
Software Engineeringg g
Analysis

Peter Müller
Chair of Programming Methodology

Th lid i thi ti tl b d th l tThe slides in this section are partly based on the lecture
“Software Engineering I” by Prof. Bernd Brügge, TU München

Spring Semester 10

2

3. Analysis
3. Analysis - Introduction

3 1 Modeling3.1 Modeling
3.2 Object Modeling
3 3 F U C t Obj t3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3 E l3.5 Examples
3.6 Analysis Model Validation

Peter Müller – Software Engineering, SS 10

3

Requirements Engineering: Overview
3. Analysis - Introduction

Requirements
Elicitation

Client

AnalysisRequirements
specification

Users
Analysis
Model Designers

Design
Participation

Peter Müller – Software Engineering, SS 10

Design
Used for communication

4

Requirements Elicitation vs. Analysis
3. Analysis - Introduction

Requirements specification and analysis model
represent the same informationrepresent the same information
Requirements Elicitation
- Definition of the system

Analysis
- Technical specificationDefinition of the system

in terms understood by
the customer

Technical specification
of the system in terms
understood by the
d l

- Requirements
specification uses

developer
- The analysis model

uses a formal or semi-specification uses
natural language

- Communication with

formal notation
- Communication among

d l

Peter Müller – Software Engineering, SS 10

clients and users developers

5

Analysis Model
3. Analysis - Introduction

AnalysisRequirements RefinedAnalysisq
specification

A l i M d l

Refined
functional model

Analysis Model
Functional

Model
Concepts

i l t d bModel
Analysis

Object Model

manipulated by
the system, their
properties and

Dynamic
Model

relationships

System behavior

Peter Müller – Software Engineering, SS 10

System behavior

6

3. Analysis
3. Analysis - Modeling

3 1 Modeling3.1 Modeling
3.2 Object Modeling
3 3 F U C t Obj t3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3 E l3.5 Examples
3.6 Analysis Model Validation

Peter Müller – Software Engineering, SS 10

7

What is Modeling?
3. Analysis - Modeling

Building an abstraction of reality
Abstractions from things people and processes- Abstractions from things, people, and processes

- Relationships between these abstractions
Abstractions are simplificationsAbstractions are simplifications
- They ignore irrelevant details
- They represent only the relevant detailsy p y
- What is relevant or irrelevant depends on the purpose of

the model
Draw complicated conclusions in the reality with
simple steps in the model

Peter Müller – Software Engineering, SS 10

8

Example 1: Cat
3. Analysis - Modeling

Peter Müller – Software Engineering, SS 10

9

Example 2: Street Map
3. Analysis - Modeling

Peter Müller – Software Engineering, SS 10

10

Example 3: Atom Models in Physics
3. Analysis - Modeling

Bohr model
Nucleus surrounded by- Nucleus surrounded by
electrons in orbit

- Explains, e.g., spectra

Quantum physics p y
- Position of electrons described

by probability distribution
- Takes into account

Heisenberg’s uncertainty
principle

Peter Müller – Software Engineering, SS 10

p p

11

Why Model Software?
3. Analysis - Modeling

Software is getting increasingly more complex
Windows Vista: ~50 millions source lines of code- Windows Vista: ~50 millions source lines of code

- Linux kernel: ~10 millions source lines of code
- Fedora 9 Linux: ~200 millions source lines of codeFedora 9 Linux: 200 millions source lines of code
- A single programmer cannot manage this amount of

code in its entirety
Code is not easily understandable by developers
who did not write it
We need simpler representations for complex
systems
M d li i f d li ith l it

Peter Müller – Software Engineering, SS 10

Modeling is a means for dealing with complexity

12

What is a Good Model?
3. Analysis - Modeling

Intuitively: A model is good if relationships, which
are valid in reality R are also valid in model Mare valid in reality R, are also valid in model M
Definition Interpretation I: R → M

M M
fM I: Mapping of real things in reality

R to abstractions in model M
I I

f

fM: Relationship between
abstractions in M

fR: Relationship between real

In a good model this diagram is commutative

R R
fR R p

things in R

Peter Müller – Software Engineering, SS 10

In a good model this diagram is commutative

13

Models of Models of Models …
3. Analysis - Modeling

Software development is transformation of
modelsmodels

M2 M2
fM2

I2: System Design

M1 M1

I2: System Design
fM1

Subsystem
Decomposition

M M
fM

I1: Analysis Object
Model

R R

I: Requirements Elicitation
fR

Functional
Model

Peter Müller – Software Engineering, SS 10

R R

14

Modeling the Real World
3. Analysis - Modeling

Problem domain

Model viewRepresentation Model view
of problem

Representation
of model

Peter Müller – Software Engineering, SS 10

15

Modeling Example: Data Modeling
3. Analysis - Modeling

Tuple of
Add- Address

- Asset class
- At least one

Bank client

Client
1

Address
Asset class

At least one
account

possesses Account Balance
Account No.

n

Peter Müller – Software Engineering, SS 10

ER-Diagram

16

Modeling Example: Object Modeling
3. Analysis - Modeling

Object with
- Data

O ti- OperationsBank client

Client1Address Account
Balance

1 1 1..*

Asset class Balance
Account No.

Peter Müller – Software Engineering, SS 10

UML Class Diagram

17

3. Analysis
3. Analysis – Object Modeling

3 1 Modeling3.1 Modeling
3.2 Object Modeling
3 3 F U C t Obj t3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3 E l3.5 Examples
3.6 Analysis Model Validation

Peter Müller – Software Engineering, SS 10

18

The Unified Modeling Language UML
3. Analysis – Object Modeling

UML is a modeling language
Using text and graphical notation- Using text and graphical notation

- For documenting specification,
analysis, design, and implementation

Importance
- Recommended OMG (Object Management Group)

standard notation
- De facto standard in industrial software development

Alt ti B i Obj t N t ti (BON)Alternative: Business Object Notation (BON)
- Mainly used in the Eiffel community

Peter Müller – Software Engineering, SS 10

19

UML Notations
3. Analysis – Object Modeling

Use case diagrams – requirements of a system
Class diagrams structure of a systemClass diagrams – structure of a system
Interaction diagrams – message passing

