
Software Engineeringg g
Introduction

Prof. Dr. Peter Müller
Chair of Programming Methodology

Spring Semester 2010

2

1. Introduction
1. Introduction – Course Outline

1 1 Course Outline1.1 Course Outline
1.2 Motivation
1 3 S ft Q liti1.3 Software Qualities
1.4 Software Engineering Principles

Peter Müller – Software Engineering, SS 10

3

Approach
1. Introduction – Course Outline

This course will entirely focus on object-oriented
software engineeringg g

You will have to carry out a project from the y p j
problem statement to deployment

Exercise sessions will be used for
- Student presentations

Discussions- Discussions
- Introductions to software engineering tools

Peter Müller – Software Engineering, SS 10

4

After this Course, you should
1. Introduction – Course Outline

Be able to produce high-quality software
Be able to deal with complexity and changeBe able to deal with complexity and change

H th t h i l k l d (i h i)Have the technical knowledge (main emphasis)
Have an overview of the managerial knowledge
H i f l lHave an overview of relevant tools

Peter Müller – Software Engineering, SS 10

5

Course Outline (tentative)
1. Introduction – Course Outline

1. Introduction
2 Requirements Elicitation2. Requirements Elicitation
3. Analysis
4 System Design4. System Design
5. Detailed Design
6. Implementation6 p e e tat o
7. Testing and Quality Assurance
8. Process Models
9. Project Management

Peter Müller – Software Engineering, SS 10

6

Guest Lecture
1. Introduction – Course Outline

Harald Gall Universität Zürich:Harald Gall, Universität Zürich:
Software Evolution: Analysis and Visualization
- April 26 2010April 26, 2010

Peter Müller – Software Engineering, SS 10

7

Grading
1. Introduction – Course Outline

Projects
Ungraded but must be completed successfully- Ungraded, but must be completed successfully

- To pass, you must submit all four deliverables in time
and in sufficient quality

Exam
- Written exam in the exam session
- Knowledge from project will be essential!

Grade is determined entirely by the exam

Peter Müller – Software Engineering, SS 10

8

Course Infrastructure
1. Introduction – Course Outline

Web page:
www pm inf ethz ch/education/courses/ksewww.pm.inf.ethz.ch/education/courses/kse

Slides will be available on the web page two daysSlides will be available on the web page two days
before the lecture (Thursday)

Peter Müller – Software Engineering, SS 10

9

Literature
1. Introduction – Course Outline

No single book covers course content

Good general books on Software Engineering
Bernd Bruegge Allen H Dutoit: Object Oriented- Bernd Bruegge, Allen H. Dutoit: Object-Oriented
Software Engineering. Prentice Hall, 2004.

- Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli: , y ,
Fundamentals of Software Engineering. Prentice Hall,
2002.

See course web page for a comprehensive list

Peter Müller – Software Engineering, SS 10

10

The Projects
1. Introduction – Course Outline

Software Engineering projects
Not just programming projects- Not just programming projects

Topic: An in flight entertainment systemTopic: An in-flight entertainment system
- Focus on development process rather than result

Projects can be done in teams of three or four

Details will be explained in first exercise session

Peter Müller – Software Engineering, SS 10

11

Background Knowledge
1. Introduction – Course Outline

The lecture focuses on concepts

For the projects, you will also need knowledge
about the technologyabout the technology
- UML
- Java
- Various tools

We expect you to acquire this knowledge!

Peter Müller – Software Engineering, SS 10

12

Exercise Sessions
1. Introduction – Course Outline

Thursday, 8:00-10:00
Valentin Wüstholz (IFW B42)- Valentin Wüstholz (IFW B42)

Friday, 13:00-15:00
- Hermann Lehner (IFW C42)- Hermann Lehner (IFW C42)

Monday, 15:00-17:00
- Joseph Ruskiewicz (IFW A34)Joseph Ruskiewicz (IFW A34)

Exercises start on Thursday this weekExercises start on Thursday this week

Peter Müller – Software Engineering, SS 10

13

1. Introduction
1. Introduction – Motivation

1 1 Course Outline1.1 Course Outline
1.2 Motivation
1 3 S ft Q liti1.3 Software Qualities
1.4 Software Engineering Principles

Peter Müller – Software Engineering, SS 10

14

Software – a Poor Track Record
1. Introduction – Motivation

Software bugs cost the U.S. economy an estimated
$59 5 billion annually or about 0 6 percent of the$59.5 billion annually, or about 0.6 percent of the
gross domestic product
84% of all software projects are84% of all software projects are
unsuccessful
- Late, over budget, less features than

