
Software Engineeringg g
Requirements Elicitation

Peter Müller
Chair of Programming Methodology

Th lid i thi ti tl b d th l tThe slides in this section are partly based on the lecture
“Software Engineering I” by Prof. Bernd Brügge, TU München

Spring Semester 10

2

2. Requirements Elicitation
2. Requirements Elicitation – Motivation

q

2 1 Requirements2.1 Requirements
2.2 Documenting Functional Requirements
2 3 R i t Eli it ti A ti iti2.3 Requirements Elicitation Activities
2.4 Requirements Documentation

Peter Müller – Software Engineering, SS 10

3

Peter Müller – Software Engineering, SS 10

4

Software – a Poor Track Record
2. Requirements Elicitation – Motivation

Software bugs cost the U.S. economy an estimated
$59 5 billion annually or about 0 6 percent of the$59.5 billion annually, or about 0.6 percent of the
gross domestic product
84% of all software projects are84% of all software projects are
unsuccessful
- Late, over budget, less features than

53%16%
, g ,

specified, cancelled
The average unsuccessful project

31%- 222% longer than planned
- 189% over budget

Peter Müller – Software Engineering, SS 10

- 61% of originally specified features

5

Why IT-Projects Fail
2. Requirements Elicitation – Motivation

Top 5 reasons measured by frequency of responses by IT
executive management
Failure profiles of yellow projects
1. Lack of User Input
2. Incomplete Requirements 12,30%

12,80%
2. Incomplete Requirements
3. Changing Requirements
4. Lack of Executive Support
5 Technology Incompetence

7,50%
11,80%

12,30%

7%5. Technology Incompetence
Failure profiles of red projects
1. Incomplete Requirements
2 Lack of User Involvement 12 40%

13,10%
2. Lack of User Involvement
3. Lack of Resources
4. Unrealistic Expectations
5 L k f E ti S t

9,90%
10,60%

12,40%

9%

Peter Müller – Software Engineering, SS 10

5. Lack of Executive Support 9%

6

2. Requirements Elicitation
2. Requirements Elicitation – Requirements

q

2 1 Requirements2.1 Requirements
2.2 Documenting Functional Requirements
2 3 R i t Eli it ti A ti iti2.3 Requirements Elicitation Activities
2.4 Requirements Documentation

Peter Müller – Software Engineering, SS 10

7

Requirements
2. Requirements Elicitation – Requirements

Definition:Definition:
A feature that the system must have or a constraint
it must satisfy to be accepted by the clienty p y

[Brügge, Dutoit]

Requirements engineering defines the
requirements of the system under construction

Peter Müller – Software Engineering, SS 10

8

Requirements
2. Requirements Elicitation – Requirements

Describe the user’s view of the system
Identify the what of the system not the howIdentify the what of the system, not the how

Part of requirements Not part of requirementsq
- Functionality
- User interaction

p q
- System structure
- Implementation

- Error handling
- Environmental

conditions (interfaces)

technology
- System design

Developmentconditions (interfaces) - Development
methodology

Peter Müller – Software Engineering, SS 10

9

Waterfall Model of Project Life Cycle
2. Requirements Elicitation – Requirements

Requirements
Elicitation Requirements

E i i
Analysis

System Design

Engineering

System Design

Detailed Design

Implementation

Validation
(Test)

Deployment

Peter Müller – Software Engineering, SS 10

Deployment

10

Requirements Engineering: Overview
2. Requirements Elicitation – Requirements

Requirements
Elicitation

Client

AnalysisRequirements
specification

Users
Analysis
Model Designers

Design
Participation

Peter Müller – Software Engineering, SS 10

Design
Used for communication

11

Requirements Elicitation vs. Analysis
2. Requirements Elicitation – Requirements

Requirements specification and analysis model
represent the same informationrepresent the same information
Requirements Elicitation
- Definition of the system

Analysis
- Technical specificationDefinition of the system

in terms understood by
the customer

Technical specification
of the system in terms
understood by the
d l

- Requirements
specification uses

developer
- The analysis model

uses a formal or semi-specification uses
natural language

- Communication with

formal notation
- Communication among

d l

Peter Müller – Software Engineering, SS 10

clients and users developers

12

Requirements Elicitation: Overview
2. Requirements Elicitation – Requirements

Challenging activity
People with different backgrounds mustPeople with different backgrounds must
collaborate
- Client and end users with application (problem)Client and end users with application (problem)

domain knowledge
- Developer with solution domain knowledge

(design knowledge, implementation knowledge)
Difficulties
- Identifying an appropriate system
- Communicating about the domain and the system

accurately

Peter Müller – Software Engineering, SS 10

accurately

13

Types of Requirements Elicitation
2. Requirements Elicitation – Requirements

Greenfield Engineering
Development from scratch no prior system exists- Development from scratch, no prior system exists

