
Formal Methods
and Functional Programming

Axiomatic Semantics

Peter Müller

Chair of Programming Methodology
ETH Zurich



Program Correctness

Semantics can be used to prove correctness of a program

Partial correctness expresses that if a program terminates then there
will be a certain relationship between the initial and the final state

Total correctness expresses that a program will terminate and there will
be a certain relationship between the initial and the final state

The relationship is expressed by a formal specification

total correctness = partial correctness + termination

Peter Müller—Formal Methods and Functional Programming, SS09 p. 158



3. Axiomatic Semantics

3.1 Hoare Logic

3.1.1 Proofs of Program Correctness
3.1.2 Assertion Language
3.1.3 Inference System
3.1.4 Properties of the Semantics
3.1.5 Extensions

3.2 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS09 p. 159



Program Correctness: Example

Consider the factorial statement

y := 1;
while not x = 1 do
y := y * x;
x := x - 1

end

Specification:
The final value of y is the factorial of the initial value of x

The statement is partially correct
It does not terminate for x < 1

Peter Müller—Formal Methods and Functional Programming, SS09 p. 160



Formal Specification

Specification:
The final value of y is the factorial of the initial value of x

We can express the specification formally based on a formal semantics

⟨y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ⟩ → σ′

⇒ σ′(y) = σ(x)!

This specification expresses partial correctness in natural semantics

Peter Müller—Formal Methods and Functional Programming, SS09 p. 161



Correctness Proof

We prove partial correctness in three steps

Step 1: The body of the loop satisfies

⟨y:=y ∗ x;x:=x − 1, σ⟩ → σ′′ ∧ σ′′(x) > 0⇒
σ(y) × σ(x)! = σ′′(y) × σ′′(x)! ∧ σ(x) > 0

Step 2: The loop satisfies

⟨while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ⟩ → σ′′ ⇒
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

Step 3: The whole statement is partially correct

⟨y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ⟩ → σ′ ⇒
σ′(y) = σ(x)! ∧ σ(x) > 0

Peter Müller—Formal Methods and Functional Programming, SS09 p. 162



Proof: Step 1—Loop Body

Since we have the transition ⟨y:=y ∗ x;x:=x − 1, σ⟩ → σ′′, we can
assume that there are transitions ⟨y:=y ∗ x, σ⟩ → σ′ and
⟨x:=x − 1, σ′⟩ → σ′′

We get σ′ = σ[y↦ A[[y ∗ x]]σ] and σ′′ = σ′[x↦ A[[x − 1]]σ′], which
imply σ′′ = σ[y↦ σ(y) × σ(x)][x↦ σ(x) − 1]

By σ′′(x) > 0, we calculate

σ′′(y) × σ′′(x)! =
σ(y) × σ(x) × (σ(x) − 1)! = σ(y) × σ(x)!

By σ′′(x) = σ(x) − 1, we get σ(x) > 0

Peter Müller—Formal Methods and Functional Programming, SS09 p. 163



Proof: Step 2—Loop

Step 2: The loop satisfies

⟨while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ⟩ → σ′′ ⇒
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

We prove this property by induction on the shape of the derivation tree

Relevant base case: while-rule for B[[not x = 1]]σ = ff

We have σ(x) = 1 and σ = σ′′

Since 1 = 1!, we get σ(y) × σ(x)! = σ(y) = σ′′(y)
We trivially get σ′′(x) = 1 and σ(x) > 0

Peter Müller—Formal Methods and Functional Programming, SS09 p. 164



Proof: Step 2—Loop (Case 2)

Relevant step case: while-rule for B[[not x = 1]]σ = tt

From the rule of the natural semantics we get for some σ′′′

(1) ⟨y:=y ∗ x;x:=x − 1, σ⟩ → σ′′′

(2) ⟨while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ′′′⟩ → σ′′

Applying the induction hypothesis to (2) yields
σ′′′(y) × σ′′′(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ′′′(x) > 0

By (1), σ′′′(x) > 0, and Proof Step 1, we get
σ(y) × σ(x)! = σ′′′(y) × σ′′′(x)! ∧ σ(x) > 0

Combining these results yields
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

Peter Müller—Formal Methods and Functional Programming, SS09 p. 165



Proof: Step 3—Factorial Statement

Step 3: The whole statement is partially correct

⟨y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ⟩ → σ′ ⇒
σ′(y) = σ(x)! ∧ σ(x) > 0