Sequence diagrams- Sequence diagrams
- Collaboration diagrams

State and activity diagrams actions of an objectState and activity diagrams – actions of an object
Implementation diagrams
- Component model dependencies between code- Component model – dependencies between code
- Deployment model – structure of the runtime system

Object constraint language (OCL)

Peter Müller – Software Engineering, SS 10

Object constraint language (OCL)

20

Classes
3. Analysis – Object Modeling

TarifSchedule
Name

T TarifSchedule
Table zone2price
Enumeration getZones()
Price getPrice(Zone)

Type

Signature Operations

Attributes

A class encapsulates state (attributes) and

Price getPrice(Zone)

A class encapsulates state (attributes) and
behavior (operations)
- Each attribute has a typeEach attribute has a type
- Each operation has a signature

The class name is the only mandatory information

Peter Müller – Software Engineering, SS 10

y y

21

More on Classes
3. Analysis – Object Modeling

Valid UML class diagrams

TarifSchedule
zone2price
getZones()

TarifSchedule

getZones()
getPrice()

Corresponding BON diagram
- No distinction between attributes

TarifSchedule

getZonesNo distinction between attributes
and operations
(uniform access principle)

getPrice

NONE
zone2price

Peter Müller – Software Engineering, SS 10

o e p ce

22

Instances (Objects)
3. Analysis – Object Modeling

nightTarif:TarifSchedule
Name of an
instance is

Name of an
instance can nightTarif:TarifSchedule

zone2price = {
(‘1’, 1.60),
(‘2’ 2 40)

instance is
underlined contain the

class of the
instance(2 , 2.40),

(‘3’, 3.20)
}

instance

Attributes are
represented

with their

:TarifSchedule
zone2price = {
(‘1’ 1 60)

Name of an
values(‘1’, 1.60),

(‘2’, 2.40),
(‘3’, 3.20)

}

instance is
optional

Peter Müller – Software Engineering, SS 10

}

23

Associations
3. Analysis – Object Modeling

A link represents a connection between two objects
Ability of an object to send a message to another object- Ability of an object to send a message to another object

- Object A has an attribute whose value is B
- Object A creates object BObject A creates object B
- Object A receives a message with object B as argument

Associations denote relationships between p
classes

W k f

Optional label

Person Company
Works for

employee employer

Optional rolesOptional roles

Peter Müller – Software Engineering, SS 10

Optional rolesOptional roles

24

Multiplicity of Associations
3. Analysis – Object Modeling

The multiplicity of an association end denotes how
many objects the source object can referencemany objects the source object can reference
- Exact number: 1, 2, etc. (1 is the default)
- Arbitrary number: * (zero or more)y ()
- Range: 1..3, 1..*

1-to-1 association
City Country1 1is capital of

1-to-many association

y y

P l P i t3..*

Peter Müller – Software Engineering, SS 10

Polygon Point3..

25

Association: Example
3. Analysis – Object Modeling

Problem Statement:
A stock exchange lists many companies EachA stock exchange lists many companies. Each
company is uniquely identified by a ticker symbol.

St kE h C*lists
StockExchange Company

tickerSymbol

Diagram does not express that ticker symbols are
unique

C1:Companylists

NYSE:StockExchange
tickerSymbol=“ABC”

C2:Companylists

Peter Müller – Software Engineering, SS 10

tickerSymbol=“ABC”

26

Qualified Associations
3. Analysis – Object Modeling

StockExchange Company** lists

F h ti k b l t k h li t

tickerSymbol

For each ticker symbol, a stock exchange lists
exactly one company

StockExchange Company1*

tickerSymbol

tickerSymbol lists

Qualifiers reduce the multiplicity of associations

y

Peter Müller – Software Engineering, SS 10

Qualifiers reduce the multiplicity of associations

27

Navigability
3. Analysis – Object Modeling

Associations can be directed Person knows
about Company

Person Company*

about Company

Company knows
about Person

Person Company*

*

Person and Company
know about each other

Peter Müller – Software Engineering, SS 10

Person Company

28

Aggregation
3. Analysis – Object Modeling

Aggregation expresses a
hierarchical part-of (“has-a”)

Curriculum
hierarchical part-of (has-a)
relationship
- Special form of association *p
- Objects can simultaneously be

part of several aggregates

Course

Used for documentation
l

Curriculum

Aggregate

purposes only
- No formal information

Use with care! Course
*Component

Peter Müller – Software Engineering, SS 10

- Use with care! Course

29

Composition
3. Analysis – Object Modeling

Composition expresses a strong aggregation
No sharing- No sharing

TicketMachine

Aggregate

3 Component

Aggregation and composition can be documented

ZoneButton
3

Aggregation and composition can be documented
like other associations
- Multiplicity label roles

Peter Müller – Software Engineering, SS 10

Multiplicity, label, roles

30

Generalization and Specialization
3. Analysis – Object Modeling

Generalization expresses a
kind-of (“is-a”) relationshipkind-of (is-a) relationship
Generalization is
implemented by inheritance

Superclass

implemented by inheritance
- The child classes inherit the

attributes and operations of

Polygon

Subclass
the parent class

Generalization simplifies the
d l b li i ti

Rectangle

Subclass

model by eliminating
redundancy

Peter Müller – Software Engineering, SS 10

31

3. Analysis
3. Analysis – From Use Cases to Objects

3 1 Modeling3.1 Modeling
3.2 Object Modeling
3 3 F U C t Obj t3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3 E l3.5 Examples
3.6 Analysis Model Validation

Peter Müller – Software Engineering, SS 10

32

Analysis Object Model: Motivation
3. Analysis – From Use Cases to Objects

The analysis object
model bridges the gapUse Case model bridges the gap
between use cases and
an object-oriented design

Use Case

Actor
j g

Use Case Use Case

ClassClass

ClassClCl ClassClassClass

Peter Müller – Software Engineering, SS 10

Class

33

Analysis Object Model: Properties
3. Analysis – From Use Cases to Objects

Requirements
Specification

Design Documents

Understood by
customer

F l

Understood
by developer

Analysis
Object
Model

Solution
domainProblem

domain

Formal or
semi-formal

notation
Natural

language
domain

User’s point

Communication
among

developers

Communication
with clients and

Functional

Internal
structure

User s point
of view

Object-
oriented

developersusers

Peter Müller – Software Engineering, SS 10

decomposition

34

Activities During Object Modeling
3. Analysis – From Use Cases to Objects

Main goal: Find important abstractions

Identifying Classes
Iterate to get the model

right and detailed!

