Software Engineering
Detailed Design

Peter Muller
Chair of Programming Methodology

The slides in this section are partly based on the lecture
“Software Engineering I” by Prof. Bernd Brugge, TU Munchen

. ETH
Sprlng SemeSter 10 Eilgensssische Technische Hochschule Ziirich

Swiss Federal Institute of Techeology Zurich

5. Detailed Design — Overview

5. Detailed Design

5.1 Overview
5.2 Reuse
5.2.1 Design Patterns
5.2.2 Case Study: Patterns in the Java AWT
5.3 Interface Specification
5.4 Object Model Restructuring and Optimization

Peter Muller — Software Engineering, SS 10

5. Detailed Design — Overview

Bloopers

= Speed
- Harry’s partner shoots Harry in the right leg
- Throughout the movie, Harry limps on the left leg

= Star Wars

- At the end of Episode V, Han Solo is frozen into
carbonite

- When being frozen, Han Solo is wearing a dark jacket
- When thawed, he is wearing a white shirt

Peter Muller — Software Engineering, SS 10 e

5. Detailed Design — Overview 4

Why do Movies Contain Bugs?

Peter Muller — Software Engineering, SS 10 Eidigsndssisehe Teshnische Hoshichule Zaich
Swiss Federal fmsfibate of Technplagy Zurfch

5. Detailed Design — Overview 5

Waterfall Model of Project Life Cycle

ETH

Peter Muller — Software Engineering, SS 10 Eidigsndssisehe Teshnische Hoshichule Zaich
Swiss Federal fmsfibate of Technplagy Zurfch

5. Detailed Design — Overview 6

Detailed Design: Closing the Gap

Analysis defines
application
objects

Solution Objects

d Detailed design \

identifies new
objects and
adjusts
_ components

-

System design
selects
off-the-shelf
components and

_ frameworks

Peter Muller — Software Engineering, SS 10 jeadssisahe Teshnischie Hoshesbuls Zurich

[24
eral imsfikate of Teehnplagy Zurch

5. Detailed Design — Overview

Detailed Design

= Adding details to the requirements analysis and
system design, and making implementation
decisions

= Choosing among different ways to implement the
analysis model and system design

- Goals: minimize execution time, memory, and other
measures of cost

= Providing the basis for implementation

Peter Muller — Software Engineering, SS 10 Eidge

schiule Zhric
£ Elll'lval{lgrzurc L

5. Detailed Design — Overview

Detailed Design Activities

[Select Subsystem J

Reuse

{ |ldentify Components }—

{ Adjust Components
L |dentify Patterns

J

[{ Adjust Patterns J"

ETH

Peter Muller — Software Engineering, SS 10 Eifpacasyiahe eshsois Hosbastult 20ch

5. Detailed Design — Overview 9

Bbftndod/BystésnGohtaie Bugsar Problems

ETH

Peter Muller — Software Engineering, SS 10 Eidigsndssisehe Teshnische Hoshichule Zaich
Swiss Federal fmsfibate of Technplagy Zurfch

5. Detailed Design — Overview

10

Detailed Design Activities (cont’d)

Specification

[Select Subsystem J

Reuse

-~

|[dentify missing

| attributes & methods ,‘

{ |[dentify Components }—

-

Specify visibility

~

e

Specify types and
signatures

Specify constraints

[Adjust Components
L |dentify Patterns

J

Specify exceptions

\ { Adjust Patterns J‘_

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E Freehnplogy Turfch

5. Detailed Design — Overview 11

Detailed Design Activities (cont’d)

[Check use cases }
Restructuring Optimization
—[Revisit inheritance 1 | Optimize access
J L paths)

Cache complex
L computations

_’[Collapse classes W Delay COFT]p|eX —
J N computations

Peter Mu"er -_ Software Engineering’ SS 10 Eidg_r'nunluhrh::hni:cﬁr Hoghschule Zhrich

Swiss Federal fmsfiltateof Teilllwlagrzurcph

5. Detailed Design — Reuse

12

5. Detailed Design

5.1 Overview
5.2 Reuse
5.2.1 Design Patterns
5.2.2 Case Study: Patterns in the Java AWT
5.3 Interface Specification
5.4 Object Model Restructuring and Optimization

Peter Muller — Software Engineering, SS 10

5. Detailed Design — Reuse

13

Implementation of Application Domain Objects

= New classes are often needed during detailed
design

* The implementation of algorithms may necessitate
objects to hold values (e.g., arrays)

= New low-level operations may be needed during
the decomposition of high-level operations

Peter Muller — Software Engineering, SS 10 e

5. Detailed Design — Reuse 14

Application vs. Solution Objects: Example

Requirements Analysis Detailed Design

(Language of application (Language of solution
domain) domain)
Account Account

\

| |
Clientld DB _Handler

Peter Muller — Software Engineering, SS 10 idge

schule Zoe
£ slmalogrzurcph

5. Detailed Design — Reuse 15

Application vs. Solution Objects

= Application objects
- Also called domain objects
- Represent relevant concepts of the domain
- Are identified by application domain specialists and by
end users
= Solution objects

