
Software Analysis & Visualization

Harald Gall
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch

2

…software is intangible, having no physical shape or size…

3

…software is intangible, having no physical shape or size…

4

…software is intangible, having no physical shape or size…

5

Software Visualization in Context

  There are many good-looking visualization
techniques, but..when it comes to software
maintenance & evolution, there are several problems:
  Scalability
  Information Retrieval
  What to visualize
  How to visualize
  Reengineering context constraints

  Limited time
  Limited resources

6

Software Visualization - Outline

  Introduction
  Software Visualization in a Reengineering Context
  Static Code Visualization

  Examples
  Dynamic Code Visualization

  Examples
  Lightweight Approaches

  Combining Metrics and Visualization
  Demonstration

  Conclusion

7

Prologue

  Reverse engineer 1.2 MLOC C++ system of ca. 2300
classes

  * 2 = 2’400’000 seconds
  / 3600 = 667 hours / 8 = 83 days / 5 = 16 weeks & 3

days
  ~ 4 months to read the system

  Questions:
  What is the size and the overall structure of the system?
  What is the internal structure of the system and its elements?
  How did the software system become like that?

Once upon

a time…

8

Introduction

  Visualization
  Information Visualization

  Software Visualization
  Algorithm Visualization
  Program Visualization

  Static Code Visualization
  Dynamic Code Visualization

  The overall goal is to reduce complexity

9

Software Visualization

“Software Visualization is the use of the crafts of
typography, graphic design, animation, and
cinematography with modern human-computer
interaction and computer graphics technology to
facilitate both the human understanding and effective
use of computer software.”
 Price, Baecker and Small, “Introduction to Software Visualization”

  2 main fields:
  Algorithm Visualization
  Program Visualization

10

Conceptual Problem

"Software is intangible, having no physical
shape or size. Software visualization tools
use graphical techniques to make software
visible by displaying programs, program
artifacts and program behavior.”

 Thomas Ball

11

The Reengineering Life-cycle

Requirements!

Designs!

Code!

(0) requirement!
analysis!

(1) model!
capture!

(2) problem!
detection! (3) problem!

resolution!

(4) program transformation!

(2) problem detection!
issues"
•  Tool support"
•  Scalability"
•  Efficiency"

12

Program Visualization

  Static code visualization
  Dynamic code visualization
  Generate different views of a system and infer

knowledge based on the views
  Complex problem domain (current research area)

  Efficient space use, edge crossing problem, layout problem,
focus, HCI issues, GUI issues, …

  Lack of conventions (colors, symbols, interpretation, …)

“Program visualization is the visualization of the actual program
code or data structures in either static or dynamic form”

 [Price, Baecker and Small]

13

Program Visualization II

  Level of granularity?
  Complete systems, subsystems, modules, classes,

hierarchies,...
  When to apply?

  First contact with an unknown system
  Known/unknown parts?
  Forward engineering?

  Methodology?

14

Static Code Visualization

  The Visualization of information that can be extracted
from the static structure of a software system

  Depends on the programming language and
paradigm:
  Object-Oriented PL:

  classes, methods, attributes, inheritance, …
  Procedural PL:

  procedures, invocations, …
  Functional PL:

  functions, function calls, …

15

Example 1: Class Hierarchies

  Jun/OpenGL
  The Smalltalk Class

Hierarchy
  Problems:

  Colors are meaningless
  Visual Overload
  Navigation

16

Example 2: Tree Maps

  Pros
  100% screen
  Large data
  Scales well

  Cons
  Boundaries
  Cluttered display
  Interpretation
  Leaves only

  Useful for the display
of Hard Disks

17

Examples 3 & 4

  Euclidean cones
  Pros:

  More info than 2D
  Cons:

  Lack of depth
  Navigation

  Hyperbolic trees
  Pros:

  Good focus
  Dynamic

  Cons:
  Copyright

18

Class Diagram Approaches

  For example UML diagrams…
  Pros:

  OO Concepts
  Good for small parts

  Cons:
  Lack of scalability
  Require tool support
  Requires mapping rules to reduce noise
  Preconceived views

19

Example 5: UML and derivates
  Pros

  OO concepts
  Works very well for small parts

  Cons
  Lack of scalability
  Requires tool support
  Requires mapping rules to

reduce noise
  Hardly extensible

20

Example 6: MetricView

  UML &
3D

21

Example 7a: Rigi

  Scalability problem
  Entity-Relationship

visualization
  Problems:

  Filtering
  Navigation

22

Example 7b: Rigi

  Entities can be
grouped

  Pros:
  Scales well
  Applicable in

other
domains

  Cons:
  Not enough code

semantics

23

Evaluation

  Pros
  Intuitive approaches
  Aesthetically pleasing results

  Cons
  Several approaches are orthogonal to each other
  Too easy to produce meaningless results
  Scaling up is sometimes possible, but at the expense of

semantics

24

Dynamic Code Visualization

  Visualization of dynamic behavior of a software
system

  Code instrumentation
  Trace collection
  Trace evaluation
  What to visualize

  Execution trace
  Memory consumption
  Object interaction
  …

25

Example 1: JInsight

  Visualization of execution trace

26

Example 2: Inter-class call matrix

  Simple
  Scales quite well
  Reproducible

27

Example 3: TraceCrawler

28

Dynamic SV: Evaluation

  Code instrumentation problem
  Logging, Extended VMs, Method Wrapping

  Scalability problem
  Traces quickly become very big

  Completeness problem
  Scenario driven

  Pros:
  Good for fine-tuning, problem detection

  Cons:
  Tool support crucial
  Lack of abstraction without tool support

29

The Polymetric View - Example (II)