Finding the attributes

Order of steps
Finding the operations

Order of steps
is not important
(heuristics)

Finding the associations
between classes

Peter Müller – Software Engineering, SS 10

(heuristics) between classes

35

Approaches to Class Identification
3. Analysis – From Use Cases to Objects

Application domain
Syntactic approach

E t t ti i tiApplication domain
approach

Ask application domain

Extract participating
objects from flow of
events in use cases

expert to identify relevant
abstractions

Use noun-verb analysis to
identify components of the
object model

Component-based
Design patterns approach

object model

approach
Identify existing solution
classes

Design patterns approach
Use reusable design
patterns

Peter Müller – Software Engineering, SS 10

classesp

36

Noun-Verb Analysis (Abbott’s Textual Analysis)
3. Analysis – From Use Cases to Objects

Do a textual analysis of problem statement
Take the flow of events and find participatingTake the flow of events and find participating
objects in use cases and scenarios
- Nouns are good candidates for classesNouns are good candidates for classes
- Verbs are good candidates for operations

Works well for short, structured texts
- Problem statementProblem statement
- Flow of events in use cases

Peter Müller – Software Engineering, SS 10

37

Textual Analysis Example: Problem Statement
3. Analysis – From Use Cases to Objects

The library contains books and journals. It may have

several copies of a given book. Some of the books

are for short-term loans only. All other books can be y

borrowed by any library member for three weeks.

Members of the librar can normall borro p to siMembers of the library can normally borrow up to six

items at a time, but members of the staff may borrow

up to 12 items at one time. Only members of the staff

may borrow journals.

Peter Müller – Software Engineering, SS 10

may borrow journals.

38

Textual Analysis Example: Nouns
3. Analysis – From Use Cases to Objects

The library contains books and journals. It may have

several copies of a given book. Some of the books

are for short-term loans only. All other books can be y

borrowed by any library member for three weeks.

Members of the librar can normall borro p to siMembers of the library can normally borrow up to six

items at a time, but members of the staff may borrow

up to 12 items at one time. Only members of the staff

may borrow journals.

Peter Müller – Software Engineering, SS 10

may borrow journals.

39

Textual Analysis Example: Selecting Classes
3. Analysis – From Use Cases to Objects

Library: inside or outside the system?
Book journal copy: candidates for classesBook, journal, copy: candidates for classes
Loan: property or event
Lib b did t f lLibrary member: candidate for a class
Week: unit of measurement
I d f b k d j lItems: used to refer to books and journals
Time: event
Staff members: candidate for a class

Peter Müller – Software Engineering, SS 10

40

Textual Analysis Example: Class Diagram
3. Analysis – From Use Cases to Objects

Borrowable

Library Member Journal

Staff Member CopyBook

Peter Müller – Software Engineering, SS 10

41

Textual Analysis Example: Verbs
3. Analysis – From Use Cases to Objects

The library contains books and journals. It may have

several copies of a given book. Some of the books

are for short-term loans only. All other books can be y

borrowed by any library member for three weeks.

Members of the librar can normall borro p to siMembers of the library can normally borrow up to six

items at a time, but members of the staff may borrow

up to 12 items at one time. Only members of the staff

may borrow journals.

Peter Müller – Software Engineering, SS 10

may borrow journals.

42

Textual Analysis Example: Class Diagram
3. Analysis – From Use Cases to Objects

BorrowableBook

1 *
Library Member Copy

1..*
0..1 0..*

0..*

borrow(Copy)

0..1
Staff Member

borrow(Copy)

Journal
0..1 0..*

0..1

Peter Müller – Software Engineering, SS 10

borrow(Journal)

43

Textual Analysis Example: Iteration
3. Analysis – From Use Cases to Objects

BorrowableBook

Library Member Copy
1..*

0..1 0..*

borrow(Copy)

Staff Member Journal0..1 0..*

Peter Müller – Software Engineering, SS 10

borrow(Journal)

44

Textual Analysis Example: Remainder
3. Analysis – From Use Cases to Objects

Th lib t i b k d j l It h

Attribute in
Borrowable
Attribute in
Borrowable

The library contains books and journals. It may have
several copies of a given book. Some of the books
are for short term loans only All other books can beare for short-term loans only. All other books can be
borrowed by any library member for three weeks.
Members of the library can normally borrow up to sixMembers of the library can normally borrow up to six
items at a time, but members of the staff may borrow
up to 12 items at one time Only members of the staffup to 12 items at one time. Only members of the staff
may borrow journals.

Precondition
f b

Precondition
f b

Peter Müller – Software Engineering, SS 10

for borrowfor borrow

45

Mapping Speech to Object Models
3. Analysis – From Use Cases to Objects

Part of speech
Proper noun

Example
Jim Smith

Model component
ObjectProper noun

Improper noun
Doing verb

Jim Smith
Toy, doll
Buy, recommend

Object
Class
Methodg

being verb
having verb

y
is-a (kind-of)
has a

Inheritance
Aggregation

modal verb
adjective
t iti b

must be
3 years old

t

Constraint
Attribute
M th dtransitive verb

intransitive verb
enter
sleep

Method
Method (event)

Peter Müller – Software Engineering, SS 10

46

Problems of Noun-Verb Analysis
3. Analysis – From Use Cases to Objects

Natural language is imprecise
Identify and standardize terms- Identify and standardize terms

- Rephrase and clarify requirements specification

Many more nouns than relevant classes
- Eliminate synonyms; use same word for the same thingy y ; g
- Many nouns correspond to attributes

Peter Müller – Software Engineering, SS 10

47

Different Kinds of Objects
3. Analysis – From Use Cases to Objects

Having three kinds
of objects makes

Entity Objects
Represent the persistent of objects makes

models more
resilient to change

Represent the persistent
information tracked by the system
Application domain objects,
“

g
- Interface of

system changes
more likely than

“business objects”

Boundary Objects
more likely than
control

- Control of system

Represent the interaction
between the user and the system

y
changes more
likely than
application domain

Control Objects
Represent the control tasks

f d b th t

Peter Müller – Software Engineering, SS 10

application domainperformed by the system

48

Identifying Entity Objects
3. Analysis – From Use Cases to Objects

For each use case, participating objects are
Identified (e g by noun verb analysis)- Identified (e.g., by noun-verb analysis)