From the natural semantics we get for some σ′′

(1) ⟨y:=1, σ⟩ → σ′′

(2) ⟨while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ′′⟩ → σ′

By (1), we get σ′′ = σ[y↦ 1] and, thus, σ′′(x) = σ(x)

By (2), and Proof Step 2, we get
σ′′(y) × σ′′(x)! = σ′(y) ∧ σ′(x) = 1 ∧ σ′′(x) > 0

We conclude 1 × σ(x)! = σ′(y) ∧ σ(x) > 0

Peter Müller—Formal Methods and Functional Programming, SS09 p. 166



Verification Example: Observations

We can prove correctness of a program based on a formal semantics
The proof would also be possible with SOS and denotational semantics,
but even more complicated

Proofs are too detailed to be practical
We have to consider how whole states are modified
We would like to focus on certain properties of states

Axiomatic Semantics describes essential properties of syntactic
constructs

The choice of essential properties depends on what we want to prove

Peter Müller—Formal Methods and Functional Programming, SS09 p. 167



3. Axiomatic Semantics

3.1 Hoare Logic

3.1.1 Proofs of Program Correctness
3.1.2 Assertion Language
3.1.3 Inference System
3.1.4 Properties of the Semantics
3.1.5 Extensions

3.2 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS09 p. 168



Assertions

Properties of programs are specified as assertions

{ P } s { Q }

where s is a statement and P and Q are predicates

Terminology

Assertions are also called (Hoare) triples

P is called precondition

Q is called postcondition

Peter Müller—Formal Methods and Functional Programming, SS09 p. 169



Meaning of Assertions

The meaning of { P } s { Q } is

If P holds in the initial state σ, and
if the execution of s from σ terminates in a state σ′

then Q will hold in σ′

This meaning describes partial correctness, that is, termination is not
an essential property

It is also possible to assign different meanings to assertions

Peter Müller—Formal Methods and Functional Programming, SS09 p. 170



Assertions: Example

Specification of the factorial statement by an assertion

{ true }
y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end

{ y = x! ∧ x > 0 }

In general, this assertion does not hold

Consider an initial state { x↦ 2,y↦ 0 }
The final state will be { x↦ 1,y↦ 2 }

We have to express that y in the final state is the factorial of x in the
initial state

Peter Müller—Formal Methods and Functional Programming, SS09 p. 171



Logical Variables

Assertions can contain logical variables
Logical variables can occur only in pre- and postconditions
Programs cannot access logical variables

Logical variables can be used to save values of the initial state for the
final state

{ x = N }
y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end

{ y = N! ∧N > 0 }

States map logical variables to their values

The value of a logical variable can never change

Peter Müller—Formal Methods and Functional Programming, SS09 p. 172



Assertion Language

Pre- and postconditions are predicates, that is functions State→ Bool

Each boolean expression b defines a predicate B[[b]]

If P, P1, and P2 are predicates, then we use the following notation for
predicates

P1 ∧ P2 where (P1 ∧ P2)σ⇔ P1(σ) ∧ P2(σ)
P1 ∨ P2 where (P1 ∨ P2)σ⇔ P1(σ) ∨ P2(σ)
¬P where (¬P)σ⇔¬P(σ)
P[x ↦ A[[e]]] where (P[x ↦ A[[e]]])σ⇔ P(σ[x ↦ A[[e]]σ])
P1 ⇒ P2 where (P1 ⇒ P2)σ⇔ P1(σ) ⇒ P2(σ)

Peter Müller—Formal Methods and Functional Programming, SS09 p. 173



3. Axiomatic Semantics

3.1 Hoare Logic

3.1.1 Proofs of Program Correctness
3.1.2 Assertion Language
3.1.3 Inference System
3.1.4 Properties of the Semantics
3.1.5 Extensions

3.2 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS09 p. 174



Inference System

We can formalize the semantics of a programming language by
describing which assertions hold

This is done by an inference system
An inference system consists of a set of axioms and rules
The formulas of the inference system are assertions

{ P } s { Q }

The inference system specifies an axiomatic semantics of the
programming language

Peter Müller—Formal Methods and Functional Programming, SS09 p. 175



Axiomatic Semantics of IMP

skip does not modify the state

{ P } skip { P }

x:=e assigns the value of e to variable x

{ P[x ↦ A[[e]]] } x:=e { P }

Let σ be the initial state

Precondition: P(σ[x ↦ A[[e]]σ])
Final state: σ[x ↦ A[[e]]σ]
Consequently, P holds in the final state

