Concepts of
Object-Oriented Programming

Peter Muller
Programming Methodology Group

Autumn Semester 2022 ETH:-Urich

3. Inheritance

Reuse
= Inheritance T
: : Person
- Only one object at run time . al:
- Relation is fixed at compile time Student az:
- Often coupled with subtyping A
= Aggregation
- Establishes "has-a” relation Car Motor
- Two objects at run time
.) _ myCar) [V8)
- Relation can change at run time ml e 2y
- No subtyping in general X: a:
U
Peter Muller — Concepts of Object-Oriented Programming E'HZUriCh

3. Inheritance 3

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance

3.4 Linearization

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.1 Inheritance — Inheritance and Subtyping 4

Inheritance versus Subtyping

= Subtyping expresses classification
- Substitution principle
- Subtype polymorphism

* |nheritance i1s a means of code reuse
- Specialization

* Inheritance is usually coupled with subtyping
- Inheritance of all methods leads to structural subtypes
- Coupling is also a useful default for nominal subtyping

* Terminology: Subclassing = Subtyping + Inheritance

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.1 Inheritance — Inheritance and Subtyping

5

Simulation of Subclassing with Delegation

= Subclassing can be
simulated by a
combination of subtyping
and aggregation

- Useful in languages with
single inheritance

= OO-programming can do
without inheritance, but

Person

A

: extends

Stuc-:lent

Person

<:

not without subtyping St“?e”t
<
" Inheritance is not a core g entimo ——[Personimpl
concept a5
Peter Miiller — Concepts of Object-Oriented Programming E'HZUFiCh

3.1 Inheritance — Inheritance and Subtyping

Simulation of Subclassing: Example

interface Person {
void print();
}

interface Student extends Person {

int getRegNum();
) J J 0 Subtyping

class Personimpl

implements Person {

String name; M
void print(){ ...} Subtyping

Personlmpl(String n) { name =n; }

}

class Studentimpl implements Student {

int regNum

Studentlmpl(String n, int rn) { p = new Personimpl(n
int getRegNum() { return regNum; }

Person
P; ﬁ Aggregation | \[Subtyping |

); regNum =rn; }

void print() { p.print(); System.out.printin(regNum); }
}
| Delegation Specialization }

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3. Inheritance 27

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance

3.4 Linearization

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding 28

Method Binding

= Static binding:
At compile time, a method declaration is selected
for each call based on the static type of the receiver
expression

= Dynamic binding:
At run time, a method declaration is selected for
each call based on the dynamic type of the receiver
object

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding 29

Static vs. Dynamic Method Binding

= Dynamic method binding enables specialization
and subtype polymorphism

* However, there are important drawbacks

- Performance: Overhead of method look-up at run time
- Versioning: Dynamic binding makes it harder to evolve
code without breaking subclasses

= Defaults

- Dynamic binding: Eiffel, Java, Scala, dynamically-typed
languages

- Static binding: C++, C#

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh

3.2 Inheritance — Dynamic Method Binding 30

Fragile Baseclass Scenario

= Software is not static
- Maintenance
- Bugfixing
- Reengineering
= Subclasses can be affected
by changes to superclasses

= How should we apply
Inheritance to make our code
robust against revisions of
superclasses?

Peter Miller — Concepts of Object-Oriented Programming E'HZUFiCh

3.2 Inheritance — Dynamic Method Binding

31

Example 1: Selective Overriding

class Bag {

int getSize() {
... I/ count elements

}

void add(Object o)
{...}

void addAll(Object[] arr) {
for(int i=0; i < arr.length; i++)
add(arr[i]);
}
}

class CountingBag extends Bag {
int size;

int getSize()
{ return size; }
void add(Object o)
{ super.add(o); size++; }

}

Object[] oa=... // 5 elements
CountingBag cb =

new CountingBag();
cb.addAll(oa);

System.out.printin(cb.getSize());

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.2 Inheritance — Dynamic Method Binding

32

Example 1: Selective Overriding (cont'd)

class Bag {

int getSize() {
... I/ count elements

}

void add(Object o)
{...}

void addAll(Object[] arr) {
// add elements of arr
// directly (not using add)