- Named by application domain terms
- Described and collated in a glossaryDescribed and collated in a glossary

Results in the initial analysis modelResults in the initial analysis model

Peter Müller – Software Engineering, SS 10

49

Heuristics for Identifying Entity Objects
3. Analysis – From Use Cases to Objects

Terms the developers or users must clarify to
understand the use case (e g account)understand the use case (e.g., account)
Recurring nouns in the use case (e.g., card)
Real world entities that the system must trackReal-world entities that the system must track
(e.g., cash dispenser)
Real-world processes that the system must trackReal-world processes that the system must track
Data sources or sinks (e.g., host)

Account Currency

Peter Müller – Software Engineering, SS 10

50

Cross Checks
3. Analysis – From Use Cases to Objects

Use cases and initial analysis models can be
improved by cross-checkingimproved by cross-checking

Which use case creates this object?Which use case creates this object?
Which actors can access this information?
Which use cases modify and destroy this object?Which use cases modify and destroy this object?
Which actors can initiate these use cases?
I thi bj t d d? (I th t l tIs this object needed? (Is there at least one use
case that depends on this information?)

Peter Müller – Software Engineering, SS 10

51

Identifying Boundary Objects
3. Analysis – From Use Cases to Objects

Boundary objects collect information from actor
Boundary objects translate information intoBoundary objects translate information into
format for entity and control objects
Boundary objects do not model details and visualBoundary objects do not model details and visual
aspects (e.g., menu item, scrollbar)

Each actor interacts with at least one boundary
objectobject

Peter Müller – Software Engineering, SS 10

52

Heuristics for Identifying Boundary Objects
3. Analysis – From Use Cases to Objects

User interface controls to initiate the use case
(e g bank card)(e.g., bank card)
Forms to enter data (e.g., option screen)
Messages the system uses to respond (e gMessages the system uses to respond (e.g.,
termination message)

Terminal Display

Peter Müller – Software Engineering, SS 10

53

Identifying Control Objects
3. Analysis – From Use Cases to Objects

Control objects coordinate boundary and entity
objectsj
Control objects usually do not have a concrete
counterpart in the real world
Control objects are typically created at beginning
of use case and exist to its end
C t l bj t ll t i f ti f b dControl objects collect information from boundary
objects and dispatch it to entity objects
ExamplesExamples
- Sequencing of forms, undo and history queues
- Dispatching information in distributed systems

Peter Müller – Software Engineering, SS 10

54

Heuristics for Identifying Control Objects
3. Analysis – From Use Cases to Objects

Identify one control object per use case
Identify one control object per actor in the useIdentify one control object per actor in the use
case
Life span of a control object should cover theLife span of a control object should cover the
extent of a use case or user session

Withdrawal

Peter Müller – Software Engineering, SS 10

55

Stereotypes and Conventions
3. Analysis – From Use Cases to Objects

UML provides stereotypes to attach extra
classificationsclassifications

<<Entity>>
Account

<<Boundary>>
Terminal

<<Control>>
Withdrawal

Naming conventions help to distinguish kinds of
objects

<<Entity>>
Account

<<Boundary>>
Terminal_Boundary

<<Control>>
Withdrawal_Control

Peter Müller – Software Engineering, SS 10

56

UML Packages
3. Analysis – From Use Cases to Objects

A package is a UML
mechanism for organizing Pmechanism for organizing
elements into groups
- Usually not an application

P

y pp
domain concept

- Increase readability of UML
d l Q

<<import>>

<<import>>models
Decompose complex
systems into subsystems

Q<<import>>

systems into subsystems
- Each subsystem is modeled

as a package

R

Peter Müller – Software Engineering, SS 10

p g

57

Avoid Ravioli Models
3. Analysis – From Use Cases to Objects

Account
Amount

Bank
Name

Customer
Name

**

Amount
AccountId
Deposit()
Withdraw()

Name Name

Withdraw()
GetBalance()

Checking AccountSavings Account Mortgage Account

Don’t put too many classes into the same package:
7 ± 2 (or even 5 ± 2)

Withdraw()Withdraw() Withdraw()

Peter Müller – Software Engineering, SS 10

7 ± 2 (or even 5 ± 2)

58

Put Taxonomies on a Separate Diagram
3. Analysis – From Use Cases to Objects

A tAccount
Amount
AccountId
D it()Deposit()
Withdraw()
GetBalance()

Checking AccountSavings Account Mortgage Account

Withdraw()Withdraw() Withdraw()

Peter Müller – Software Engineering, SS 10

59

Summary: Ways to Find Objects
3. Analysis – From Use Cases to Objects

Syntactical investigation with Abbott‘s technique
In the problem statement- In the problem statement

- In the flow of events of use cases
Use of various knowledge sourcesUse of various knowledge sources
- Application knowledge: Interviews of users and experts

to determine the abstractions of the application domain
- Design knowledge: Reusable abstractions in the

solution domain
G l ld k l d U i i l- General world knowledge: Use your empirical
knowledge and intuition

Peter Müller – Software Engineering, SS 10

60

3. Analysis
3. Analysis – Dynamic Modeling

3 1 Modeling3.1 Modeling
3.2 Object Modeling
3 3 F U C t Obj t3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3 E l3.5 Examples
3.6 Analysis Model Validation

Peter Müller – Software Engineering, SS 10

61

Overview
3. Analysis – Dynamic Modeling

Object model describes structure of system
Dynamic model describes behaviorDynamic model describes behavior
Purpose: Detect and supply operations (methods)
for the object modelfor the object model

We look for objects that
i t ti d S diare interacting and

extract their “protocol”
Sequence diagrams

We look for objects that
have interesting

behavior on their own
State diagrams

Peter Müller – Software Engineering, SS 10

behavior on their own

62

UML Sequence Diagrams
3. Analysis – Dynamic Modeling

Actors and
objects:
columns

Activations:
narrow

:Client :Terminal

insertCard()

columnsnarrow
rectangles

insertCard()
Lifelines:

dashed lines

insertPIN()

Messages: arrows
Time

Peter Müller – Software Engineering, SS 10

Messages: arrows

63

Nested Messages
3. Analysis – Dynamic Modeling

T i l Cli tD t Di l:Client :Terminal

insertCard()

:ClientData

check(data)