- Represent concepts that have no counterpart in the
application domain

- Are identified by developers

- Examples: persistent data stores, user interface objects,
middleware

Peter Muller — Software Engineering, SS 10 e

5. Detailed Design — Reuse 16

Finding Solution Objects

“Many objects in a design come from the analysis
model. But object-oriented designs often end up with
classes that have no counterparts in the real world.
[...] Strict modeling of the real world leads to a
system that reflects today's realities but not
necessarily tomorrow's. The abstractions that emerge
during design are key to making a design flexible.”
[Gamma et al., 19995]

* There is a need for reusable and flexible designs

= Design knowledge complements application
domain knowledge and solution domain knowledge

Peter MU"er - SOftware Engineering’ SS 10 Eidgendssisahe Technische Hoshschule Zhrich
Swiss Federal Imsfitate of Technplagy Zurfph

5. Detailed Design — Reuse 17

Design Patterns

“Design patterns help you identify less-obvious
abstractions and the objects that can capture them.
For example, objects that represent a process or
algorithm don't occur in nature, yet they are a crucial
part of flexible design. [...] These objects are seldom
found during analysis or even the early stages of
design; they're discovered later in the course of
making a design more flexible and reusable.”

[Gamma et al., 19995]

Peter Muller — Software Engineering, SS 10 e

18

Composite Pattern: Motivation

= A program manipulates
- Individual units (e.g., graphical objects)

\ Account

- Groups of units

Account

= Wanted: a design that allows algorithms to deal
with single units and groups in a uniform way

Peter Muller — Software Engineering, SS 10 ERdpasduriahs Tochnists Erosbeshuls 2

5. Detailed Design — Reuse

Composite Pattern: Example

<>

Used by
client
Graphic i
Draw()
| | A | |
Line Box Text Group
Draw() Draw() Draw() Draw()

Add(Graphic)
Remove(Graphic)
GetChild(int)

Peter Muller — Software Engineering, SS 10

eehschule T
£ Elll'lval{lgrzurc L

5. Detailed Design — Reuse

Composite Pattern: Structure

Component

Operation()

A

| eaf

Operation()

Composite

~ -
-~ -
—~—

Remove(Component)
GetChild(int)

Q children

-~ | forall g in children:

g.Operation()

|

= Allows hierarchical grouping of components

Peter Muller — Software Engineering, SS 10

Irsfitateof Teahn

Eidgendssisahe Technische Hoshschule Zhrich
55 E £ h

5. Detailed Design — Reuse

21

Composite Pattern: Statement Syntax

Statement

j

Block
Statement

Simple
Statement
| |
Assignment If Return
Statement Statement Statement

1..2

Peter Muller — Software Engineering, SS 10

ETH

Eidgendssisahe Technische Hoshschule Zhrich
Swiss Federal fmsfiltateof Teilllwlagrzurcph

5. Detailed Design — Reuse 22

Composite Pattern: Properties

» Defines class hierarchies consisting of primitive
objects and composite objects

- Objects can be composed hierarchically
- Composite objects can be used like primitive objects

= Makes client simple
= Makes it easier to add new kinds of components

= Can make the design overly general
- Difficult to restrict composites
- Example: no return statement in a block

Peter Muller — Software Engineering, SS 10 e

5. Detailed Design — Reuse 23

Floral Patterns

R TP Y i T W
e
%’@. WY

F

@

.
ok

Ly
By
5
-
)

ETH

Peter Muller — Software Engineering, SS 10 Eidganossisshe Technische Hoshssbule Zrich

Swiss Federal Imsfitate of Technplagy Zursch

5. Detailed Design — Reuse 24

Composite Pattern: Implementation Issues

= Explicit parent references
- Simplifies traversal and deletion of components

= Sharing components
- Reduces storage requirements

= Child ordering

- Might be required by the design (e.g., Block Statement)
= Caching to improve performance

- Improves performance (e.g., bounding box for Group)

» Data structure for storing components
- Affects performance (lists, trees, arrays, hash tables)

Peter Muller — Software Engineering, SS 10 ERdgasdssioge Tl sl Ziih

5. Detailed Design — Reuse

Abstract Factory Pattern: Motivation

= A client class wants to create sockets for network
communication

Client Socket

= The concrete implementation of the socket
depends on the operating system

Windows Unix
Socket Socket

= The client class should be platform-independent

Peter Muller — Software Engineering, SS 10 Eidge

sehiule Zond
£ Elll'lval{lgrzurc L

5. Detailed Design — Reuse

26

Abstract Factory Pattern: Example

SocketFactory

]

Unix Windows

Client
Socket
_ b
Windows Unix
Socket Socket

SocketFactory | | SocketFactory

__

Peter Muller — Software Engineering, SS 10

5. Detailed Design — Reuse

27

Abstract Factory Pattern: Structure

Client

Abstract
ProductA

o

Concrete
ProductA2

Concrete
ProductA1

Abstract
Factory

CreateProductA()
CreateProductB()

Abstract
ProductB

T

Concrete
Factory1

Concrete
Factory2

CreateProductA()
CreateProductB()

CreateProductA()
CreateProductB()

->

Concrete
ProductB2

Concrete
ProductB1

Creates
object

Peter Muller — Software Engineering, SS 10

Eidgendssisahe Technische Hoshschule Zhrich
Swiss Federal fmsfiltateof Teilllwlagrzurcph

5. Detailed Design — Reuse

28

Abstract Factory Pattern: Properties

» |solates concrete classes
- Helps control what classes are instantiated

- Isolates clients from implementation classes
(clients manipulate objects through interfaces)

