
D. Basin and P. Müller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 10:
Small Step Semantics

Assignment 1

Consider the following case:

s1 = x:=0 s2 = (while 1=1 do x:=x+1 end)

and the following derivation:

〈s1; s2 , σ〉 →1 〈s2 , σ[x 7→ 0]〉 →2
1 〈s2 , σ[x 7→ 1]〉

and let σ′ = σ[x 7→ 1]. Therefore, this is one case where:

〈s1; s2 , σ〉 →∗1 〈s2 , σ′〉

We want to show that it is not the case that 〈s1, σ〉 → σ′. Assume the contrary. By the
determinism of the semantics, we have that σ′(x) = 0, which contradicts the definition σ′ =
σ[x 7→ 1].

Assignment 2

By induction on k, starting from 1.
The base case (k = 1) is equivalent to the first rule of the structural semantics for sequential

composition, and therefore true.
Assume that the proposition holds for k = n, i.e. for all statements p, q and states τ, τ ′:

〈p, τ〉 →n
1 τ
′ ⇒ 〈p; q , τ〉 →n

1 〈q, τ ′〉 IH

Assume also that

〈s1, σ〉 →n+1
1 σ′ A1

We want to prove that

〈s1; s2 , σ〉 →n+1
1 〈s2, σ′〉

1



From A1, we have that there is a configuration 〈sA, σA〉 such that

〈s1, σ〉 →1 〈sA, σA〉 →n
1 σ
′ A2

which, by IH (instantiate: τ = σA, τ ′ = σ′, p = sA and q = s2), becomes

〈sA; s2 , σA〉 →n
1 〈s2, σ′〉

and therefore what remains to be proven is:

〈s1; s2, σ〉 →1 〈sA; s2 , σA〉
This is proven by A2 and the second rule of the structural semantics for sequential composition.

Assignment 3

You find a solution of this assignment in the literate Haskell file simpi.lhs.

Assignment 4

To support coroutines, we augment the state with a number as follows:

State′ = State× {−1, 0, 1}
The meaning of this extra piece of state is as follows: 0 means that no coroutines are executing.

1 means that there are two coroutines executing and the left one is active. -1 means that there
are two coroutines executing and the right one is active.

The semantics of all IMP statements remains the same. The extra piece of state that we
introduced here is not touched. For example, the semantics of skip is given by:

〈skip, (σ, n)〉 →1 (σ, n)

The semantics of yield is simple: it inverts the active coroutine:

〈yield, (σ, n)〉 →1 (σ,−n)
Notice that if there are no coroutines, yield behaves like skip.

The first rule about copar says that the left subroutine is initially active:

〈s1 copar s2 , (σ, 0)〉 →1 〈s1 copar s2 , (σ, 1)〉
The second rule says that if the left coroutine is active, then it is executed:

〈s1, (σ, 1)〉 →1 〈s′1, (σ′, n′)〉
〈s1 copar s2 , (σ, 1)〉 →1 〈s′1 copar s2 , (σ′, n′)〉

Similarly, if the right coroutine is active, then it is executed:

〈s2, (σ,−1)〉 →1 〈s′2, (σ′, n′)〉
〈s1 copar s2 , (σ,−1)〉 →1 〈s1 copar s′2 , (σ′, n′)〉

2



If the active coroutine terminates, then the whole construct terminates.

〈s1, (σ, 1)〉 →1 (σ
′, 1)

〈s1 copar s2 , (σ, 1)〉 →1 (σ
′, 0)

〈s2, (σ,−1)〉 →1 (σ
′,−1)

〈s1 copar s2 , (σ,−1)〉 →1 (σ
′, 0)

Notice in the last two rules that the yield statement was purposefully excluded. This is
because when the last thing that a coroutine does is a yield, then the whole construct should
not yet terminate, but first yield the control to the other coroutine. This is ensured by the final
two rules:

〈yield copar s2 , (σ, 1)〉 →1 〈skip copar s2 , (σ,−1)〉

〈s1 copar yield , (σ,−1)〉 →1 〈s1 copar skip , (σ, 1)〉

3