- Requirements extracted from end users and client
- Triggered by user needsTriggered by user needs

Re-engineering
- Re-design and/or re-implementation of an existingg p g

system using newer technology
- Triggered by technology enabler

Interface Engineering
- Provide services of existing system in new environment

T i d b t h l bl k t d

Peter Müller – Software Engineering, SS 10

- Triggered by technology enabler or new market needs

14

Problem Statement
2. Requirements Elicitation – Requirements

Developed by the client as a description of the
problem addressed by the systemproblem addressed by the system
Synonym: Statement of work
A problem statement describesA problem statement describes
- The current situation
- The functionality the new system should supportThe functionality the new system should support
- The environment in which the system will be deployed
- Deliverables expected by the client
- Delivery dates (milestones)
- A set of acceptance criteria (criteria for system tests)

Peter Müller – Software Engineering, SS 10

15

Current Situation
2. Requirements Elicitation – Requirements

Describes the problem to be solved

Describes the motivation (business requirement)
- A change in the application domain or in the solution- A change in the application domain or in the solution

domain

Change in the application domain
- A new function (business process) is introduced

Change in the solution domain
- A new solution (technology enabler) has appeared

Peter Müller – Software Engineering, SS 10

16

Bankomat: The Problem
2. Requirements Elicitation – Requirements

Business need
Providing standard services (withdrawals transfers etc)- Providing standard services (withdrawals, transfers, etc.)
to bank clients is labor-intensive and expensive

- Due to market pressure, bank fees have been
decreasing

Customer request
- Customers want to use basic bank services outside the

normal business hours
Technological advanceTechnological advance
- Computers and networks enable development of

automatic service machines

Peter Müller – Software Engineering, SS 10

17

Bankomat: Objectives
2. Requirements Elicitation – Requirements

Provide software for operating a
banking machinebanking machine
- Withdraw money in two currencies

(CHF / €)
- Transfer money to domestic

accounts
L d d l d h d- Load and unload cash cards

- Print account statements

Provide functionality to satisfy
legal documentation regulations

Peter Müller – Software Engineering, SS 10

legal documentation regulations

18

Types of Requirements
2. Requirements Elicitation – Requirements

Functionality
- What is the software supposed to do?

Functional
Requirements

What is the software supposed to do?
External interfaces
- Interaction with people, hardware, other software

Performance

Nonfunctional
Requirements

Performance
- Speed, availability, response time, recovery time

Attributes (quality requirements)(q y q)
- Portability, correctness, maintainability, security

Design constraints

Peter Müller – Software Engineering, SS 10

- Required standards, operating environment, etc.

19

Functionality
2. Requirements Elicitation – Requirements

Includes
Relationship of outputs to inputs- Relationship of outputs to inputs

- Response to abnormal situations
- Exact sequence of operationsExact sequence of operations
- Validity checks on the inputs
- Effect of parameters

Phrased as an action or a verb
- Withdraw money
- Load cash card

Peter Müller – Software Engineering, SS 10

20

External Interfaces
2. Requirements Elicitation – Requirements

Detailed description of all
inputs and outputs

Users

inputs and outputs
- Description of purpose
- Source of input, destination p ,

of output
- Valid range, accuracy,

t l

Software
System

Othertolerance
- Units of measure
- Relationships to other

Ot e
software

- Relationships to other
inputs/outputs

- Screen and window formats Networks
Hardware

Peter Müller – Software Engineering, SS 10

- Data and command formats
Hardware

21

Performance
2. Requirements Elicitation – Requirements

Static numerical requirements
Number of terminals supported- Number of terminals supported

- Number of simultaneous users supported
- Amount of information handledAmount of information handled

Dynamic numerical requirementsy q
- Number of transactions processed within certain time

periods (average and peak workload)
- Example: 95% of the transactions shall be processed in

less than 1 second

Peter Müller – Software Engineering, SS 10

22

Constraints (Pseudo Requirements)
2. Requirements Elicitation – Requirements

Standard compliance
Report format audit tracing etc- Report format, audit tracing, etc.