» Makes exchanging product families easy
- Class of concrete factory appears only once in program

= Supporting new kinds of products is difficult

- Affects interface of abstract factory and all concrete
factories

Peter Muller — Software Engineering, SS 10 e

5. Detailed Design — Reuse 29

Observer Pattern: Motivation

= Maintaining consistency between loosely
coupled objects

= Many dependent objects have to be informed when
one object changes its state

30 4

20—

10 4

0 . .
a b

—
—
~~~ ———
—
~~ —
— -
b B -
— —

— Change notification
- — -+ Requests, modifications

Peter Muller — Software Engineering, SS 10 Eidgeadssisehe Techn isshe Hoshechule Zarich
Swiss Federal Imsfitateof Teehnplagy Zurfph



5. Detailed Design — Reuse

30

Observer Pattern: Structure

Subject Observer
observers *
Attach( Observer ) Update( )
Detach( Observer) N
Notify() ---_____ J_ | foralloin
A observers: A
o.Update( )
ConcreteSubject biect ConcreteObserver
bjectStat Stbjet
StbjeCiodle observerState
GetState( ) _
SetState( ... ) ~--- - return Update( )\\
subjectState BRI

observerState =
subject.GetState( )

|

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E Freehnplogy Turfch



5. Detailed Design — Reuse

31

Observer Pattern: Collaborations

aConcreteSubject

concreteObserver1

setState( ... )

notify( )

update( )

>

update( )

getState( )

concreteObserver2

>

getState( )

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E Freehnplogy Turfch



5. Detailed Design — Reuse 32

Observer Pattern: Properties

* Abstract coupling between subject and observer
- Subject does not know concrete class of observer

= Support for broadcast communication
- Freedom to add and remove observers

= Example

- Debuggers (subject) broadcasts event when it reaches a
breakpoint

- Editor (observer) shows line of code
- Stack tracer (observer) shows stack trace.

Peter Muller — Software Engineering, SS 10 e



5. Detailed Design — Reuse 33

Strategy Pattern: Motivation

= A program uses 3D-shapes that can be rendered
- Rendering code too complex to be included in Shape

= Different rendering algorithms are appropriate at
different times

- Do not implement the ones we do not use

» Rendering algorithm should not be hard-wired
- New algorithms may be added

Peter Muller — Software Engineering, SS 10 Eidge



5. Detailed Design — Reuse

34

Strategy Pattern: Example

Used by
client
Shape Q > Renderer
Render( ) Render( )
| 4& |
RayTracer Radiosity
Render( ) Render( )

Peter Muller — Software Engineering, SS 10

schule
£ Elll'lval{lgrzurc L



5. Detailed Design — Reuse

35

Strategy Pattern: Structure

N

Context Qstrategy

Contextinter( )

Strategy

Algorithminter( )
/\

Concrete
Strategy 1

Concrete
Strategy 2

Algorithminter( )

Algorithminter( )

Peter Muller — Software Engineering, SS 10

sehiule
£ Elll'lval{lgrzurc L



5. Detailed Design — Reuse 36

Strategy Pattern: Properties

= Supports families of algorithms
- Sorting, line breaking, layouting, etc.

- Clients have a choice (e.g., different space and time
trade-offs)

= Alternative to inheritance
- Behavior not hard-wired into context (dynamic exchange)
- Separates context from algorithm (easier to maintain)

= Communication overhead
- Arguments must be passed to strategies

Peter Muller — Software Engineering, SS 10 e



5. Detailed Design — Reuse 37

Adapter Pattern: Motivation

= A program expects an interface that is
iIncompatible with the interface of a reusable class

Used by \\> Shape —
client J BoundingBox( ) Legacy
A code

N\
Line TextShape TextEditor
BoundingBox( ) BoundingBox( ) GetExtent( )

= Common problem with legacy code
= Also known as wrapper

Peter Muller — Software Engineering, SS 10 Eidge

schule Zoe
£ slmalogrzurcph



5. Detailed Design — Reuse

38

Adapter Pattern: Example

DrawingEditor

Shape

BoundingBox( )

Line

BoundingBox( )

TextShape

BoundingBox( )|

TextEditor

GetExtent( )

return
text.GetExtent( )

|

Peter Muller — Software Engineering, SS 10

sehiule
£ Elll'lval{lgrzurc L



5. Detailed Design — Reuse 39

Adapter Pattern: Structure

Used by L
client ™|  Target > Adaptee
Request( ) SpecificRequest( )
adaptee
Adapter
Request() ---J.__ adaptee.SpecificRequest( )1

= Delegation used to bind Adapter and Adaptee
= Subtyping used to specify interface of Adapter
» Target and Adaptee exist before Adapter

= Target may be realized as interface in Java

Peter Muller — Software Engineering, SS 10 Fgradsens Teshniss Hosbchule



5. Detailed Design — Reuse

40

Adapter Pattern: Properties

» How much adaptation does an adapter do?

- From simple interface conversion (renaming) to entirely
different set of operations

= Variant: class adapter
- Adapter inherits from Target and Adaptee
- No aggregation and delegation
- Requires multiple inheritance if Target is a class

Peter Muller — Software Engineering, SS 10 e



5. Detailed Design — Reuse

Bridge Pattern: Motivation

= A program uses
socket abstractions
to communicate

= Different socket
abstractions

= Different socket
Implementations

Socket

Open()

b

SSLSocket

Compression
Socket

Socket

Open( )

5

Windows