}
}

class CountingBag extends Bag {
int size;

int getSize()
{ return size; }
void add(Object o)
{ super.add(o); size++; }

}

Object[] oa=... // 5 elements
CountingBag cb =

new CountingBag();
cb.addAll(oa);

System.out.printin(cb.getSize());

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.2 Inheritance — Dynamic Method Binding 33

Example 1: Discussion

class Bag { class CountingBag extends Bag {
Subclass: Using int size,
int getSiz inheritance, rely on /[invariant size==super.getSize()
... I/ cou| interface documentation, | ...
} not on implementation | void add(Object o)
N { super.add(0); size++; }
/[requires true
// ensures Vi. 0 <=i < arr.length: void addAll(Object[] arr) {
/! contains(arr[i]) for(int i=0; i < arr.length; i++)
void addAll(Object[] arr) { add(arr[i]);
for(int i=0; i < arr.length; i++) }
add(arr[i]); } .
) Subclass: Override all
} Superclass: Do not changew methods that could
calls to dynamically-bound break invariants
methods)

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding 34

Example 2: Unjustified Assumptions

class Math { class MyMath extends Math {
float squareRt(float f) { float squareRt(float f) {
return f: return —\ f;
} }
}
float fourthRt(float f) {
return \V f; MyMath m = new MyMath();
} System.out.println
} (m.fourthRt(16)):

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding

35

Example 2: Unjustified Assumptions (c'd)

class Math {
// requires f >=0
// ensures result* 2 =1
float squareRt(float f) {
return f;

class MyMath extends Math {
// requires f >=0
I/l ensures result* 2 = f
float squareRt(float f) {
return —\ f;

}

Il requires f>=0
/[ensures result 4 =f
float fourthRt(float f) {

return squareR{(squareRt(f));

}

Superclass: Do not change
calls to dynamically-bound

} Rely on interface
documentation of
dynamically-bound method,
not on implementation

o

~

methods

/

MyMath m = new MyMath();
System.out.printin
(m.fourthRt(16));

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.2 Inheritance — Dynamic Method Binding

36

Example 3: Mutual Recursion

class C {
int x;

void inc1() {
X=X+1;

} }

class CS extends C {

void inc2() {
inc1();
}

void inc2() {
X=X+1;
}
}

CS cs = new CS();

CS.X = J;

cs.inc2();
System.out.printin(cs.x);

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.2 Inheritance — Dynamic Method Binding

37

Example 3: Mutual Recursion (cont’'d)

class C {
int x;

class CS extends C {
/[requires tru

// requires true // ensures x = X)+1
// ensures x = old(x) + 1 void inc2() {
void inc1() { inc1(); Subclass: Avoid
inc2(),) specializing classes
} { that are expected to be
// requirq Superclass: Do not change changed (often)
/| ensurd calls to dynamically-bound S o
void inc methods £S cs = new CS();
X=x+1; cs.X = 5;
} cs.inc2();
} System.out.printin(cs.x);
Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding 38

Example 4: Additional Methods

class DiskMgr { class MyMgr extends DiskMgr {
void delete() {
... Il erase whole hard disk

}

}
void cleanUp() {

... [l remove temporary files

}
}

MyMgr mm = new MyMgr();

mm.cleanUp();

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding

39

Example 4: Additional Methods (cont'd)

class DiskMgr {
void delete() {

... /I remove temporary files

}

void cleanUp() {
delete();

}

Superclass: Do not change
calls to dynamically-bound
methods

class MyMgr extends DiskMgr {
void delete()
.../l erase w

}

hard disk

) Subclass: Avoid
specializing classes

k changed (often)

that are expected to be

Y

MyMgr mm = new MyMgr();

mm.cleanUp();

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.2 Inheritance — Dynamic Method Binding 40

Example 4: Additional Methods (cont'd)

class DiskMgr { class MyMgr : DiskMgr {
virtual void delete() { new void delete() {
... /I remove temporary files ... Il erase whole hard disk
} }
}
void cleanUp() { i
delete(); MyMgr mm = new MyMgr();
}
} oz | | mm.cleanUp(); -

