ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 11: Axiomatic Semantics

Assignment 1

a)

Recall from the lecture the rule for a while statement:
{BbJAP}s{P}
{P} while b do s end { "B[b)] AQ}

where P is called the loop invariant.

The formula (3) is not a loop invariant of the while loop, since it's not preserved by the loop's
body:
while 1 < k do
{i>0ANi<k Ar=n' Ai<k}
# FAILS if i = k - 1
{i+1>0 A i+1<k A rn=n'""}

i:=1+ 1;

r :=r *xn
{i>0 A i<k A r=n'}

end

The formula (2) is a loop invariant of the while loop. This is shown by the following derivation

tree:
{1<i<kAr#n=n'}r:=r*xn {0<i<kAr=n'}
{0<i<kAr=n'}i=i+1{0<i—-1<kAr=n"'} {0<i—-1<kAr=n"'}r:=rxn{0<i<kAr=n'}
{0<i<kAr=n'}i=i+Lr:=rxn{0<i<kAr=n'}
{i<kAi>0Ai<kAr=n*}i:=i+l;r:=rxn{i>0Ai<kAr=n*}

conseq.

conseq.

The proof that formula (1) is also a loop invariant is similar and omitted here.



b)

We claim that for the programme s defined as

i:=0;

r :=1;
while i < k do
i:=1+ 1;
T :=T *n
end

it holds thatt {k>1} s { r=n*}. Thisis shown by the following derivation tree:

T
: {i>0Ai<kAr=n'} while...end {i>kAi>0Ai<kAr=n'} conseq
{(k>1Ai=0}r:=1{k>1Ai=0AT=1} {k>1Ai=0Ar=1} while...end {r=n*} '

{k>1}1i:=0{k>1A1i=0} {k>1Ai=0} r:=1;while...end {r=n*}

{k>1} s {r=n%}

where T is the derivation tree for showing that formula (2) is a loop invariant. We have omitted
obvious steps in the derivation tree. We can also use a different notation by annotating the
programme with pre- and postconditions:

{k>1}
=
{k>1A0=0}
i:=0;
{k>1ANi=0}
=
{k>1Ai=0A1=1}
r:=1;
{k>1ANi=0Ar=1}
=

{i>0ANi<kAr=n'}
while i <k do
{i<kAi>0Ai<kAr=n'}
i=1i41;
{i-1<kAi—-1>0Ai—-1<kAr=ni'}

=
{i-1<kAi—-1>0Ai—-1<kArsxn=n'}

r:=r*xn

{i-1<kAi—-1>0Ai—-1<kAr=n'}
=
{i>0ANi<kAr=n'}

end



{i>kANi>0Ai<kAr=n'}
=

{r=n"}

Assignment 2

The intuition of the sound rule of consequence is the following: if we execute a statement s in
a state satisfying the constraints P (the precondition, e.g. > 0) and if the final state satisfies
the constraints Q (the postcondition, e.g. < 5), we then can conclude that s will also execute
successfully in a state satisfying the stronger constraints P’ (e.g. « > 5) and that the final state
at least satisfies the weaker constraints Q' (e.g. < 0).

Assume we have proved the triple { z >0 } s { + <5 } for an algorithm that we implemented
as s and that now is to be used by our co-worker Alice.

She does not need to know the actual implementation, but we provide her with the pre- and
postcondition (the contract) so that she knows when (i.e. in which states) she can success-
fully use our algorithm and which final states her own programme needs to be able to handle
afterwards.

We could provide her with the conditions P and Q, but we decide to give her P’ and Q' instead.
This is valid, because our algorithm s will execute successfully if invoked in a state where z > 5,
since we proved that it does so in all states where x > 0.

Due to the postcondition Q' that we gave her, Alice implemented her programme in a way such
that it successfully operates on all states where x < (. This is perfectly fine since s only yields
final states where z < 5.

Now consider the unsound rule. This time, let P, Q, P’ and Q" be x > 5, <0, x > 0 and
x < b, respectively.

If Alice invokes s in a state where z > 0, an error might occur since our algorithm only guarantees
successful termination in all states where z > 5.

Analogous, if Alice expects that the states resulting from the invocation of s satisfy z < 5, her own
computations might fail since s can actually yield states where z < 0.

Let's consider a concrete counterexample where { P’ } s { Q' } is a valid triple, where P’ = P
and Q = Q’, but where { P } s { Q } is not a valid triple:

{x>1}x=x+1{x>2}
{x>1}x=x+1{x>3}

If we begin a state where x = 1 then the pre-condition of this triple holds, but after execution
of the statement, the post-condition of the triple will be false. Therefore, this rule allows us to
deduce unsound conclusions.



Assignment 3

Let’s first consider the “suitable precondition P", which we intend to be the weakest precondition
guaranteeing that the postcondition holds *:

1. We claimed that the programme computes “the quotient and the remainder of =", which

isn't defined for Y = 0. But since we only want to verify the postconditionX =x+Y*xz AY > x

(which does not mention ) we do not need to require that ¥ # 0.

