
Software Engineeringg g
Detailed Design

Peter Müller
Chair of Programming Methodology

Th lid i thi ti tl b d th l tThe slides in this section are partly based on the lecture
“Software Engineering I” by Prof. Bernd Brügge, TU München

Spring Semester 10

2

5. Detailed Design
5. Detailed Design – Overview

5 1 Overview5.1 Overview
5.2 Reuse

5 2 1 D i P tt5.2.1 Design Patterns
5.2.2 Case Study: Patterns in the Java AWT
3 I f S ifi i5.3 Interface Specification

5.4 Object Model Restructuring and Optimization

Peter Müller – Software Engineering, SS 10

3

Bloopers
5. Detailed Design – Overview

Speed
Harry’s partner shoots Harry in the right leg- Harry s partner shoots Harry in the right leg

- Throughout the movie, Harry limps on the left leg

Star Wars
- At the end of Episode V Han Solo is frozen intoAt the end of Episode V, Han Solo is frozen into

carbonite
- When being frozen, Han Solo is wearing a dark jacket
- When thawed, he is wearing a white shirt

Peter Müller – Software Engineering, SS 10

4

Why do Movies Contain Bugs?
5. Detailed Design – Overview

High pressureScenes shot High pressure
of release date
during editing

Scenes shot
out of

sequence

Details (props,
costumes)

changed during

Cooperation of

changed during
production

Some scenesCooperation of
many different

people

Some scenes
re-shot out of

schedule

Peter Müller – Software Engineering, SS 10

5

Waterfall Model of Project Life Cycle
5. Detailed Design – Overview

Requirements
Elicitation

Analysis

System Design D iSystem Design

Detailed Design

Design

Implementation

Validation
(Test)

Deployment

Peter Müller – Software Engineering, SS 10

Deployment

6

Detailed Design: Closing the Gap
5. Detailed Design – Overview

Application Objects
Analysis defines

application

Solution Objects
pp
objects

Detailed designDetailed design
identifies new
objects and

adjusts

System design

components

Real Machine
selects

off-the-shelf
components and

f k

Virtual Machine

Peter Müller – Software Engineering, SS 10

frameworks

7

Detailed Design
5. Detailed Design – Overview

Adding details to the requirements analysis and
system design and making implementationsystem design, and making implementation
decisions

Choosing among different ways to implement the
analysis model and system design
- Goals: minimize execution time, memory, and other

measures of cost

Providing the basis for implementation

Peter Müller – Software Engineering, SS 10

8

Detailed Design Activities
5. Detailed Design – Overview

Select Subsystem
Reuse

Identify Components

Adjust Components

Identify Patterns

Adjust Patterns

Peter Müller – Software Engineering, SS 10

9

Why do Movies Contain Bugs?Software Systems Face Similar Problems
5. Detailed Design – Overview

High pressureScenes shot Hi hClasses High pressure
of release date
during editing

Scenes shot
out of

sequence
Details

High pressure
of release date

Classes
implemented
independently

Details (props,
costumes)

changed during

Details
(interfaces,
contracts)

Cooperation of

changed during
production

Some scenes

changed during
development

Cooperation of Some classesCooperation of
many different

people

Some scenes
re-shot out of

schedule

Cooperation of
many different

people

Some classes
re-designed out

of schedule

Peter Müller – Software Engineering, SS 10

10

Detailed Design Activities (cont’d)
5. Detailed Design – Overview

Select Subsystem
ReuseSpecification

Identify ComponentsIdentify missing
attributes & methods

Adjust Components
Specify types and

Specify visibility

Identify Patterns
signatures

Specify constraints

Adjust PatternsSpecify exceptions

Peter Müller – Software Engineering, SS 10

11

Detailed Design Activities (cont’d)
5. Detailed Design – Overview

Check use cases

Optimize access Revisit inheritance

OptimizationRestructuring

Cache complex
computations

p
pathsRevisit inheritance

Delay complex
computations

computations

Collapse classes

Peter Müller – Software Engineering, SS 10

12

5. Detailed Design
5. Detailed Design – Reuse

5 1 Overview5.1 Overview
5.2 Reuse

5 2 1 D i P tt5.2.1 Design Patterns
5.2.2 Case Study: Patterns in the Java AWT
3 I f S ifi i5.3 Interface Specification