Socket

Unix
Socket

Open( )

Open( )

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E Freehnplogy Turfch



5. Detailed Design — Reuse

42

Bridge Pattern: Motivation (cont'd)

Specialization in

Implementation Socket two dimensions
cannot be changed 5 leads to explosion
dynamically pen( ) \_ of class hierarchy
| |
SS| Socket Compression
Socket
| ZF | | |
Windows Unix C(Yrvr:n?gs\g?on Comupel);sion
SSLSocket SSLSocket P P
Socket Socket
Open( ) Open() Open() Open( )

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E Freehnplogy Turfch



5. Detailed Design — Reuse

43

Bridge Pattern: Example

Used by
client

:

N\

Socket

.,

Open( )

A

SSLSocket

Compression
Socket

KSocket Abstraction

> Socketimpl

N

Open()

|

Windows
Socketimpl

Unix
Socketimpl

Open( )

Open( )

@cket Implementaticy

Peter Muller — Software Engineering, SS 10

Eidgendssisahe Technische Hoshschule Zhrich
Swiss Federal fmsfiltateof Teilllwlagrzurcph



5. Detailed Design — Reuse 44

Bridge Pattern: Structure

Operatilcin( )~ Operationimpl( )

Y imp.Operationimpl( )1

Refined Refined Concrete Concrete
Abstraction_A| |Abstraction B Implementor 1 Implementor 2

Operationimpl( ) Operationimpl( )

= Decouples an abstraction from its implementation

= Allows different implementations of an interface to
be exchanged dynamically

Peter Muller — Software Engineering, SS 10 Eidge

sehiule Zond
£ Elll'lval{lgrzurc L



5. Detailed Design — Reuse

45

Adapter vs. Bridge

= Both are used to hide the details of the underlying
Implementation

= Adapter pattern
- Makes unrelated components work together

- Applied to systems after they are designed
(reengineering, interface engineering)

= Bridge Pattern

- Used up-front in a design to let abstractions and
Implementations vary independently

- Green field engineering of an “extensible system”

Peter Muller — Software Engineering, SS 10 e



5. Detailed Design — Reuse

Facade Pattern: Motivation

= Subsystem 1 can call

' Subsystem 1
operations on any ubsystem

component of Subsystem 2

= Advantages

N _T
- Efficiency \K/

* Disadvantages

- Caller does not understand
how the subsystem works \V W
- Subsystem will be misused, -

leading to non-maintainable
code

Subsystem 2

ETH

Peter MU"er - SOftware Engineering’ SS 10 Eidgendssisahe Technische Hoshschule Zhrich
Swiss Federal Imsfitate of Technplagy Zurfph



5. Detailed Design — Reuse

47

Facade Pattern: Example

Provides a unified
interface to a set of
objects in a subsystem

Defines a higher-level
interface that makes the
subsystem easier to use

Reduces coupling

Does not prevent direct
usage of objects in a
subsystem

Subsystem 1

~_| 7

L7

Facade

N

~/

Subsystem 2

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E Freehnplogy Turfch



5. Detailed Design — Reuse

48

Subsystem Design with Facade and Adapter

» |deal structure of a subsystem

= An interface object
(boundary object)

= A set of application domain
objects (entity objects)
modeling real entities or
existing systems
- Some of the entity objects are
interfaces to existing systems

= One or more control objects

[ Facade ]

G\terface to existing\

systems: Adapter
* Provides interface

to existing system

= Existing system is
not necessarily
object-oriented!

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E



5. Detailed Design — Reuse 49

Design Patterns Encourage Reusable Designs

= Facade should be used by all subsystems
- Defines all the services of the subsystem
- Delegates requests to components within the subsystem
- Most of the time the facade need not be changed when
the component is changed

= Adapters should be used to interface to existing
components

= Bridges should be used to interface sets of objects

- Where the full set is not completely known at design time

- When the subsystem must be extended later after the
system has been deployed (dynamic extension)

Peter Muller — Software Engineering, SS 10 ERdgasdssioge Tl sl Ziih



5. Detailed Design — Reuse

50

The “Ingredients” of Design Patterns

* |Inheritance (subclassing)
- Establishes “is-a” relation
- Enables subtype polymorphism

= Aggregation
- Establishes “has-a” relation
- No subtyping in general

Person

1

Student

Car

<>_

Motor

= Design patterns provide guidance how to use

iInheritance and aggregation

Peter Muller — Software Engineering, SS 10



5. Detailed Design — Reuse o1

Inheritance and Aggregation: Bridge Pattern

Aggregation A

decouples caller Subtyping enables
from polymorphic client

%mentation ) code

Abstraction Q Impler>\ hor
Operation( ) Operatlo Yimpl( )
| | | |
Refined Refined Concrete Concrete
Abstraction_A| |Abstraction B Implementor 1 Implementor 2
Operationimpl( ) Operationimpl( )

Specialization of
operations

Peter Muller — Software Engineering, SS 10 ERdgasdssioge Tl sl Ziih

illnalogr Zurkgh



5. Detailed Design — Reuse 52

Textual Clues in Nonfunctional Requirements

» Use textual clues to identify design patterns
- (similar to Abbot’s technique in analysis)

“‘complex structure” _
“must be extensible”, “must be scalable” _
“policy independent from mechanism” _
