
D. Basin and P. Müller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 11: Axiomatic Semantics

Assignment 1

a)

Recall from the lecture the rule for a while statement:

{B[[b]] ∧ P } s {P }
{P } while b do s end {¬B[[b]] ∧Q }

where P is called the loop invariant.

The formula (3) is not a loop invariant of the while loop, since it’s not preserved by the loop’s
body:

while i < k do

{ i ≥ 0 ∧ i < k ∧ r = ni ∧ i < k }
6⇒ FAILS if i = k - 1

{ i+ 1 ≥ 0 ∧ i+ 1 < k ∧ rn = ni+1 }
i := i + 1;

r := r * n

{ i ≥ 0 ∧ i < k ∧ r = ni }
end

The formula (2) is a loop invariant of the while loop. This is shown by the following derivation
tree:

{ 0≤i<k ∧ r=ni } i := i+ 1 { 0≤i−1<k ∧ r=ni−1 }
{ 1≤i≤k ∧ r∗n=ni } r := r ∗ n { 0≤i≤k ∧ r=ni }
{ 0≤i−1<k ∧ r=ni−1 } r := r ∗ n { 0≤i≤k ∧ r=ni }

conseq.

{ 0≤i<k ∧ r=ni } i := i+ 1; r := r ∗ n { 0≤i≤k ∧ r=ni }
{ i<k ∧ i≥0 ∧ i≤k ∧ r=ni } i := i+ 1; r := r ∗ n { i≥0 ∧ i≤k ∧ r=ni }

conseq.

The proof that formula (1) is also a loop invariant is similar and omitted here.

1



b)

We claim that for the programme s defined as

i := 0;

r := 1;

while i < k do

i := i + 1;

r := r * n

end

it holds that ` { k≥1 } s { r=nk }. This is shown by the following derivation tree:

...
{ k≥1 } i := 0 { k≥1 ∧ i=0 }

...
{ k≥1 ∧ i=0 } r := 1 { k≥1 ∧ i=0 ∧ r=1 }

T
{ i≥0 ∧ i≤k ∧ r=ni } while . . . end { i≥k ∧ i≥0 ∧ i≤k ∧ r=ni }

{ k≥1 ∧ i=0 ∧ r=1 } while . . . end { r=nk }
conseq.

{ k≥1 ∧ i=0 } r := 1; while . . . end { r=nk }
{ k≥1 } s { r=nk }

where T is the derivation tree for showing that formula (2) is a loop invariant. We have omitted
obvious steps in the derivation tree. We can also use a different notation by annotating the
programme with pre- and postconditions:

{ k ≥ 1 }
⇒
{ k ≥ 1 ∧ 0 = 0 }

i := 0;

{ k ≥ 1 ∧ i = 0 }
⇒
{ k ≥ 1 ∧ i = 0 ∧ 1 = 1 }

r := 1;

{ k ≥ 1 ∧ i = 0 ∧ r = 1 }
⇒
{ i ≥ 0 ∧ i ≤ k ∧ r = ni }

while i < k do

{ i < k ∧ i ≥ 0 ∧ i ≤ k ∧ r = ni }
i := i+ 1;

{ i− 1 < k ∧ i− 1 ≥ 0 ∧ i− 1 ≤ k ∧ r = ni−1 }
⇔
{ i− 1 < k ∧ i− 1 ≥ 0 ∧ i− 1 ≤ k ∧ r ∗ n = ni }

r := r ∗ n
{ i− 1 < k ∧ i− 1 ≥ 0 ∧ i− 1 ≤ k ∧ r = ni }
⇒
{ i ≥ 0 ∧ i ≤ k ∧ r = ni }

end

2



{ i ≥ k ∧ i ≥ 0 ∧ i ≤ k ∧ r = ni }
⇒
{ r = nk }

Assignment 2

The intuition of the sound rule of consequence is the following: if we execute a statement s in
a state satisfying the constraints P (the precondition, e.g. x ≥ 0) and if the final state satisfies
the constraints Q (the postcondition, e.g. x ≤ 5), we then can conclude that s will also execute
successfully in a state satisfying the stronger constraints P′ (e.g. x ≥ 5) and that the final state
at least satisfies the weaker constraints Q′ (e.g. x ≤ 0).

Assume we have proved the triple { x ≥ 0 } s { x ≤ 5 } for an algorithm that we implemented
as s and that now is to be used by our co-worker Alice.
She does not need to know the actual implementation, but we provide her with the pre- and
postcondition (the contract) so that she knows when (i.e. in which states) she can success-
fully use our algorithm and which final states her own programme needs to be able to handle
afterwards.

We could provide her with the conditions P and Q, but we decide to give her P′ and Q′ instead.
This is valid, because our algorithm s will execute successfully if invoked in a state where x ≥ 5,
since we proved that it does so in all states where x ≥ 0.
Due to the postcondition Q′ that we gave her, Alice implemented her programme in a way such
that it successfully operates on all states where x ≤ 0. This is perfectly fine since s only yields
final states where x ≤ 5.

Now consider the unsound rule. This time, let P, Q, P′ and Q′ be x ≥ 5, x ≤ 0, x ≥ 0 and
x ≤ 5, respectively.

If Alice invokes s in a state where x ≥ 0, an error might occur since our algorithm only guarantees
successful termination in all states where x ≥ 5.
Analogous, if Alice expects that the states resulting from the invocation of s satisfy x ≤ 5, her own
computations might fail since s can actually yield states where x ≤ 0.