5.4 Object Model Restructuring and Optimization

Peter Müller – Software Engineering, SS 10

13

Implementation of Application Domain Objects
5. Detailed Design – Reuse

New classes are often needed during detailed
designdesign

The implementation of algorithms may necessitateThe implementation of algorithms may necessitate
objects to hold values (e.g., arrays)
New low-level operations may be needed duringNew low-level operations may be needed during
the decomposition of high-level operations

Peter Müller – Software Engineering, SS 10

14

Application vs. Solution Objects: Example
5. Detailed Design – Reuse

Requirements Analysis Detailed Designq y
(Language of application

domain)

g
(Language of solution

domain)

Account Account

DB_HandlerClientId

Peter Müller – Software Engineering, SS 10

15

Application vs. Solution Objects
5. Detailed Design – Reuse

Application objects
Also called domain objects- Also called domain objects

- Represent relevant concepts of the domain
- Are identified by application domain specialists and byAre identified by application domain specialists and by

end users
Solution objects
- Represent concepts that have no counterpart in the

application domain
A id tifi d b d l- Are identified by developers

- Examples: persistent data stores, user interface objects,
middleware

Peter Müller – Software Engineering, SS 10

16

Finding Solution Objects
5. Detailed Design – Reuse

“Many objects in a design come from the analysis
model. But object-oriented designs often end up with j g p
classes that have no counterparts in the real world.
[…] Strict modeling of the real world leads to a
system that reflects today's realities but notsystem that reflects today s realities but not
necessarily tomorrow's. The abstractions that emerge
during design are key to making a design flexible.”

There is a need for reusable and flexible designs

g g y g g
[Gamma et al., 1995]

There is a need for reusable and flexible designs
Design knowledge complements application
domain knowledge and solution domain knowledge

Peter Müller – Software Engineering, SS 10

domain knowledge and solution domain knowledge

17

Design Patterns
5. Detailed Design – Reuse

“Design patterns help you identify less-obvious
abstractions and the objects that can capture themabstractions and the objects that can capture them.
For example, objects that represent a process or
algorithm don't occur in nature, yet they are a crucial g , y y
part of flexible design. […] These objects are seldom
found during analysis or even the early stages of
d i h ' di d l i h fdesign; they're discovered later in the course of
making a design more flexible and reusable.”

[G t l 1995][Gamma et al., 1995]

Peter Müller – Software Engineering, SS 10

18

Composite Pattern: Motivation

A program manipulates
Individual units (e g graphical objects)- Individual units (e.g., graphical objects)

Account

- Groups of units

Account

Wanted: a design that allows algorithms to deal
with single units and groups in a uniform way

Peter Müller – Software Engineering, SS 10

with single units and groups in a uniform way

19

Composite Pattern: Example
5. Detailed Design – Reuse

Used by
client

*Graphic
Draw()

client

Draw()

Line
Draw()

Box
Draw()

Text
Draw()

Group

Draw()
Add(Graphic)Add(Graphic)
Remove(Graphic)
GetChild(int)

Peter Müller – Software Engineering, SS 10

20

Composite Pattern: Structure
5. Detailed Design – Reuse

*ComponentComponent
Operation()

Leaf
Operation()

Composite

Operation()

children

p () Operation()
Add(Component)
Remove(Component)
GetChild(int)

forall g in children:
g.Operation()

Allows hierarchical grouping of components

()

Peter Müller – Software Engineering, SS 10

Allows hierarchical grouping of components

21

Composite Pattern: Statement Syntax
5. Detailed Design – Reuse

**Statement

Simple
Statement

Block
Statement

If ReturnAssignment

1..2

Statement StatementStatement

Peter Müller – Software Engineering, SS 10

22

Composite Pattern: Properties
5. Detailed Design – Reuse

Defines class hierarchies consisting of primitive
objects and composite objectsobjects and composite objects
- Objects can be composed hierarchically
- Composite objects can be used like primitive objectsp j p j

Makes client simple
Makes it easier to add new kinds of componentsMakes it easier to add new kinds of components
Can make the design overly general
- Difficult to restrict compositesDifficult to restrict composites
- Example: no return statement in a block

Peter Müller – Software Engineering, SS 10

23

Floral Patterns
5. Detailed Design – Reuse

Select a design pattern and implement it

Is it as simple as that?