These rules are axiom schemes

Peter Müller—Formal Methods and Functional Programming, SS09 p. 176



Axiomatic Semantics of IMP (cont’d)

Sequential composition s1;s2

{ P } s1 { Q } { Q } s2 { R }
{ P } s1;s2 { R }

Conditional statement if b then s1 else s2 end

{ B[[b]] ∧P } s1 { Q } { ¬B[[b]] ∧P } s2 { Q }
{ P } if b then s1 else s2 end { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 177



Axiomatic Semantics of IMP (cont’d)

Loop statement while b do s end

{ B[[b]] ∧P } s { P }
{ P } while b do s end { ¬B[[b]] ∧P }

P is the loop invariant

Rule of consequence

{ P′ } s { Q′ }
{ P } s { Q }

if P⇒ P′ and Q′ ⇒ Q

We can strengthen preconditions
We can weaken postconditions

Peter Müller—Formal Methods and Functional Programming, SS09 p. 178



Inference Trees

Axioms and rules are used like in natural semantics

Derivation trees are called inference trees since they show how to infer
that an assertion holds

The leaves are instances of axiom schemes
The internal nodes correspond to instances of rules

An inference tree gives a proof of the assertion at its root

To express that an assertion { P } s { Q } can be proved, we write

⊢ { P } s { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 179



Inference Trees: Example

Consider the non-terminating loop

while true do skip end

We can build the following inference tree

{ true } skip { true }
{ true ∧ true } skip { true }

{ true } while true do skip end { ¬true ∧ true }
{ true } while true do skip end { false }

where we write true for B[[true]] and false for B[[not true]]

This proof illustrates that we have partial correctness

Peter Müller—Formal Methods and Functional Programming, SS09 p. 180



Verification of Factorial Statement

{ x = N }
y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end

{ y = N! ∧N > 0 }

Determining the loop invariant

Iteration 0 1 2 i N − 1
x N N − 1 N − 2 N − i 1
y 1 N N × (N − 1) N × (N − 1) × . . . × (N − i + 1) N!

Invariant: x > 0⇒ y × x! = N! ∧N ≥ x

Peter Müller—Formal Methods and Functional Programming, SS09 p. 181



Verification (cont’d)

We verify the factorial statement in three steps

1. The precondition and the assignment establish the loop invariant
2. The loop body preserves the loop invariant
3. The loop invariant and the negation of the loop condition imply the

postcondition

The proof can be written
as inference tree
as proof outline

Peter Müller—Formal Methods and Functional Programming, SS09 p. 182



3. Axiomatic Semantics

3.1 Hoare Logic

3.1.1 Proofs of Program Correctness
3.1.2 Assertion Language
3.1.3 Inference System
3.1.4 Properties of the Semantics
3.1.5 Extensions

3.2 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS09 p. 183



Proving Properties

We prove the lemma

If ⊢ { P } skip { Q } then P⇒ Q

by induction on the shape of the inference tree

Induction base

{ P } skip { Q } is an instance of the skip axiom

We get P = Q and, thus, P⇒ Q

Induction step

{ P } skip { Q } is infered by the rule of consequence

We can apply the induction hypothesis to { P′ } skip { Q′ } to get
P′ ⇒ Q′

By P⇒ P′ and Q′ ⇒ Q, we get P⇒ Q

Peter Müller—Formal Methods and Functional Programming, SS09 p. 184



Semantic Equivalence

Two statements s1 and s2 are provably equivalent if for
all preconditions P and postconditions Q we have

⊢ { P } s1 { Q }if and only if ⊢ { P } s2 { Q }

Example: s;skip and s are equivalent

Proof
Part 1: “⇐” is trivial

{ P } s { Q } { Q } skip { Q }
{ P } s;skip { Q }

Part 2 “⇒” runs by induction on the shape of the inference tree for
{ P } s;skip { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 185



Proof: Part 2

The induction base is trivial

The induction step has two interesting cases

Case composition rule

We have ⊢ { P } s { R } and ⊢ { R } skip { Q } for some predicate R

Applying the auxiliary lemma yields R⇒ Q

By the rule of consequence, we get { P } s { Q }

Case rule of consequence

We have { P′ } s;skip { Q′ } where P⇒ P′ and Q′ ⇒ Q

Applying the induction hypothesis yields { P′ } s { Q′ }
By the rule of consequence, we get { P } s { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 186