* |[n C#, methods are bound statically by default

= Potential overrides must be declared as either
override or new

- Prevents accidental overriding

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh

3.2 Inheritance — Dynamic Method Binding

41

Example 5: Additional Methods

class Super {

}

class Sub extends Super {
void foo(Objecto) { ... }
void bar(doublei){...}

Java

}

Sub s = new Sub();
s.foo(“Java”);
s.bar(5); Java

Java

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.2 Inheritance — Dynamic Method Binding

42

Example 5: Additional Methods (cont'd)

class Super {
void foo(Stringo){ ... }

void bar(inti){...} \

} Java

class Sub extends Super { \
void foo(Objecto) { ... }
void bar(doublei){...}

} fava
/

Sub s = new Suy

s.foo(“Java”);

s.bar(5); Java

= QOverloading resolution
In Java chooses most
specific method
declaration

= Adding methods to a
superclass may affect
clients of subclasses

- Even without overriding

- When the client is re-
compiled

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.2 Inheritance — Dynamic Method Binding

43

Example 5: Additional Methods (cont'd)

class Super {

}

void foo(stringo){ ...}
void bar(inti){... }

C#

}

class Sub : Super {
void foo(objecto){ ...}

void bar(double i) { ... }‘3

C#

/

s.foo(“C#”);
s.bar(5);

Sub s = new Suy

C#

= QOverloading resolution
In C# chooses most
specific method
declaration in the class
of the receiver
- Then superclass, etc.

= Adding methods to a
superclass does not
affect overloading
resolution

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.2 Inheritance — Dynamic Method Binding 44

Summary: Rules for Proper Subclassing

» Use subclassing only if there is an “is-a” relation

- Syntactic and behavioral subtypes
= Do not rely on implementation details

- Use precise documentation (contracts where possible)
= When evolving superclasses, do not mess around

with dynamically-bound methods
- Do not add or remove calls, or change order of calls

= Do not specialize superclasses that are expected to
change often

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding

45

Binary Methods

= Binary methods take
receiver and one explicit
argument

= Often behavior should be
specialized depending on
the dynamic types of both
arguments

» Recall that covariant
parameter types are not

statically type-safe

class Object {
boolean equals(Object 0) {
return this == o;
}
}

class Cell {
int val;
boolean equals(Cell 0) {
return this.val == o.val;

}
}

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.2 Inheritance — Dynamic Method Binding 46

Binary Methods: Example

= Dynamic binding for class Shape {
specialization based on Shape intersect(Shape s) {
: /I general code for all shapes
dynamic type of }
receiver)

o class Rectangle extends Shape {
= How to speC|aI|ze Shape intersect(Rectangle r) {

based on dynamic type /I efficient code for two rectangles
of explicit argument? }}

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding 47

Solution 1: Explicit Type Tests

= Type test and
conditional for class Rectangle extends Shape {
Specia"zation based Shape intersect(Shape s) {

: if(s instanceof Rectangle) {
oan dynamlc type of Rectangle r = (Rectangle) s;

eXp”Cit argument /I efficient code for two rectangles
} else {
return super.intersect(s);
= Problems } P (s)
- Tedious to write }

- Code is not extensible |}
- Requires type cast

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding 48

Solution 2: Double Invocation

class Shape { = Additional
Shape intersect(Shape s) dynamically-bound

{ return s.intersectShape(this); } (OO
Shape intersectShape(Shape s) call for SpeClallzatmn

{ I/ general code for all shapes } based on dynamic
Shape intersectRectangle(Rectangle r) type of explicit
{ return intersectShape(r); } argument

}

class Rectangle extends Shape {
Shape intersect(Shape s)
{ return s.intersectRectangle(this); }

Shape intersectRectangle(Rectangle r)
{ /] efficient code for two rectangles }

}

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding 49

Solution 2: Double Invocation (cont'd)

[Corresponds to W }

Node and Visitor (COW@SpOﬂdS to

S
class Shape { _—— Node.accept
= Double invocation Shape intersect(Shape s)
: { return s.intersectShape(this); }
is also called |
Visitor Pattern Shape intersectShape(Shape s)
{ /] general code for all shapes }
Shape intersectRectangle(Rectangle r)
{ return intersectShape(™\\:
= Problems } Corresponds to
- Even more tedious to write L Visitor.visitX

