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@ Many interesting properties relate several states
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Motivation

@ Many interesting properties relate several states

@ Example: all opened files must be closed eventually
e For a terminating program s

(s,0) =7 ¢’ and o(0) =0 then ¢'(0) =0

e For a deterministic, non-terminating program s

(s,0) =7 (s’,0") and o(0) =0 and ¢’(0) =1 then there exist
s",c" such that (s’,0') =7 (s"”,0"”) and ¢"(0) =0

e For a non-deterministic, non-terminating program s

wc : Stm x State x N — Bool

wc(s,o,n) < o(o0) =0V
(for all s",0" :if (s,0) =1 (s’,0") then there exists
m € N such that m < n and we(s’, o', m))

(s,0) =7 (s’,0") and 0(0) =0 and o'(0) =1 then
there exists n € N such that wc(s’,o’, n)
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5. Linear Temporal Logic

5.1 Linear-Time Properties
5.2 Linear Temporal Logic

5.3 LTL Model Checking
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Transition Systems Reuvisited

@ We use a slightly different definition here

@ A finite transition system is a tuple (I, 0/, —)
e [: a finite set of configurations
@ oy: an initial configuration, oy €
e —: a transition relation, - x [

@ We add an initial configuration

e Transition system models only one system, not all programs of a
programming language

@ We omit terminal configurations

e Simplifies theory
e Termination can be modelled by special sink state
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Transition System of a Promela Model

e Configurations: states (see previous section)

e Global variables, global channels
e Per active process: local variables, local channels, location counter

@ Initial configuration: initial state (see previous section)

@ Transition relation: defined by operational semantics of statements
e We keep semantics informal

@ A Promela model has a finite number of states

Finite number of active processes (limited to 255)
Finite number of variables and channels
Finite ranges of variables

o
o
(* ]
e Finite buffers of channels

@ Therefore, it is possible to enumerate all possible states
e How many states are there?
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State Space of Sequential Programs
@ Number of states
#program locations x  [][ | dom(x) |

variable x

o where | dom(x) | denotes the number of possible values of variable x
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@ Number of states
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variable x

o where | dom(x) | denotes the number of possible values of variable x
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State Space of Sequential Programs
@ Number of states

#program locations x  [][ | dom(x) |
variable x

o where | dom(x) | denotes the number of possible values of variable x

@ Example: sequential program with 10 locations and 3 boolean variables

10x2x2x2=10x2>=80
o Adding two integer variables yields 80 x 232 x 232 = 80 x 204

@ Number of states grows exponentially in the number of variables

@ State space explosion
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State Space of Concurrent Programs
@ The number of states of P = Py||... | Py is at most

#states of P x ... x #states of Py =

N
[ [(#program locations; x [[ |dom(x;)|)

i=1 variable x;
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State Space of Concurrent Programs
@ The number of states of P = Py||... | Py is at most

#states of P x ... x #states of Py =

N
[ [(#program locations; x [[ |dom(x;)|)

i=1 variable x;
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State Space of Promela Models

@ The number of states of a system with N\ processes and K channels is
at most

. K
[ [(#program locations; x [ | dom(x;)|) x [ ]| dom(c;) cap(<))

i=1 variable x; Jj=1

o | dom(c) | denotes the number of possible messages of channel ¢
o cap(c) is the capacity (buffer size) of channel ¢
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State Space of Promela Models

@ The number of states of a system with N\ processes and K channels is
at most

. K
[ [(#program locations; x [ | dom(x;)|) x [ ]| dom(c;) cap(<))
=1 variable x; j=1

o | dom(c) | denotes the number of possible messages of channel ¢
o cap(c) is the capacity (buffer size) of channel ¢

@ Number of states grows exponentially in the number and capacity of
channels

@ State space explosion
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Computations

@ Infinite sequences

e SY is the set of infinite sequences of elements of set S
e s; denotes the /-th element of the sequence s € S¥

@ vel% is a computation of a transition system if:

® Yo =0
@ Vi = Vi+l

@ C(TS) is the set of all computations of a transistion system TS
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Linear-Time Properties

@ Linear-time properties (LT-properties) specify the admissible
computations of a transition system

@ A linear-time property over [ is a subset of [*

@ TS satisfies LT-property P (over I')

