
Concepts of 
Object-Oriented Programming

Peter Müller
Programming Methodology Group

Autumn Semester 2022



2

History of Programming Languages 
1. Introduction

GUIs

Internet

Networks

Software 
Crisis

Peter Müller – Concepts of Object-Oriented Programming

Multi-Core

Procedural Declarative Object-Oriented

1950s

1960s

1970s

1980s

1990s

2000s

2010s

• Fortran
Cobol • • Algol • LISP

• PL/I• Basic
• Simula 67

Smalltalk •C • • Pascal

• Modula-2

• Prolog
Scheme •

• ML

• Ada
• Eiffel • C++

Swift •
• Rust

• C#

Go •
Scala •F# •

• Haskell Python •
Java •• JavaScript

• Ruby

Mobile

Datacenters



3

1. Introduction

1.1 Requirements
1.2 Core Concepts
1.3 Language Concepts
1.4 Course Organization
1.5 Language Design

1.1 Introduction

Peter Müller – Concepts of Object-Oriented Programming



41.1 Introduction – Requirements

Requirements Motivating OOP

Distributed
Programming

GUIsComputation 
as Simulation

Reuse
Extendibility

and
Adaptability

Adaptable
Standard

Functionality

Describing
Dynamic System

Behavior

Modeling
Entities of the

Real World

Distribution
of Data and 

CodeCommunication

Concurrency

Documented
Interfaces

Peter Müller – Concepts of Object-Oriented Programming



5

Example: Reusing Procedural Programs
§ Scenario: University Administration System

- Models students and professors
- Stores one record for each student and each professor in 

a repository
- Procedure printAll prints all records in the repository

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming



6

An Implementation in C
typedef struct {
char *name;
char *room;
char *institute;

} Professor;

typedef struct {
char *name;
int regNum;

} Student;

void printStudent( Student *s ) 
{ … }

void printProf( Professor *p ) 
{ … }

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming



7

An Implementation in C (cont’d)
typedef struct {
enum { STU,PROF } kind; 
union {   
Student *s; 
Professor *p;

} u;
} Person;

typedef Person **List;

void printAll( List l ) {
int i;
for ( i=0; l[ i ] != NULL; i++ ) 
switch ( l[ i ] -> kind ) {
case STU:  
printStudent( l[ i ] -> u.s );   
break;

case PROF: 
printProf( l[ i ] -> u.p ); 
break;

}
}

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming



8

Extending and Adapting the Program
§ Scenario: University Administration System

- Models students and professors
- Stores one record for each student and each professor in 

a repository
- Procedure printAll prints all records in the repository

§ Extension: Add assistants to system
- Add record and print function for assistants
- Reuse old code for repository and printing

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming



9

Step 1: Add Record and Print Function
typedef struct {
char *name;
char *room;
char *institute;

} Professor;

typedef struct {
char *name;
int regNum;

} Student;

void printStudent( Student *s ) 
{ … }

void printProf( Professor *p ) 
{ … }

1.1 Introduction – Requirements

typedef struct {
char *name;
char PhD_student;  /* ‘y‘, ‘n‘ */

} Assistant;

void printAssi( Assistant *a ) 
{ … }

Peter Müller – Concepts of Object-Oriented Programming



10

Step 2: Reuse Code for Repository
typedef struct {
enum { STU,PROF          } kind; 
union {   
Student *s; 
Professor *p;

} u;
} Person;

typedef Person **List;

void printAll( List l ) {
int i;
for ( i=0; l[ i ] != NULL; i++ ) 
switch ( l[ i ] -> kind ) {
case STU:  
printStudent( l[ i ] -> u.s );   
break;
case PROF: 
printProf( l[ i ] -> u.p ); 
break;

}
}

1.1 Introduction – Requirements

,ASSI 

Assistant *a;

case ASSI: 
printAssi( l[ i ] -> u.a ); 
break;