- Requires modification of superclass
(not possible for equals method)

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh

3.2 Inheritance — Dynamic Method Binding 50

Solution 3: Overloading plus Dynamic

class Shape {
Shape intersect(Shape s)
{ /| general code for all shapes }

} CH

class Rectangle : Shape {

Rectangle intersect(Rectangle r) Sverond
{ /I efficient code for two rectanglesﬁ vellioEE

Shape’s method
} [C#F]

static Shape intersect(Shape s1, Shape s2) {

return (s1 as dynamic).intersect(s2 as dynamic); |. __, \

L Dynamic resolution

depends on dynamic
types of both arguments

Peter Muller — Concepts of Object-Oriented Programming

3.2 Inheritance — Dynamic Method Binding

51

Solution 3: Overloading plus Dynamic (c'd)

class Shape { = Concise

Shape intersect(Shape s)

{ /I general code for all shapes } = No Change to
} ct superclass
class Rectangle : Shape { required

Rectangle intersect(Rectangle r) s P

roblem
{ /] efficient code for two rectangles } oble S
} - Not entirely
C#
ic Sh int t(Sh 1, Sh 2){ type safe
static Shape intersec ape s1, Shape s

return - Over.head for

(s1 as dynamic).intersect(s2 as dynamic); run-time
) checks

C#
Peter Muller — Concepts of Object-Oriented Programming E'HZUI’iCh

3.2 Inheritance — Dynamic Method Binding

52

Solution 4: Multiple Dispatch

= Some research
languages allow
method calls to be
bound based on the
dynamic type of
several arguments

= Examples: CLU,
Cecil, Fortress,
MultiJava

class Shape {
Shape intersect(Shape s) {
// general code for all shapes

}
}

class Rectangle extends Shape {
Shape intersect(Shape@Rectangle r) {

Static type
of r

Dispatch
onr

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.2 Inheritance — Dynamic Method Binding 53

Solution 4: Multiple Dispatch (cont’'d)

= Multiple dispatch is statically type-safe

Shape client(Shape s1, Shape s2) {
return s1.intersect(s2);

}

only if s1 and s2 are of

Calls Rectangle.intersect
L type Rectangle

= Problems

- Performance overhead of method look-up at run time

- Extra requirements are needed to ensure there is a
“‘unique best method” for every call

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.2 Inheritance — Dynamic Method Binding 54

Binary Methods: Summary

= The behavior of binary methods often depends on
the dynamic types of both arguments

= Type tests

- One single-dispatch call and one case distinction
» Double invocation (Visitor Pattern)

- Two single-dispatch calls

» Overloading plus dynamic
- Dynamic resolution based on dynamic argument types

= Multiple dispatch

- One multiple-dispatch call

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh

3. Inheritance 55

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance

3.4 Linearization

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.3 Inheritance — Multiple Inheritance

56

Motivation

= All object-oriented

languages support = Enroll in classes = Salary

multiple subtyping = Study

» Maintain credit points » Teach

- One type can have

= Office

several supertypes

\

- Subtype relation forms a

Student Assistant
V.

DAG

= Often it is also useful to
reuse code from
several superclasses
via multiple inheritance

..0 Q’y
., extends.

*
0. “
L 4 *
0. ‘Q
v,

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.3 Inheritance — Multiple Inheritance o7

Simulating Multiple Inheritance

» Java and C# support only single inheritance

= Multiple inheritance is simulated via delegation
- Not elegant

[Interface W .
_ Single
J\[\ Student Assistant inheritance

A
< :
<\ extends
Has-a

Studentimpl ——— PhDStudent

Aggregation
+ delegation

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh

3.3 Inheritance — Multiple Inheritance o8

Problems of Multiple Inheritance

= Ambiguities
- Superclasses may contain fields and methods with
iIdentical names and signatures

- Which version should be available in the subclass?

= Repeated inheritance (diamonds)
- A class may inherit from a superclass more than once
- How many copies of the superclass members are there?
- How are the superclass fields initialized?

