ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Exercise Sheet 10: Small Step Semantics

Submission deadline: May 17th, 2010

Please submit your solution before 9:15am on the submission date specified above. Solutions
can be submitted via e-mail or by using the boxes to the left of RZ F1. Make sure that the first
page always contains your name, the exercise sheet number as well as your tutor’'s name and the
weekday (Tuesday or Wednesday) of your exercise group. Don't forget to staple your pages if
you submit more than one page.

Assignment 1

Assume that (sq; $9,0) —71 (s2,0’). Show that it is not necessarily the case that (s;,0) —7] o’

Assighment 2

Let 51 and sy be statements, o and ¢ states, and k a positive integer. Prove that if (s;,0) —% o’
then (s1; 80, 0) =% (s5,0").

Assignment 3

In this assignment you will extend the simple IMP interpreter with the structural operational
semantics. Download the skeleton file simpi_skeleton2.lhs from the course web page and
implement the function

transSOS :: Config -> Config

that encodes the rules presented in the lecture for the structural operational semantics. The
place where you have to insert your code in the skeleton file are marked by TODO. Compare your
implementation of transSOS with the function transNS that implements the rules for the natural
semantics.

Please mail your solution of this assignment to your tutor. The email addresses of the tutors are:

Alex Summers alexander.summers@inf.ethz.ch
Yannis Kassios ioannis.kassios@inf.ethz.ch
Malte Schwerhoff scmalte@student.ethz.ch

Assignment 4 - Headache of the week

Coroutines are parallel programs that handle their own scheduling. Only one coroutine is executing
at any given time. We call that coroutine the active coroutine. The active coroutine may yield
control to another coroutine, which then becomes the active coroutine, and so forth. When a
coroutine becomes active, it resumes execution exactly at the point where it was executing when
it was last active.

In this task, we implement a limited form of coroutines. Let s1, s5 be statements. The following
construct turns them into coroutines:

$1 copar S

When s; copar s, executes, the active coroutine is initially s;.

The yield statement yields the control. In particular, when s; executes yield, then s,
becomes active and when s, executes yield then s; becomes active.

When a yield is executed, the newly activated coroutine resumes execution immediately after
the last yield that it executed. If no such point exists (i.e. s; executes yield for the first time),
then the control goes to the beginning of newly activated coroutine.

Once one of the coroutines terminates, then the whole construct terminates. Exceptionally,
if the last statement that one coroutine executes is a yield, then the construct does not yet
terminate, but yields the control to the other coroutine.

Consider for example the following program:

x:=0;y:=0;
(while x<10 do x:=x+1; yield end) copar (while 1=1 do y:=y+x; yield end)

After initializing the variables x,y, the program introduces two coroutines. The left coroutine
starts executing first. The left coroutine runs a loop on x. Until x is equal to 10, the left coroutine
increments it and then yields the control to the right coroutine. The right coroutine adds x to y
and then yields the control back to the left coroutine.

The copar statement executes until the left coroutine terminates. At that point, x equals 10,
while y equals S°1°, i (which, incidentally, is 55).

For simplicity, we do not allow nested coroutines, i.e. the following would be illegal:

(s1 copar sy) copar ss

Extend the structural semantics of IMP to support coroutines as described above.