TSEP ifandonlyif C(TS)cP

e All computations of TS are admissible

@ By contrast: branching-time properties can also express the existence of
a computation
e Example: “lt is always possible to return to the initial state”
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LT-Properties: Example

@ All opened files must be closed eventually

P={~vel“|Vi>0:7v;(c)=1=3n>0:7;,,(0) =0}

@ LT-properties elegantly express properties of computations

e Non-termination is handled by infinite sequences
@ Non-determinism is handled by considering each computation separately

@ Logical formalism needed to simplify specification of LT-properties
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From States to Propositions

@ For a transition system TS, we specify the set AP of atomic
propositions
e An atomic proposition is a proposition containing no logical connectives
o Example: AP ={open, closed}

@ We define a labeling function that maps configurations to sets of
atomic propositions
o L:[ — P(AP)

{open} ifo(o)=1
o Example: L(0) =1 {closed} if o(0)=0
{} otherwise

@ We call L(o) an abstract state

@ From now on, we consider AP and L to be part of the transition system
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Traces

@ A trace is an abstraction of a computation

e Observe only the propositions of each state, not the concrete state itself
o Infinite sequence of abstract states (P(AP)“)

@ t € P(AP)¥ is a trace of a transition system TS if
t=L(v)L(71)L(72),... and v is a computation of TS

@ T(TS) is the set of all traces of a transistion system TS

@ LT-properties are typically specified on traces

P={teP(AP)¥|Vi>0:0penet; = 3In>0:closed € tj,,}
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Safety Properties

@ Intuition

e ‘'nothing bad ever happens”
e "if something bad happens then it is irremediable”

@ An LT-property P is a safety property if for all traces t ¢ P(AP)“:
if t ¢ P then there is a finite prefix t of t such that for each trace t’
with prefix t, t' ¢ P

o 1 is called a bad prefix

@ Safety properties are violated in finite time and cannot be repaired

@ Examples

e State properties, for instance, invariants

P={teP(AP)¥|Vi>0:openct;Vclosed ¢ t;}

e "“Money can be withdrawn only after correct PIN has been entered”
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Liveness Properties

@ Intuition

@ ‘something good will happen eventually”
e "if the good thing has not happened yet, it will happen in the future”

@ An LT-property P is a liveness property if every finite sequence
t e P(AP)* is a prefix of a trace t € P

e A liveness property does not rule out any prefix
e Every finite prefix can be extended to a trace that is in P

@ Liveness properties are violated in infinite time

@ Examples
e All opened files must be closed eventually

P={teP(AP)*|Vi>0:o0penect;=3n>0:closed € tj,,}

e “The program terminates eventually”
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5.2 Linear Temporal Logic

5.3 LTL Model Checking

Peter Miller—Formal Methods and Functional Programming, SS09 p. 292



Linear Temporal Logic

@ Linear Temporal Logic (LTL) allows us to formalize LT-properties of

traces

@ We will discuss syntax and semantics, but not inference rules

@ Whether the traces of a finite transition system satisfy an LTL formula
Is decidable
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LTL: Basic Operators

@ Syntax

p=p|-¢|ord | oUd | O

e where p is a proposition in AP # &

@ Intuitive meaning of temporal operators

P

0o O—O—O—O—(Cr-»
¢ ¢ ¢ v

Wy O—O—O—O—(>-»

Peter Miiller—Formal Methods and Functional Programming, SS09 p. 294



LTL: Semantics

@ t ¢ expresses that trace t € P(AP)“ satisfies LTL formula ¢

tEp iff pety

tE @ iff nottkE o

teony ff tEgand tEY

tEoUy iff thereisa k>0 with t-x E 9 and
tsiE@for0< <k

teE Q¢ iff t1E @

e where t; is the suffix of t starting at t;

p

p @—0O—0—0—0O->
¢ ¢ ¢ v

Wy O—O—O—0O—-»
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Derived Operators

@ true, false,v,= as usual
@ Eventually: &o = trueU ¢
@ Generally: O¢p = - =g

@ Intuitive meaning
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Specification Patterns

@ Strong invariant

e Op: p always holds
o A file is always open or closed: T(open v closed)
e Safety property