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh

3.3 Inheritance — Multiple Inheritance

59

Ambiguities: Example

class Student { C++

public:
Professor* mentor;
virtual int workLoad(){ ...}

oy

class Assistant { C++
public:

Professor* mentor;

virtual int workLoad(){ ...}

oy

class PhDStudent : C++

public Student, public Assistant {

%

Which method
should be called?

void client(PhIZAﬁdent p){
int w = p.workLoad();

p.mentor = NULL,;

Which field

should be
accessed?

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.3 Inheritance — Multiple Inheritance

60

Ambiguity Resolution:

Explicit Selection

class Student { C++

public:
Professor* mentor;
virtual int workLoad(){ ...}

oy

void client(PhDStudent p) {
int w = p.Assistant::workLoad();
p.Student::mentor = NULL;

}

class Assistant { C++

public:
Professor* mentor;
virtual int workLoad(){ ...}

oy

class PhDStudent : C++

public Student, public Assistant {

= Subclass has two
members with
Identical names

= Ambiguity is resolved
by client

= Clients need to know
implementation details

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.3 Inheritance — Multiple Inheritance

61

Ambiguity Resolution: Merging Methods

Overrides both

class PhDStud mherlted methods
public Student, ic Assistant {
public:

virtual int workLoad(
return Student..workLoad() +
Assistant::workLoad();

}_} (?rrespond to
’ L super-calls in Java

void client(PhDStudent p) {
int w = p.workLoad();

}

= Related inherited
methods can be
merged into one
overriding method

= Usual rules for
overriding apply
- Type rules
- Behavioral subtyping

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich

3.3 Inheritance — Multiple Inheritance 62

Merging Unrelated Methods

class Student C++
public { = Unrelated methods
virtual bool test() { // take exam } cannot be merged in
5 - a meaningful way
: Clients can call o
class Assistant { e - Even if signatures
public: match
virtual bool test() {// unit test }
)
class PhDStudent : crr | " Subclass should
public Student, public Assistant { prowde both
public: methods, but with
virtual bool test() :
. ifferent nam
{ return Student::test(); } Violates different names
}; behavioral
. Subtyping

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.3 Inheritance — Multiple Inheritance

63

Ambiguity Resolution: Renaming

class Student

Eiffel

feature
test:. BOOLEAN do ... end
end

class Assistant

Eiffel

feature
test: BOOLEAN do ... end
end

class PhDStudent inherit

Eiffel

Student
rename test as takeExam
redefine takeExam end
Assistant
end

= |nherited methods can
be renamed

= Dynamic binding takes
renaming into account

client(s: Student): BOOLEAN
do
Result ;= s.test()

For PhDStudent
bound to takeExam

_

= C++/CLI provides similar
features

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.3 Inheritance — Multiple Inheritance

64

Repeated Inheritance: Example
class Person { C++ Person
Address address; | ...
R I extends.,
g Student Assiétant
class Student : public Person { T, extendsx"j
h o PhDStudent

class Assistant : public Person {

* How many address
fields should

}; C++
class PhDStudent : PhDStudent have?
public Student, public Assistant { » How are they
i o+ | jnitialized?
Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.3 Inheritance — Multiple Inheritance 65

How Many Copies of Superclass Fields?

Pfgggn | FiIeVé\/riter 1l FiIeVéVriter 1
‘‘‘‘‘‘‘ Address : File : File
+° extends™., : :
‘‘‘‘‘‘‘‘‘ extends : extends :
Student Assistant Loggable Sensor
i‘b O’y i‘b O’y
.. .extends. .. .extends,’
PhDS:tudent LogginéSensor
= Eiffel: default = Eiffel: via renaming
= C++: virtual inheritance = C++: non-virtual
iInheritance

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh

3.3 Inheritance — Multiple Inheritance 66

Inheritance and Object Initialization

= Superclass fields are
initialized before subclass
fields

- Helps preventing use of

: uninitialized fields, e.g., in

Student iInherited methods

: » Order is typically
Implemented via mandatory
call of superclass
constructor at the beginning
of each constructor

Person
A

extends : super-call

extends: super-call

PhDStudent

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch

3.3 Inheritance — Multiple Inheritance 67

Initialization and Non-Virtual Inheritance

= With non-virtual
Inheritance, there are
two copies of the
superclass fields

= Superclass
constructor is called
twice to initialize both
copies
- Here, create two file
handles for two files