Induction on Inference Trees

1. Induction base: Prove that the property holds for all the simple
derivation trees by showing that it holds for the axioms of the inference
system

2. Induction step: Prove that the property holds for all composite
inference trees:

Induction hypothesis: For each rule, assume that the property holds for
its premises
Prove that it also holds for the conclusion, provided that the conditions
of the rule are satisfied

Induction on derivations is a special case of well-founded induction
(derivations are finite)

Peter Müller—Formal Methods and Functional Programming, SS09 p. 187



3. Axiomatic Semantics

3.1 Hoare Logic

3.1.1 Proofs of Program Correctness
3.1.2 Assertion Language
3.1.3 Inference System
3.1.4 Properties of the Semantics
3.1.5 Extensions

3.2 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS09 p. 188



Total Correctness

The meaning of { P } s { ⇓ Q } is

If P holds in the initial state σ
then the execution of s from σ terminates
and Q will hold in the final state

This meaning describes total correctness, that is, termination is required

All rules except the rule for loops are straightforward

Peter Müller—Formal Methods and Functional Programming, SS09 p. 189



Loop Variants

Termination is proved using loop variants

A loop variant is a function from a state to a well-founded set, for
instance, N

Each iteration decreases the value of the loop variant

The loop has to terminate when the minimum of the set is reached
Standard loop variant yields number of iterations

Example

x := 5;
while x # 0 do x := x -1 end

Possible loop variant v ∶ State→ N where v(σ) = σ(x)

Peter Müller—Formal Methods and Functional Programming, SS09 p. 190



While Rule

We encode the loop invariant by a parameterized family of predicates
V(Z)

Idea: V(Z)σ⇔ v(σ) = Z

For simplicity, we require that each iteration decreases the loop variant
by 1

We have to make sure that the loop variant yields a natural number
before and after each loop iteration

{ B[[b]] ∧P ∧V(Z + 1) } s { ⇓ P ∧V(Z) }
{ P ∧ ∃Z ∶ V(Z) } while b do s end { ⇓ ¬B[[b]] ∧P }

where Z ∈ N

Peter Müller—Formal Methods and Functional Programming, SS09 p. 191



While Rule: Correction

We encode the loop invariant by a parameterized family of predicates
V(Z)

Idea: V(Z)σ⇔ v(σ) = Z

For simplicity, we require that each iteration decreases the loop variant
by 1

We have to make sure that the loop variant yields a natural number
before and after each loop iteration

{ B[[b]] ∧P ∧V(Z + 1) } s { ⇓ P ∧V(Z) }
{ P } while b do s end { ⇓ ¬B[[b]] ∧P }

if P⇒ ∃Z ∈ N ∶ V(Z)

Peter Müller—Formal Methods and Functional Programming, SS09 p. 192



While Rule (cont’d)

Why do we need the condition P⇒ ∃Z ∈ N ∶ V(Z)?

{ B[[b]] ∧P ∧V(Z + 1) } s { ⇓ P ∧V(Z) }
{ P } while b do s end { ⇓ ¬B[[b]] ∧P }

where Z ∈ N

With V(Z) ≡ x = Z , we can derive

{ x − 1 = Z } x:=x − 1 { ⇓ x = Z }
{ x#0 ∧ x = Z + 1 } x:=x − 1 { ⇓ x = Z }

{ true } while x#0 do x:=x − 1 end { ⇓ x = 0 }

This derivation is not sound

We cannot prove ∃Z ∈ N ∶ V(Z) for x < 0

Peter Müller—Formal Methods and Functional Programming, SS09 p. 192



Total Correctness of Factorial

{ x = N ∧ x > 0 }
y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end

{ ⇓ y = N! }

Invariant: P ≡ x > 0 ∧ y × x! = N!

