
Automatic Code Inspection

Software Engineering

Chair of Programming Methodology

2 Automatic Code Inspection

Software Engineering

Automation of code reviewing

  Possible bugs
  Code convention violations
  Dead code
  Duplicated code
  Suboptimal code

According to a report released by The Standish Group
automated code inspection reduced the number of
people needed for manual code reviews by 50%.

3 Automatic Code Inspection

Software Engineering

Main concept

  Syntactical matching of rules violation

Violation
of rule R1

Violation
of rule R2

Rule – is description of
set of ASTs that can be
reason for the one of
the mentioned above
problems.

4 Automatic Code Inspection

Software Engineering

How it works

  For expressing some rules representation of AST should
contain whitespaces, tabulations, EOLs, comments

  Rules represented via Java code or XML XQuery

Input
program Parser

AST
Tree traverser Warning

list

R1 R2 Rn

5 Automatic Code Inspection

Software Engineering

Automatic code inspection versus IDE

  Eclipse
-  Code style
-  Potential programming problems
-  Name shadowing and conflicts
-  Unnecessary code

  Advantages of the automatic code inspection
-  Bigger set of rules
-  User rules

6 Automatic Code Inspection

Software Engineering

Existing tools

- Checkstyle

http://checkstyle.sourceforge.net/

- PMD

- FindBugs

- JCSC (Java Coding Standard Checker)‏

http://pmd.sourceforge.net/

http://findbugs.sourceforge.net/

http://jcsc.sourceforge.net/

7 Automatic Code Inspection

Software Engineering

Common features

  Freeware
  100 – 200 of standard rules
  Configuration via XML
  Sometimes support creation of users rules via Java

or XQuery
  Usually support integration in different IDE
  Usually implemented in Java

8 Automatic Code Inspection

Software Engineering

Why PMD?

  Support user rules creation via both Java code and
XML XQuery

  Standard rules cover wide range of rule types
  Stable version
  Support plug-ins for various IDE

9 Automatic Code Inspection

Software Engineering

What is PMD?

  Last version: 4.2.5
  License: BSD License
  Language: Java
  Rules: around 150
  Rule sets: around 30
  User rules creation via Java and XQuery
  Originally developed to improve the Cougaar

 (Cognitive Agent Architecture) project
 (DARPA initiative)
 http://cougaar.org/projects/cougaar-pmd/

10 Automatic Code Inspection

Software Engineering

What does ‘PMD’ mean?

  Pretty Much Done
  Project Mess Detector
  Project Monitoring Directives
  Project Meets Deadline
  Programming Mistake Detector
  Pounds Mistakes Dead
  PMD Meaning Discovery (recursion, hooray!)‏
  Programs of Mass Destruction
  A 'Chaotic Metal' rock band name

 “Pretty Marry Dies”

11 Automatic Code Inspection

Software Engineering

Application of the PMD
  Select standard rules
  Write project specific rules
  Select rules parameters

Source code

Changing

W
ar

ni
ng

s

S
ource code

C
om

m
en

ts

S
ource code

New
source code

PMD

Bug
fixing

Warnings
comments

writing

12 Automatic Code Inspection

Software Engineering

Pros and Cons

  Pros
-  Don’t require any additional efforts.
-  Users don’t need have any specific knowledge. It’s

enough that user understand notion of the AST.

  Cons
-  Not sound. It’s possible that many from the found

warnings are not real errors.
-  Not complete. It can miss many real errors.

13 Automatic Code Inspection

Software Engineering

Future development: automatic bug fixing

  Program transformation via rewriting rules. For example StrategoXT.
 http://www.program-transformation.org/Stratego/JavaFront

Violation
 of rule R1

Violation
of rule R2

Fixed
subtree R’1

Fixed
subtree R’2

14 Automatic Code Inspection

Software Engineering

Future development: integration with a prover

requires i > 5;
int f(int i){

 if (i < 2) //UnconditionalIfStatement
 return i +1;
 else
 return i -1;

}

15 Automatic Code Inspection

Software Engineering

Future development:
empirics for filtering warnings

  Goal:
-  Decrease warnings number
-  Remove false warnings

  Problems:
-  Fuzzy warning criteria
-  Context depending warnings