Peter Müller – Software Engineering, SS 10

24

Composite Pattern: Implementation Issues
5. Detailed Design – Reuse

Explicit parent references
Simplifies traversal and deletion of components- Simplifies traversal and deletion of components

Sharing components
- Reduces storage requirements- Reduces storage requirements

Child ordering
- Might be required by the design (e g Block Statement)Might be required by the design (e.g., Block Statement)

Caching to improve performance
- Improves performance (e.g., bounding box for Group)Improves performance (e.g., bounding box for Group)

Data structure for storing components
- Affects performance (lists, trees, arrays, hash tables)

Peter Müller – Software Engineering, SS 10

p (, , y ,)

25

Abstract Factory Pattern: Motivation
5. Detailed Design – Reuse

A client class wants to create sockets for network
communicationcommunication

Client Socket

The concrete implementation of the socket
depends on the operating systemdepends on the operating system

Windows
Socket

Unix
Socket

The client class should be platform-independent

Socket Socket

Peter Müller – Software Engineering, SS 10

26

Abstract Factory Pattern: Example
5. Detailed Design – Reuse

Client SocketFactory

Socket
Windows

SocketFactory
Unix

SocketFactory

UnixWindows
Creates

bj tUnix
Socket

Windows
Socket

object

Peter Müller – Software Engineering, SS 10

27

Abstract Factory Pattern: Structure
5. Detailed Design – Reuse

Client Abstract
Factory

Abstract
ProductA

CreateProductA()
CreateProductB()

Concrete
ProductA1

Concrete
ProductA2

Concrete
Factory2

Concrete
Factory1

Abstract
ProductB

CreateProductA()
CreateProductB()

CreateProductA()
CreateProductB()

Creates
object

Concrete
ProductB1

Concrete
ProductB2

Peter Müller – Software Engineering, SS 10

28

Abstract Factory Pattern: Properties
5. Detailed Design – Reuse

Isolates concrete classes
Helps control what classes are instantiated- Helps control what classes are instantiated

- Isolates clients from implementation classes
(clients manipulate objects through interfaces)

Makes exchanging product families easy
- Class of concrete factory appears only once in program

Supporting new kinds of products is difficultSupporting new kinds of products is difficult
- Affects interface of abstract factory and all concrete

factories

Peter Müller – Software Engineering, SS 10

29

Observer Pattern: Motivation
5. Detailed Design – Reuse

Maintaining consistency between loosely
coupled objectsp j
Many dependent objects have to be informed when
one object changes its state

30

40

50

60

a b c
X 60 30 10
Y 50 30 20

c

0

10

20

a b c

Y 50 30 20
Z 80 10 10

a

b

a = 50%
b = 30%
c = 20% Change notification

Peter Müller – Software Engineering, SS 10

Change notification
Requests, modifications

30

Observer Pattern: Structure
5. Detailed Design – Reuse

Observer
*

Subject observers
Update()Attach(Observer)

Detach(Observer)
Notify()

observers

forall o in

ConcreteSubject ConcreteObserver

observers:
o.Update()

ConcreteSubject

GetState()
SetState()

subjectState
ConcreteObserver

Update()

observerState
subject

tSetState(…) Update()return
subjectState

observerState =
bj t G tSt t ()

Peter Müller – Software Engineering, SS 10

subject.GetState()

31

Observer Pattern: Collaborations
5. Detailed Design – Reuse

aConcreteSubject concreteObserver1 concreteObserver2

setState()setState(…)

notify()

update()

getState()getState()

update()

Peter Müller – Software Engineering, SS 10

getState()

32

Observer Pattern: Properties
5. Detailed Design – Reuse

Abstract coupling between subject and observer
Subject does not know concrete class of observer- Subject does not know concrete class of observer

Support for broadcast communication
- Freedom to add and remove observers- Freedom to add and remove observers

ExampleExample
- Debuggers (subject) broadcasts event when it reaches a

breakpoint
- Editor (observer) shows line of code
- Stack tracer (observer) shows stack trace.