Implementation requirements
- Tools programming languages etc- Tools, programming languages, etc.
- Development technology and methodology should not be

constrained by the client. Fight for it!
Operations requirements
- Administration and management of the system

Legal requirements
- Licensing, regulation, certification

Peter Müller – Software Engineering, SS 10

23

Nonfunctional Requirements: Bankomat
2. Requirements Elicitation – Requirements

Usability
User interaction shall be done via a touch screen- User interaction shall be done via a touch-screen

- Text shall appear in letters at least 1cm high
SecuritySecurity
- System shall under no circumstances leak PIN numbers

or account information to unauthorized users
Performance
- Each individual transaction shall take less than 10s
Operations requirements
- System updates shall be possible remotely

Peter Müller – Software Engineering, SS 10

24

Quality Criteria for Requirements
2. Requirements Elicitation – Requirements

Correctness
R i

Completeness
All possible scenariosRequirements

represent the client’s
view

All possible scenarios
are described,

including exceptional
behaviorbehavior

Clarity
(Un-ambiguity)Consistency (Un ambiguity)

Requirements can be
interpreted in only

Requirements do not
contradict each

other

Peter Müller – Software Engineering, SS 10

one way

25

Quality Criteria for Requirements (cont’d)
2. Requirements Elicitation – Requirements

Realism
R i b

Verifiability
Repeatable tests canRequirements can be

implemented and
delivered

Repeatable tests can
be designed to show
that the system fulfills

the requirementsthe requirements

Traceability
Each feature can beEach feature can be

traced to a set of
functional

i t

Peter Müller – Software Engineering, SS 10

requirements

26

Quality Criteria: Examples
2. Requirements Elicitation – Requirements

“System shall be usable by elderly people”
Not verifiable unclear- Not verifiable, unclear

- Solution: “Text shall appear in letters at least 1cm high”

“The product shall be error-free”
- Not verifiable (in practice), not realistic
- Solution: Specify test criteria

“Th t h ll id l ti ”“The system shall provide real-time response”
- Unclear

Solution: “The system shall respond in less than 2s”

Peter Müller – Software Engineering, SS 10

- Solution: The system shall respond in less than 2s

27

Relative Cost to Fix an Error
2. Requirements Elicitation – Requirements

The sooner a defect is found, the cheaper it is to fix

160

180

200

100

120

140

40

60

80

0

20

Requirements Design Coding Development
Testing

Acceptance
Testing

Operation

Peter Müller – Software Engineering, SS 10

[Boehm 1981]
Testing Testing

28

Requirements Validation
2. Requirements Elicitation – Requirements

A quality assurance step, usually after
requirements elicitation or analysisrequirements elicitation or analysis
Reviews by clients and developers
- Check all quality criteriaCheck all quality criteria
- Future validations (testing)

PrototypingPrototyping
- Throw-away or evolutionary prototypes
- Study feasibility
- Give clients an impression of the future system
- Typical example: user interfaces

Peter Müller – Software Engineering, SS 10

29

2. Requirements Elicitation
2. Requirements Elicitation – Documenting Functional Requirements

q

2 1 Requirements2.1 Requirements
2.2 Documenting Functional Requirements
2 3 R i t Eli it ti A ti iti2.3 Requirements Elicitation Activities
2.4 Requirements Documentation

Peter Müller – Software Engineering, SS 10

30

Scenarios and Use Cases
2. Requirements Elicitation – Documenting Functional Requirements

Document the behavior of the system from the
users’ point of viewusers point of view
Can be understood by customer and users

Scenario
Describes common cases

Use Case
Generalizes scenarios to
describe all possible

Focus on
understandability

describe all possible
cases
Focus on completeness

A scenario is an instance of a use case

y

Peter Müller – Software Engineering, SS 10

A scenario is an instance of a use case

31

Scenarios
2. Requirements Elicitation – Documenting Functional Requirements

Definition:
A narrative description of what people do andA narrative description of what people do and
experience as they try to make use of computer
systems and applicationsy pp

[M. Carroll, 1995]

Different Applications during the software lifecycle
- Requirements Elicitation
- Client Acceptance Test
- System Deployment

Peter Müller – Software Engineering, SS 10

32

Scenario Example: Bankomat
2. Requirements Elicitation – Documenting Functional Requirements