Variant: V(Z) ≡ x = Z

We verify the factorial statement and give a proof outline

Peter Müller—Formal Methods and Functional Programming, SS09 p. 193



Non-Recursive Procedures

Stm = . . .
| ’proc’ p ’is’ s ’end’
| ’call’ p

For simplicity, we require that
Procedures have no parameters
Procedures cannot be hidden (unique procedure names)

{ P } s { Q }
{ P } call p { Q }

{ P } s { ⇓ Q }
{ P } call p { ⇓ Q }

where p is defined by proc p is s end

Peter Müller—Formal Methods and Functional Programming, SS09 p. 194



Recursive Procedures

We use the same procedures as before, but allow them to be recursive

The Hoare rule does not work for recursive procedures

proc p is
if x > 0 then

x:=x-1; call p
end

end;
x := 5;
call p

{ P } . . .call p . . . { Q }
{ P } . . .call p . . . { Q }

{ P } call p { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 195



Assumptions

To prove an assertion for the body of a procedure, we may assume that
the assertion holds for recursive calls

{ P } call p { Q } ⊢ { P } s { Q }
{ P } call p { Q }

where p is defined by proc p is s end

A full treatment of assumptions requires several additional rules for
Adapting assumptions
Introducing and eliminating assumptions (mutually recursive methods)

Peter Müller—Formal Methods and Functional Programming, SS09 p. 196



Example

proc fac is
if x = 1

then skip
else y := x * y; x := x - 1; call fac

end
end;
y := 1;
call fac

We prove

1. { x > 0 ∧N = y × x! } call fac { y = N } ⊢
{ x > 0 ∧N = y × x! } body(fac) { y = N }

2. { x > 0 ∧N = x! } y:=1;call fac { y = N }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 197



Total Correctness

Idea: Like loop variants, we use a function that decreases with each
recursive call

If we assume that the recursive call terminates after Z recursions, then
the procedure body will terminate after Z + 1 recursions

{ P ∧V(Z) } call p { ⇓ Q } ⊢ { P ∧V(Z + 1) } s { ⇓ Q }
{ P ∧ ∃Z ∶ V(Z) } call p { ⇓ Q }

if ¬(P ∧V(0))

where Z ∈ N and p is defined by proc p is s end

For procedure fac, we could use V(Z) ≡ x = Z

Peter Müller—Formal Methods and Functional Programming, SS09 p. 198



3. Axiomatic Semantics

3.1 Hoare Logic

3.2 Soundness and Completeness

3.2.1 Proof of Soundness
3.2.2 Proof of Completeness

Peter Müller—Formal Methods and Functional Programming, SS09 p. 199



Motivation

Developing an axiomatic semantics is difficult

Soundness:
If a property can be proved then it does indeed hold

An unsound inference system is useless

Completeness:
If a property does hold then it can be proved

With an incomplete inference system, a program might be correct, but
we cannot prove it

Peter Müller—Formal Methods and Functional Programming, SS09 p. 200



Unsoundness: While Rule

Why do we need the condition P⇒ ∃Z ∈ N ∶ V(Z)?

{ B[[b]] ∧P ∧V(Z + 1) } s { P ∧V(Z) }
{ P } while b do s end { ¬B[[b]] ∧P }

where Z ∈ N

With V(Z) ≡ x = Z , we can derive

{ x − 1 = Z } x:=x − 1 { x = Z }
{ x#0 ∧ x = Z + 1 } x:=x − 1 { x = Z }

{ true } while x#0 do x:=x − 1 end { x = 0 }

This derivation is not sound

We cannot prove ∃Z ∈ N ∶ V(Z) for x < 0

Peter Müller—Formal Methods and Functional Programming, SS09 p. 201



Incompleteness: Procedures

{ P } call p { Q } ⊢ { P } s { Q }
{ P } call p { Q }

where p is defined by proc p is s end

proc p is
if y >0 then

y := y - 1;
x := x - 1; call p; x := x + 1;

end
end

We cannot prove { x = N } call p { x = N } ⊢ { x = N } body(p) { x = N }
because the assumption does not match the recursive call

Peter Müller—Formal Methods and Functional Programming, SS09 p. 202



Soundness and Completeness

Soundess and completeness can be proved w.r.t. an operational or
denotational semantics

The partial correctness assertion { P } s { Q } is
valid—written as ⊧ { P } s { Q }— iff

∀σ,σ′ ∈ State ∶ P(σ) = tt ∧ ⟨s, σ⟩ → σ′ ⇒ Q(σ′) = tt

Soundness: ⊢ { P } s { Q } ⇒ ⊧ { P } s { Q }

Completeness: ⊧ { P } s { Q } ⇒ ⊢ { P } s { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 203



Theorem

Soundess and completeness theorem

For all partial correctness assertions { P } s { Q }
of IMP we have

⊢ { P } s { Q } ⇔ ⊧ { P } s { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 204



