
D. Basin and P. Müller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 8:
Structural Induction

Assignment 1

Let B(n) denote the minimum number of breaks needed to split a bar with n squares.
We want to prove that B(n) = n − 1. We call this predicate P (n). The proof is based on

strong induction. Then we assume that P (k) is true for all k ≤ n. We want to prove P (n+ 1).
However the first break of the bar is made, we will end up with two smaller pieces. We suppose
that the two pieces are of sizes n1 and n2. So we have that n1 + n2 = n and n1, n2 > 0.
The minimum number of breaks for the initial bar will be B(n) = B(n1) + B(n2) + 1. By
inductive hypothesis, we have that B(n1) = n1 − 1 and B(n2) = n2 − 1. Then we have that
B(n1) +B(n2) + 1 = (n1 − 1) + (n2 − 1) + 1 = n1 + n2 − 1 = n− 1.

Assignment 2

Let P (n) denote the statement ”n can be written as a prime or as the product of two or more
primes”. We want to prove that ∀n.[n ≥ 2 ⇒ P (n)]. Note that for all k < 2 the implication
n ≥ 2⇒ P (n) trivially holds.

The proof is based on strong induction. Then we assume P (k) is true for all k ≤ n. We want
to prove that P (n+ 1) is true. We need to consider two distinct cases:

• n+ 1 is prime. P (n+ 1) is true since n+ 1 can be written as a prime, itself.

• n + 1 is not prime, that is, there exist two positive integers 2 ≤ a, b < n + 1 such that
n+1 = a∗b. Since a, b < n+1, by induction hypothesis a and b can be written as a prime
or as the product of two or more primes. Then also n + 1 can be written as a product of
primes, that are the concatenation of the primes of a and of the primes of b.

Assignment 3

• Base step: t is a leaf. Then we have

N(t) = 0
H(t) = 0

1

So N(t) < 2H(t).

• Inductive step: t is a node, that is, t = Node t1 t2. We suppose that the property
holds for the two children.

By definition of N , N(Node t1 t2) = N(t1) + N(t2) + 1. By inductive hypothesis, we
have that N(t1) < 2H(t1) and N(t2) < 2H(t2). Then we know that N(t1) +N(t2) + 1 ≤
2H(t1)−1+2H(t2)−1+1. By basic arithmetic properties, we have that 2H(t1)+2H(t2)−1 ≤
2max(H(t1),H(t2)) + 2max(H(t1),H(t2)) − 1 = 21+max(H(t1),H(t2)) − 1 < 21+max(H(t1),H(t2)). By
definition of H we have that H(Node t1 t2) = 1+max(H(t1), H(t2)), then we have that
21+max(H(t1),H(t2)) = 2H(Node t1 t2). Then we proved that N(Node t1 t2) < 2H(Node t1 t2)

Assignment 4

We define b[y 7→ e] as follows:

b[y 7→ e] =


e1[y 7→ e] op e2[y 7→ e] if b is the arithmetic comparison e1 op e2,

not b′[y 7→ e] if b is the Boolean expression not b′, and

b1[y 7→ e]⊕ b1[y 7→ e] if b is the Boolean expression b1 ⊕ b2
with ⊕ ∈ {and, or}.

We prove by structural induction over b that B[[b[y 7→ e]]]σ = B[[b]]
(
σ[y 7→ A[[e]]σ]

)
.

• Base Case: b = e1 op e2. We have that

B[[(e1 op e2)[y 7→ e]]]σ = B[[e1[y 7→ e] op e2[y 7→ e]]]σ

= A[[e1[y 7→ e]]]σ op A[[e2[y 7→ e]]]σ
(a)
= A[[e1]]

(
σ[y 7→ A[[e]]σ]

)
op A[[e2]]

(
σ[y 7→ A[[e]]σ]

)
= B[[e1 op e2]]

(
σ[y 7→ A[[e]]σ]

)
.

• Step Case: b = not b′. We have that

B[[(not b′)[y 7→ e]]]σ = B[[not b′[y 7→ e]]]σ

= ¬ B[[b′[y 7→ e]]]σ
IH
= ¬ B[[b′]]

(
σ[y 7→ A[[e]]σ]

)
= B[[not b′]]

(
σ[y 7→ A[[e]]σ]

)
.

• Step Case: b = b1 ⊕ b2 with ⊕ ∈ {and, or}. We have that

B[[(b1 ⊕ b2)[y 7→ e]]]σ = B[[(b1[y 7→ e] ⊕ b2[y 7→ e]]]σ

= B[[b1[y 7→ e]]]σ ⊕ B[[b2[y 7→ e]]]σ
IH
= B[[b1]]

(
σ[y 7→ A[[e]]σ]

)
⊕ B[[b2]]

(
σ[y 7→ A[[e]]σ]

)
= B[[b1 ⊕ b2]]

(
σ[y 7→ A[[e]]σ]

)
.