“must interface with an existing object” _
“must interface to a set of existing objects”_

“must deal with the interface to several
systems some of them to be developed in
the future”

Peter Muller — Software Engineering, SS 10



5. Detailed Design — Reuse 23

5. Detailed Design

5.1 Overview
5.2 Reuse
5.2.1 Design Patterns
5.2.2 Case Study: Patterns in the Java AWT
5.3 Interface Specification
5.4 Object Model Restructuring and Optimization

Peter Muller — Software Engineering, SS 10 e



5. Detailed Design — Reuse

o4

AWT: Overview

= AWT: Abstract Window Toolkit

= Elements of the GUI are
represented by components

= Display and layout of the
components have to be
specified

= Components receive events Quit
from the window system and
propagate them to so-called
listeners

Peter Muller — Software Engineering, SS 10



5. Detailed Design — Reuse

Component Hierarchy: Composite Pattern

= Components can be | _countrrame 2 MI=IF3 :
grouped into containers ! |
|

m ' | ========
Containers are also [P—anﬁ |
components | - |

Component
A
| |
Button Checkbox Container <%
| |
Window Panel

Peter Muller — Software Engineering, SS 10 Eidge

sehiule Zond
£ Elll'lval{lgrzurc L



5. Detailed Design — Reuse o6

Event Communication

1. User clicks }

. Objects can register 2. actionPerformed on Button

at a component as event is associated
P with button

observer (listener)

for one or several . gpantifS[s] F3
event types {b“tton —<|[s0 >

= Upon occurrence of J
an event, the event Quit |
source informs all
registered objects
by invoking a (Tistener1 ) (Tistener2 ) - Listeners J
method L J L J are informed

Peter Muller — Software Engineering, SS 10 Eifpacasyiahe eshsois Hosbastult 20ch

F Ve nelogr Zurkgh



5. Detailed Design — Reuse o7

Component / Listener: Observer Pattern

No abstract Update method receives
Subject event as parameter
Button actionListener ~ *| ActionListener \V/
addActionListener( ... ) actionPerformed( ... )

removeActionListener( ... )
processﬁction Event( ...)

: :

Notify method cglled MyActionListener
by the underlying _
window system actionPerformed( ... )
ConcreteObserver
does not know
ConcreteSubject

Peter Muller — Software Engineering, SS 10 e

sehiule Zond
£ slmalogrzurcph



5. Detailed Design — Reuse o8

Platform Independence: Bridge Pattern

= AWT components are platform-independent

» QOperations that depend on the window system are
delegated to platform-specific peer objects

Component > Corgz(;?ent rI]r)terfacr:]e }
ierarc
| | | |
Button Checkbox Button Checkbox
Peer Peer
I A |
Platform-specific X Motif
implementation ButtonPeer | | ButtonPeer

Peter Muller — Software Engineering, SS 10




5. Detailed Design — Reuse

Platform Independence: Peer Creation

= Component objects have references to their peers

Component
Peer

Component

» Platform-independent components cannot
instantiate platform-dependent peers

Button

Button == =—-— > Peer

= Solution: abstract factory

Peter Muller — Software Engineering, SS 10 Eidge

sehiule Zond
£ Elll'lval{lgrzurc L



5. Detailed Design — Reuse 60

Platform Independence: Abstract Factory

P
Abstract
Button Toolkit factory

\F ] N\ \
Client ) createButton( ... )

createCheckbox( ... )

f /\
But Abstracj
| bButton |~ product
Peer =7~
A --1  motif.MToolkit X11.XToolkit

| | !
N X Motif <__i createButton( ... ) createButton( ... )
.| ButtonPeer | | ButtonPeer createCheckbox( ... )| | createCheckbox( ... )

Concrete
factory

Concrete
product

ETH

Peter Mu"er p— Software Engineering’ SS 10 Eidg_r'nunluhrh::hni:cﬁr Howhschule Zhrch

Swiss Federal fmsfiltateof Teilllwlagrzurcph



5. Detailed Design — Reuse 61

Displaying Containers: Layout Managers

= [ayout of components in
one container is

[
computed by a layout (—/T/,%/
manager Panel |,

= The layout manager can
be set for each container

Border- <I[so =] <|[so | qui Flow-
Layout Layout
Quit |

Peter Muller — Software Engineering, SS 10 godssioghg Tehnisha Hogbichuly ZBNch
Swits bederal Imsfitate of Teilllwlogrzurc (3



5. Detailed Design — Reuse

62

Layout Managers: Strategy Pattern

Container Q
layout( )

> LayoutManager

layoutContainer( )

BorderLayout

FlowLayout

layoutContainer( )

layoutContainer( )

Peter Muller — Software Engineering, SS 10

schule
£ Elll'lval{lgrzurc L



5. Detailed Design — Interface Specification 63

5. Detailed Design

5.1 Overview
5.2 Reuse
5.2.1 Design Patterns
5.2.2 Case Study: Patterns in the Java AWT
5.3 Interface Specification
5.4 Object Model Restructuring and Optimization

Peter Muller — Software Engineering, SS 10 e



5. Detailed Design — Interface Specification

64

Specifying Interfaces

Requirements Analysis
= Attributes

= QOperations without
parameters and types

Account

Amount
Accountld
Deposit( )
Withdraw( )
GetBalance( )

Detailed Design
= Visibility

= Signatures

= Contracts

Account

—Amount: int
#Accountld: int

+Deposit( a: int)
+Withdraw( a: int ) «
+GetBalance( ): int

\

I d

\

\

<<precondition>>1
a>=0

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich

F Ve nelogr Zurkgh



5. Detailed Design — Interface Specification 65

Information Hiding

= Definition