Scenario
Bob uses a Bankomat- Bob uses a Bankomat

- He enters his card and PIN into the Bankomat
- He requests withdrawal of CHF 400He requests withdrawal of CHF 400
- Bob receives a printed receipt, takes out his bank card

and the money and leaves
Observations
- Describes a single instance of using the system
- Does not describe all possible ways the system can be

used

Peter Müller – Software Engineering, SS 10

33

UML Use Case Diagrams
2. Requirements Elicitation – Documenting Functional Requirements

Actor is potentially
involved in the task

A t
Client

A use case represents a
sequence of interaction

for a kind of task

Withdra
Actors represent

l th t i ki d f Withdrawroles, that is, a kind of
user of the system

System boundaries

Peter Müller – Software Engineering, SS 10

System boundaries

34

Actors
2. Requirements Elicitation – Documenting Functional Requirements

An actor models an external entity
which communicates with the systemwhich communicates with the system
- Kind of user
- External systemy
- Physical environment

An actor has a unique name and an q
optional description
- Client: A person in the train

Client

- GPS satellite: An external system that
provides the system with GPS
coordinates

Peter Müller – Software Engineering, SS 10

coordinates

35

Use Case
2. Requirements Elicitation – Documenting Functional Requirements

A use case represents a kind
of task provided by the systemof task provided by the system
as an event flow
A use case consists ofA use case consists of
- Unique name
- Participating actors

Withdraw

p g
- Entry conditions
- Flow of events
- Exit conditions
- Special requirements

Peter Müller – Software Engineering, SS 10

36

Use Case Example: Withdraw
2. Requirements Elicitation – Documenting Functional Requirements

Initiating actor: Client

Entry condition
- Client has opened a bank account with the bank and- Client has opened a bank account with the bank and
- Client has received a bank card and PIN

Exit condition
- Client has the requested cash orq
- Client receives an explanation from the Bankomat about

why the cash could not be dispensed

Peter Müller – Software Engineering, SS 10

37

Use Case Example: Withdraw Event Flow
2. Requirements Elicitation – Documenting Functional Requirements

Actor steps
1 Authenticate

System Steps
1. Authenticate

3. Client selects “Withdraw
2. Bankomat displays options

3. Client selects Withdraw
CHF”

4. Bankomat queries amount
5. Client enters amount

6. Bankomat returns bank
dcard

7. Bankomat outputs
specified amount in CHF

Anything missing?
Exceptional cases,

Details of authentication

Peter Müller – Software Engineering, SS 10

peta s o aut e t cat o

38

Reusing Use Cases
2. Requirements Elicitation – Documenting Functional Requirements

Withdraw <<include>>Withdraw

Load

<<include>>

<<i l d >>

Client

Load
Cash Card Authenticate<<include>>

Client

Transfer <<include>>

<<include>> stereotype to include use cases
Details in textual description

Peter Müller – Software Engineering, SS 10

Details in textual description

39

Reusing Use Cases: Discussion
2. Requirements Elicitation – Documenting Functional Requirements

Pros
- Convenient (no

Cons
- May lead to functional- Convenient (no

duplicate information in
detailed description)

- May lead to functional
decomposition rather
than object-oriented

d l- Shorter descriptions
- Common functionality

may lead to reusable

model
- Requires more UML

skillsmay lead to reusable
components

- Enables integration of

skills

Criterion for decomposition:
Si f l i it (40 80 h)

existing components

Peter Müller – Software Engineering, SS 10

Size of planning unit (40-80 person hours)

40

Separating Variant Behavior
2. Requirements Elicitation – Documenting Functional Requirements

R f<< t d>>
<<initiates>>

Withdraw
Client

Refuse
Withdrawal

<<extend>>
Not enough

money

Host

<<participates>>

<<extend>> stereotype to provide special case
Normal case specifies point at which the behavior
may diverge (extension point)
Extending case specifies condition under which the
special case applies (as entry condition)

Peter Müller – Software Engineering, SS 10

special case applies (as entry condition)

41

Withdraw Event Flow Revisited
2. Requirements Elicitation – Documenting Functional Requirements

Actor steps
1 Authenticate (use case

System Steps
1. Authenticate (use case

Authenticate)
3. Client selects “Withdraw

2. Bankomat displays options

CHF”

5 Cli t t t
4. Bankomat queries amount

5. Client enters amount

6. Bankomat returns bank
dcard

7. Bankomat outputs
specified amount in CHF

Listed as
extension point

Peter Müller – Software Engineering, SS 10

p

42

Use Case Refuse Withdrawal
2. Requirements Elicitation – Documenting Functional Requirements

Entry Condition:
Entered amount higher than 4. (query

amo nt)g
money in account amount)

5. (enter
amount)System Steps:

6a. Bankomat displays error
message; rejoin before 4 ?

amount)

message; rejoin before 4. ?