Peter Müller – Concepts of Object-Oriented Programming



11

Reuse in Procedural Languages
§ No explicit language support for extension and 

adaptation
§ Adaptation usually requires modification of reused 

code
§ Copy-and-paste reuse

- Code duplication
- Difficult to maintain
- Error-prone

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming



121.1 Introduction – Requirements

Requirements Motivating OOP

Distributed
Programming

GUIsComputation 
as Simulation

Reuse
Extendibility

and
Adaptability

Adaptable
Standard

Functionality

Describing
Dynamic System

Behavior

Modeling
Entities of the

Real World

Distribution
of Data and 

CodeCommunication

Concurrency

Documented
Interfaces

Peter Müller – Concepts of Object-Oriented Programming



13

1. Introduction

1.1 Requirements
1.2 Core Concepts
1.3 Language Concepts
1.4 Course Organization
1.5 Language Design

1.2 Introduction

Peter Müller – Concepts of Object-Oriented Programming



14

Peter Müller – Concepts of Object-Oriented Programming

Object Model: The Philosophy
1.2 Introduction – Core Concepts

“The basic philosophy underlying object-oriented 
programming is to make the programs as far as 
possible reflect that part of the reality they are going 
to treat. It is then often easier to understand and to 
get an overview of what is described in programs. 
The reason is that human beings from the outset are 
used to and trained in the perception of what is going 
on in the real world. The closer it is possible to use 
this way of thinking in programming, the easier it is to 
write and understand programs.“

[Object-oriented Programming in the BETA Programming Language]



15

Core Concept 1: The Object Model
§ A software system is a set of cooperating objects
§ Objects have state and processing ability
§ Objects exchange messages

a1:
a2:

obj1

m(p1,p2) {..}
m1( ) {..}
m2(p) {..}

a:
obj2

m(p1,p2) {..}
n(p,r) {..}

obj2 . m( “COOP”,1 )

1.2 Introduction – Core Concepts

Peter Müller – Concepts of Object-Oriented Programming



16

Peter Müller – Concepts of Object-Oriented Programming

Characteristics of Objects
1.2 Introduction – Core Concepts

§ Objects have
- State
- Identity
- Lifecycle
- Location
- Behavior

§ Compared to procedural programming, 
- Objects lead to a different program structure
- Objects lead to a different execution model



17

Peter Müller – Concepts of Object-Oriented Programming

Variant 2: sharingVariant 1: copying

Object Identity: Example
1.2 Introduction – Core Concepts

§ Consider 
r = l.rest( ); r.set( 4711 ); int i = l.next.get();

n:
obj1

1e:
n:
obj2

2e:
nulln:

obj3

3e:
n:
obj1

1e:
n:
obj2

2e:
nulln:

obj3

3e:

l

n:
obj4

2e:
nulln:

obj5

3e:
r

l

r

4711e:

4711e:



18

f1:
f2:

obj1

m(p1,p2) {..}
m1( ) {..}
m2(p) {..}
h1(p,q) {..}
h2(r) {..}
h3( ) {..}

hf1:
hf2:
hf3:

f1:
f2:

obj1

m(p1,p2) {..}
m1( ) {..}
m2(p) {..}

Core Concept 2: 
Interfaces and Encapsulation
§ Objects have well-defined 

interfaces
- Publicly accessible fields
- Publicly accessible methods

§ Implementation is hidden 
behind interface
- Encapsulation
- Information hiding

§ Interfaces are the basis for 
documenting behavior

1.2 Introduction – Core Concepts

Peter Müller – Concepts of Object-Oriented Programming



19

Core Concept 3:
Classification and Polymorphism
§ Classification: 

Hierarchical structuring 
of objects

§ Objects belong to 
different classes 
simultaneously 

§ Substitution principle: 
Subtype objects can be 
used wherever supertype
objects are expected

1.2 Introduction – Core Concepts

Person

Assistant ProfessorStudent

Bachelor
Student

Master
Student

PhD
Student

Peter Müller – Concepts of Object-Oriented Programming

Arrows represent 
the “is-a” relation



20

Peter Müller – Concepts of Object-Oriented Programming

Polymorphism
§ Definition of Polymorphism:

The quality of being able to assume different forms
[Merriam-Webster Dictionary]

§ In the context of programming: 
A program part is polymorphic if it can be used for 
objects of several classes

1.2 Introduction – Core Concepts



21

Peter Müller – Concepts of Object-Oriented Programming

Subtype Polymorphism
§ Subtype polymorphism is a direct consequence of 

the substitution principle
- Program parts working with supertype objects work as 

well with subtype objects
- Example: printAll can print objects of class Person, 

Student, Professor, etc.