Information hiding is a technique for reducing the
dependencies between modules:

- The intended client is provided with all the information
needed to use the module correctly, and with nothing
more

- The client uses only the (publicly) available information

Peter Muller — Software Engineering, SS 10 Eifpacasyiahe eshsois Hosbastult 20ch



5. Detailed Design — Interface Specification 66

Visibility Information

= UML defines three levels of visibility
- Similar to C++, Java, and C#

(13 7

= Private (implementation interface): “—

- Private features can be accessed only by the class in
which they are declared (not even subclasses)

» Protected (subclass interface): “#

- Protected features can be accessed by the class in which
they are defined and by any descendent of the class

= Public (client interface): “+”
- Public features can be accessed by any class

Peter Muller — Software Engineering, SS 10 ERdpasduriahs Tochnists Erosbeshuls 2



5. Detailed Design — Interface Specification

67

Implementation of UML Visibility in Java

class Account {
Account private int amount;
protected int accountld;

—Amount: int

_ AN
#Accountld: int
)

public void deposit(inta) {...}
public void withdraw(inta) {...}
public int getBalance( ) {...}

+Deposit( a: int)
+Withdraw( a: int)
+GetBalance( ): int

= protected has a slightly different meaning in Java
- Also visible to classes in the same package

= Eiffel provides more fine-grained visibility control

ETH

Peter Muller — Software Engineering, SS 10 ERdpasduriahs Tochnists Erosbeshuls 2

F Ve nelogr Zurkgh



5. Detailed Design — Interface Specification 68

Information Hiding Heuristics

» Public interface for classes and subsystems
- Use the facade pattern

- Define abstract interfaces that mediate between system
and external world as well as between subsystems

* The less an operation knows the less likely it will be
affected by any changes

= Access attributes only via operations

- Only the operations of a class should manipulate its
attributes (no public attributes)

- Trade-off: Information hiding vs. efficiency

Peter Muller — Software Engineering, SS 10 e



5. Detailed Design — Interface Specification

69

UML is not Enough

spouse

0..1

Person

Marry( )

A

\
\
\
\

“is married to” 1

Urs: Person

spouse

spouse

Beat: Person

Sile: Person

= Urs is married to Sile, Sile is married to Beat, and
Beat is not married at all

= A valid instantiation of the class diagram!
= Associations describe relations between classes

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E o Freehnplogy Turfch



5. Detailed Design — Interface Specification

UML is not Enough (cont'd)

Person

spouse

age «_

0.1

N
N
N
N

Married persons are at
least 16 years old

|

spouse

Urs: Person

age =18

spouse

Sile: Person

age = 11

= Urs is married to Sile, who is only eleven
= A valid instantiation of the class diagram!
= Class diagrams do not restrict values of attributes

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E Freehnplogy Turfch



5. Detailed Design — Interface Specification

71

Expressing Contracts

= Natural language

- Advantage: Easy to
understand and use

- Disadvantage: Ambiguous
= Mathematical notation

- Advantage: Precise

- Disadvantage: Difficult for
normal customers

= Contract language

- Formal, but easy to use
- Examples: Eiffel, JML

Spouse expresses 1
“is married to”

spouse: Person -» Person
spouse = spouse™’
souse nid =

Vp: Person: p € dom( spouse ) 3
spouse( p ) e dom( spouse ) A
p # spouse(p ) A
p = spouse( spouse(p ) )

spouse /= Void implies
spouse /= Current and
spouse.spouse = Current

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E Freehnplogy Turfch



5. Detailed Design — Interface Specification

72

Contracts in Eiffel: Object

= Associated with classes

= Describe consistency
criteria of objects and
object structures

= Hold for all instances of a
class

nvariants

class PERSON feature

age: INTEGER
spouse: PERSON
Invariant
spouse /= Void
Implies
spouse /= Current
and

spouse.spouse = Current
and
age >= 16

end -- class PERSON

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich

F Ve nelogr Zurkgh



5. Detailed Design — Interface Specification

73

Object Constraint Language — OCL

= The contract language for UML

» Used to specify
- Invariants of objects
- Pre- and postconditions of operations
- Guards (for instance, in state diagrams)

= Special support for
- Navigation through UML class diagram
- Associations with multiplicities

Peter Muller — Software Engineering, SS 10



5. Detailed Design — Interface Specification 74
Form of OCL Invariants
= Constrains can mention (" 11¢ contextis |
- self: the contextual an instance of
IRElEr e a class in the Declares an

Attributes and role names

Side-effect free methods
(stereotype <<query>>)

Logical connectives
Operations on integers,

\_ UML diagramﬁ invariant

N ) |
context Person inv:
self.age >=0

\

reals, strings, sets, bags, A boolean }
sequences constraint
- Etc.

Peter Muller — Software Engineering, SS 10

sehiule Zond
£ slmalogrzurcph



5. Detailed Design — Interface Specification 75