6. (return 6a. (display (
card)

(p y
error)

7. (output

Peter Müller – Software Engineering, SS 10

amount)

43

Generalization and Specialization
2. Requirements Elicitation – Documenting Functional Requirements

WithdrawWithdraw

WithdrawWithdraw

F t t (b t t id ti l) b h i

Withdraw
Euro

Withdraw
CHF

Factor out common (but not identical) behavior
Child use cases

I h it th b h i d i f th t- Inherit the behavior and meaning of the parent use case
- Add or override some behavior

Details in textual description of normal case

Peter Müller – Software Engineering, SS 10

Details in textual description of normal case

44

Use Case Models
2. Requirements Elicitation – Documenting Functional Requirements

The set of all use cases specifying the complete
functionality of the system and its environmentfunctionality of the system and its environment

Withdraw
Refuse

Load
Cash Card <<include>>

Refuse
Authentication

<<extend>>

Client

Authenticate

Admin

Unload
Cash Card

Transfer <<include>>

Print

Update
Software

Peter Müller – Software Engineering, SS 10

Statement

45

2. Requirements Elicitation
2. Requirements Elicitation – Requirements Elicitation Activities

q

2 1 Requirements2.1 Requirements
2.2 Documenting Functional Requirements
2 3 R i t Eli it ti A ti iti2.3 Requirements Elicitation Activities
2.4 Requirements Documentation

Peter Müller – Software Engineering, SS 10

46

Requirements Elicitation Activities
2. Requirements Elicitation – Requirements Elicitation Activities

Identifying Actors

f C

Identifying Scenarios

Identifying Use Cases

Refining Use Cases

Identifying Relationships Among
Actors and Use Cases

Identifying Initial Analysis
Objects

Identifying Nonfunctional

Peter Müller – Software Engineering, SS 10

y g
Requirements

47

Identifying Actors
2. Requirements Elicitation – Requirements Elicitation Activities

Actors represent roles
One person can have several roles- One person can have several roles

- Many persons can have the same role
- In companies, roles usually exist before system is builtIn companies, roles usually exist before system is built

Questions to ask
- Which user groups are supported by the system?g p pp y y
- Which user groups execute the system’s main functions?
- Which user groups perform secondary functions

(maintenance, administration)?
- With what external hardware and software will the

system interact?

Peter Müller – Software Engineering, SS 10

system interact?

48

Actors vs. Objects
2. Requirements Elicitation – Requirements Elicitation Activities

During initial stages of actor identification, it is
difficult to distinguish actors from objectsdifficult to distinguish actors from objects

Example: database system can be p y
- An actor (external software) or
- An object (part of the system)

Problem is solved when system boundaries are
d fi ddefined
- Actors are outside

Objects are inside

Peter Müller – Software Engineering, SS 10

- Objects are inside

49

Identifying Scenarios: Questions to Ask
2. Requirements Elicitation – Requirements Elicitation Activities

What are the tasks the actor wants the system to
perform?perform?
What information does the actor access?
- Who creates that data?Who creates that data?
- Can it be modified or removed? By whom?

Which external changes does the actor need toWhich external changes does the actor need to
inform the system about?
- How often? When?

Which events does the system need to inform the
actor about?

Peter Müller – Software Engineering, SS 10

- With what latency?

50

Example: Bankomat
2. Requirements Elicitation – Requirements Elicitation Activities

What needs to be done to withdraw money?
Who is involved in a withdrawal?Who is involved in a withdrawal?
What does the system do if there is not enough

Money in the account?- Money in the account?
- Cash in the Bankomat?

What information does the client access?What information does the client access?
Can clients perform several tasks in one session?

Peter Müller – Software Engineering, SS 10

51

Sources of Information
2. Requirements Elicitation – Requirements Elicitation Activities

Speak to the
end user, not

just to the client

Client
Users

just to the client

Users

Elicitation
User manuals
Procedure manuals
Company standards
etc.