§ Other forms of polymorphism (not core concepts)
- Parametric polymorphism (generic types)
- Ad-hoc polymorphism (method overloading)

1.2 Introduction – Core Concepts



22

Peter Müller – Concepts of Object-Oriented Programming

Parametric Polymorphism: Example
§ Parametric 

polymorphism uses 
type parameters

§ One implementation 
can be used for 
different types

§ Type mismatches can 
be detected at compile 
time 

1.2 Introduction – Core Concepts

class List<G> {
G[ ] elems;
void append( G p ) { … } 

}

List<String> myList;
myList = new List<String>( );
myList.append( “String” );

myList.append( myList );



23

Peter Müller – Concepts of Object-Oriented Programming

Ad-hoc Polymorphism: Example
§ Ad-hoc polymorphism 

allows several methods 
with the same name but 
different arguments

§ Also called overloading

§ No semantic concept: 
can be modeled by 
renaming easily  

1.2 Introduction – Core Concepts

class Any {
void foo( Polar p ) { … } 
void foo( Coord c ) { … } 

}

x.foo( new Coord( 5, 10 ) );



24

Peter Müller – Concepts of Object-Oriented Programming

Specialization
§ Definition of Specialization:

Adding specific properties to an object or refining a 
concept by adding further characteristics.

§ Start from general objects or types
§ Extend these objects and their implementations 

(add properties)
§ Requirement: Behavior of specialized objects is 

compliant to behavior of more general objects
§ Program parts that work for the more general 

objects work as well for specialized objects

1.2 Introduction – Core Concepts



25

Peter Müller – Concepts of Object-Oriented Programming

class Person {
Stringname;
…
void print( ) {
System.out.println( name );

}
}

Example: Specialization

§ Develop implementation 
for type Person

§ Specialize it

1.2 Introduction – Core Concepts



26

Peter Müller – Concepts of Object-Oriented Programming

Example: Specialization (cont’d)
1.2 Introduction – Core Concepts

class Student extends Person {
int regNum;
…
void print( ) {
super.print( );
System.out.println( regNum );

}
}

class Professor extends Person {
String room;
…
void print( ) {
super.print( );
System.out.println( room );

}
}

§ Inheritance of
- Fields
- Methods

§ Methods can be 
overridden in 
subclasses



27

Core Concepts: Summary
§ Core concepts of the OO-paradigm

- Object model
- Interfaces and encapsulation
- Classification and polymorphism

§ Core concepts are abstract concepts to meet the 
new requirements

§ To apply the core concepts we need ways to 
express them in programs

§ Language concepts enable and facilitate the 
application of the core concepts

1.2 Introduction – Core Concepts

Peter Müller – Concepts of Object-Oriented Programming



28

1. Introduction

1.1 Requirements
1.2 Core Concepts
1.3 Language Concepts
1.4 Course Organization
1.5 Language Design

1.3 Introduction

Peter Müller – Concepts of Object-Oriented Programming



29

Example: Dynamic Method Binding
§ Classification and 

polymorphism
- Algorithms that work with 

supertype objects can be 
used with subtype objects

1.3 Introduction – Language Concepts

void printAll( Person[ ] l ) {
for (int i=0; l[ i ] != null; i++) 
l[ i ] . print( );

}

§ Dynamic binding:
Method implementation is 
selected at run time, 
depending on the type of 
the receiver object

- Subclass objects are 
specialized

Person

Assistant ProfessorStudent

Bachelor
Student

Master
Student

PhD
Student

Peter Müller – Concepts of Object-Oriented Programming



30

OO-Concepts and Procedural Languages
§ What we have seen so far

- New concepts are needed to meet new requirements
- Core concepts serve this purpose
- Language concepts are needed to express core 

concepts in programs
§ Open questions

- Why do we need OO-programming languages?
- Can’t we use the language concepts as guidelines when 

writing procedural programs?
§ Let’s do an experiment …

- Writing object-oriented programs in C

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming



31

Types and Objects

§ Declare types typedef char* String;
typedef struct sPerson Person;