OCL Invariants: Example

Account [ O Customer
amount age
| $ | Role name J
SavingsAccount CheckingAccount

= A savings a(?COU”t has [context SavingsAccount inv:
a non-negative balance |self.amount >= 0

* Checking accounts are |cgntext CheckingAccount inv:
owned by adults self.owner.age >= 18

Peter Muller — Software Engineering, SS 10 ERdgasdssioge Tl sl Ziih

F Ve nelogr Zurkgh



5. Detailed Design — Interface Specification 76

OCL Invariants: Contexts

* owner

Account Customer
amount age
| $ |
SavingsAccount CheckingAccount

= Checking accounts are |context CheckingAccount inv:
owned by adults self.owner.age >= 18

= Accounts are owned by |context Account inv:
adults self.owner.age >= 18

= Customers are adults context Customer inv:
self.age >= 18

ETH

Peter Muller — Software Engineering, SS 10 Eifpacasyiahe eshsois Hosbastult 20ch

illnalogr Zurkgh



5. Detailed Design — Interface Specification

a4

Collections

= OCL provides three predefined collection types
- Set, Sequence, Bag

= Common operations on collections

size( ) Number of elements in the collection
includes( object ) True iff the object is an element
ISEmpty( ) True iff collection contains no elements

True iff expression is true for at least one

exists( expression )
element

forAll( expression ) | | True iff expression is true for all elements

ETH

Peter Muller — Software Engineering, SS 10 ERdpasduriahs Tochnists Erosbeshuls 2

F Ve nelogr Zurkgh



5. Detailed Design — Interface Specification

Generating Collections

= Explicitly enumerating the elements Set{1,7,16}

= By navigating along 1:n associations

- Navigation along a single 1:n
association yields a Set

- Navigation along a single 1:n
association labeled with the constraint
{ ordered } yields a Sequence

Account

+ {ordered}

self.accounts

amount

accounts

Customer

age

Peter Muller — Software Engineering, SS 10



5. Detailed Design — Interface Specification 79

Example: Multiplicity Zero or One

spouse

D..1

Person

age

self can be spouse
omitted ' used as set

ntext son Inv:
spouse->size( ) = 1 implies
age >= 16 and spouse.spouse = self and spouse <> self
X

spouse used
as object

Peter Muller — Software Engineering, SS 10 Eiigeabrsisehe Yeshniistis Hepbichule Z8Wch

Swiss Federal fmsfiltateof Teilllwlagrzurcph



5. Detailed Design — Interface Specification

80

Example: Quantification and Type Information

* owner
Account el Customer
amount age
| $ |
SavingsAccount CheckingAccount
( Subtype )

context Customer inv: relation
age <= 18 implies

accounts->forAII(\a| a.ocllsKindOf( SavingsAccount ) )

[ Vaeaccounts: a.ocllsKindOf( Savingsaccount ) ]

ETH

Peter Muller — Software Engineering, SS 10 Eidproetish Toshalhs Sonbeshuls i

illnalogr Zurkgh



5. Detailed Design — Interface Specification

Example: Composite Pattern

*

Component

L

| |
Leaf Composite <>

children

0..1
parent

= A composite Is

_ context Composite inv:
the parent of its

children->forAll( c | c.parent = self )

components

= A Compon_ent IS context Component inv:
contained in its parent->size( ) = 1 implies
parent composite |parent.children->includes( self )

ETH

Peter Muller — Software Engineering, SS 10 Eidproetish Toshalhs Sonbeshuls i



5. Detailed Design — Interface Specification

82

Contracts in Eiffel: Method Specifications

= Method precondition
- Must be true before the method is executed

= Method postcondition
- Must be true after the method terminates

- old expressions is used to refer to values of the pre-state

class interface ACCOUNT feature

withdraw ( a: INTEGER ) is
requirea>=0
ensure GetBalance( ) = old( GetBalance( ) —a)

end

Peter Muller — Software Engineering, SS 10 Eidge

schule
£ Elll'lval{lgrzurc L



5. Detailed Design — Interface Specification 83

Pre- and Postconditions in OCL

Context specifies
method signature

—_—

context Account::Withdraw( a: int )
pre: a>=0
post: GetBalance( ) = GetBaIance@Rre( )-a

Suffix @pre is
used to refer to
prestate values

= result is used to refer to return value
* Pre- and postconditions can be named (like in Eiffel)

Peter Muller — Software Engineering, SS 10 Eifpacasyiahe eshsois Hosbastult 20ch

illnalogr Zurkgh



5. Detailed Design — Interface Specification

84

Alternative Notation

»= Contracts can be depicted as notes in diagrams

- Stereotypes instead of keywords inv, pre, post

Account ----71--

—Amount: int
#Accountld: int

<<jnvariant>>
Accountld >=0

+Deposit( a: int)
+Withdraw( a: int ) <7

] <<precondition>>1

a>=_0

4

+GetBalance( ): int ™

<<postcondition>>
GetBalance( ) = GetBalance@pre( ) - a

|

Peter Muller — Software Engineering, SS 10

sehiule
£ Elll'lval{lgrzurc L



5. Detailed Design — Object Model Restructuring and Optimization 85

5. Detailed Design

5.1 Overview
5.2 Reuse
5.2.1 Design Patterns
5.2.2 Case Study: Patterns in the Java AWT
5.3 Interface Specification
5.4 Object Model Restructuring and Optimization

Peter Muller — Software Engineering, SS 10 e



5. Detailed Design — Object Model Restructuring and Optimization 86

Object Model Restructuring and Optimization

[ Check use cases }
