assert 7 <= p.age;



51

Static vs. Dynamic Contract Checking

Static checking
Program verification
§ Static safety: More errors 

are found at compile time

§ Complexity: Static contract 
checking is difficult and not 
yet mainstream

§ Large overhead: Static 
contract checking requires 
extensive contracts

Dynamic checking
Run-time assertion checking
§ Expressiveness: Not all 

properties can be checked 
(efficiently) at run time

§ Efficient bug-finding: 
Complements testing

§ Low overhead: Partial 
contracts are useful

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping



52

Peter Müller – Concepts of Object-Oriented Programming

§ Subtypes specialize the behavior of supertypes
§ What are legal specializations?

Contracts and Subtyping
class UndoNaturalNumber

extends Number {
int undo;
// invariant 0 < n && 0 < undo

// requires 0 < p
// ensures n == p && undo == old( n )
void set( int p )  

{ undo = n; n = p; }
…

}

class Number {

int n;
// invariant true

// requires true
// ensures n == p
void set( int p )  

{ n = p; }
…

}

2.3 Types and Subtyping – Behavioral Subtyping



53

Peter Müller – Concepts of Object-Oriented Programming

Rules for Subtyping: Preconditions
class Super {
// requires 0 <= n && n < 5
void foo( int n ) {
char[ ] tmp = new char[ 5 ];
tmp[ n ] = ‘X’;

}
}

class Sub extends Super {
// requires 0 <= n && n < 3
void foo( int n ) {
char[ ] tmp = new char[ 3 ];
tmp[ n ] = ‘X’;

}
}

void crash( Super s ) {
s.foo( 4 );

}

x.crash( new Sub( ) );

§ Subtype objects must fulfill 
contracts of supertypes

§ Overriding methods of 
subtypes may have weaker 
preconditions than 
corresponding supertype
methods

2.3 Types and Subtyping – Behavioral Subtyping



54

Peter Müller – Concepts of Object-Oriented Programming

Rules for Subtyping: Postconditions
class Super {
// ensures 0 < result
int foo( ) {
return 1;

}
}

class Sub extends Super {
// ensures 0 <= result
int foo( ) {
return 0;

}
}

void crash( Super s ) {
int i = 5 / s.foo( );

}

x.crash( new Sub( ) );

§ Overriding methods of 
subtypes may have 
stronger postconditions 
than corresponding 
supertype methods

2.3 Types and Subtyping – Behavioral Subtyping



55

Peter Müller – Concepts of Object-Oriented Programming

Rules for Subtyping: Invariants
class Super {
int n;
// invariant 0 < n
Super( ) { n = 5; }
int crash( ) { return 5 / n; }

}

class Sub extends Super {
// invariant 0 <= n
Sub( ) { 
n = 0;

}
}

new Sub( ).crash( );

§ Subtypes may have 
stronger invariants

2.3 Types and Subtyping – Behavioral Subtyping



56

Peter Müller – Concepts of Object-Oriented Programming

Rules for Subtyping: History Constraints
class Super {
int n;

// constraint old( n ) <= n

int get( ) { return n; }

void foo( ) { }
}

class Sub extends Super {
// constraint true

void foo( ) {
n = n – 1;

}
}

int crash( Super s ) {
int cache = s.get( ) – 1;
s.foo( );
return 5 / ( cache – s.get() );

}

x.crash( new Sub( ) );

§ Subtypes may have 
stronger history 
constraints

2.3 Types and Subtyping – Behavioral Subtyping



57

Natural Numbers Revisited

§ UndoNaturalNumber does not specialize the 
behavior of Number

Peter Müller – Concepts of Object-Oriented Programming

class UndoNaturalNumber
extends Number {

int undo;
// invariant 0 < n && 0 < undo

// requires 0 < p
// ensures n == p && undo == old( n )
void set( int p )  

{ undo = n; n = p; }
…

}

class Number {

int n;
// invariant true

// requires true
// ensures n == p
void set( int p )  

{ n = p; }
…

}

2.3 Types and Subtyping – Behavioral Subtyping



58

Peter Müller – Concepts of Object-Oriented Programming

§ Subtype objects must fulfill contracts of supertypes, 
but:
- Subtypes can have stronger invariants
- Subtypes can have stronger history constraints
- Overriding methods of subtypes can have

weaker preconditions
stronger postconditions

than corresponding supertype methods

§ Concept is called Behavioral Subtyping

Rules for Subtyping: Summary
2.3 Types and Subtyping – Behavioral Subtyping



59

Checking Behavioral Subtyping
§ Static checking, e.g., as part of code reviews

- For each override S.m of T.m check 
for all parameters, heaps, and results

- For each subtype S <: T check
for all heaps

§ Dynamic checking
- No explicit checking of behavioral subtyping
- Check the required properties at the beginning and end 

of each method execution

Peter Müller – Concepts of Object-Oriented Programming

PreT.m => PreS.m
PostS.m => PostT.m

InvS => InvT
ConsS => ConsT

2.3 Types and Subtyping – Behavioral Subtyping



60

Improved Postcondition Rule
§ The above rule for 

postconditions is sound, but 
overly restrictive

§ Any caller that wants to use 
the supertype postcondition
must establish the supertype
precondition