@ Monotone invariant

o O(p=0Op): once p, always p

o Once information is public, it can never become secret again (but it may
always stay secret): O(public = Opublic)

e Safety property

@ Establishing an invariant

e <& O p: eventually p will always hold
e System initialization starts daemon process: <& O daemonRunning
e Liveness property
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Specification Patterns (cont’'d)

@ Responsiveness

o O(p= <q): everytime p holds, g will eventually hold
o All opened files must be closed eventually: O(open = <closed)
e Liveness property

@ Fairness

e O p: p holds infinitely often

e Producer does not wait infinitely long before entering the critical section:
O < crit
e Liveness property
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Needham-Schroeder Protocol

@ If Alice and Bob have completed their protocol runs then Alice should
believe her partner to be Bob if and only if Bob believes to talk to Alice

O(statusA =1 A statusB =1 =
(partnerA = agentB < partnerB = agentA))

@ If Alice completed her protocol run with Bob, the intruder should not
have learned Alice's nonce

O(statusA = 1 A partnerA = agentB = knows_nonceA = 0)

@ If Bob completed his protocol run with Alice, the intruder should not
have learned Bob's nonce

O(statusB = 1 A partnerB = agentA = knows_nonceB = 0)
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LTL Model Checking Problem

Given a finite transition system TS and an LTL formula ¢,
decide whether t = ¢ for all t € T(TS)

@ We need to check inclusion of traces

o LTL formula ¢ describes set of traces P(¢)
o We need to determine whether T(TS) c P(¢)

Peter Miiller—Formal Methods and Functional Programming, SS09 p. 301



A Simpler Problem: Regular Safety Properties

@ A safety property is regular if its bad prefixes are described by a regular
language

@ Every invariant over AP is a regular safety property

e Invariant Op
o Bad prefixes start with g*r where pe g and p¢ r

@ Regular safety property that is not an invariant

e Traffic light: red is immediately preceeded by yellow
aO(-yellow = O-red)
o Bad prefixes start with (green | yellow yellow™ (red | green))* red

@ Non-regular safety property

e Vending machine: at least as many coins inserted as drinks dispensed

o Cannot be expressed in LTL with AP = {pay, drink} (“LTL cannot
count™)

e Bad prefixes: regular languages cannot count
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Checking Regular Safety Properties

@ Safety properties are violated in finite time

o Look at all finite prefixes Ty,( TS) of the traces T(TS) of a transition

system TS
o Check whether T5,(TS) contains a bad prefix
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Checking Regular Safety Properties

@ Safety properties are violated in finite time

o Look at all finite prefixes Ty,( TS) of the traces T(TS) of a transition

system TS
o Check whether T5,(TS) contains a bad prefix

@ Approach
1. Describe finite prefixes T5,( TS) by finite automaton FArs

2. Describe bad prefixes of regular safety property P by finite automaton
FAp
3. Construct finite automaton for intersection of F Ats and FAp

4. Check whether intersection is empty

@ If intersection is non-empty, property P is violated
@ Each word in the intersection is a counterexample
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Reminder: Finite Automata

@ A finite automaton (FA) is a tuple (@, X%, Q, 9, qo, F)
e @: a finite set of states
e X: a finite alphabet
@ J: a transition relation, d € @ x X x
@ (o: an initial state
e [ c Q: a set of accepting states
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Step 1: Finite Automaton for Finite Prefixes

@ Given a transition system TS = (I, 0,,—), propositions AP, and
labeling function L

@ The automaton FA7s =(Q,X,0,qo, F) accepts T5,(TS)

o Q=Tu{og}, where og ¢ T

o X =P(AP)

o 0={(o,p,0") | 0 >0c"and peL(c’)}u{(co,p,01) | pel(or)}
@ do =00

o F=Q

@ Example: o:=0+1; while * do o:=0-1; o:=o+1 end; o:=o+1

- { open } . { closed }

Peter Miiller—Formal Methods and Functional Programming, SS09 p. 305



Step 2: Finite Automaton for Bad Prefixes

@ By definition, bad prefixes are described by a regular language
@ Apply standard construction to obtain FA F. Az from regular expression

@ Example: O(open v closed)

e Bad prefixes start with
({open} | {closed})*({} | {open, closed})

{ open }

{}
|
- > { open, closed } i

{ closed }
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Step 3: Finite Automaton for Intersection

@ Construct FA FA;¢.p that accepts the intersection of the languages
accepted by F Ats and FAp

