ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 8:
Structural Induction

Assignment 1

Let B(n) denote the minimum number of breaks needed to split a bar with n squares.

We want to prove that B(n) = n — 1. We call this predicate P(n). The proof is based on
strong induction. Then we assume that P(k) is true for all £ < n. We want to prove P(n + 1).
However the first break of the bar is made, we will end up with two smaller pieces. We suppose
that the two pieces are of sizes n; and ny. So we have that n; + ny = n and ny,ny > 0.
The minimum number of breaks for the initial bar will be B(n) = B(n;) + B(nz) + 1. By
inductive hypothesis, we have that B(n;) = ny — 1 and B(ny) = ny — 1. Then we have that
B(ni)+B(na)+1=(m1—1)+me—1)+1=n+ny—1=n-—1.

Assignment 2

Let P(n) denote the statement "n can be written as a prime or as the product of two or more
primes”. We want to prove that Vn.[n > 2 = P(n)]. Note that for all £ < 2 the implication
n > 2 = P(n) trivially holds.

The proof is based on strong induction. Then we assume P(k) is true for all £ < n. We want
to prove that P(n + 1) is true. We need to consider two distinct cases:

e n+ 1is prime. P(n+ 1) is true since n + 1 can be written as a prime, itself.

e n + 1 is not prime, that is, there exist two positive integers 2 < a,b < n + 1 such that
n+1=axb. Since a,b < n+1, by induction hypothesis a and b can be written as a prime
or as the product of two or more primes. Then also n + 1 can be written as a product of
primes, that are the concatenation of the primes of a and of the primes of b.

Assignment 3

e Base step: t is a leaf. Then we have

So N(t) < 2H®,

Inductive step: t is a node, that is, t = Node t1 t2. We suppose that the property
holds for the two children.

By definition of N, N(Node t1 t2) = N(t1) + N(¢2) + 1. By inductive hypothesis, we
have that N(t1) < 27®) and N(¢2) < 27(2) Then we know that N(t1) + N(t2) +1 <
2H() _142H(2) _ 141, By basic arithmetic properties, we have that 27D 4 2H(2) _1 <
2ma:c(H(t1),H(t2)) + 2max(H(t1),H(t2)) -1 = 21+mam(H(t1),H(t2)) —-1< 21+max(H(t1),H(t2)). By
definition of H we have that H(Node t1 t2) = l4max(H (t1), H(t2)), then we have that
1t maz(H(t1),H(12)) — gH(Node t1 t2) Then we proved that N(Node t1 t2) < 2ff(Node t1t2)

Assignment 4

We define by +— e] as follows:

e1ly — e] op esly — e] if b is the arithmetic comparison e; op es,
b] not V'[y — ¢] if b is the Boolean expression not ¥/, and

= e| =
Y bily — €] @ bi[y — e] if bis the Boolean expression by @ by

with & € {and, or}.

We prove by structural induction over b that B[bly — e]]o = B[b] (c]y — Ale]o]).

e Base Case: b = e; op e5. We have that

Bl(eropex)ly = ello = Bleily — e opesly — e]]o
= Alely = ello op Alesly = e]lo
2 Alei(oly — Alelol) o Ales] (oly — Alelo])
= Bleiopes](oly — Ale]o]) .
e Step Case: b =not b'. We have that
B[(not V)[y +— e]Jo = Blnot V/[y +— e]]o
= ~ B[ty —elo
= - BIY)(oly — Alelo])
= Blnot V'](cly — Ale]o]) .
e Step Case: b =b; @ by with @ € {and, or}. We have that
Bl(by @ by)ly = ello = Bl(bily — €] ® boly — e]lo
B[bi[y — e]]]a) B[[bg[y
Blb: & 52]]([y - «4[[Jo

— el]o
Blbs] (oly — Ale]o))
)

= |

e|o

Here, @ denotes the corresponding Boolean operation.