3. Axiomatic Semantics

3.1 Hoare Logic

3.2 Soundness and Completeness

3.2.1 Proof of Soundness
3.2.2 Proof of Completeness

Peter Müller—Formal Methods and Functional Programming, SS09 p. 205



Soundness Proof

We prove ⊢ { P } s { Q } ⇒ ⊧ { P } s { Q }

That is, we have to show

⊢ { P } s { Q } ∧P(σ) = tt ∧ ⟨s, σ⟩ → σ′ ⇒ Q(σ′) = tt

The proof runs by induction on the shape of the inference tree for
⊢ { P } s { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 206



Soundness Proof: Base Cases

Case assign-axiom

Assume ⟨x:=e, σ⟩ → σ′

We have to prove (P[x ↦ A[[e]]])σ = tt ⇒ P(σ′) = tt

From the natural semantics, we get ⟨x:=e, σ⟩ → σ[x ↦ A[[e]]σ]

We have (P[x ↦ A[[e]]])σ = tt ⇔ P(σ[x ↦ A[[e]]σ]) = tt

Case skip-axiom: Trivial

Peter Müller—Formal Methods and Functional Programming, SS09 p. 207



Soundness Proof: Composition

Consider arbitrary states σ and σ′′ where P(σ) = tt holds and
⟨s1;s2, σ⟩ → σ′′

From the natural semantics, we know that there is a state σ′ such that
⟨s1, σ⟩ → σ′ and ⟨s2, σ

′⟩ → σ′′

From the induction hypothesis, we get ⊧ { P } s1 { Q } and
⊧ { Q } s2 { R }

From ⊧ { P } s1 { Q }, ⟨s1, σ⟩ → σ′, and P(σ) = tt, we get Q(σ′) = tt

From ⊧ { Q } s2 { R }, ⟨s2, σ
′⟩ → σ′′, and Q(σ′) = tt, we get

R(σ′′) = tt

Peter Müller—Formal Methods and Functional Programming, SS09 p. 208



Soundness Proof: Conditional

Case 1: B[[b]]σ = tt

Consider arbitrary states σ and σ′ where P(σ) = tt holds and
⟨if b then s1 else s2 end, σ⟩ → σ′

From the natural semantics, we get ⟨s1, σ⟩ → σ′

From the induction hypothesis, we get ⊧ { B[[b]] ∧P } s1 { Q }

From P(σ) = tt and B[[b]]σ = tt, we get (B[[b]] ∧P)σ = tt

From ⊧ { B[[b]] ∧P } s1 { Q } and (B[[b]] ∧P)σ = tt, we get Q(σ′) = tt

Case 2: B[[b]]σ = ff is analogous

Peter Müller—Formal Methods and Functional Programming, SS09 p. 209



Soundness Proof: Loop

We have to prove

⊢ { P } while b do s end { ¬B[[b]] ∧P }∧
P(σ) = tt ∧ ⟨while b do s end, σ⟩ → σ′′

⇒ (¬B[[b]] ∧P)σ′′

where σ and σ′′ are arbitrary states

The proof runs by induction on the shape of the derivation tree for
⟨while b do s end, σ⟩ → σ′′

Peter Müller—Formal Methods and Functional Programming, SS09 p. 210



Soundness Proof: Loop (cont’d)

Case 1: B[[b]]σ = tt

From the natural semantics, we get ⟨s, σ⟩ → σ′ and
⟨while b do s end, σ′⟩ → σ′′

From P(σ) = tt and B[[b]]σ = tt, we get (B[[b]] ∧P)σ = tt

By applying the induction hypothesis of the outer induction to
⊧ { B[[b]] ∧P } s { P }, we get P(σ′) = tt

Now we can apply the induction hypothesis of the nested induction to
⟨while b do s end, σ′⟩ → σ′′ to get (¬B[[b]] ∧P)σ′′ = tt