§ Improved rule (attempt):

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

class Super {
// requires 0 < p
// ensures 0 < result 
int foo( int p ) { … }          }

class Sub extends Super {
// requires true
// ensures p < result
int foo( int p ) { … }          }

int client( Super s ) {
int r = s.foo( 5 );
assert 0 < r;

}

PostS.m => PostT.m

PreT.m => (PostS.m => PostT.m)



61

Improved Postcondition Rule (c’t)
§ The above rule for 

postconditions is sound, but 
overly restrictive

§ Any caller that wants to use 
the supertype postcondition
must establish the supertype
precondition

§ Improved rule (attempt):

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

PostS.m => PostT.m

PreT.m => (PostS.m => PostT.m)

class Super {
int p;
// requires 0 < p
// ensures 0 < result 
int foo( ) { … }          }

int client( Super s ) {
s.p = 5;  int r = s.foo( );
assert 0 < r;

}

class Sub extends Super {
// requires true
// ensures p < result
int foo( ) 
{ … }          

}

class Sub extends Super {
// requires true
// ensures p < result
int foo( ) 
{ p = -2; return -1; }          

}

§ Improved rule (definite):
old( PreT.m) => (PostS.m => PostT.m)



62

Automatic Checking of Behav. Subtyping
§ Assume contracts are part of the program
§ A static checker would have to check logical 

entailments, for example:

§ But: entailment is undecidable

- For all p, result :: 
old(p == p*p) => ( result == 2 =>  p < result )

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

class Super {
// requires p == p*p
// ensures p < result 
int foo( int p ) { … }          }

class Sub extends Super {

// ensures result == 2
int foo( int p ) { … }          }

old( PreT.m) => (PostS.m => PostT.m)



63

Behavioral Nominal Subtyping
§ Programmers should check behavioral subtyping 

when introducing subtype relations to ensure that 
polymorphic code works as expected
- For instance, during code reviews
- Checks can be performed on informal documentation or 

on formal contracts

§ For languages with support for contracts
- Checks cannot be fully automated due to undecidability
- Specification inheritance is a technique to enforce 

behavioral subtyping by construction (not discussed here)

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping



64

Behavioral Structural Subtyping
§ With dynamic type checking, callers 

have no static knowledge of contracts
- Cannot establish precondition
- Have no postcondition to assume

§ Called method may check its own 
contract at run time
- Precondition failures are analogous to 

“message not understood”; caller cannot 
be blamed

- Postcondition failures may reveal error in 
method implementation (like an assert)

Peter Müller – Concepts of Object-Oriented Programming

render( p ) {
p.draw( );

}

class Circle {
draw( ) { … }

}

class Cowboy {
draw( ) { … }

}

2.3 Types and Subtyping – Behavioral Subtyping



65

Behavioral Structural Subtyping (cont’d)

§ With static structural type checking, callers could 
state which signature and behavior they require

Peter Müller – Concepts of Object-Oriented Programming

render( { void draw( ) 
requires P 
ensures Q }   p ) {

p.draw( );
}

2.3 Types and Subtyping – Behavioral Subtyping



66

Behavioral Structural Subtyping (cont’d)
§ Type system should introduce a subtype relation 

only if behavioral subtyping rules are satisfied

§ But these checks cannot be automated reliably, 
even if the program contains formal contracts

§ Structural subtyping ignores the behavior!

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

render( { void draw( ) 
requires P 
ensures Q }   p ) {

p.draw( );
}

class Circle {
// requires P’
// ensures Q’
draw( ) { … }

} foo( ) { render( new Circle() ); }



67

Types as Contracts
§ Types can be seen as a 

special form of contract, 
where static checking is 
decidable

§ Operator type( x ) yields 
the type of the object
stored in x 
- The dynamic type of x

Peter Müller – Concepts of Object-Oriented Programming

class Types {
Person p;

String foo( Person q ) { … }
…

}

class Types {
p;

foo( q ) { … }
…

}

class Types {
p;
// invariant type( p ) <: Person

foo( q ) { … }
…

}

class Types {
p;
// invariant type( p ) <: Person

// requires type( q ) <: Person
// ensures type( result ) <: String
foo( q ) { … }
…