Assignment 5

data Aexp = Num Integer
| Var String
| Add Aexp Aexp
| Sub Aexp Aexp
|

Mul Aexp Aexp
data Op = Eq | Neq | Le | Leq | Ge | Geq
data Bexp = Rel Op Aexp Aexp
Not Bexp

|
| Or Bexp Bexp
| And Bexp Bexp

data State = VarAssign (String -> Integer)

evalAexp :: Aexp —> State -> Integer

evalAexp (Num n) _ =n

evallAexp (Var x) (VarAssign val) = val x

evalAexp (Add el e2) sigma = (evallexp el sigma) + (evalAexp e2 sigma)
evalAexp (Sub el e2) sigma = (evalAexp el sigma) - (evalAexp e2 sigma)
evalAexp (Mul el e2) sigma = (evallexp el sigma) * (evalAexp e2 sigma)

evalBexp :: Bexp -> State -> Bool
evalBexp (Rel op el e2) sigma =
(evalOp op) (evallexp el sigma) (evallexp e2 sigma)
where evalOp Eq = (==
evalOp Neq = (/=)
evalOp Le = (<)
evalOp Leq = (=)
evalOp Ge = (>)
evalOp Geq = (>=)
evalBexp (Not b) sigma = not (evalBexp b sigma)
evalBexp (Or bl b2) sigma = (evalBexp bl sigma) || (evalBexp b2 sigma)
evalBexp (And bl b2) sigma = (evalBexp bl sigma) && (evalBexp b2 sigma)

Assignment 6

Extension of the semantics
The only extensions to Bexp are Aexp, implies and iff.
The definitions are as follows:

B'[Aexp|o = B[Aexp#0]o
tt if B'[b]o = ff or B'[by]o = tt

ff otherwise
it if B'[by]Jo = B'[by]o
ff otherwise

B'[b} implies byJo = {
B'[by iff by]o = {
Proof of logical equivalence
We use induction on the structure of boolean expressions of Bexp’.
1. (base case) V' = Aexp.
Let's guess that a corresponding b € Bexp expression is Aexp#0. We have to show that
B'[Aexp]o = B[Aexp#0]o

This is trivially true, since by definition of B’ we have that B'[Aexp]o = B[Aexp#0]o =
B[Aexp#0]o

2. (composite element) &’ = b} implies bj.
Our guess here is b = not by or by, where B'[b}] = B[b:] and B'[b,] = B[bz]. From the
induction hypothesis we know that there exist such b; and b, € Bexp expressions.

We have to show that

B'[b} implies by]o = B[not bior by)o

Using the definition of Bexp’ and the induction hypothesis, we get

tt if B[[blﬂO' = ff or B[[bg]](f =1t

T = . / o
B[} implies by]o = {ﬁ otherwiso

Using the definition of Bexp we get

B[[not b1 or bQ]]O' — { tt if B[[not bl]]O' = {t or B[[b2]]0- —

ff otherwise

o tt if B[[bl]](f = ﬁ or B[[bg]]a =1t
| ff otherwise 0

3. (composite element) ¥’ = b] iff b).
Our guess this time is

b = (b and by) or (not b; and not by)

where B'[V}] = B[b:] and B'[b5] = B[b2]. Again, from the induction hypothesis we know
that there exist such b; and b, € Bexp expressions.

We have to show that

B'[v} iff by]o = B[(by and b2) or (not b; and not by)]o

Using the definition of Bexp’ and the induction hypothesis, we get

ttif B[{bﬂ]dz B[[bQﬂO-

/ /s / J—
By iff blo = {ﬁ otherwise

Using the definition of Bexp we get

(it if B[b; and by]o = tt or
B[(b; and by) or (not b; and not by)]o = B[not by and not byfo = tt
| ff otherwise

(¢t if B[b1]o = tt and Blbs]Jo = ¢t or
_ B[not bi]o = tt and B[not by]o = tt

| ff otherwise

(tt if B[b1]o = tt and B[by]o
_ B[bi]o = ff and B[bs]o

tt or

Vi

| ff otherwise

| ff otherwise -

4. Other composite elements are just applications of the induction hypothesis.