Restructuring Optimization
Revisit inheritance 1 | Optimize access
J L paths )

Cache complex
L computations

Collapse classes W Delay COFT]p|eX —
J N computations

Peter Mu"er -_ Software Engineering’ SS 10 Eidg_r'nunluhrh::hni:cﬁr Hoghschule Zhrich

Swiss Federal fmsfiltateof Teilllwlagrzurcph



5. Detailed Design — Object Model Restructuring and Optimization

87

Increasing Inheritance

= Rearrange and adjust classes and operations to
prepare for inheritance

- Generalization
- Specialization
= Generalization is a common modeling activity

- Abstracts common behavior out of a group of classes

- If operations or attributes are repeated in 2 classes the
classes might be instances of a more general class

= Superclasses are desirable
- Increase of modularity, extensibility, and reusability

Peter Muller — Software Engineering, SS 10 Eidge

schule
£ Elll'lval{lgrzurc L



5. Detailed Design — Object Model Restructuring and Optimization

88

Increasing Inheritance: Example

Student

email: Address

Professor

Adaptation of
attribute name

—_ necessary

eaddr: Address |

Person
email: Address
. /\
Object model
transformation
Student Professor
ETH

Peter Muller — Software Engineering, SS 10

Eidgendssisahe Technische Hoshschule Zhrich
Swiss Federal fmsfiltateof Teilllwlagrzurcph



5. Detailed Design — Object Model Restructuring and Optimization

Collapsing Classes

» Collapse a class without interesting behavior into
an attribute

- If the only operations defined on the attributes are Set( )
and Get( )

Person

> Person

SocialSecurity SSN: String
Number

number: String

= Associations are more flexible than attributes but
often introduce unnecessary indirection

Peter Muller — Software Engineering, SS 10 Eidge

sehiule Zond
£ Elll'lval{lgrzurc L



5. Detailed Design — Object Model Restructuring and Optimization

Optimizing Access Paths

= Add redundant associations to minimize access
cost
- What are the most frequent operations?

- How often is the operation called? (30 times a month,
every 50 ms)

= Turn classes into attributes (collapse classes)

Peter Muller — Software Engineering, SS 10 Eidge

sehiule Zond
£ Elll'lval{lgrzurc L



5. Detailed Design — Object Model Restructuring and Optimization

Caching Complex Computations

= ShortestPath is an expensive
operation

= Result can be cached

Graph - Edge
start: Node distance: int
end: Node
sp: Path , 2

return sp: }__--- shortestPath( ) Node
Peter Muller — Software Engineering, SS 10 Figadsans osh



5. Detailed Design — Object Model Restructuring and Optimization 92

Keeping Caches Up-to-Date: Eager Update

= Operations that change
the state of the data
structure update the
cache

= Possible if cache update
IS cheap or state
changes are rare

* Also called push
solution

void addEdge( Node n, Node m ) {
// add (n,m) to edges
sp = computeShortestPath( );

}

Path shortestPath( ) {
return sp;

}

Peter Muller — Software Engineering, SS 10

sehiule Zond
£ slmalogrzurcph



5. Detailed Design — Object Model Restructuring and Optimization

93

Keeping Caches Up-to-Date: Lazy Update

= Operations that change
the state of the data
structure increment a
version counter or set
a flag

= Access to cached value
updates cache if cache
IS outdated

* Also called pull solution

void addEdge( Node n, Node m ) {

// add (n,m) to edges
sp = null; //invalidate cache

}

Path shortestPath( ) {
if (sp==null)
sp = computeShortestPath( );
return sp;

}

Peter Muller — Software Engineering, SS 10

schule
£ Elll'lval{lgrzurc L



5. Detailed Design — Object Model Restructuring and Optimization

Keeping Caches Up-to-Date: Active Values

= Observer pattern

- Active value is subject void addEdge( Node n, Node m ) {

_ /l add (n,m) to edges
- Cache is observer notify( ); // trigger event

}

. Operatlons that Change void update( ) { // eager update

the state of the data sp = computeShortestPath( );
structure trigger an )
event (nOtifY) Path shortestPath( ) {

return sp;

= Cache can be updated }

eagerly or lazily

Peter Muller — Software Engineering, SS 10 Eidge

schule Zoe
£ Elll'lval{lgrzurc L



5. Detailed Design — Object Model Restructuring and Optimization

95

Delaying Complex Computations

= Computation is delayed until result is accessed
= Example: lazy object initialization

Image

filename: String
data: byte] ]

paint( )

<

Image

filename: String

paint( )
/\

ImageProxy

image

filename: String

paint( )

Reallmage

data: byte] ]

paint( )

Peter Muller — Software Engineering, SS 10

Imsfitateof T

Eidgendssisahe Technische Hoshschule Zhrich
55 E Freehnplogy Turfch



5. Detailed Design — Object Model Restructuring and Optimization

Design Optimizations: Summary

= Design optimizations are an important part of the
detailed design phase

- The requirements analysis model is semantically correct
but often too inefficient if directly implemented

- Strike a balance between efficiency and clarity

Measure

Aim for
performance J

clarity

Optimize
where

necessary Source
Model space code space

ETH

Peter Muller — Software Engineering, SS 10 ERdpasduriahs Tochnists Erosbeshuls 2

illnalogr Zurkgh