}

2.3 Types and Subtyping – Behavioral Subtyping



68

Types as Contracts: Subtyping
§ Stronger invariant: 

- type( p ) <: S’ => type( p ) <: S  
requires S’ <: S

§ Weaker precondition
- type( q ) <: T => type( q ) <: T’  

requires T <: T’

§ Stronger postcondition: 
- type( result ) <: U’  => 

type( result ) <: U  
requires U’ <: U

Peter Müller – Concepts of Object-Oriented Programming

class Sub <: Super {
S’ p;
// invariant type( p ) <: S’
// requires type( q ) <: T’
// ensures type( result ) <: U’
U’ foo( T’ q ) { … }

}

class Super {
S p;
// invariant type( p ) <: S
// requires type( q ) <: T
// ensures type( result ) <: U
U foo( T q ) { … }

}

Contravariance

Covariance

Covariance

2.3 Types and Subtyping – Behavioral Subtyping



69

Invariants over Inherited Fields

§ Invariants over inherited 
field f can be violated by 
all methods that have 
access to f

§ Static checking of such 
invariants is not modular

Peter Müller – Concepts of Object-Oriented Programming

package Client;
public class Sub 

extends Super {
// invariant 0 <= f

}

package Library;
public class Super {
protected int f;

}

package Library;
class Friend {
void foo( Super s ) { s.f = –1; }

}

2.3 Types and Subtyping – Behavioral Subtyping



70

Immutable Types
§ Objects of immutable types 

do not change their state 
after construction

§ Advantages
- No unexpected modifications 

of shared objects
- No thread synchronization 

necessary
- No inconsistent states

§ Examples from Java
- String, Integer

Peter Müller – Concepts of Object-Oriented Programming

class ImmutableCell {
private int value;

ImmutableCell( int value ) { 
this.value = value;

}

int get( ) { 
return value; 

}

// no setter
}

2.3 Types and Subtyping – Behavioral Subtyping



71

Immutable and Mutable Types
§ What should be the 

subtype relation 
between mutable and 
immutable types?

Peter Müller – Concepts of Object-Oriented Programming

class ImmutableCell {
int value;
ImmutableCell( int value ) { … } 
int get( ) { … }
// no setter

}

class Cell {
int value;
Cell( int value ) { … } 
int get( ) { … }
void set( int value ) { … }

}

2.3 Types and Subtyping – Behavioral Subtyping



72

Immutable and Mutable Types (cont’d)
§ Proposal 1: Immutable 

type should be subtype

§ Not possible because 
mutable type has wider 
interface

Peter Müller – Concepts of Object-Oriented Programming

class Cell {
int value;
Cell( int value ) { … } 
int get( ) { … }
void set( int value ) { … }

}

class ImmutableCell extends Cell {
ImmutableCell( int value ) { … }
…

}

2.3 Types and Subtyping – Behavioral Subtyping

class ImmutableCell extends Cell {
ImmutableCell( int value ) { … }
void set( int value ) { 
// throw exception
}

}



73

Immutable and Mutable Types (cont’d)
§ Proposal 2: Mutable 

type should be subtype

§ Mutable type has wider 
interface
- Also complies with 

structural subtyping

§ But: Mutable type does 
not specialize behavior

Peter Müller – Concepts of Object-Oriented Programming

class Cell extends ImmutableCell {
Cell( int value ) { … } 
void set( int value ) { … }

}

class ImmutableCell {
int value;

… // no setter
}

foo( ImmutableCell c ) {
int cache = c.get( );
…
assert cache == c.get( );  

}

class ImmutableCell {
int value;
// constraint old( value ) == value
… // no setter

}

2.3 Types and Subtyping – Behavioral Subtyping



74

Immutable and Mutable Types: Solutions
§ Clean solution

- No subtype relation between 
mutable and immutable types

- Only exception: Object, which 
has no history constraint

§ Java API contains immutable 
types that are subtypes of 
mutable types
- AbstractCollection and Iterator

are mutable
- All mutating methods are 

optional
Peter Müller – Concepts of Object-Oriented Programming

Object

Immutable 
types

Mutable 
types

2.3 Types and Subtyping – Behavioral Subtyping



75

References
§ Donna Malayeri and Jonathan Aldrich: Is Structural 

Subtyping Useful? An Empirical Study. ESOP 2009
§ Barbara Liskov and Jeannette Wing: A Behavioral Notion of 

Subtyping. ACM Transactions on Programming Languages 
and Systems, 1994

§ Krishna Kishore Dhara and Gary T. Leavens: Forcing 
Behavioral Subtyping through Specification Inheritance. 
ICSE 1996

Peter Müller – Concepts of Object-Oriented Programming

2. Types and Subtyping