:Display

Data flow
ok / nok
displayMessage(text)

Th f i di t th ti tiThe source of an arrow indicates the activation
which sent the message
An activation is as long as all nested activations

Peter Müller – Software Engineering, SS 10

An activation is as long as all nested activations

64

Creation and Destruction
3. Analysis – Dynamic Modeling

:Terminal

()

Creation

:Session
start()

log()

Destruction
g()

close()

Creation is denoted by a message arrow pointing to
the objectj
In garbage collection environments, destruction can
be used to denote the end of the useful life of an

bj t
Peter Müller – Software Engineering, SS 10

object

65

From Use Cases to Sequence Diagrams
3. Analysis – Dynamic Modeling

Sequence diagrams are derived from flows of
events of use casesevents of use cases

An event always has a sender and a receiverAn event always has a sender and a receiver
- Find the objects for each event

Relation to object identificationRelation to object identification
- Objects/classes have already been identified during

object modeling
- Additional objects are identified as a result of dynamic

modeling

Peter Müller – Software Engineering, SS 10

66

Bankomat Example: Withdraw Event Flow
3. Analysis – Dynamic Modeling

Actor steps
1 Authenticate (use case

System Steps
1. Authenticate (use case

Authenticate)
3. Client selects “Withdraw

2. Bankomat displays options

CHF”

5 Cli t t t
4. Bankomat queries amount

5. Client enters amount

6. Bankomat returns bank
dcard

7. Bankomat outputs
specified amount in CHF

Peter Müller – Software Engineering, SS 10

p

67

<<Entity>>
A

<<Boundary>>
T i l

<<Boundary>>
Di l

3. Analysis – Dynamic Modeling

:Account:Client :Terminal

select
(wthdrCHF) initWthdr

(cur)

:Display

()
<<Control>>
:Withdrawal

(cur)

queryAmount()

select
(option)

wthdr
(amount) check(amount, cur)

okay
withdraw(amount, cur)
displayConfimation()

ejectCard()

okay

ejectCard()
taken dispense(amount, cur)

Peter Müller – Software Engineering, SS 10

68

Impact on Object Model
3. Analysis – Dynamic Modeling

For each object that receives an event there is a
public operation in the associated classp p

<<Entity>>
:Account

<<Entity>>
Account:Account

check(amount, cur)
okay

Account

boolean check(int, Currency)
withdraw(amount, cur)

(, y)
withdraw(int, Currency)

Identify additional objects and classes
- In the example: Sink for dispense message

(CashDispenser)

Peter Müller – Software Engineering, SS 10

(CashDispenser)

69

Recommended Layout of Sequence Diagrams
3. Analysis – Dynamic Modeling

1st column:
Actor who 2 d lActor who
initiated the

use case

2nd column:
Boundary object

<<Entity>>
:Account:Client

<<Boundary>>
:Terminal

<<Boundary>>
:Display

<<Control>>
:Withdrawal 3rd column:

Control object that
manages the rest
of the use case

Peter Müller – Software Engineering, SS 10

of the use case

70

Heuristics for Sequence Diagrams
3. Analysis – Dynamic Modeling

Creation of objects
Control objects are created at the initiation of a use case- Control objects are created at the initiation of a use case

- Boundary objects are often created by control objects
Access of objectsAccess of objects
- Entity objects are accessed by control and boundary

objects
- Entity objects should never access boundary or control

objects
• Easier to share entity objects across use cases• Easier to share entity objects across use cases
• Makes entity objects resilient against technology-induced

changes in boundary objects

Peter Müller – Software Engineering, SS 10

71

Fork Structure
3. Analysis – Dynamic Modeling

<<Control>>

The dynamic behavior is placed in a single
object usually a control objectobject, usually a control object
It knows all the other objects and often uses them
for direct queries and commands

Peter Müller – Software Engineering, SS 10

for direct queries and commands

72

Stair Structure
3. Analysis – Dynamic Modeling

The dynamic behavior is distributed
- Each object delegates some responsibility to other- Each object delegates some responsibility to other

objects
- Each object knows only a few of the other objects and

k hi h bj t h l ith ifi b h i

Peter Müller – Software Engineering, SS 10

knows which objects can help with a specific behavior

73

Fork or Stair?
3. Analysis – Dynamic Modeling

Object-oriented supporters claim that the stair
structure is betterstructure is better
- The more the responsibility is spread out, the better

Choose the stair (decentralized control) ifChoose the stair (decentralized control) if
- The operations have a strong connection
- The operations will always be performed in the samep y p

order
Choose the fork (centralized control) if
- The operations can change order
- New operations are expected to be added as a result of

new requirements

Peter Müller – Software Engineering, SS 10

new requirements

74

Sequence Diagrams Summary
3. Analysis – Dynamic Modeling

Sequence diagrams represent behavior in terms of
interactionsinteractions
Complement the class diagrams (which
represent structure)represent structure)

UsefulUseful
- To find missing objects
- To detect and supply operations for the object model

Time consuming to build, but worth the investment

Peter Müller – Software Engineering, SS 10

75

State-Dependent Behavior
3. Analysis – Dynamic Modeling

Objects with extended lifespan often have state-
dependent behaviordependent behavior
- Typical for control objects
- Less often for entity objectsy j
- Almost never for boundary objects

Examplesp
- Withdrawal: has state-dependent behavior
- Account : has state-dependent behavior (e.g., locked)
- Display : does not have state-dependent behavior

State-dependent behavior is modeled only if

Peter Müller – Software Engineering, SS 10

necessary

76

Events, Actions, and Activities
3. Analysis – Dynamic Modeling

Event: Something that happens at a point in time
Typical event: Receipt of a message- Typical event: Receipt of a message

- Other events: Change event for a condition, time event
Action: Operation in response to an eventAction: Operation in response to an event
- Example: Object performs a computation upon receipt of

a message
Activity: Operation performed as long as object is
in some state
- Example: Object performs a computation without external

trigger

Peter Müller – Software Engineering, SS 10

77

UML State Diagrams
3. Analysis – Dynamic Modeling

State 1 State 2

do / activity
entry / action
exit / action

do / activity
entry / action
exit / action

Event(par) [condition] / action

exit / action exit / action

States: Transitions:
St t End

rounded
rectangles

arrowsStart
marker

End
marker

State diagram relates events and states for a class
Often called “state chart” or “state chart diagram”