Peter Müller – Software Engineering, SS 10

33

Strategy Pattern: Motivation
5. Detailed Design – Reuse

A program uses 3D-shapes that can be rendered
Rendering code too complex to be included in Shape- Rendering code too complex to be included in Shape

Different rendering algorithms are appropriate at
different timesdifferent times
- Do not implement the ones we do not use

Rendering algorithm should not be hard-wired
- New algorithms may be added

Peter Müller – Software Engineering, SS 10

New algorithms may be added

34

Strategy Pattern: Example
5. Detailed Design – Reuse

Used by

Shape Renderer

Used by
client

Shape
Render()

Renderer
Render()

RayTracer
Render()

Radiosity
Render()

Peter Müller – Software Engineering, SS 10

35

Strategy Pattern: Structure
5. Detailed Design – Reuse

Context

ContextInter()
Strategy

AlgorithmInter()

strategy

()

Concrete Concrete

AlgorithmInter()

Concrete
Strategy_1

AlgorithmInter()

Concrete
Strategy_2

AlgorithmInter()

Peter Müller – Software Engineering, SS 10

36

Strategy Pattern: Properties
5. Detailed Design – Reuse

Supports families of algorithms
Sorting line breaking layouting etc- Sorting, line breaking, layouting, etc.

- Clients have a choice (e.g., different space and time
trade-offs)

Alternative to inheritance
- Behavior not hard-wired into context (dynamic exchange)
- Separates context from algorithm (easier to maintain)

Communication overhead
- Arguments must be passed to strategies

Peter Müller – Software Engineering, SS 10

Arguments must be passed to strategies

37

Adapter Pattern: Motivation
5. Detailed Design – Reuse

A program expects an interface that is
incompatible with the interface of a reusable classincompatible with the interface of a reusable class

Shape
LegacyLegacy

Used by
client BoundingBox() Legacy

code
Legacy
code

client

Line
BoundingBox()

TextShape
BoundingBox()

TextEditor
GetExtent()

Common problem with legacy code
Also known as wrapper

Peter Müller – Software Engineering, SS 10

Also known as wrapper

38

Adapter Pattern: Example
5. Detailed Design – Reuse

DrawingEditor Shape
BoundingBox()

TextEditor
GetExtent()

text
Line

BoundingBox()
TextShape

BoundingBox()

text

returnreturn
text.GetExtent()

Peter Müller – Software Engineering, SS 10

39

Adapter Pattern: Structure
5. Detailed Design – Reuse

Target Adaptee
Used by

client Target
Request()

Adaptee
SpecificRequest()

adaptee
Adapter

Request()

adaptee

adaptee.SpecificRequest()

Delegation used to bind Adapter and Adaptee
Subtyping used to specify interface of AdapterSubtyping used to specify interface of Adapter
Target and Adaptee exist before Adapter
Target may be realized as interface in Java

Peter Müller – Software Engineering, SS 10

Target may be realized as interface in Java

40

Adapter Pattern: Properties
5. Detailed Design – Reuse

How much adaptation does an adapter do?
From simple interface conversion (renaming) to entirely- From simple interface conversion (renaming) to entirely
different set of operations

Variant: class adapter
- Adapter inherits from Target and Adapteep g p
- No aggregation and delegation
- Requires multiple inheritance if Target is a class

Peter Müller – Software Engineering, SS 10

41

Bridge Pattern: Motivation
5. Detailed Design – Reuse

A program uses
socket abstractions

Socket

O ()socket abstractions
to communicate

Open()

SSLSocket Compression

Different socket
abstractions

SSLSocket p
Socket

abst act o s

Different socket

Socket

Open()Different socket
implementations

Unix
Socket

Windows
Socket

Peter Müller – Software Engineering, SS 10

Open()Open()

42

Bridge Pattern: Motivation (cont’d)
5. Detailed Design – Reuse

SocketImplementation
Specialization in
two dimensions Socket

Open()

Implementation
cannot be changed

dynamically
leads to explosion
of class hierarchy

SSLSocket Compression
Socket

Windows Unix Windows UnixWindows
SSLSocket

Open()

Unix
SSLSocket

Open()

Compression
Socket

Open()

Compression
Socket

Open()

Peter Müller – Software Engineering, SS 10

43

Bridge Pattern: Example
5. Detailed Design – Reuse

Used by
client

Socket SocketImpl

client

Open() Open()

UnixWindowsCompressionSSLSocket Unix
SocketImpl
Open()

Windows
SocketImpl
Open()

Compression
Socket

Socket ImplementationSocket Abstraction

Peter Müller – Software Engineering, SS 10

44

Bridge Pattern: Structure
5. Detailed Design – Reuse

Abstraction Implementorimp

Operation()
Implementor

OperationImpl()
imp.OperationImpl()