1.3 Introduction – Language Concepts

struct sPerson {
String name;

};

void ( *print )( Person* );
String ( *lastName )( Person* );

§ Declare records with
- Fields
- Methods 

(function pointers)

Peter Müller – Concepts of Object-Oriented Programming



32

Methods and Constructors

§ Define constructors Person *PersonC( String n ) {
Person *this = (Person *)

malloc( sizeof( Person ) );
this -> name = n;
this -> print = printPerson;
this -> lastName = LN_Person;
return this;

}

1.3 Introduction – Language Concepts

§ Define methods void printPerson( Person *this ) {
printf(“Name: %s\n“, this->name);

}

String LN_Person( Person *this ) 
{ … }

Peter Müller – Concepts of Object-Oriented Programming



33

§ Use constructors, 
fields, and methods

Person *p;
p = PersonC( “Tony Hoare“ );
p->name = p->lastName( p );
p->print( p );

Using the “Object”
1.3 Introduction – Language Concepts

struct sPerson {
String name;
void ( *print )( Person* );
String ( *lastName )( Person* );

};

§ Declaration

Peter Müller – Concepts of Object-Oriented Programming



34

Inheritance and Specialization
typedef struct sStudent Student;
struct sStudent {
String name;
void ( *print )( Student* );
String ( *lastName )( Student* );
int regNum;

};

1.3 Introduction – Language Concepts

void printStudent( Student *this ) {
printf(“Name: %s\n“, this->name);
printf(“No: %d\n“, this->regNum);

}

§ Copy code
§ Adapt function 

signatures

§ Define specialized 
methods

Peter Müller – Concepts of Object-Oriented Programming



35

Inheritance and Specialization (cont’d)
1.3 Introduction – Language Concepts

Student *StudentC( String n, int r ) {
Student *this = (Student *)

malloc( sizeof( Student ) );

this -> name = n;
this -> print = printStudent;

this -> lastName = 
(String (*)(Student*)) LN_Person;

this -> regNum = r;

return this;
}

§ Reuse LN_Person for 
Student

§ View Student as 
Person (cast)

Peter Müller – Concepts of Object-Oriented Programming



36

Student *s;
Person *p;
s = StudentC( “Susan Roberts“, 0 );
p = (Person *) s;
p -> name = p -> lastName( p );
p -> print( p );

Subclassing and Dynamic Binding
1.3 Introduction – Language Concepts

§ Student has all fields 
and methods of Person

§ Casts are necessary

void printAll( Person **l ) {
int i;
for ( i=0; l[ i ] != NULL; i++ ) 
l[ i ] -> print( l[ i ] );

}

§ Array l can contain 
Person and Student 
objects

§ Methods are selected 
dynamically

Peter Müller – Concepts of Object-Oriented Programming



37

Discussion of the C Solution: Pros
§ We can express objects, fields, methods, 

constructors, and dynamic method binding
§ By imitating OO-programming, the union in Person 

and the switch statement in printAll became 
dispensable

§ The behavior of reused code (Person, printAll) can 
be adapted (to introduce Student) without changing 
the implementation

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming



38

Discussion of the C Solution: Cons
§ Inheritance has to be replaced by code duplication
§ Subtyping can be simulated, but it requires

- Casts, which is not type safe
- Same memory layout of super and subclasses

(same fields and function pointers in same order), which 
is extremely error-prone

§ C-solution includes undefined behavior 
(it violates the strict aliasing rule)

§ Appropriate language support is needed to apply 
object-oriented concepts

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming



39

A Java Solution
class Person {
String name;
void print( ) {
System.out.println( “Name: “ + 
name );

}
StringlastName( ) { … }
Person( String n ) { name = n; }

}

class Student extends Person {
int regNum;
void print( ) {
super.print( );
System.out.println( “No: “ + 
regNum );