2. We observe that s does not terminate if Y < 0. Since we consider partial correctness only,
there is also no need to require “Y > 0".

3. It is not obvious how one should define quotient and remainder on Z, but this, once again,
does not affect the verification of our postcondition.

Thus, P can be true and we therefore simply omit it.

Using { X =zY +x A y =Y } as the loop invariant we now prove that
F{x=XAy=Y}s{X=x+Y*xzAY>x}

{x=X Ny=Y}
=
{X=0-Y+xAy=Y}

z := 0;
{X=2zY+x ANy=Y}
while y <= x do
{X=2zY+x ANy=Y ANy<x}
=
{X=+1)Y+x—-y ANy=Y}
z =z + 1;
{X=2zY+x—-y Ay=Y}
X 1=xX -7y
{X=2zY+x ANy=Y}
end
{X=2zY+x ANy=Y Ny>x}
=
{X=2zY+x ANY>x}

LIf we had a free choice, we could even set P to false, which would make the proof trivial, but this is not
"suitable” - it results in an essentially useless triple.



Assignment 4

We prove the claim by an induction over the structure of the statement s.

Base cases

Step

s = skip:
The following derivation tree shows that for any property P, we have that
F{P} skip{0=0}:

{P}skip{P}
{P}skip{0=0}

weakening of the postcondition

S =X =¢€:
The following derivation tree shows that for any property P, we have that
F{P}x:=e{0=0}:

{0=0}x:=e{0=0}
{P}x:=e{0=0}

strengthening of the precondition

Note that 0 = O[x > €] is 0 = 0 and thus, the axiom for assignment applies.
cases
s =r;t:

Let P be an arbitrary property. From the induction hypothesis, we have that for all prop-
erties @ and R, we have that F {Q} r {0 =0} and - {R} t {0 =0}. Let T} be
a derivation tree that shows - {@} » {0 = 0} and let 75 be a derivation tree that
shows - {0 =0} ¢ {0 =0}. With the rule for sequential composition, we construct the
following derivation tree that shows - { P} r;¢t {0 =0}:

T T
(PIrit{0=0}

s=1if b then r else t end:

Let P be an arbitrary property. By induction hypothesis, we have derivation trees 7T} and
Ty for showing = { PAB[b]} r {0 =0} and = { PA-B[b] } t {0 =0}, respectively.
With the rule for conditionals we construct the following derivation tree that shows
F{P}if b then r else t end {0=0}:

T T
{P}if b then r else t end {0 =0}




e s=vwhile b do s end:

Let P be an arbitrary property. By induction hypothesis, we have a derivation tree 7" that
shows = {B[b] A0 = 0} s {0 = 0}. We construct the following derivation tree by
strengthening the precondition and weakening the postcondition:

T
{0=0} while b do s end { -B[p)J AN0=0}
{P} while b do s end {0=0}

Assignment 5 - Headache of the week

1) {2=XoANy=YoANXo>0AYy>0}s{z=gcd(Xo,Yo) }

2) A suitable loop invariant is: gcd(z,y) = ged(b,c) Ab > 0Ac>0Ax = XgANy =Y
(preservation shown below)

3) Here is the proof outline:

{z=XoANy=YoAXo>0AYy >0}
{Z‘ZXQ/\yZYQ/\XO>0/\Y0>0/\b=X0}
{xiXo/\y:YO/\Xo>0/\Y0>0/\b:X0/\c:Y0}
=

{gcd(z,y) = gcd(b,c) A\b>0Ac>0Ax=Xo ANy =Y}
while b#c do
{gcd(z,y) = ged(b,c) N\b>0ANc>0Nxc=XgANy=YgAb#c}*

{gcd(z,y) = ged(b,c) Ab>0Ac>0Az=XoANy=YoAb#cAb<c}
=
{ged(z,y) = ged(b, (c —b+ b)) Ab>0A(c—b) >0Nz=XoAy=YoAb< (c—b+b)}
{gcd(z,y) = ged(b, (c+ b)) Ab>0Ac>0Nz=XoAy=YoAb< (c+Db)}
=
{gcd(z,y) = ged(b,c) A\b>0Ac>0ANx=Xo ANy =Yy}
{ged(z,y) = ged(b,c) A\b>0ANc>0Ax=XogAy=YoAbFcAb>c}
=
{gcd(z,y) = ged((b—c+c),e) A(b—c) >0ANec>0Nz=XoANy=YoA(b—c+c) >c}
b :=b - c;
{gcd(z,y) = gecd((b+¢),c) A\b>0Ac>0Ax=XogAy=YoA(b+c)>c}
=
{gecd(z,y) = ged(b,c) A\b>0Ac>0Az=XoAy=Yp}
{gcd(z,y) = ged(b,c) A\b>0Ac>0Az=Xo ANy =Y}

{gcd(z,y) = ged(b,c) Ab>0Ac>0Az=XoANy=YoAb=c}

{gcd(z,y) = ged(b,c) Ab>0Ac>0Axe=XoANy=YgAb=cAz=10}
=
{Z =ng(X0,Y0)}