Peter Müller – Software Engineering, SS 10

Often called state chart or state chart diagram

78

Example 1: States of Copy Objects
3. Analysis – Dynamic Modeling

Copy 1..* Book

borrow()
return()

borrow()
return()

On loan
entry / book.borrow()

On shelf
entry / book.return()

return()
borrow()

Implementation has to take care of unexpected
t i t t “ h lf”messages, e.g., return in state “on shelf”

- Specify precondition
Report an error throw an exception

Peter Müller – Software Engineering, SS 10

- Report an error, throw an exception

79

Example 2: States of Book Objects
3. Analysis – Dynamic Modeling

return()

Not
borrowable

Borrowablereturn()
borrow() [last copy]

borrow() [not last copy]

Events can have different effects depending on

borrow() [not last copy]

guard conditions
Some state diagrams do not have end markers

Peter Müller – Software Engineering, SS 10

80

Example 3: Ticket Vending Machine
3. Analysis – Dynamic Modeling

CollectMoneyy

[change < 0]insCoin(amount) / add to balance

Idle
entry / clear

balance

TicketSelected
entry / compute change

selectTicket(tkt)

balance

OverPaid

[change > 0]

ExactlyPaid

[change = 0]

[change[ticket OverPaid
do / dispense change

ExactlyPaid
do / dispense ticket

[change
dispensed]

[ticket
dispensed]

Peter Müller – Software Engineering, SS 10

81

State
3. Analysis – Dynamic Modeling

An abstraction of the attribute values of an object
A state is an equivalence class of all those attributeA state is an equivalence class of all those attribute
values and links that do not need to be
distinguished as far as the control structure of thedistinguished as far as the control structure of the
class or the system is concerned
Example: State of a booka p e State o a boo
- A book is either borrowable or not
- Omissions: bibliographic data
- All borrowable books are in the same equivalence class,

independent of their author, title, etc.

Peter Müller – Software Engineering, SS 10

82

Nested State Diagrams
3. Analysis – Dynamic Modeling

Activities in states can be composite items that
denote other state diagramsdenote other state diagrams

Sets of substates in a nested state diagram can beSets of substates in a nested state diagram can be
denoted with a superstate
- Avoid spaghetti modelsAvoid spaghetti models
- Reduce the number of lines in a state diagram

Peter Müller – Software Engineering, SS 10

83

Example: Superstate
3. Analysis – Dynamic Modeling

CollectMoneyy

insCoin(amount) / add to balance [change < 0]

Idle
entry / clear

balance

TicketSelected
entry / compute change

selectTicket(tkt)

balance

ExactlyPaid OverPaid

[change > 0][change = 0]

[change[ticket ExactlyPaid
do / dispense ticket

OverPaid
do / dispense change

[change
dispensed]

[ticket
dispensed]

Peter Müller – Software Engineering, SS 10

Superstate

84

Expanding the Superstate
Dispense as

3. Analysis – Dynamic Modeling

[change = 0]

Dispense as
atomic activity

ExactlyPaid
do / dispense ticket

[change
dispensed]

[ticket
dispensed]

Dispense as
composite

ti it

do / store coinsdo / issue ticket do / print ticket

activity

Transitions from other states to the superstate
enter the first substate of the superstateenter the first substate of the superstate
Transitions to other states from a superstate are
inherited by all the substates (state inheritance)

Peter Müller – Software Engineering, SS 10

inherited by all the substates (state inheritance)

85

State Diagram vs. Sequence Diagram
3. Analysis – Dynamic Modeling

State diagrams help to identify
Changes to an individual object over time- Changes to an individual object over time

Sequence diagrams help to identifySequence diagrams help to identify
- The temporal relationship of between objects
- Sequence of operations as a response to one or moreSequence of operations as a response to one or more

events

Peter Müller – Software Engineering, SS 10

86

Practical Tips for Dynamic Modeling
3. Analysis – Dynamic Modeling

Construct dynamic models only for classes with
significant dynamic behaviorsignificant dynamic behavior
- Avoid “analysis paralysis”

Consider only relevant attributesConsider only relevant attributes
- Use abstraction if necessary

Look at the granularity of the application whenLook at the granularity of the application when
deciding on actions and activities
Reduce notational clutter
- Try to put actions into superstate boxes (look for identical

actions on events leading to the same state)

Peter Müller – Software Engineering, SS 10

87

Requirements Analysis Document
3. Analysis – Dynamic Modeling

q y
1. Introduction

1 Purpose and scope of the System1. Purpose and scope of the System
2. Objectives and success criteria of the project
3. Definitions, acronyms, references, overview

2. Current System
3. Proposed Systemy

1. Overview
2. Functional requirements
3 N f ti l i t3. Nonfunctional requirements
4. System models

4 Glossary

Peter Müller – Software Engineering, SS 10

4. Glossary

88

Section 3.4 System Model
3. Analysis – Dynamic Modeling

3.4.1 Scenarios
- As-is scenarios, visionary scenariosAs is scenarios, visionary scenarios

3.4.2 Use case model
- Actors and use cases

3.4.3 Object model
- Data dictionary

Cl di l i ti tt ib t ti- Class diagrams: classes, associations, attributes, operations
3.4.4 Dynamic model

State diagrams for classes with significant dynamic behavior- State diagrams for classes with significant dynamic behavior
- Sequence diagrams for collaborating objects (protocol)

3.4.5 User Interface

Peter Müller – Software Engineering, SS 10

89

Summary: System Models
3. Analysis – Dynamic Modeling

1. What are the transformations?
Create scenarios and use case diagrams

→ Functional Model
- Create scenarios and use case diagrams
- Talk to client, observe, get historical records

2 What is the structure of the system? → Object Model2. What is the structure of the system?
- Create class diagrams
- Identify objects, associations and their multiplicity,

→ Object Model

y j , p y,
attributes, operations

3. What is its behavior? → Dynamic Model
- Create sequence diagrams
- Show senders, receivers, and sequence of events

C t t t di (f th i t ti bj t)

Peter Müller – Software Engineering, SS 10

- Create state diagrams (for the interesting objects)

90

Dominance of Models
3. Analysis – Dynamic Modeling

Object model
The system has classes with nontrivial states and- The system has classes with nontrivial states and
many relationships between the classes

Dynamic model
- The model has many different types of events: Input,

output, exceptions, errors, etc.

F ti l d lFunctional model
- The model performs complicated transformations

(e g computations consisting of many steps)

Peter Müller – Software Engineering, SS 10

(e.g., computations consisting of many steps)

91

Dominance of Models: Examples
3. Analysis – Dynamic Modeling

Compiler: Functional model
Dynamic model is trivial (there is only one type input and- Dynamic model is trivial (there is only one type input and
only a few outputs)

Database systems: Object modely j
- Functional model is trivial (the purpose of the functions is

usually to store, organize, and retrieve data)
Spreadsheet program: Functional model
- Dynamic model is interesting if the program allows

t ti llcomputations on a cell
- Object model is trivial (spreadsheet values are trivial; the

only interesting object is the cell)

Peter Müller – Software Engineering, SS 10

y g j)

92

3. Analysis
3. Analysis – Examples

3 1 Modeling3.1 Modeling
3.2 Object Modeling
3 3 F U C t Obj t3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3 E l3.5 Examples
3.6 Analysis Model Validation

Peter Müller – Software Engineering, SS 10

93

Elevator Control: Problem Statement
3. Analysis – Examples

The elevator has one button for each floor
- Illuminate when pressedIlluminate when pressed
- Cause the elevator to visit the corresponding floor
- Illumination is canceled when the elevator visits the

di flcorresponding floor
Each floor, except the first floor and top floor has
two buttons to request the elevator to go up ortwo buttons to request the elevator to go up or
down, respectively
- Illuminate when pressed
- Causing the elevator to visit the corresponding floor
- Illumination is canceled when the elevator visits the floor

and then moves in the desired direction

Peter Müller – Software Engineering, SS 10

and then moves in the desired direction

94

Use Case: Fetch Elevator
3. Analysis – Examples

Flow of Events:
Passenger pushes hallPassenger pushes hall
button
System illuminates button

FetchElevator

Passenger

Initiating actor: Passenger
Entry condition:

System closes elevator
doors
System moves elevator toPassenger is in the hall

Exit condition:
Elevator is on requested

System moves elevator to
requested floor
System cancels Elevator is on requested

floor with doors open
y

illumination
System opens elevator
doors

Peter Müller – Software Engineering, SS 10

doors

95

Use Case: Ride Elevator
3. Analysis – Examples

Flow of Events:
Passenger pushesPassenger pushes
elevator button
System illuminates button

RideElevator

Passenger

Initiating actor: Passenger
Entry condition:

System closes elevator
doors
System moves elevator toPassenger is inside the

elevator
Exit condition:

System moves elevator to
requested floor
System cancels Exit condition:

Elevator is on requested
floor with doors open

y
illumination
System opens elevator
doors

Peter Müller – Software Engineering, SS 10

doors

96

Initial Analysis Object Model
3. Analysis – Examples

<<Entity>>

<<Control>>
Controller

<<Entity>>
Engine<<Boundary>>

Button
*

<<E tit >>

<<Boundary>>
ElevatorButton

<<Boundary>>
HallButton

<<Entity>>
Door

Peter Müller – Software Engineering, SS 10

97

Sequence Diagram: Fetch and Ride Elevator
3. Analysis – Examples

<<Entity>><<Boundary>> <<Control>> <<Entity>> y
:Door:Passenger

y
:Button :Controller

push() request(floor)

y
:Engine

illuminate

close()

moveTo(floor)

cancel

()

open()Illumination()

Peter Müller – Software Engineering, SS 10

98

Iteration: Missed Requirements
3. Analysis – Examples

The project manager decides that the analysis
results should also be discussed with the hardwareresults should also be discussed with the hardware
engineer

Engine cannot be told to move to a given floor
Messages understood by the engine:Messages understood by the engine:
- Start moving in a given direction
- Stop moving

Sensors are used to determine position of elevator
- Sensors send signal when floor is reached

Peter Müller – Software Engineering, SS 10

99

Use Case: Request Elevator
3. Analysis – Examples

RequestElevator

Passenger

Initiating actor: Passenger
Entry condition: –

Flow of Events:
Passenger pushes button

Exit condition:
Elevator starts moving
towards requested floor

System illuminates button
System closes elevator
doorstowards requested floor doors
System initiates elevator
to move to requested floor

Peter Müller – Software Engineering, SS 10

q

100

Use Case: Reach Floor
3. Analysis – Examples

ReachFloor

Sensor

Initiating actor: Sensor
Entry condition:
Elevator is moving to

Flow of Events:
Sensor signals that some
floor is reachedElevator is moving to

requested floor
Exit condition:

floor is reached
System stops elevator
System cancels

Elevator is stopped on
requested floor with doors
open

System cancels
illumination of button
System opens elevator

Peter Müller – Software Engineering, SS 10

open doors

101

Sequence Diagram: Request Elevator
3. Analysis – Examples

<<Entity>>
:Door:Passenger

<<Boundary>>
:Button

<<Control>>
:Controller

<<Entity>>
:Engine

push() request(floor)

illuminate

start
(di ti)

close()

(direction)

Peter Müller – Software Engineering, SS 10

102

Sequence Diagram: Reach Floor
3. Analysis – Examples

<<Entity>>
:Door

<<Boundary>>
:Button

<<Control>>
:Controller

<<Entity>>
:Engine :Door:Sensor :Button

signal(floor)

:Controller :Engine

opt [floor = nextStop]
stop()

opt [floor = nextStop]

cancel
open()Illumination()

“opt” frame denotes
diti l ti

Peter Müller – Software Engineering, SS 10

conditional execution

103

State Diagram: Controller
3. Analysis – Examples

signal(floor) [floor ≠ nextStop]

Idle Busy
request(floor) /

g () [p]

Idle Busydoor.close(); engine.start(direction)

signal(floor) [floor = nextStop] /signal(floor) [floor nextStop] /
engine.stop(); door.open()

Request is q
disallowed while

elevator is moving

Peter Müller – Software Engineering, SS 10

104

A More Realistic Elevator
3. Analysis – Examples

Additional business requirements
Requests shall be accepted at any timeRequests shall be accepted at any time
- Also when elevator is moving

System keeps track of all pending requestsSystem keeps track of all pending requests
- Processing order not specified

Elevator serves requests on its way immediatelyElevator serves requests on its way immediately
- Detailed by scenario

We ignore illumination of buttons and operation of
doors in the following

Peter Müller – Software Engineering, SS 10

g

105

Scenario: Processing Requests on the Way
3. Analysis – Examples

1. Alice enters elevator on
first floor and pushes

6. System initiates elevator
to move to fifth floor

button for fifth floor
2. System initiates elevator

to move to fifth floor

7. System stops elevator on
fifth floor

8 Alice gets off
3. When elevator is on

second floor, Bob pushes
hall button on third floor

8. Alice gets off
9. System initiates elevator

to move to sixth floor
10 S t t l thall button on third floor

4. System stops elevator on
third floor

5 B b l d

10.System stops elevator on
sixth floor

11.Bob gets off
5. Bob enters elevator and

pushes button for sixth
floor

g

Peter Müller – Software Engineering, SS 10

106

Use Case: Request Elevator
3. Analysis – Examples

RequestElevator

Passenger

Initiating actor: Passenger
Entry condition: –

Flow of Events:
Passenger pushes button

Exit condition:
- System stores new request
- If idle elevator started

System determines next
stop (a previous or new
request)- If idle, elevator started

moving towards requested
floor

request)
System initiates elevator
to move to determined

Peter Müller – Software Engineering, SS 10

next stop

107

Use Case: Reach Floor
3. Analysis – Examples

ReachFloor

Sensor

Initiating actor: Sensor
Entry condition:
- Elevator is moving towards

Flow of Events:
Sensor signals that some
floor is reached- Elevator is moving towards

requested floor
Exit condition:

Elevator had stopped on

floor is reached
System stops elevator if
requested floor is reached
S t h t- Elevator had stopped on

requested floor
- Elevator is moving to next

requested floor

System chooses next
request (extension point)
System initiates elevator

Peter Müller – Software Engineering, SS 10

q y
to move to requested floor

108

Sequence Diagram: Request Elevator
3. Analysis – Examples

<<Entity>>
:RequestPool:Passenger

<<Boundary>>
:Button

<<Control>>
:Controller

<<Entity>>
:Engine

push() request(floor)
store(later(floor, nextStop))

findNext(floor nextStop)

[idle] start
(di ti)

findNext(floor, nextStop)

(direction)

Condition

Peter Müller – Software Engineering, SS 10

Condition

109

Sequence Diagram: Reach Floor
3. Analysis – Examples

<<Entity>>
:RequestPoolSensor

<<Control>>
:Controller

<<Entity>>
:Engine q:Sensor

signal(floor)

g

stop()opt [floor = nextStop]p()

served(floor)

p [p]

nextStop := getNext()

setIdle()alt [nextStop = ∅]

nextStop := getNext()

start
(direction)

[else]

Peter Müller – Software Engineering, SS 10

110

Class Diagram
3. Analysis – Examples

<<Control>>
C

<<Entity>>
E iController

int current
int nextStop
boolean idle

Engine

start(boolean)<<Boundary>>
Button

*

boolean idle
request(int)
signal(int)

push() <<Entity>>
RequestPool

<<Boundary>>
ElevatorButton

<<Boundary>>
HallButton

store(int)
served(int)
int getNext()ElevatorButtonHallButton int getNext()

Peter Müller – Software Engineering, SS 10

111

State Diagram: Controller
3. Analysis – Examples

request(floor)

Idle Requested
Stop

[pool is empty]

request(floor)

Stop

signal(floor)

[pool is not empty] /
choose nextStop

Moving

request(floor) signal(floor)
[floor = nextStop]

request(floor)

Peter Müller – Software Engineering, SS 10

request(floor)

112

3. Analysis
3. Analysis – Model Validation

3 1 Modeling3.1 Modeling
3.2 Object Modeling
3 3 F U C t Obj t3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3 E l3.5 Examples
3.6 Analysis Model Validation

Peter Müller – Software Engineering, SS 10

113

Validation and Verification of Models
3. Analysis – Model Validation

M2 M2
fM2M2 M2

I2: System Design
fM1

Verification

M1 M1
fM1

I1: Analysis Verification

M M
fM

I: Requirements ElicitationValidation

R R

I: Requirements Elicitation
fR

Validation

Peter Müller – Software Engineering, SS 10

114

Validation and Verification of Models (cont’d)
3. Analysis – Model Validation

Verification is a comparison of two models
Determining that a model accurately represents another- Determining that a model accurately represents another
model

- One can prove a refinement relation (rarely done in
practice)

Validation is a comparison of a model to reality
- Reality can be an artificial system, (e.g., legacy system)
- Validation is a critical step in the development process

R i t h ld b lid t d ith th li tRequirements should be validated with the client
and the user

Technique: Formal and informal requirements reviews

Peter Müller – Software Engineering, SS 10

- Technique: Formal and informal requirements reviews

115

Checklist for a Requirements Review
3. Analysis – Model Validation

Is the model correct?
Everything is the model represents an aspect of reality- Everything is the model represents an aspect of reality

Is the model complete?
- Every scenario including exceptions is described- Every scenario, including exceptions, is described

Is the model consistent?
- The model does not have components that contradictThe model does not have components that contradict

themselves (for example, deliver contradicting results)
Is the model unambiguous?g
- The model describes one system (one reality), not many

Is the model realistic?

Peter Müller – Software Engineering, SS 10

- The model can be implemented without problems

116

Checklist for a Requirements Review (cont’d)
3. Analysis – Model Validation

One problem with modeling: We describe a system
model with many different viewsmodel with many different views
- Use cases, class, sequence, and state diagrams

We need to check the equivalence of these viewsWe need to check the equivalence of these views
Syntactical check of the models
- Consistent naming of classes attributes methodsConsistent naming of classes, attributes, methods
- No dangling associations (“pointing to nowhere”)
- No double-defined classes
- No missing classes (mentioned but not defined)
- No classes with the same name but different meanings

Peter Müller – Software Engineering, SS 10

117

Analysis Activities Summary
3. Analysis - Conclusion

Define use cases

Define controlDefine boundaryDefine entity

Define participating
objects

Define interactions

Define control
objects

Define boundary
objects

Define entity
objects

Define
associationsDefine attributesDefine state-

dependent behavior

e e te act o s

Consolidate model

Peter Müller – Software Engineering, SS 10

Review model