Case 2: B[[b]]σ = ff

From the natural semantics, we get σ = σ′′

P(σ) = tt and B[[b]]σ = ff imply (¬B[[b]] ∧P)σ′′ = tt

Peter Müller—Formal Methods and Functional Programming, SS09 p. 211



Soundness Proof: Consequence

Consider arbitrary states σ and σ′ where P(σ) = tt holds and
⟨s, σ⟩ → σ′

We have ⊧ { P′ } s { Q′ }, P⇒ P′, and Q′ ⇒ Q

From P(σ) = tt and P⇒ P′, we get P′(σ) = tt

By applying the induction hypothesis, we get Q′(σ′) = tt

From Q′(σ′) = tt and Q′ ⇒ Q, we get Q(σ′) = tt

Peter Müller—Formal Methods and Functional Programming, SS09 p. 212



3. Axiomatic Semantics

3.1 Hoare Logic

3.2 Soundness and Completeness

3.2.1 Proof of Soundness
3.2.2 Proof of Completeness

Peter Müller—Formal Methods and Functional Programming, SS09 p. 213



Weakest (Liberal) Preconditions

The weakest precondition of a statement s and a postcondition Q is
the weakest predicate that has to hold in the initial state of an
execution of s to guarantee that Q holds in the final state

The weakest precondition wp(s,Q) guarantees termination

The weakest liberal precondition wlp(s,Q) does not guarantee
termination

wp(s,Q)σ = tt ⇔∃σ′ ∶ (⟨s, σ⟩ → σ′ ∧Q(σ′))
wlp(s,Q)σ = tt ⇔∀σ′ ∶ (⟨s, σ⟩ → σ′ ⇒ Q(σ′))

In the following, we consider partial correctness

Peter Müller—Formal Methods and Functional Programming, SS09 p. 214



wlp-Lemma

Lemma: For every statement s and predicate Q we have
1. ⊧ { wlp(s,Q) } s { Q }
2. ⊧ { P } s { Q } ⇒ (P⇒ wlp(s,Q))

Proof 1:

Let wlp(s,Q)σ = tt and ⟨s, σ⟩ → σ′

From the definition of wlp, we get Q(σ′)

Proof 2:

Let P(σ) = tt and ⟨s, σ⟩ → σ′

From ⊧ { P } s { Q }, we get Q(σ′) = tt

From the definition of wlp, we get wlp(s,Q)σ′

Peter Müller—Formal Methods and Functional Programming, SS09 p. 215



Completeness Proof

We prove ⊧ { P } s { Q } ⇒ ⊢ { P } s { Q }

It suffices to infer ⊢ { wlp(s,Q) } s { Q }

By ⊧ { P } s { Q }, the wlp-lemma implies P⇒ wlp(s,Q)

{ wlp(s,Q) } s { Q }
{ P } s { Q }

We prove ⊢ { wlp(s,Q) } s { Q } by structural induction on s

Peter Müller—Formal Methods and Functional Programming, SS09 p. 216



Completeness Proof: Base Cases

Case assign-axiom

From the natural semantics, we get ⟨x:=e, σ⟩ = σ[x ↦ A[[e]]σ]

From the definition of wlp, we get
wlp(x:=e,Q)σ⇔ Q(σ[x ↦ A[[e]]σ]))

Therefore, we get wlp(x:=e,Q) = Q[x ↦ A[[e]]]

We can infer ⊢ { Q[x ↦ A[[e]]] } x:=e { Q }

Case skip-axiom:

From the natural semantics, we get wlp(skip,Q) = Q

We can infer ⊢ { Q } skip { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 217



Completeness Proof: Composition

By the induction hypothesis, we get ⊢ { wlp(s2,Q) } s2 { Q } and
⊢ { wlp(s1,wlp(s2,Q)) } s1 { wlp(s2,Q) }

We can infer ⊢ { wlp(s1,wlp(s2,Q)) } s1;s2 { Q }

It remains to prove that wlp(s1;s2,Q) ⇒ wlp(s1,wlp(s2,Q))

We assume that wlp(s1;s2,Q)σ = tt and show that
wlp(s1,wlp(s2,Q))σ = tt

Peter Müller—Formal Methods and Functional Programming, SS09 p. 218



Completeness Proof: Composition (2)

If there is no σ′ such that ⟨s1, σ⟩ → σ′ then wlp(s1,wlp(s2,Q))σ = tt
follows immediately from the definition of wlp

Otherwise, we have to show wlp(s2,Q)σ′ = tt

Again, if there is no σ′′ such that ⟨s2, σ
′⟩ → σ′′ then wlp(s2,Q)σ′ = tt

follows immediately from the definition of wlp

Otherwise, we have to show Q(σ′′)