Refined Refined Concrete Concrete

Decouples an abstraction from its implementation

Abstraction_A Abstraction_B Implementor_1
OperationImpl()

Implementor_2
OperationImpl()

Decouples an abstraction from its implementation
Allows different implementations of an interface to
be exchanged dynamically

Peter Müller – Software Engineering, SS 10

be exchanged dynamically

45

Adapter vs. Bridge
5. Detailed Design – Reuse

Both are used to hide the details of the underlying
implementationimplementation
Adapter pattern
- Makes unrelated components work togetherMakes unrelated components work together
- Applied to systems after they are designed

(reengineering, interface engineering)
Bridge Pattern
- Used up-front in a design to let abstractions and

implementations vary independently
- Green field engineering of an “extensible system”

Peter Müller – Software Engineering, SS 10

46

Facade Pattern: Motivation
5. Detailed Design – Reuse

Subsystem 1 can call
operations on any Subsystem 1operations on any
component of Subsystem 2
AdvantagesAdvantages
- Efficiency

DisadvantagesDisadvantages
- Caller does not understand

how the subsystem works
- Subsystem will be misused,

leading to non-maintainable
code Subsystem 2

Peter Müller – Software Engineering, SS 10

code

47

Facade Pattern: Example
5. Detailed Design – Reuse

Provides a unified
interface to a set of Subsystem 1interface to a set of
objects in a subsystem
Defines a higher-levelDefines a higher level
interface that makes the
subsystem easier to use Facade

Reduces coupling
Does not prevent direct p
usage of objects in a
subsystem Subsystem 2

Peter Müller – Software Engineering, SS 10

48

Subsystem Design with Facade and Adapter
5. Detailed Design – Reuse

Ideal structure of a subsystem
An interface object FacadeAn interface object
(boundary object)
A set of application domain

Facade

A set of application domain
objects (entity objects)
modeling real entities or

Interface to existing
systems: Adapterode g ea e t t es o

existing systems
- Some of the entity objects are

Provides interface
to existing system
Existing system isinterfaces to existing systems

One or more control objects

Existing system is
not necessarily
object-oriented!

Peter Müller – Software Engineering, SS 10

49

Design Patterns Encourage Reusable Designs
5. Detailed Design – Reuse

Facade should be used by all subsystems
Defines all the services of the subsystem- Defines all the services of the subsystem

- Delegates requests to components within the subsystem
- Most of the time the facade need not be changed whenMost of the time the facade need not be changed when

the component is changed
Adapters should be used to interface to existing
components
Bridges should be used to interface sets of objects
- Where the full set is not completely known at design time
- When the subsystem must be extended later after the

system has been deployed (dynamic extension)

Peter Müller – Software Engineering, SS 10

system has been deployed (dynamic extension)

50

The “Ingredients” of Design Patterns
5. Detailed Design – Reuse

Inheritance (subclassing)
Establishes “is a” relation

Person
- Establishes is-a relation
- Enables subtype polymorphism Student

Aggregation
- Establishes “has-a” relation Car Motor

- No subtyping in general

Design patterns provide guidance how to use
inheritance and aggregation

Peter Müller – Software Engineering, SS 10

51

Inheritance and Aggregation: Bridge Pattern
5. Detailed Design – Reuse

Subtyping enables
l hi li t

Aggregation
decouples caller

Ab i

polymorphic client
code

from
implementation

Abstraction

Operation()
Implementor

OperationImpl()

Refined
Abstraction_A

Refined
Abstraction_B

Concrete
Implementor_1

Concrete
Implementor_2

OperationImpl() OperationImpl()

Specialization of

Peter Müller – Software Engineering, SS 10

p
operations

52

Textual Clues in Nonfunctional Requirements
5. Detailed Design – Reuse

Use textual clues to identify design patterns
(similar to Abbot’s technique in analysis)- (similar to Abbot s technique in analysis)

“complex structure” Composite
“must be extensible”, “must be scalable” Observer
“policy independent from mechanism” Strategy
“must interface with an existing object” Adapter
“must interface to a set of existing objects” Facadeg j
“must deal with the interface to several
systems some of them to be developed in
the f t re”

Bridge

Peter Müller – Software Engineering, SS 10

the future”