•  Get an impression (build a first raw mental
model) of the system, know the size, structure,
and complexity of the system in terms of classes
and inheritance hierarchies
•  Locate important (domain model) hierarchies,
see if there are any deep, nested hierarchies
•  Locate large classes (standalone, within
inheritance hierarchy), locate stateful classes and
classes with behaviour

•  Count the classes, look at the displayed nodes,
count the hierarchies
•  Search for node hierarchies, look at the size and
shape of hierarchies, examine the structure of
hierarchies
•  Search big nodes, note their position, look for tall
nodes, look for wide nodes, look for dark nodes,
compare their size and shape, “read” their name
=> opportunistic code reading

System Complexity View

Reverse engineering goals View-supported tasks

Nodes = Classes
Edges = Inheritance
 Relationships

Width = # attributes
Height = # methods
Color = # lines of code

30

Coarse-grained Polymetric Views

Method Efficiency Correlation View

Nodes: Methods
Edges: -
Size: Number of method parameters
Position X: Number of lines of code
Position Y: Number of statements

LOC

NOS

Goals:
•  Detect overly long methods
•  Detect “dead” code
•  Detect badly formatted methods
•  Get an impression of the system in terms of
coding style
•  Know the size of the system in # methods

31

Inheritance Classification View

Boxes: Classes
Edges: Inheritance
Width: Number of Methods Added
Height: Number of Methods Overridden
Color: Number of Method Extended

32

Polymetric View Example: ArgoUML

33

ArgoUML City

34

Reflections on Visualization

  Visualizations are useless…
  …as pictures: Polymetric views are navigable & interactive
  …if not accessible: Polymetric views are implemented in…

  CodeCrawler, Mondrian, Sotograph, Jsee, etc.

  It will take some time and a lot of work for them to be
accepted - time will tell

  “Everything must change to remain the same”
 [Giuseppe Lanza Tomasi di Lampedusa, “Il

Gattopardo”]

35

Evaluating the Design of a System

  What entities do we measure in
object-oriented design?
  It depends…on the language

  What metrics do we use?
  It depends…on our

measurement goals
  What can we do with the

information obtained?
  It depends…on our objectives

  Simple metrics are not enough
to understand and evaluate
design
  Can you understand the beauty

of a painting by measuring its
frame?

36

The Class Blueprint

  A semantically rich visualization of the internal
structure of classes and class hierarchies
  Useful for inspecting source code, and detecting visual

anomalies which point to design disharmonies

37

The Class Blueprint: Seeing Code & Design

38

The Class Blueprint - What do we see?

39

Nice! …but, what about the practice?

  In practice the key question is where to start
  We have devised a methodology to characterize,

evaluate and improve the design of object-oriented
systems

  It is based on:
  The Overview Pyramid
  The System Complexity View
  Detection Strategies
  Class Blueprints

40

Design Harmony

  Software is a human artifact
  There are several ways to implement things
  The point is to find the appropriate way!
  Appropriate to what?

  Identity Harmony
  How do I define myself?

  Collaboration Harmony
  How do I interact with others?

  Classification Harmony
  How do I define myself with respect to my ancestors and

descendants?

  Let’s see some examples

41

Identity Disharmony: God Class

  An aggregation of different abstractions which (mis)
uses other classes to perform its functionality
  The “other” classes are usually dumb data holders
  Difficult to cure: only do it if it hampers evolution

  Detection: Find large and complex classes on which
many other classes depend

42

Oh my God…it’s the ModelFacade
  ModelFacade: The Black

Hole
  453 methods
  114 attributes
  3500 lines of code

  Coupled to hundreds of
ArgoUML classes

43

Collaboration Disharmony: Shotgun
Surgery
  A change in a method may imply changes in many

places
  Detection: Find the classes in which a change would

significantly affect many other places in the system
  We have to consider both the strength and the dispersion of

the coupling
  We focus on incoming coupling

44

I shot…the Project…

  Project has several methods affected by SS
  Coupled with 131 classes (ModelFacade not shown here)
  Cyclic Dependencies with CoreFactory & ProjectBrowser

  Changing Project may lead to problems

45

Classification Disharmony:
Refused Parent Bequest
  The primary goal of inheritance: code reuse

  When you add a subclass you should look at what is “already
there”: add/extend-abstract-change cycle

  Detection: Find fairly complex classes with low usage
of inheritance-specific members of the superclass(es)

46

Kids never listen: The PerspectiveSupport
Hierarchy
  “Pipeline”-Inheritance with funky usage of abstract classes
  Suspicious regularity in the leaf classes: duplicated code
  TreeModelComposite ignores what is the superclasses

47

Recovering from a Design Disharmony

  Misery loves company:
  The Design Disharmonies

do not exist alone, they are
correlated

  Where to start?
  How to start?
  Recovering can be a

lengthy process and must
be evaluated in terms of
effort/benefit

48

A Catalogue of Design Disharmonies

  For each Design
Disharmony, we provide
  Description
  Context
  Impact
  Detection Strategy
  Examples
  Refactoring

49

Tools

  “A fool with a tool is still a fool”, but…
  Better a fool with a tool than just a fool…
  Everything presented is based on extensive tooling

  Moose
  CodeCrawler
  iPlasma
  Free and open source - take it or leave it

  (Parts of) these tools are now making it into industry
  The Disharmonies are now part of “Borland Together”

50

Software Visualization: Conclusions

  Software Visualization is very useful when used
correctly

  An integrated approach is needed, just having nice
pictures is not enough

  Most tools still at prototype level
  In general: only people that know what they see can

react on that: SV is for expert/advanced developers
  The future of software development is coming…and

SV is part of it

51

Epilogue

  Did we succeed after all?
  Not completely, but…

  System Hotspots View on
1.200’000 LOC of C++

  System Complexity View on
ca. 200 classes of C++

…happily everafter.