Existing Task observationInsist on task

Peter Müller – Software Engineering, SS 10

g
documentation

Task observationobservation

52

Dialectic Approach
2. Requirements Elicitation – Requirements Elicitation Activities

Apply evolutionary, incremental engineering
You help the client to formulate the requirements- You help the client to formulate the requirements

- The client helps you to understand the requirements
- The requirements evolve while the scenarios are beingThe requirements evolve while the scenarios are being

developed

Client understands problem domain, not the
solution domain
- Write scenarios using application domain terms
- Example: “Client” instead of “Account ID”

Peter Müller – Software Engineering, SS 10

53

Types of Scenarios
2. Requirements Elicitation – Requirements Elicitation Activities

As-is scenario
Used in describing a

Visionary scenario
Used to describe a future Used in describing a

current situation
Usually used in re-

i i j t

Used to describe a future
system
Usually used in greenfield

i i d engineering projects
The user describes the
system

engineering and
reengineering projects
Can often not be done by system

Training scenarioEvaluation scenario

Can often not be done by
the user or developer alone

Training scenario
Step by step instructions
that guide a novice user
h h

Evaluation scenario
User tasks against which
the system is to be

l d

Peter Müller – Software Engineering, SS 10

through a systemevaluated

54

Identifying Use Cases
2. Requirements Elicitation – Requirements Elicitation Activities

Scenarios are generalized to high-level use cases
NameName
- A verb describing what the actor wants to accomplish

Initiating actorInitiating actor
- Helps to clarify roles
- Helps identifying previously overlooked actorsHelps identifying previously overlooked actors

High-level description
- Entry and exit conditions (identify missing cases)Entry and exit conditions (identify missing cases)
- Event flow (define system boundary)
- Quality requirements (elicit nonfunctional requirements)

Peter Müller – Software Engineering, SS 10

55

Another Use Case Example: Authenticate
2. Requirements Elicitation – Requirements Elicitation Activities

Authenticate

Client

Refuse

Invalid card

Refuse

Invalid PIN
<<extend>>

Name: Authenticate
Initiating actor: Client

Refuse
Card

Refuse
PIN

g
Entry condition
- Client has opened a bank account with the bank and
- Client has received an bank card and PIN

Exit condition
Cli t i th ti t d

Peter Müller – Software Engineering, SS 10

- Client is authenticated

56

Authenticate Event Flow
2. Requirements Elicitation – Requirements Elicitation Activities

Actor steps
1. Client inputs her card into

System Steps
1. Client inputs her card into

the Bankomat
2. Bankomat requests the

i t f f di it PIN
3. Client types in PIN

input of a four-digit PIN

Listed as

T i f t di (diti)

Listed as
extension point

Triggers for extending use cases (error conditions)
are specified in extending use cases (as entry
conditions)

Peter Müller – Software Engineering, SS 10

conditions)

57

Use Case Refuse Card
2. Requirements Elicitation – Requirements Elicitation Activities

Name: Refuse authentication
Entry conditionEntry condition
- Client used invalid card

Exit conditionExit condition
- Client receives an explanation from the Bankomat about

why she was not authenticatedy

Actor steps System Steps
2a. Bankomat outputs the

card, displays a message,
and stops the interaction

Peter Müller – Software Engineering, SS 10

a d stops t e te act o

58

Guidelines for Use Cases
2. Requirements Elicitation – Requirements Elicitation Activities

Name
Use a verb phrase to name the use case- Use a verb phrase to name the use case

- The name indicates what the user is trying to accomplish
- Examples: “Withdraw”, “Authenticate”, “Load Cash Card”Examples: Withdraw , Authenticate , Load Cash Card

LengthLength
- A use case should not exceed two A4 pages
- If longer, use <<include>> relationshipsg p
- A use case describes a complete set of interactions

Peter Müller – Software Engineering, SS 10

59

Guidelines for Use Cases (cont’d)
2. Requirements Elicitation – Requirements Elicitation Activities

Flow of events
Use active voice- Use active voice

- Steps start either with “The Actor …” or “The System …”
- The causal relationship between steps is clearThe causal relationship between steps is clear
- All flows of events are described (not only main flow)
- The boundaries of the system are clear
- Important terms are defined in the glossary

Peter Müller – Software Engineering, SS 10

60

A Poor Use Case Bad name:

2. Requirements Elicitation – Requirements Elicitation Activities

Name: Cash Card
Initiating actor: Client

Bad name:
What is the user trying

to accomplish?