FileWriter FileWriter
A A

extends extends

Logéable Seﬁsor
V. v

~~~~~ extends.."

.
. R
. 3
. .
LR
’A

LoggingSensor

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.3 Inheritance — Multiple Inheritance 68

Initialization and Virtual Inheritance

= \With virtual
Inheritance, there is Person
JE,
only one copy ofthe [/ " ™
T extends™.,
superclass fields  \ 7
Student Assistant
v, K,
-, extends.
» Whogetstocallthe N ™ .
Superc|ass PhDStudent
constructor?

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.3 Inheritance — Multiple Inheritance 69

Initialization: C++ Solution

Call is not
performed
at run time

= Constructor of
repeated superclass is
called only once

Person
B
~extends®.,
= Smallest subclass  \ " " " ™
needs to call the Student Assistant
constructor of the " extgnds,
virtual superclass ShDStudent

directly

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.3 Inheritance — Multiple Inheritance 70

C++ Solution: Example

class Person { class Student : virtual public Person {
Address™* address; public:
int workdays; Student( Address* a ) : Person(a, 5) {};
public: b
Person( Address* a, intw ) {
address = a; class Assistant: virtual public Person {
workdays = w; public:
}; Assistant( Address* a ) : Person(a, 6 ){};
5 };
class PhDStudent : public Student, public Assistant {
public:
PhDStudent( Address™ a ) : Person( a, 7 ), Student( a ), Assistant( a ) { };
3

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch




3.3 Inheritance — Multiple Inheritance 71

C++ Solution: Discussion

class Student : virtual public Person {
public:
Student( Address* a ) : Person( a, 5) {

assert( workdays == 5 );
3

= Non-virtual inheritance is the default
- Virtual inheritance leads to run-time overhead
- Programmers need foresight!
= Constructors cannot rely on the virtual superclass
constructors they call
- For instance, to establish invariants

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.3 Inheritance — Multiple Inheritance 72

Multiple Inheritance

Pros Cons
* Increases = Ambiguity resolution
expressiveness - Explicit selection
- Merging
= Avoids overhead of - Renaming
delegation pattern = Repeated inheritance
- Complex semantics
- Initialization
- Renaming
= Complicated!

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh



3. Inheritance 73

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance

3.4 Linearization

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.4 Inheritance — Linearization 74

Mixins and Traits

= Mixins and traits provide a form of reuse

- Methods and state that can be mixed into various classes
- Example: Functionality to persist an object

= Main applications
- Making thin interfaces thick
- Stackable specializations

= Languages that support mixins or traits:
Python, Ruby, Scala, Squeak Smalltalk

- We will focus on Scala’s version of traits

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh



3.4 Inheritance — Linearization

75

Scala: Trait Example

class Cell {
var value: Int=0

def put( v: Int) ={ value = v}
def get: Int = value

object Main1 {
def main( args: Array[ String ] ) = {
val a = new Cell with Backup
a.put(5)

) a.put( 3)
Scala a.undo
trait Backup extends Cell { printin( a.get )
var backup: Int = 0; Y
override def put( v: Int ) ={ } Scala
backup = value
super.put( v)
}
def undo = { super.put( backup ) }
} Scala
Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.4 Inheritance — Linearization 76

Scala: Declaration of Traits

Traits extend exactly
one superclass (and
[ h possibly other traits)

Traits may

have fieldsj\ trait Backup extends Cell {
\ var backup = 0;

KTraits mayL7 override def put( v: Int ) = {

override backup = value
superclass super.put( v )
\_ methods )

, def undo = { super.put( backup ) }

Traits mayv }
declare
methods

Scala

J

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh



3.4 Inheritance — Linearization 77

Scala: Mixing-in Traits

class FancyCell extends Cell with Backup {

\ \/Traits can be mixed-
St in when classes are

declared

def main( args: Array[String] ) {
val a = new Cell with Backup

) Traits can be mixed-
iIn when classes are

L instantiated

= Class must be a subclass of its traits’ (direct)
superclasses
- To avoid multiple inheritance among classes

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh



3.4 Inheritance — Linearization 78

Traits and Types

= Fach trait defines a type trait Backup extends Cell {

- Like classes and
interfaces i Scala

- Trait types are abstract class FancyCell
extends Cell with Backup {

} Scala

= Extending or mixing-in a
trait introduces a
subtype relation

val a: Backup = new FancyCell
val b: Cell = a Scala

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh



3.4 Inheritance — Linearization 79

Example: Thin and Thick Interfaces

= Traits can extend class ThinCollection {

thin interfaces by def add(s: String ) ={ ... }
additional def contains( s: String ): Boolean ={ ... }
}

operations

. trait AddAll extends ThinCollection {
= Allows very specifiC | def addAll( a: Array[String] ) = {

types with little val it = a.iterator
syntactic overhead while( it.hasNext ) { add( it.next ) }
- See structural }}

subtyping

def client ( p: ThinCollection with AddAll, a: Array[String] ) = { p.addAll( a ) }

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh



3.4 Inheritance — Linearization

80

Ambiguity Resolution

trait Student {
var mentor: Professor
def workLoad: Int=5

}

trait Assistant {
var mentor: Professor
def workLoad: Int=6

}

class PhDStudent
extends AnyRef
with Student
with Assistant { }

Student Assistant

LS o*
s *
2 *
2 *
4 *
L4 *
0. ‘t
e

PhDStudent

= Ambiguity is resolved by
merging
- No scope-operator like In
C++

- No renaming like in Eiffel

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.4 Inheritance — Linearization 81

Ambiguity Resolution (cont’'d)

trait Student { = Subclass overrides both
}def workLoad: Int =5 mixed-in methods

= Does not work for mutable
trait Assistant { fields
def workLoad: Int=6

}

class PhDStudent extends AnyRef with Student with Assistant {
override def workLoad: Int = {
super| Student ].workLoad +
super|[ Assistant ].workLoad

}

}

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.4 Inheritance — Linearization 82

Ambiguity Resolution and Diamonds

class Person { Person
defworkLoad: Int=0 | .7 T
} Student Assistant
) 2 ou——r v
trait Student extends Person{ | e, T
override def workLoad: Int = 5 PhDStudent
}

trait Assistant extends Person { | " If two inherited methods
override def workLoad: Int =6 override a common

i superclass method,

class PhDStudent merging is not required
extends Person : :
with Student = What is thg behavior of
with Assistant {} workLoad in PhDStudent?

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.4 Inheritance — Linearization 83

Linearization

= The key concept to understanding the semantics of
Scala traits: bring types in a linear order

- Define overriding and super-calls according to this order

= For a class or trait
C extends C’ with C, ... with C,
the linearization L(C) is
C,L(C,)e...oeL(C;)eL(C")
* Do not include types more than once
coeB=B

{ a, (A eB) ifa¢B
(a,A)eB = otherwise

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.4 Inheritance — Linearization 84

Linearization Example

class Person For a class or trait
C extends C’ with C, ... with C,
trait Student extends Person the linearization L(C) is

trait Assistant extends Person C,L(Cp)e...o L(Cq) e L(C)

class PhDStudent

extends Person { Peﬁon -

with Student | e e

with Assistant Student e Assistant
L(Person) = Person PhDS:tudentJ
L(Student) = Student, Person
L(Assistant) = Assistant, Person
L(PhDStudent) = PhDStudent, L(Assistant) e L(Student) e L(Person)

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.4 Inheritance — Linearization 85

Overriding

class Person { Pe£§'0”
def workLoad: Int=0 / """"""""""""
} Student H Assistant
Voerok e
trait Student extends Person{ | T, T
override def workLoad: Int = 5 PhDStudent

}

trait Assistant extends Person {
override def workLoad: Int =6

= PhDStudent’'s workLoad
method is inherited from

) Assistant

class PhDStudent - Assistant’s workLoad
extends Person overrides Student’s
with Student - Student’s workLoad
with Assistant {} overrides Person’s

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.4 Inheritance — Linearization

87

Repeated Inheritance

class A {

varf=0

def foo = printin( "A::foo" )
}

trait B extends A {
override def foo = printin( “B::foo” )

}

trait C extends A {
override def foo = printin( “C::foo")

}

class D extends A with B with C {