}
Student( String n, int i ) {
super( n ); 
regNum = i;

}
}

1.3 Introduction – Language Concepts

void printAll( Person[ ] l ) {
for (int i=0; l[ i ] != null; i++) 
l[ i ].print( );

}

Peter Müller – Concepts of Object-Oriented Programming



40

Discussion of the Java Solution
§ The Java solution uses

- Inheritance to avoid code duplication
- Subtyping to express classification
- Overriding to specialize methods
- Dynamic binding to adapt reused algorithms

§ Java supports the OO-language concepts
§ The Java solution is

- Simpler and smaller
- Easier to maintain (no duplicate code)
- Type safe

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming



41

Concepts: Summary
1.3 Introduction – Language Concepts

Object Model

Classification and
Polymorphism

Interfaces and
Encapsulation

Core Concepts

Inheritance

Classes

Etc.

Subtyping

Dynamic
Binding

Language
Concepts

Inheritance
w/o Subtyping

Multiple
Inheritance

Single
Inheritance

Language
Constructs

Etc.

Peter Müller – Concepts of Object-Oriented Programming



42

1. Introduction

1.1 Requirements
1.2 Core Concepts
1.3 Language Concepts
1.4 Course Organization
1.5 Language Design

1.4 Introduction

Peter Müller – Concepts of Object-Oriented Programming



43

After this Course, you should be able 

§ To understand the core and language concepts
§ To understand language design trade-offs
§ To compare OO-languages

§ To learn new languages faster
§ To apply language concepts and constructs 

correctly

§ To write better object-oriented programs

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming



44

Approach
§ We discuss the

- Concepts of
as opposed to implementations, etc.

- Object-Oriented
as opposed to procedural, declarative

- Programming
as opposed to analysis, design, etc.

§ We study and compare solutions in different 
languages such as C++, C#, Eiffel, Java, Python, 
and Scala
- Java is used for most examples and exercises

§ We look at code and analyze programs

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming



45

Course Outline

2. Types and Subtyping
3. Inheritance
4. Static Safety
5. Parametric Polymorphism
6. Object Structures and Aliasing
7. Extended Typing
8. Object and Class Initialization
9. Reflection

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming



46

Exams

§ Mid-term exam
- Written (45 mins)
- 20% of the overall grade, bonus only
- Friday, November 11, 12:15 – 13:00
- No registration required

§ End-term exam
- Written (2 hours)
- Thursday, December 22, 10:15 – 12:15
- Registration required

§ Exams will be closed-book

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming



47

Course Infrastructure

§ Web page: 
www.pm.inf.ethz.ch/education/courses/COOP.html

§ Slides will be available on the web page two days 
before the lecture
- Exercise assignments and solutions are published on 

Friday

§ Responsible assistant: 
João Pereira
joao.pereira@inf.ethz.ch

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming



48

Exercise Sessions

§ Friday, starting September 30

§ 8:15 – 10:00 or 10:15 – 12:00
§ In person (CAB/CHN)

§ Registration required by Friday, September 23:
https://forms.gle/DtpL8mzbkbngWTcy7

1.4 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming



49

1. Introduction

1.1 Requirements
1.2 Core Concepts
1.3 Language Concepts
1.4 Course Organization
1.5 Language Design

1.5 Introduction

Peter Müller – Concepts of Object-Oriented Programming



50

What is a Good OO-Language?
§ One that many people use?

- No! 
(Or do you think JavaScript
is a good language?)

§ One that makes programmers productive?
- No! (Or would you feel good if the Airbus flight controller 

was written in Python?)

§ A good language should resolve design trade-offs 
in a way suitable for its application domain

Peter Müller – Concepts of Object-Oriented Programming

1.5 Introduction- Language Design



51

Design Goals: Simplicity
§ Syntax and semantics 

can easily be 
understood by users 
and implementers of 
the language

§ But not small number 
of constructs

§ Simple languages: 
Pascal, C, Java 1.0

§ It took over 10 years to 
find out that the Java 5 
type system (generics) 
is not decidable (and 
unsound)

Peter Müller – Concepts of Object-Oriented Programming

factorial ( i: INTEGER ): INTEGER
require 0 <= i
once
if i <= 1 then Result := 1
else
Result := i
Result := Result * factorial ( i – 1 )
end
end Eiffel

1.5 Introduction- Language Design



52

Design Goals: Expressiveness
§ Language can (easily) 

express complex 
processes and 
structures

§ Expressive languages: 
C#, Scala, Python

§ Often conflicting with 
simplicity

Peter Müller – Concepts of Object-Oriented Programming

Expr

UnOp BinOp Number

def simplify( expr: Expr ): Expr = 
expr match {
case UnOp( “–“, UnOp("–“,e) ) => e
case BinOp( "+", e, Number(0) ) => e
case BinOp( “*", e, Number(1) ) => e
case _ => expr

} Scala

1.5 Introduction- Language Design



53

Design Goals: (Static) Safety
§ Language discourages 

errors and allows 
errors to be discovered 
and reported, ideally at 
compile time

§ Safe languages: Java, 
C#, Rust, Scala

§ Often conflicting with 
expressiveness and 
performance

Peter Müller – Concepts of Object-Oriented Programming

l = [ ] 
l.append( 7 )
foo( l, 5 )

List<Integer> l;
l = new ArrayList<Integer>();
l.add( 7 );
foo( l, 5 );

List<Integer> l;
l = new ArrayList<Integer>();
l.add( 7 );
foo( l, “5“ );

l = [ ] 
l.append( 7 )
foo( l, “5“ )

int foo( List<Integer> l, int i ) {
if ( l.get( 0 ) != i ) return i / 5;
else return 0;

}

Java

def foo( l, i ):
if l[ 0 ] != i: return i / 5
else: return 0

Python

1.5 Introduction- Language Design



54

template<class T> class C {
public: 
int foo( T p ) { return p->bar( ); };

};

C++

Design Goals: Modularity
§ Language allows 

modules to be 
type-checked and 
compiled separately

§ Modular languages: 
Java, C#, Scala

§ Often conflicting with 
expressiveness and 
performance

Peter Müller – Concepts of Object-Oriented Programming

class D { }
int main( int argc, char* argv[ ] ) {
C<D*> c;
int t = c.foo( new D() );
return 0;

}

1.5 Introduction- Language Design

template<class T> class C {
public: 
int foo( T p ) { return p->bar( ); };

};

C++



55

C++ arrays

Java arrays

Design Goals: Performance
§ Programs written in the 

language can be 
executed efficiently

§ Efficient languages: 
C, C++, Rust

§ Often conflicting with 
safety and simplicity

§ Sequence of memory 
locations

§ Access is simple look-up 
(only 2-5 machine 
instructions)

Peter Müller – Concepts of Object-Oriented Programming

§ Sequence of memory 
locations plus length

§ Access is look-up plus 
bound-check

1.5 Introduction- Language Design



56

Design Goals: Productivity
§ Language leads to 

low costs of writing 
programs

§ Closely related to 
expressiveness

§ Languages for high 
productivity: 
Visual Basic, Python

§ Often conflicting with 
static safety and 
performance

Peter Müller – Concepts of Object-Oriented Programming

def qsort( lst ):
if len( lst ) <= 1:
return lst 

pivot = lst.pop( 0 )
greater_eq = \
qsort( [ i for i in lst if i >= pivot ] )

lesser = \
qsort( [ i for i in lst if i < pivot ] )
return lesser + [ pivot ] + greater_eq

Python

1.5 Introduction- Language Design



57

Design Goals: Backwards Compatibility
§ Newer language 

versions work and 
interface with programs 
in older versions

§ Backwards compatible 
languages: Java, C

§ Often in conflict with 
simplicity, performance, 
and expressiveness

Peter Müller – Concepts of Object-Oriented Programming

class Client {
static void main( String[ ] args ) {
Tuple t = new Tuple();
t.set( "Hello", new Client() );

}
}

class Tuple<T> {
T first; T second;

void set( T first, T second ) {
this.first = first;
this.second = second;

}
}

Java

1.5 Introduction- Language Design