Initiating actor: Client
Flow of events
1 The client enters his

Causality:
What causes the card
to be loaded?1. The client enters his

card and PIN
2. Cash card is loaded

to be loaded?
Who specifies the
amount?

with specified amount Passive voice:
Who loads the card?

Incomplete transaction:
What happens after the

card is loaded?

Peter Müller – Software Engineering, SS 10

card is loaded?

61

How to Write a Use Case (Summary)
2. Requirements Elicitation – Requirements Elicitation Activities

Name of use case
Actors
- Description of actors involved in use case

Entry condition
- “This use case starts when ”- This use case starts when…

Flow of Events
- Free form, informal natural language

Exit condition
- “This use cases terminates when…”

Exceptionsp
- Describe what happens if things go wrong

Special Requirements
Nonfunctional requirements constraints

Peter Müller – Software Engineering, SS 10

- Nonfunctional requirements, constraints

62

Refining Use Cases
2. Requirements Elicitation – Requirements Elicitation Activities

Many use cases are rewritten several times
Focus: completeness and correctnessFocus: completeness and correctness
Activities during refinement

Add details to use cases- Add details to use cases
- Specify low-level sequences of interactions
- Specify access rightsSpecify access rights

(which actor can invoke which use case)
- Identify missing exceptions and specify handling
- Factor out common functionality

Peter Müller – Software Engineering, SS 10

63

Relationships Among Actors and Use Cases
2. Requirements Elicitation – Requirements Elicitation Activities

Communication relationships between actors and
use cases: <<initiate>> vs <<participate>>use cases: <<initiate>> vs. <<participate>>

Extend relationshipsExtend relationships
- Make common case simple
- Used for exceptional optional or seldom-occurringUsed for exceptional, optional, or seldom occurring

behavior
Include relationships
- Eliminate redundancies
- Used for behavior shared by at least two use cases

Peter Müller – Software Engineering, SS 10

64

Identifying Nonfunctional Requirements
2. Requirements Elicitation – Requirements Elicitation Activities

Nonfunctional requirements are defined together
with functional requirements because ofwith functional requirements because of
dependencies
- Example: Support for novice users requires help p pp q p

functionality
Elicitation is typically done with check lists
Resulting set of nonfunctional requirements
typically contains conflicts
- Real-time requirement needs C or Assembler

implementation
Supportability requires OO implementation

Peter Müller – Software Engineering, SS 10

- Supportability requires OO-implementation

65

2. Requirements Elicitation
2. Requirements Elicitation – Requirements Documentation

q

2 1 Requirements2.1 Requirements
2.2 Documenting Functional Requirements
2 3 R i t Eli it ti A ti iti2.3 Requirements Elicitation Activities
2.4 Requirements Documentation

Peter Müller – Software Engineering, SS 10

66

Requirements Analysis Document
2. Requirements Elicitation – Requirements Documentation

q y
1. Introduction

1 Purpose and scope of the System1. Purpose and scope of the System
2. Objectives and success criteria of the project
3. Definitions, acronyms, references, overview

2. Current System
3. Proposed Systemy

1. Overview
2. Functional requirements
3 N f ti l i t3. Nonfunctional requirements
4. System models

4 Glossary

Peter Müller – Software Engineering, SS 10

4. Glossary

67

Section 3.3 Nonfunctional Requirements
2. Requirements Elicitation – Requirements Documentation

3.3.1 User interface and human factors
3 3 2 Documentation3.3.2 Documentation
3.3.3 Hardware considerations
3.3.4 Performance characteristics
3.3.5 Error handling and extreme conditions
3.3.6 System interfacing
3.3.7 Quality issues
3.3.8 System modifications
3 3 9 Ph i l i t3.3.9 Physical environment
3.3.10 Security issues
3 3 11 Resources and management issues

Peter Müller – Software Engineering, SS 10

3.3.11 Resources and management issues

68

Nonfunctional Requirements: Checklist
2. Requirements Elicitation – Requirements Documentation

3.3.1 User interface and human factors
What type of user will be using the system?- What type of user will be using the system?