Here, ⊕ denotes the corresponding Boolean operation.

2

Assignment 5

data Aexp = Num Integer

| Var String

| Add Aexp Aexp

| Sub Aexp Aexp

| Mul Aexp Aexp

data Op = Eq | Neq | Le | Leq | Ge | Geq

data Bexp = Rel Op Aexp Aexp

| Not Bexp

| Or Bexp Bexp

| And Bexp Bexp

data State = VarAssign (String -> Integer)

evalAexp :: Aexp -> State -> Integer

evalAexp (Num n) _ = n

evalAexp (Var x) (VarAssign val) = val x

evalAexp (Add e1 e2) sigma = (evalAexp e1 sigma) + (evalAexp e2 sigma)

evalAexp (Sub e1 e2) sigma = (evalAexp e1 sigma) - (evalAexp e2 sigma)

evalAexp (Mul e1 e2) sigma = (evalAexp e1 sigma) * (evalAexp e2 sigma)

evalBexp :: Bexp -> State -> Bool

evalBexp (Rel op e1 e2) sigma =

(evalOp op) (evalAexp e1 sigma) (evalAexp e2 sigma)

where evalOp Eq = (==)

evalOp Neq = (/=)

evalOp Le = (<)

evalOp Leq = (<=)

evalOp Ge = (>)

evalOp Geq = (>=)

evalBexp (Not b) sigma = not (evalBexp b sigma)

evalBexp (Or b1 b2) sigma = (evalBexp b1 sigma) || (evalBexp b2 sigma)

evalBexp (And b1 b2) sigma = (evalBexp b1 sigma) && (evalBexp b2 sigma)

Assignment 6

Extension of the semantics
The only extensions to Bexp are Aexp, implies and iff.

The definitions are as follows:

3

B′[[Aexp]]σ = B[[Aexp#0]]σ

B′[[b′
1 implies b′

2]]σ =

{
tt if B′[[b′

1]]σ = ff or B′[[b′
2]]σ = tt

ff otherwise

B′[[b′
1 iff b′

2]]σ =

{
tt if B′[[b′

1]]σ = B′[[b′
2]]σ

ff otherwise

Proof of logical equivalence
We use induction on the structure of boolean expressions of Bexp’.

1. (base case) b′ = Aexp.
Let’s guess that a corresponding b ∈ Bexp expression is Aexp#0. We have to show that

B′[[Aexp]]σ = B[[Aexp#0]]σ

This is trivially true, since by definition of B′ we have that B′[[Aexp]]σ = B[[Aexp#0]]σ =
B[[Aexp#0]]σ

2. (composite element) b′ = b′
1 implies b′

2.
Our guess here is b = not b1 or b2, where B′[[b′

1]] = B[[b1]] and B′[[b′
2]] = B[[b2]]. From the

induction hypothesis we know that there exist such b1 and b2 ∈ Bexp expressions.

We have to show that

B′[[b′
1 implies b′

2]]σ = B[[not b1or b2]]σ

Using the definition of Bexp’ and the induction hypothesis, we get

B′[[b′
1 implies b′

2]]σ =

{
tt if B[[b1]]σ = ff or B[[b2]]σ = tt
ff otherwise

Using the definition of Bexp we get

B[[not b1 or b2]]σ =

{
tt if B[[not b1]]σ = tt or B[[b2]]σ = tt
ff otherwise

=

{
tt if B[[b1]]σ = ff or B[[b2]]σ = tt
ff otherwise �

3. (composite element) b′ = b′
1 iff b′

2.
Our guess this time is

b = (b1 and b2) or (not b1 and not b2)

where B′[[b′
1]] = B[[b1]] and B′[[b′

2]] = B[[b2]]. Again, from the induction hypothesis we know
that there exist such b1 and b2 ∈ Bexp expressions.

4

We have to show that

B′[[b′
1 iff b′

2]]σ = B[[(b1 and b2) or (not b1 and not b2)]]σ

Using the definition of Bexp’ and the induction hypothesis, we get

B′[[b′
1 iff b′

2]]σ =

{
tt if B[[b1]]σ = B[[b2]]σ
ff otherwise

Using the definition of Bexp we get

B[[(b1 and b2) or (not b1 and not b2)]]σ =


tt if B[[b1 and b2]]σ = tt or

B[[not b1 and not b2]]σ = tt

ff otherwise

=


tt if B[[b1]]σ = tt and B[[b2]]σ = tt or

B[[not b1]]σ = tt and B[[not b2]]σ = tt

ff otherwise

=


tt if B[[b1]]σ = tt and B[[b2]]σ = tt or

B[[b1]]σ = ff and B[[b2]]σ = ff

ff otherwise

=

{
tt if B[[b1]]σ = B[[b2]]σ
ff otherwise

�

4. Other composite elements are just applications of the induction hypothesis.

5