}

71
AN

» Subclass inherits only
one copy of repeated
superclass

- Like Eiffel and virtual
iInheritance in C++

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich



3.4 Inheritance — Linearization 88

Initialization Order

class A { A
printin( "Constructing A" )

} B
trait B extends A { \
printin( "Constructing B" )
}
u A -
trait CextendsA{ = Classes and traits are
printin( "Constructing C" ) PP :
} initialized Iin the

reverse linear order

class D extends A with B with C {
printin( "Constructing D" )

}

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch




3.4 Inheritance — Linearization

89

Initialization of Repeated Superclasses

= Fach constructor is called
exactly once

- Good if constructor has
side-effects

= Arguments to superclass
constructors are supplied
by immediately preceeding
class in the linearization
order

class A( x: Int ) {
printin( "Constructing A" + x )

}

trait B extends A{ ... }

trait C extends A{ ... }

class D extends A( 5 )
withBwithC{ ...}

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich



3.4 Inheritance — Linearization

90

Overriding and Super-Calls

class A {
def foo = printin( "A::foo" )

}

trait B extends A {
override def foo =
{ printin( “B::foo” ); super.foo }

}

trait C extends A {

override def foo =

{ printin( “C::foo" ); super.foo }
}

def client (d: D ) = {d.foo }

class D extends A with B with C {}

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich



3.4 Inheritance — Linearization 91

Stackable Specializations

= With traits, = With multiple
specializations can be iInheritance, methods of
combined in flexible repeated superclasses
ways are called twice
Specialized

method contains
super-call

( Merged = D
method

S / s
Peter Miiller — Concepts of Object-Oriented Programming E'HZUFICh




3.4 Inheritance — Linearization

92

Stackable Specializations: Example

class Queue {

.oi.ef put( x: Data ) { ... }
}

trait Timer extends Queue {
override def put( x: Data )
{ x.SetTime( ... ); super.put( x ) }
}

Filter

trait Filter extends Queue {
override def put( x: Data )
{if(x.Time > ... ) super.put( x )}

}

class Sensor extends Queue
with Filter with Timer { }

Peter Muller — Concepts of Object-Oriented Programming

ETH:zurich



3.4 Inheritance — Linearization 93

Traits and Behavioral Subtyping

trait B extends A { A
override def foo = \

{ printin( “B::foo” ); super.foo }

} : ;f
trait C extends A { \ D

override def foo =

{ printin( “C::foo* ); super.foo } = Overriding of trait

methods depends on
order of mixing

= Behavioral subtyping
class D extends A with C with B {} could be checked Only

when traits are mixed in

}

class D extends A with B with C {}

Peter Muller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.4 Inheritance — Linearization 94

Reasoning About Traits

* Traits are very dynamic,
which complicates static

: i xtends A
fezEeiiin g trOa\IIte?riedet ede(:stO{=
= Traits do not know how { printin( “B::foo* ); super.foo }
their superclasses get i
Initialized trait C extends A {
» Traits do not know which °"?”:°'e““(';_’:f°?=_ f
methods they override }{prm n(7Cxtoon); superfoo )

= Traits do not know where
super-calls are bound to

Peter Miiller — Concepts of Object-Oriented Programming E'HZUI’/Ch



3.4 Inheritance — Linearization 95

Linearization: Summary

» Linearization partly solves problems of multiple
Inheritance
- Solves some issues with ambiguities and initialization

= Other problems remain
- Resolving ambiguities between unrelated methods

= And new problems arise
- Behavioral subtyping cannot be checked modularly

- What to assume about superclass initialization and
super-calls

» Linearization poses several research challenges

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh



3. Inheritance 96

References

» | eonid Mikhajlov, Emil Sekerinski: A Study of the Fragile
Base Class Problem. LNCS 1445, Springer-Verlag, 1998

= Donna Malayeri and Jonathan Aldrich: CZ: Multiple
Inheritance without Diamonds. OOPSLA 2009

» Bertrand Meyer: Eiffel: The Language. Prentice Hall, 1991

» Bjarne Stroustrup: The C++ Programming Language.
Addison Wesley, 2013

= Martin Odersky, Lex Spoon, and Bill Venners:
Programming in Scala. Artima, 2008

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh



