ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 9:
Big Step Semantics

Assighnment 1

(a) The statement s stores 2¥ in variable y where k is the initial value of variable x.

[0« &%) « ([g « %] ‘s)

o = &% — ([1'g — £%] ‘m) (16 — &%) — ([g —x]‘T1=:£)

[0« £%] « ([g‘T « £x] ‘m) [g1T < £%] — ([1‘C < £x] ‘q)

[70 — £%] — ([p‘0 «— £x] ‘m) [F0— &%) — ([g‘T — £%] ‘q) [e1T = £%] — ([g'c — £x]‘T—x=:%) [g‘C 1 £x] — ([1‘C — £x] ‘gxh=:£)

[Fo—&x] —([p‘T = Lx]‘T—x=%) [F‘T = £x] — ([T « £x] ‘gxh=:£)

‘(quens|a. aue sanjea Jisyl) 11 dwi S| S48 0 91B1S Ul S3|RLIBA JSY0 Y] JO
sanjeA ay | .T:ﬁ SRR VAP :L se ‘AjoA13oadsas “Ia ‘- - - “Ta sg|qelieA ay3 03 “u ‘- - - ‘lu s19893ul 9Yy3 sSuBIsse eyl O 91e1S e 93UM 9M
‘JONO2IO|\ 'PUS g OP (<X OTTUM JUSWIILISSY] M pue [-X =: X {gx£ =: £ 1uswa1e1s a3yl sl q :Suolleinaiqqe Suimo||o) 3yl asn SpN Sv

Assighment 2

The deduction rules for repeat s until b are

and

(s,0) — '

B[b]o" = tt
(repeat s until b,0) — o’ ()

(s,0) — v (repeat s until b,vy) — o’

Blo]y = ff

(repeat s until b,0) — o’

We can define the semantics of repeat-until relying on the semantics of the while loop.

(while (not b) do s end; s,0) — o

(repeat s until b,0) — o’

Assignment 3

For the direction from right to left, we consider the derivation tree for

(if b then s; while b do s end else skip end, o) — o”

The last applied rule in this derivation tree is a rule for the if-then-else statement. So, the
derivation tree has either the form

or

(s; while b do s end,o) — o”
(if b then s; while b do s end else skip end,o) — o” (1)

(skip,0) — o”
(if b then s; while b do s end else skip end,o) — o” (2)

Let us first consider the case (2). The rule is only applicable when B[b]o = ff. Furthermore,
with the rule for skip, we conclude that ¢ = ¢”. We construct the following derivation
tree:

(while b do s end,0) — 0

Let us now consider the case (1). The rule is only applicable when B[b]o = tt. The next
applied rule in the derivation tree must be for sequential composition. The last part of the
derivation tree has the form

(s,0) — ¢’ (while b do s end,o’) — o’

(s; while b do s end,o) — o”

(if b then s; while b do s end else skip end,o) — o”

Let 77 be the derivation tree above (s,0) — ¢’ and let T, be the derivation tree above
(while b do s end,o’) — o”. We construct the following derivation tree:
T T,

(s,0) — ¢’ (while b do s end,0’) — o

"

(while b do s end,o) — o”

Assignment 4

You find a solution of this assignment in the literate Haskell file simpi_onlyns.1hs.

Assignment 5

The semantics of arithmetic expressions returns integer values. Since IMP does not have infor-
mation about the type of variables and expressions (that is, we cannot distinguish if an expression
is an integer value or a pointer), the references are represented by integer values.

The new state is composed by an environment (Env : Var — 7Z), that relates each variable to
a reference, and a heap (Heap : Z — Z.), that relates each reference to an integer value. Then
the new representation of states is State = Env x Heap.

Note that in the slides integer values are represented by the set Val. Here we use a different
notation since we want to underline that references and values are the same thing.

We extend the semantics of expressions with the two following rules:

Alxe](env, h) = h(A[e](env, h))
Alx](env, h) = env(x)
A[&x](env, h) = env(x)

env’ = env[x — Ale](env, h)]
(x := e, (env,h)) — (env', h)

B = h|Alei](env, h) — Ales](env, h)]

(xeq :=ey, (env, h)) — (env, h')

Note that using this semantics is possible to assign any arithmetic expression as reference to a
variable (for instance, x := 1). In addition, we modified the rule of the evaluation of variables,
since this rule will be used when accessing the content of a reference through *e. For this reason,
A[x](env, h) returns the reference pointed by the variable x (that is, it has the same semantics
of &x).

For the other cases of the evaluation of arithmetic expressions and of the natural semantics,
the semantics is the pointwise extension to states composed by an environment and a heap. For
instance, the semantics of the concatenation of statements is redefined as follows:

(s1, (env,h)) — (env', k'), (s2, (env', 1)) — (env” h")
(s1; s2,(env,h)) — (env” h")