@ Apply standard construction for product of two FA

@ Example
{ open }

{}
{ open }{ closed } a@{) all
{ open, closed }

{ closed } { open }> {} ; { closed )

{ open } { closed }

{ closed }{ open } {}
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Step 4: Check Emptiness

o If FA;c.p accepts a word w then

o we Ts,(TS) because it is accepted by FArs and
e w is a bad prefix because it is accepted by FAp
e Therefore, P is not satisfied, and w is a counterexample

@ Apply standard algorithm to check emptiness of FA

@ Example

{ open } { closed }

o Accepts {closed}{open}({closed} | {open})*{}
o Smallest counterexample: {closed}{open}{}
e Counterexample can be mapped back to transition system
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Buchi Automata

@ Biuchi automata are similar to finite automata, but accept infinite words

@ A Biichi automaton (BA) is a tuple (Q, %, Q, 46, qo, F)
e : a finite set of states
e X: a finite alphabet
@ 0: a transition relation, d € @ x X x
@ (o: an initial state
o [ c Q: a set of accepting states

@ A run of a BA accepts its input if it passes infinitely often through an
accepting state

@ Buchi automata enjoy many of the properties of finite automata

e We can construct the product of two BA
e Emptiness is decidable
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LTL Model Checking: Approach

1. Describe traces T(TS) by Biichi automaton BAts

e Construction is analogous to F Ats
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LTL Model Checking: Approach

1. Describe traces T(TS) by Biichi automaton BAts

e Construction is analogous to F Ats

2. For an LTL formula ¢, construct Buchi automaton BAﬁgb that accepts
the traces characterized by —¢ (bad traces)
e We omit the details here

3. Construct BA for intersection of BAts and BA_,

4. Check whether intersection is empty

e If intersection is non-empty, property ¢ is violated
e Each word in the intersection is a counterexample

Peter Miiller—Formal Methods and Functional Programming, SS09 p. 310



Complexity Results

For a finite transition system TS and an LTL formula ¢,
the model checking problem TS E ¢ is solvable in

O(] TS | x2l)

@ | TS| is the size of the transition system (which grows exponentially in
the number of variables, processes, and channels)

@ | ¢ | is the size of ¢; exponential complexity comes from the
construction of BA_,
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Advanced Model Checking Techniques

@ On-the-fly model checking

e Often violation of a property can be detected without checking all
possible states or traces (for instance, Op)

e Generate transition system and check property step-by-step

e Implemented in Spin

@ Partial order reduction

e Remove redundancy from different interleavings of concurrent executions

e Code segments that operate only on local state are not affected by
interleaving

e Implemented in Spin
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Advanced Model Checking Techniques (cont’d)

@ Bounded model checking

e Check only prefixes of traces up to a certain length
e Closer to testing than verification
e Very effective in practice

@ Symbolic model checking

e Uses sets of states rather than individual states

e Sets of states are represented through boolean functions

o Very efficient data structure: binary decision diagram (BDDs)
e Typically used to check branching-time properties

e Can deal with larger models
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Spec# Demo
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Recommendations

@ Course System Development in Event-B by J.-R. Abrial and T. S.
Hoang-Do

e Correctness-by-construction
o Offered Fall 2009

@ Software Engineering Seminar by P. Muller

e Many topics of advanced formal methods
o Offered Fall 2009

@ Course Concepts of Object-Oriented Programming by P. Miiller

e Informal discussion of semantics of OO-languages; language design
e Offered Fall 2009

@ Planned course Principles of Programming Languages by P. Miiller

e Will cover semantics, type systems, static analysis, and verification of
object-oriented programs
e Planned for Fall 2010
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Conclusions

@ Variety of approaches
e Best method depends on application area

@ Tool support is essential

e Proofs are tedious and error-prone
e Some tools have reached maturity for industrial applications

@ In this course, you have just seen the foundations

e Advanced course planned to start next year
e Interesting student projects available, for instance, on Spec#
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Exam Info

@ Exam will cover part Il of the course (Formal Methods)

@ Date
e Monday, June 8th, 2009, 10:00 - 12:00

@ Place

e NO C 60 for last names starting with letter A - L
e HG E 3 for last names starting with letter M - Z

@ Closed-book
e But rules of NS, SOS, and Hoare-logic will be provided if needed
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