53%16%
, g ,

specified, cancelled
The average unsuccessful project

31%- 222% longer than planned
- 189% over budget

Peter Müller – Software Engineering, SS 10

- 61% of originally specified features

15

Quality of Today’s Software …
1. Introduction – Motivation

Peter Müller – Software Engineering, SS 10

16

… Has Major Impact on Users
1. Introduction – Motivation

Peter Müller – Software Engineering, SS 10

17

The Therac-25 Accident
1. Introduction – Motivation

Therac-25 is a medical linear accelerator
Hi hHigh-
energy
X-rayX-ray
and
electron
beams
destroy
tumors

Peter Müller – Software Engineering, SS 10

18

Therac-25 System Design
1. Introduction – Motivation

Therac-25 is completely computer-controlled
- Software written in assembler codeSoftware written in assembler code
- Therac-25 has its own real-time operating system

Software partly taken from ancestor machines
- Software functionality limited
- Hardware safety features and interlocks

H d l iHazard analysis
- Extensive testing on hardware simulator
- Program software does not degrade due to wear fatigueProgram software does not degrade due to wear, fatigue,

or reproduction process
- Computer errors are caused by hardware or by alpha

particles

Peter Müller – Software Engineering, SS 10

particles

19

Therac-25 Software Design
1. Introduction – Motivation

Keyboard Mode and energy
l l t d i

Cursor in lower
right corner ofeyboa d

Controllerlevel stored in
shared variable

right corner of
screen

Mode and
Energy

Data Entry
CompleteEnergy Complete

Proceed if data
entry complete

Treatment
Controller

Beamer set to
energy level

(takes 8 secs)

Peter Müller – Software Engineering, SS 10

Check for changes

20

Accident Mode switched
to electron

1. Introduction – Motivation

Keyboard X-Ray mode
t d (t

Cursor in lower
right corner of

to electron

eyboa d
Controllerentered (sets

default energy)
right corner of

screen

Mode and
Energy

Data Entry
CompleteEnergy Complete

Overdose (100x)
Patient dies

Treatment
Controller

Beamer set to
high energy level

(takes 8 secs)

Peter Müller – Software Engineering, SS 10

Check for changes
contains bug

21

Analysis of the Therac-25 Accident
1. Introduction – Motivation

Changed requirements were not considered
In Therac 25 software is safety critical- In Therac-25 software is safety-critical

Design is too complex
- Concurrent system shared variables (race conditions)- Concurrent system, shared variables (race conditions)

Code is buggy
- Check for changes done at wrong placeCheck for changes done at wrong place

Testing was insufficient
- System test only, almost no separate software testSystem test only, almost no separate software test

Maintenance was poor
- Correction of bug instead of re-design (root cause)

Peter Müller – Software Engineering, SS 10

g g ()

22

Challenge: Complexity
1. Introduction – Motivation

Complexity is caused by
Complexity of the problem domain- Complexity of the problem domain

- Complexity of the development process
- Flexibility of softwareFlexibility of software

Aspects of complexityp p y
- Multi-person construction (team-effort)
- Multi-version software
- Often conflicting objectives
- Development and operation lasts many years

Peter Müller – Software Engineering, SS 10

23

Challenge: Change
1. Introduction – Motivation

Change is caused by
Bug fixes- Bug fixes

- Changing requirements
(adding, enhancing, removing features)

- Changing environment
- Changing development team

Each implemented change erodes the structure of
the system, which makes the next change even
more expensive

Peter Müller – Software Engineering, SS 10

24

Software Engineering: Definition 1
1. Introduction – Motivation

A collection of techniques, methodologies, and
tools that help with the production oftools that help with the production of
- a high quality software system
- with a given budgetg g
- before a given deadline
- while change occurs

[Brügge]

Constraints are important

Peter Müller – Software Engineering, SS 10

25

Software Engineering: Definition 2
1. Introduction – Motivation

The application of a systematic, disciplined, and
quantifiable approach to the developmentquantifiable approach to the development,
operation, and maintenance of Software; that is, the
application of engineering to softwarepp g g

[IEEE, ANSI]

Software engineering spans whole product lifecycle

Peter Müller – Software Engineering, SS 10

26

Science vs. Engineering
1. Introduction – Motivation

Engineering
- The application of science to the needs of

humanity
Application of knowledge mathematics- Application of knowledge, mathematics,
and practical experience to the design of
useful objects or processes

Science
K l d i l t th th- Knowledge covering general truths or the
operation of general laws

Peter Müller – Software Engineering, SS 10

27

Computer Science vs. Software Engineering
1. Introduction – Motivation

Software Engineering
- The application of computer science,

mathematics, project management to build
high quality softwarehigh quality software

Computer Science
C t bilit l ith d l it- Computability, algorithms and complexity,
programming languages, data structures,
databases, artificial intelligence, etc.

Peter Müller – Software Engineering, SS 10

28

Related Areas
1. Introduction – Motivation

Will the project be
completed in time

Is this requirement
addressed on hardware completed in time

and budget?
addressed on hardware

or software level (or
both)?

Systems Engineering
- Complex systems with

Project Management
- Organizes and leads the p y

software and hardware
- Interdisciplinary

g
project work to meet
project requirements
C d ith ti- Example: Therac-25 - Concerned with time,
budget, procurement,
communication, etc.

Peter Müller – Software Engineering, SS 10

29

1. Introduction
1. Introduction – Software Qualities

1 1 Course Outline1.1 Course Outline
1.2 Motivation
1 3 S ft Q liti1.3 Software Qualities
1.4 Software Engineering Principles

Peter Müller – Software Engineering, SS 10

30

Representative Software Qualities
1. Introduction – Software Qualities

MaintainabilityCorrectness

UnderstandabilityRobustness

Performance Verifiability

Scalability Reusability

PortabilityUsability

Reliability Evolvability

RepairabilitySecurity

Peter Müller – Software Engineering, SS 10

Interoperability

31

Correctness
1. Introduction – Software Qualities

Correct software meets its functional
requirements specificationrequirements specification
Correctness is a mathematical property
Can be enhanced byCan be enhanced by
- Appropriate tools (e.g., high-level languages)
- Standard algorithms and librariesStandard algorithms and libraries
- An established development process

Example: security control system of the "Meteor" p y y
line of the Paris metro is proven to be correct

Peter Müller – Software Engineering, SS 10

32

Robustness
1. Introduction – Software Qualities

Robust software behaves “reasonably”, even in
circumstances not covered by the specificationcircumstances not covered by the specification
Can be enhanced by
- Assertions (Design by Contract)Assertions (Design by Contract)
- Software monitoring
- Defensive programmingp g g

Example: database system performs a controlled
shutdown when hardware error occurs
- No data is corrupted
- Behavior is logged for later analysis or retry

Peter Müller – Software Engineering, SS 10

33

Security
1. Introduction – Software Qualities

Secure software is protected against
unauthorized access to or modification ofunauthorized access to or modification of
information
- Confidentiality, integrity, availabilityy, g y, y

Can be enhanced by
- Cryptographyyp g p y
- Proven protocols

Example: internet banking uses cryptography to
protect transmitted data from leaking and
manipulation

Peter Müller – Software Engineering, SS 10

34

Reliability
1. Introduction – Software Qualities

Reliable software has a high probability to
operate as expected over a specified intervaloperate as expected over a specified interval
Reliability is a statistical property
Can be enhanced byCan be enhanced by
- Fault avoidance (e.g., careful design)
- Fault tolerance (e g redundancy)Fault tolerance (e.g., redundancy)
- Fault detection (e.g., testing)

Example: telephone system establishes a p p y
connection > 99.9% of the time

Peter Müller – Software Engineering, SS 10

35

Performance
1. Introduction – Software Qualities

High-performance software is fast and consumes a
small amount of memorysmall amount of memory
- Response time
- Throughputg p
- Memory usage

Can be enhanced byy
- Considering performance when designing the software

architecture
- Code optimization (performance tuning)

Example: a stock trading system handles up to
100’000 orders per hour

Peter Müller – Software Engineering, SS 10

100 000 orders per hour

36

Scalability
1. Introduction – Software Qualities

Scalable software shows increased performance
under an increased load when resources (typicallyunder an increased load when resources (typically
hardware) are added
Can be enhanced byCan be enhanced by
- De-centralized architectures
- Low complexity of algorithmsp y g

Examples
- Peer-to-peer file exchange systems scale easily to

millions of users
- A routing protocol is scalable if the size of the routing

table grows as O(log N) where N is the number of nodes

Peter Müller – Software Engineering, SS 10

table grows as O(log N), where N is the number of nodes

37

Usability (User Friendliness)
1. Introduction – Software Qualities

Usable software is found easy to use by humans
Subjective (e g experts and novices have difference- Subjective (e.g., experts and novices have difference
requirements)

Can be enhanced byy
- Offering different user interfaces
- Adaptable user interfaces (maybe even automatically)
- New forms of human computer interaction (e.g., speech)

Example: order system offers a GUI for occasional
users and a command line interface for experts

Peter Müller – Software Engineering, SS 10

38

Interoperability
1. Introduction – Software Qualities

Interoperable software can coexist and cooperate
with other systemswith other systems
Can be enhanced by
- Well-documented interfaces (e g file formats protocols)Well documented interfaces (e.g., file formats, protocols)
- Standard interface formats (e.g., XML)

ExamplesExamples
- A word processor can incorporate a spreadsheet table or

graph
- By using a web service, any application can query

Google

Peter Müller – Software Engineering, SS 10

39

Maintainability
1. Introduction – Software Qualities

Maintainable software enables or simplifies
modification after initial developmentmodification after initial development
- Corrective maintenance (bug fixing)
- Adaptive maintenance (adaptation to changed p (p g

environment, e.g., new version of operating system)
- Perfective maintenance (improvement, e.g., new

f ti)functions)

Maintainability

U d t d bilit

Repairability Evolvability

Peter Müller – Software Engineering, SS 10

Understandability

40

Maintainability (cont’d)
1. Introduction – Software Qualities

Can be enhanced by
Modular design narrow interfaces- Modular design, narrow interfaces

- Good documentation
- Extensive test suite (preferably automated)Extensive test suite (preferably automated)

Example: Deutsche Bank order system was
developed in 1960s and has been maintained since p
then
- New hardware, operating system, database system
- New functionality (internet banking, intraday trading)

Peter Müller – Software Engineering, SS 10

41

Verifiability
1. Introduction – Software Qualities

Properties of verifiable software can be verified
easilyeasily
- Testing
- Formal verification

Can be enhanced by
- Software monitors (e.g., to measure performance)(g , p)
- Modular design

Example: Assertions (contracts) enable runtime
assertion checking to find bugs

Peter Müller – Software Engineering, SS 10

42

Reusability
1. Introduction – Software Qualities

Reusable software can be reused, adapted, and
composed to develop new productscomposed to develop new products
- Different levels of granularity from methods to

applications
Can be enhanced by
- Modular design, narrow interfaces, parameterization
- Good documentation
- Object technology (inheritance, overriding)

Example: class libraries of OO-languages such as
C#, Eiffel, Java, etc.

Peter Müller – Software Engineering, SS 10

43

Portability
1. Introduction – Software Qualities

Portable software can run in different
environments (e g hardware operating system)environments (e.g., hardware, operating system)
Can be enhanced by
- Isolation of dependencies on environmentIsolation of dependencies on environment
- Layered architectures
- Virtual machines

Example: Java applications can run in any
environment that provides a virtual machine
(“write once, run anywhere”)

Peter Müller – Software Engineering, SS 10

44

1. Introduction
1. Introduction – Software Engineering Principles

1 1 Course Outline1.1 Course Outline
1.2 Motivation
1 3 S ft Q liti1.3 Software Qualities
1.4 Software Engineering Principles

Peter Müller – Software Engineering, SS 10

45

The Role of Principles
1. Introduction – Software Engineering Principles

Support the application of
methods, techniques,

Tools
Packages of methods

and techniques

q
and methodologies

MethodologiesGeneral guidelines
that govern activities

More technical and
mechanic than

th d

P i i l

Methods and techniques methods

Principles General and abstract
descriptions of desirable

properties of products

Peter Müller – Software Engineering, SS 10

p p p
and processes

46

Important Software Engineering Principles
1. Introduction – Software Engineering Principles

Rigor and formality
Separation of concernsSeparation of concerns
Modularity
Ab t tiAbstraction
Anticipation of change
G liGenerality
Incrementality

Peter Müller – Software Engineering, SS 10

47

Rigor and Formality
1. Introduction – Software Engineering Principles

Rigor means strict precision
Various degrees of rigor can be achieved- Various degrees of rigor can be achieved

- Example: mathematical proofs
Formality is the highest degree of rigorFormality is the highest degree of rigor
- Development process driven and evaluated by

mathematical laws
- Examples: refinement
- Formality enables tool support

Degree of rigor depends on application

Peter Müller – Software Engineering, SS 10

48

Rigor and Formality: Examples
1. Introduction – Software Engineering Principles

Requirements are
typically fuzzy

Requirements Elicitation

Typical Application
Requirements Elicitation

Safety-Critical Application

Analysis AnalysisSafety
requirements

System Design

Detailed Design

System Design

Detailed Design

must be
stated

formally

Implementation

V lid ti

Implementation
Programs are

Peter Müller – Software Engineering, SS 10

Validation Validationformal entities

49

Rigor and Formality: Compiler Case Study
1. Introduction – Software Engineering Principles

Compilers are critical products
Errors are multiplied on a mass scale- Errors are multiplied on a mass scale

Very high degree of formalization
- Syntax: regular expressions grammars BNF- Syntax: regular expressions, grammars, BNF
- Semantic analysis: attribute grammars

Formalization enables tool supportFormalization enables tool support
- Scanner generators (lex)
- Parser generators (yacc)g (y)

Peter Müller – Software Engineering, SS 10

50

Separation of Concerns
1. Introduction – Software Engineering Principles

Deal with different aspects of a problem
separatelyseparately
- Reduce complexity
- Functionality, reliability, performance, environment, etc.y, y, p , ,

Many aspects are related and interdependent
- Separate unrelated concernsp
- Consider only the relevant details of a related concern

Tradeoff
- Risk to miss global optimizations
- Chance to make optimized decisions in the face of

l it i li it d

Peter Müller – Software Engineering, SS 10

complexity is very limited

51

Ways to Achieve Separation of Concerns
1. Introduction – Software Engineering Principles

Time Size
(waterfall model) (modularization)

Complexity

Qualities
(focus on correctness,

performance later)

Domains
(problem domain,

implementation domain)

Views
(data flow control flow)

Peter Müller – Software Engineering, SS 10

(data flow, control flow)

52

Separation of Concerns: Compiler Case Study
1. Introduction – Software Engineering Principles

Correctness is primary concern
Other concernsOther concerns
- Efficiency of compiler and of generated code
- User friendliness (helpful warnings etc)- User friendliness (helpful warnings, etc.)

Example for interdependencies:Example for interdependencies:
runtime diagnostics vs. efficient code
- Example: runtime assertion checking
- Diagnostics simplify testing, but create overhead
- Typical solution: option to disable checks

Peter Müller – Software Engineering, SS 10

53

Modularity
1. Introduction – Software Engineering Principles

Divide system into modules to reduce complexity

Decompose a complex system into simpler pieces
C l t f i ti d lCompose a complex system from existing modules
Understand the system in terms of its pieces
M dif b dif i l ll bModify a system by modifying only a small number
of its pieces

See Software Architecture, Lecture 2

Peter Müller – Software Engineering, SS 10

54

Cohesion and Coupling
1. Introduction – Software Engineering Principles

Cohesion measures interdependence of the
elements of one moduleelements of one module
Coupling measures interdependence between
different moduledifferent module
Goal: high cohesion and low coupling

Low
cohesion

High Low High

Peter Müller – Software Engineering, SS 10

coupling coupling cohesion

55

Modularity: Compiler Case Study
1. Introduction – Software Engineering Principles

Symbol Table

Lexical
Analysis Parsing Semantic

Analysis
Code

Generation

Source
Code

Object
Code

Symbol Table

Analysis g Analysis Generation

Compilers are modularized into phases
Each phase has precisely defined input and output
- High cohesion: common functionality in each phase
- Low coupling: pipe-and-filter architecture, symbol table

Peter Müller – Software Engineering, SS 10

56

Abstraction
1. Introduction – Software Engineering Principles

Identify the important aspects and ignore the
detailsdetails

Abstraction in software engineeringAbstraction in software engineering
- Models of the real world (omit irrelevant details)
- Subtyping and inheritance (factor out commonalities)yp g ()
- Interfaces and information hiding (hide implementation

details)
- Parameterization (templates)
- Structured programming (loops, methods)

Layered systems (hide deeper layers in the stack)

Peter Müller – Software Engineering, SS 10

- Layered systems (hide deeper layers in the stack)

57

Abstraction: Compiler Case Study
1. Introduction – Software Engineering Principles

Abstract syntax
Abstract while loop syntax: while(BoolExpr Stmt)- Abstract while loop syntax: while(BoolExpr Stmt)

- Concrete Pascal syntax: WHILE BoolExpr DO Stmt ;
- Concrete Java syntax: while (BoolExpr) StmtConcrete Java syntax: while (BoolExpr) Stmt

Abstract machines
- Generate intermediate code for abstract machine
- Simplifies code generation for different hardware

Code GenerationCode Generation

Intermediate
Code Gen. Optimization Assembler

Code Gen.