Let’s consider a concrete counterexample where { P′ } s { Q′ } is a valid triple, where P′ ⇒ P
and Q⇒ Q′, but where { P } s { Q } is not a valid triple:

{ x > 1 } x := x+ 1 { x > 2 }
{ x ≥ 1 } x := x+ 1 { x > 3 }

If we begin a state where x = 1 then the pre-condition of this triple holds, but after execution
of the statement, the post-condition of the triple will be false. Therefore, this rule allows us to
deduce unsound conclusions.

3



Assignment 3

Let’s first consider the “suitable precondition P”, which we intend to be the weakest precondition
guaranteeing that the postcondition holds 1:

1. We claimed that the programme computes “the quotient and the remainder of X
Y

”, which
isn’t defined for Y = 0. But since we only want to verify the postcondition X = x+ Y ∗ z ∧ Y > x

(which does not mention X
Y

) we do not need to require that Y 6= 0.

2. We observe that s does not terminate if Y < 0. Since we consider partial correctness only,
there is also no need to require “Y ≥ 0”.

3. It is not obvious how one should define quotient and remainder on Z, but this, once again,
does not affect the verification of our postcondition.

Thus, P can be true and we therefore simply omit it.

Using { X = zY + x ∧ y = Y } as the loop invariant we now prove that
` { x = X ∧ y = Y } s { X = x+ Y ∗ z ∧ Y > x }:

{ x = X ∧ y = Y }
⇒

{ X = 0 · Y + x ∧ y = Y }
z := 0;

{ X = zY + x ∧ y = Y }
while y <= x do

{ X = zY + x ∧ y = Y ∧ y ≤ x }
⇒

{ X = (z+ 1)Y + x− y ∧ y = Y }
z := z + 1;

{ X = zY + x− y ∧ y = Y }
x := x - y

{ X = zY + x ∧ y = Y }
end

{ X = zY + x ∧ y = Y ∧ y > x }
⇒

{ X = zY + x ∧ Y > x }

1If we had a free choice, we could even set P to false, which would make the proof trivial, but this is not
”suitable” - it results in an essentially useless triple.

4



Assignment 4

We prove the claim by an induction over the structure of the statement s.

Base cases

• s = skip:

The following derivation tree shows that for any property P , we have that
` {P } skip { 0 = 0 }:

{P } skip {P }
{P } skip { 0 = 0 } weakening of the postcondition

• s = x := e:

The following derivation tree shows that for any property P , we have that
` {P } x := e { 0 = 0 }:

{ 0 = 0 } x := e { 0 = 0 }
{P } x := e { 0 = 0 } strengthening of the precondition

Note that 0 = 0[x 7→ e] is 0 = 0 and thus, the axiom for assignment applies.

Step cases

• s = r; t:

Let P be an arbitrary property. From the induction hypothesis, we have that for all prop-
erties Q and R, we have that ` {Q } r { 0 = 0 } and ` {R } t { 0 = 0 }. Let T1 be
a derivation tree that shows ` {Q } r { 0 = 0 } and let T2 be a derivation tree that
shows ` { 0 = 0 } t { 0 = 0 }. With the rule for sequential composition, we construct the
following derivation tree that shows ` {P } r; t { 0 = 0 }:

T1 T2

{P } r; t { 0 = 0 }

• s = if b then r else t end:

Let P be an arbitrary property. By induction hypothesis, we have derivation trees T1 and
T2 for showing ` {P ∧ B[[b]] } r { 0 = 0 } and ` {P ∧ ¬B[[b]] } t { 0 = 0 }, respectively.
With the rule for conditionals we construct the following derivation tree that shows
` {P } if b then r else t end { 0 = 0 }:

T1 T2

{P } if b then r else t end { 0 = 0 }

5



• s = while b do s end:

Let P be an arbitrary property. By induction hypothesis, we have a derivation tree T that
shows ` {B[[b]] ∧ 0 = 0 } s { 0 = 0 }. We construct the following derivation tree by
strengthening the precondition and weakening the postcondition:

T
{ 0 = 0 } while b do s end {¬B[[b]] ∧ 0 = 0 }

{P } while b do s end { 0 = 0 }

Assignment 5 - Headache of the week

1) { x = X0 ∧ y = Y0 ∧X0 > 0 ∧ Y0 > 0 } s { z = gcd(X0, Y0) }

2) A suitable loop invariant is: gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0

(preservation shown below)

3) Here is the proof outline:

{x = X0 ∧ y = Y0 ∧X0 > 0 ∧ Y0 > 0}
b := x;

{x = X0 ∧ y = Y0 ∧X0 > 0 ∧ Y0 > 0 ∧ b = X0}
c := y;

{x = X0 ∧ y = Y0 ∧X0 > 0 ∧ Y0 > 0 ∧ b = X0 ∧ c = Y0}
⇒
{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0}
while b#c do

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b 6= c}?
if b < c then

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b 6= c ∧ b < c}
⇒
{gcd(x, y) = gcd(b, (c− b+ b)) ∧ b > 0 ∧ (c− b) > 0 ∧ x = X0 ∧ y = Y0 ∧ b < (c− b+ b)}
c := c - b;

{gcd(x, y) = gcd(b, (c+ b)) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b < (c+ b)}
⇒
{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0}

else

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b 6= c ∧ b ≥ c}
⇒
{gcd(x, y) = gcd((b− c+ c), c) ∧ (b− c) > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ (b− c+ c) > c}
b := b - c;

{gcd(x, y) = gcd((b+ c), c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ (b+ c) > c}
⇒
{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0}

end

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0}
end;

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b = c}
z := b

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b = c ∧ z = b}
⇒
{z = gcd(X0, Y0)}

6