- Will more than one type of user be using the system?
- What sort of training will be required for each type of user?What sort of training will be required for each type of user?
- Is it particularly important that the system be easy to learn?
- Is it important that users be protected from making errors?
- What sort of input/output devices for the human interface

are available, and what are their characteristics?
3 3 2 D t ti3.3.2 Documentation

- What kind of documentation is required?
What audience is to be addressed by each document?

Peter Müller – Software Engineering, SS 10

- What audience is to be addressed by each document?

69

Nonfunctional Requirements: Checklist (cont’d)
2. Requirements Elicitation – Requirements Documentation

3.3.3 Hardware considerations
- What hardware is the proposed system to be used on?What hardware is the proposed system to be used on?
- What are the characteristics of the target hardware,

including memory size and auxiliary storage space?
3 3 4 P f h t i ti3.3.4 Performance characteristics

- Are there any speed, throughput, or response time
constraints?co s a s

- Are there size or capacity constraints on the data to be
processed by the system?

3 3 5 E h dli d t diti3.3.5 Error handling and extreme conditions
- How should the system respond to input errors?
- How should the system respond to extreme conditions?

Peter Müller – Software Engineering, SS 10

How should the system respond to extreme conditions?

70

Nonfunctional Requirements: Checklist (cont’d)
2. Requirements Elicitation – Requirements Documentation

3.3.6 System interfacing
- Is input coming from systems outside the proposedIs input coming from systems outside the proposed

system?
- Is output going to systems outside the proposed system?

A th t i ti th f t di th t t- Are there restrictions on the format or medium that must
be used for input or output?

3.3.7 Quality IssuesQ y
- What are the requirements for reliability?
- Must the system trap faults?
- What is the maximum time for a restart after a failure?
- What is the acceptable downtime per 24-hour period?
- Is it important that the system be portable?

Peter Müller – Software Engineering, SS 10

Is it important that the system be portable?

71

Nonfunctional Requirements: Checklist (cont’d)
2. Requirements Elicitation – Requirements Documentation

3.3.8 System Modifications
What parts of the system are likely candidates for later- What parts of the system are likely candidates for later
modification?

- What sorts of modifications are expected?
3.3.9 Physical Environment

- Where will the target equipment operate?
- Will the target equipment be in one or several locations?
- Will the environmental conditions in any way be out of the

di (f l l t t ib tiordinary (for example, unusual temperatures, vibrations,
magnetic fields, ...)?

Peter Müller – Software Engineering, SS 10

72

Nonfunctional Requirements: Checklist (cont’d)
2. Requirements Elicitation – Requirements Documentation

3.3.10 Security Issues
Must access to any data or the system itself be controlled?- Must access to any data or the system itself be controlled?

- Is physical security an issue?
3 3 11 Resources and Management Issues3.3.11 Resources and Management Issues

- How often will the system be backed up?
- Who will be responsible for the back up?p p
- Who is responsible for system installation?
- Who will be responsible for system maintenance?

Peter Müller – Software Engineering, SS 10

73

Prioritizing Requirements
2. Requirements Elicitation – Requirements Documentation

High priority (“Core requirements”)
Must be addressed during analysis design and- Must be addressed during analysis, design, and
implementation

- A high-priority feature must be demonstrated
successfully during client acceptance

Medium priority (“Optional requirements”)
- Must be addressed during analysis and design
- Usually implemented and demonstrated in the second

iteration of the system developmentiteration of the system development
Low priority (“Fancy requirements”, “nice to have”)
- Must be addressed during analysis

Peter Müller – Software Engineering, SS 10

Must be addressed during analysis

74

Project Agreement
2. Requirements Elicitation – Requirements Documentation

Acceptance of (parts of) the analysis model (as
documented by the requirements analysisdocumented by the requirements analysis
document) by the client (client sign-off)
The client and the developers agree about theThe client and the developers agree about the
functions and features that the system will have,
plus:
- A list of prioritized requirements
- A revision process
- A criteria that will be used to accept or reject the system
- A schedule and a budget

Peter Müller – Software Engineering, SS 10

75

Summary
2. Requirements Elicitation

Scenarios: Good way to establish communication
with clientwith client
Use cases: Abstraction of scenarios
Pure functional decomposition is badPure functional decomposition is bad
- Leads to un-maintainable code

Pure object identification is badPure object identification is bad
- May lead to wrong objects, attributes, and methods

Use cases bridge the gap between functionalUse cases bridge the gap between functional
requirements and objects

Peter Müller – Software Engineering, SS 10