Peter Müller – Software Engineering, SS 10

58

Anticipation of Change
1. Introduction – Software Engineering Principles

Prepare software for changes
Modularization: single out elements that are likely to- Modularization: single out elements that are likely to
change in the future

- Abstraction: narrow interfaces reduce effects of a
change

Risk: developers spend too much time to make
ft h bl d blsoftware changeable and reusable

Software product lines
- Many similar versions of software (e.g., for different

hardware)
- Examples: software for cell phones sensors

Peter Müller – Software Engineering, SS 10

Examples: software for cell phones, sensors

59

Anticipation of Change: Example
1. Introduction – Software Engineering Principles

Fee computation for bank accounts

Original design: computation
and values hard coded

int computeFee() {
if(balance >= 2000)
return 0;and values hard-coded return 0;

else
return monthlyFee;

}

Changes (within two years)
- Different values → required program changeDifferent values → required program change
- Different rules → required program change
- Different groups of clients → required additional logic

Peter Müller – Software Engineering, SS 10

60

Anticipation of Change: Example (cont’d)
1. Introduction – Software Engineering Principles

Better design: interpreter

Parameters
(database) Rules

Interpreter

Parameters and rules can be changed by bankerParameters and rules can be changed by banker
- For instance, by editing an Excel file

Code remains unchanged (less testing)

Peter Müller – Software Engineering, SS 10

g (g)

61

Anticipation of Change: Compiler Case Study
1. Introduction – Software Engineering Principles

Typical changes
New versions of processors and operating systems- New versions of processors and operating systems

- New target machines
- Language and library extensions (e.g., standards)Language and library extensions (e.g., standards)

Preparationp
- Use intermediate code
- Put machine-dependent code (e.g., I/O, threads) into

standard library

Peter Müller – Software Engineering, SS 10

62

Generality
1. Introduction – Software Engineering Principles

Attempt to find more general problem behind
problem at handproblem at hand
- Apply standard solutions and tools

A general solution is more likely to be reusableA general solution is more likely to be reusable
- Examples: spreadsheets, database

General solution may be less efficientGeneral solution may be less efficient
Example
- Semantic analysis: Is C a subclass of D?Semantic analysis: Is C a subclass of D?
- Subclass relation is an acyclic graph
- Use adjacency matrix and compute transitive closure

Peter Müller – Software Engineering, SS 10

63

Generality: Compiler Case Study
1. Introduction – Software Engineering Principles

The GNU compiler decouples
Frontend (scanner parser analysis)- Frontend (scanner, parser, analysis)

- Backend (code generation, optimization)
Frontends and backends can be combined inFrontends and backends can be combined in
various ways

Frontends
Ada
C

C++

Backtends
Alpha

System 390
86

Frontends
Ada
C

C++

Backtends
Alpha

System 390
86

Generic
TC++

Fortran
Java

Objective-C

x86
MIPS

PowerPC
SPARC

C++
Fortran
Java

Objective-C

x86
MIPS

PowerPC
SPARC

Tree
Format

Peter Müller – Software Engineering, SS 10

Objective-C SPARC Objective-C SPARC

64

Incrementality
1. Introduction – Software Engineering Principles

Characterizes a process which proceeds in a
stepwise fashionstepwise fashion
- The desired goal is reached by creating successively

closer approximations to it
Examples
- Incremental software life cycles (e.g., spiral model)
- Prototypes, early feedback
- Project management is inherently incremental

Peter Müller – Software Engineering, SS 10

65

Incrementality: Compiler Case Study
1. Introduction – Software Engineering Principles

Language can be extended incrementally
Java 1 0: core language- Java 1.0: core language

- Java 1.1: inner classes
- Java 1.2: Swing GUI libraryJava 1.2: Swing GUI library
- Java 1.4: enhanced libraries
- Java 5: genericity, boxing
- Java 6: annotations

Compiler can be enhanced incrementally
- Supported language subset
- Runtime diagnostics

O ti i ti

Peter Müller – Software Engineering, SS 10

- Optimizations