Q(σ′′) follows from wlp(s1;s2,Q)σ = tt and ⟨s1;s2, σ⟩ → σ′′

Peter Müller—Formal Methods and Functional Programming, SS09 p. 219



Completeness Proof: Conditional

By the induction hypothesis, we get ⊢ { wlp(s1,Q) } s1 { Q } and
⊢ { wlp(s2,Q) } s2 { Q }

Define P ≡ (B[[b]] ∧wlp(s1,Q)) ∨ (¬B[[b]] ∧wlp(s2,Q))

We have B[[b]] ∧P⇒ wlp(s1,Q) and ¬B[[b]] ∧P⇒ wlp(s2,Q)

We derive

{ wlp(s1,Q) } s1 { Q }
{ B[[b]] ∧P } s1 { Q }

{ wlp(s2,Q) } s2 { Q }
{ ¬B[[b]] ∧P } s2 { Q }

{ P } if b then s1 else s2 end { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 220



Completeness Proof: Conditional (2)

We have P ≡ (B[[b]] ∧wlp(s1,Q)) ∨ (¬B[[b]] ∧wlp(s2,Q))

It remains to show that
wlp(if b then s1 else s2 end,Q)σ = tt ⇒ P(σ) = tt

Case 1: B[[b]]σ = tt

If there is no σ′ such that ⟨s1, σ⟩ → σ′ then wlp(s1,Q)σ = tt follows
immediately from the definition of wlp

Otherwise, we have to prove Q(σ′)

From wlp(if b then s1 else s2 end,Q)σ = tt and
⟨if b then s1 else s2 end, σ⟩ → σ′, we get Q(σ′)

Case 2: B[[b]]σ = ff is analogous

Peter Müller—Formal Methods and Functional Programming, SS09 p. 221



Completeness Proof: Loop

Define P ≡ wlp(while b do s end,Q)

We will prove

(1) (¬B[[b]] ∧P) ⇒ Q

(2) (B[[b]] ∧P) ⇒ wlp(s,P)

By the induction hypothesis, we get ⊢ { wlp(s,P) } s { P }

From (2), we get ⊢ { B[[b]] ∧P } s { P }

Be the while rule, we get ⊢ { P } while b do s end { ¬B[[b]] ∧P }

From (1), we get ⊢ { P } while b do s end { Q }

Peter Müller—Formal Methods and Functional Programming, SS09 p. 222



Completeness Proof: Loop (2)

We prove (1): (¬B[[b]] ∧P) ⇒ Q

Assume (¬B[[b]] ∧P)σ = tt

Then we have ⟨while b do s end, σ⟩ = σ

By wlp(while b do s end,Q)σ = tt and the definition of wlp, we get
Q(σ) = tt

Peter Müller—Formal Methods and Functional Programming, SS09 p. 223



Completeness Proof: Loop (3)

We prove (2): (B[[b]] ∧P) ⇒ wlp(s,P)

We assume (B[[b]] ∧P)σ = tt and show that wlp(s,P)σ = tt

If there is no σ′ such that ⟨s, σ⟩ → σ′ then wlp(s,P)σ = tt follows
immediately from the definition of wlp

Otherwise, we have to show P(σ′) = tt

Peter Müller—Formal Methods and Functional Programming, SS09 p. 224



Completeness Proof: Loop (4)

Case 1: There is no σ′′ such that ⟨while b do s end, σ′⟩ = σ′′

By the definition of wlp, we get that wlp(while b do s end,Q)σ′ = tt
and, thus, P(σ′) = tt

Case 2: There is a σ′′ such that ⟨while b do s end, σ′⟩ = σ′′

From ⟨s, σ⟩ → σ′ and ⟨while b do s end, σ′⟩ = σ′′, we get
⟨while b do s end, σ⟩ = σ′′

By P(σ) = tt and ⟨while b do s end, σ⟩ = σ′′, we get Q(σ′′) = tt

By Q(σ′′) = tt and ⟨while b do s end, σ′⟩ = σ′′, we get
wlp(while b do s end,Q)σ′ = tt and, thus, P(σ′) = tt

Peter Müller—Formal Methods and Functional Programming, SS09 p. 225



Summary: Axiomatic Semantics

Axiomatic semantics
expresses specific properties of the effect of executing a program
Some aspects of the computation may be ignored

Axiomatic semantics is used to verify programs
Partial correctness
Total correctness
Other properties, e.g., resource consumption

The inference system should be sound and complete

Peter Müller—Formal Methods and Functional Programming, SS09 p. 226