53

5. Detailed Design
5. Detailed Design – Reuse

5 1 Overview5.1 Overview
5.2 Reuse

5 2 1 D i P tt5.2.1 Design Patterns
5.2.2 Case Study: Patterns in the Java AWT
3 I f S ifi i5.3 Interface Specification

5.4 Object Model Restructuring and Optimization

Peter Müller – Software Engineering, SS 10

54

AWT: Overview
5. Detailed Design – Reuse

AWT: Abstract Window Toolkit
Elements of the GUI areElements of the GUI are
represented by components
Display and layout of theDisplay and layout of the
components have to be
specifiedspec ed
Components receive events
from the window system and y
propagate them to so-called
listeners

Peter Müller – Software Engineering, SS 10

55

Component Hierarchy: Composite Pattern
5. Detailed Design – Reuse

Components can be
grouped into containersgrouped into containers
Containers are also
components

Panel
components

*C t FrameComponent Frame

ContainerButton Checkbox

Peter Müller – Software Engineering, SS 10

Window Panel

56

Event Communication
5. Detailed Design – Reuse

Objects can register
at a component as

1. User clicks
on Button2. actionPerformed

event is associated at a component as
observer (listener)
for one or several

with button

event types
Upon occurrence of

button

an event, the event
source informs all

i t d bj tregistered objects
by invoking a
method

listener1 listener2 3. Listeners
are informed

Peter Müller – Software Engineering, SS 10

method

57

Component / Listener: Observer Pattern
5. Detailed Design – Reuse

Update method receives
event as parameter

No abstract
Subject

ActionListener
actionPerformed()

*actionListenerButton
addActionListener(…) actionPerformed(…)addActionListener(…)
removeActionListener(…)
processActionEvent(…)

MyActionListener
actionPerformed()

Notify method called
by the underlying

actionPerformed(…)window system

ConcreteObserver
does not know

Peter Müller – Software Engineering, SS 10

does ot o
ConcreteSubject

58

Platform Independence: Bridge Pattern
5. Detailed Design – Reuse

AWT components are platform-independent
Operations that depend on the window system areOperations that depend on the window system are
delegated to platform-specific peer objects

Component Component
Peer

Interface
hierarchy

Button Checkbox Button
Peer

Checkbox
Peer

X MotifPlatform-specific

Peter Müller – Software Engineering, SS 10

ButtonPeer ButtonPeerimplementation

59

Platform Independence: Peer Creation
5. Detailed Design – Reuse

Component objects have references to their peers

Component Component
Peer

Platform-independent components cannot
instantiate platform-dependent peersp p p

Button Button
Peer

Solution: abstract factory

Peter Müller – Software Engineering, SS 10

60

Platform Independence: Abstract Factory
5. Detailed Design – Reuse

Button Toolkit
Abstract
factory

Client createButton(…)
createCheckbox(…)

Ab t t
Button
Peer

Abstract
product

X11.XToolkitmotif.MToolkit

createButton(…)
createCheckbox(…)

createButton(…)
createCheckbox(…)

X
ButtonPeer

Motif
ButtonPeer createCheckbox(…)createCheckbox(…)ButtonPeer ButtonPeer

Concrete
factory

Concrete
d t

Peter Müller – Software Engineering, SS 10

factoryproduct

61

Displaying Containers: Layout Managers
5. Detailed Design – Reuse

Layout of components in
one container is
computed by a layout
manager
Th l

Panel

The layout manager can
be set for each container

FrameFrame

Border-
Layout

Flow-
Layout

Peter Müller – Software Engineering, SS 10

62

Layout Managers: Strategy Pattern
5. Detailed Design – Reuse

Container

layout()
LayoutManager

layoutContainer()y () layoutContainer()

BorderLayout

layoutContainer()

FlowLayout

layoutContainer()

Peter Müller – Software Engineering, SS 10

63

5. Detailed Design
5. Detailed Design – Interface Specification

5 1 Overview5.1 Overview
5.2 Reuse

5 2 1 D i P tt5.2.1 Design Patterns
5.2.2 Case Study: Patterns in the Java AWT
3 I f S ifi i5.3 Interface Specification

5.4 Object Model Restructuring and Optimization

Peter Müller – Software Engineering, SS 10

64

Specifying Interfaces
5. Detailed Design – Interface Specification

Requirements Analysis
Att ib t

Detailed Design
Vi ibilitAttributes

Operations without
parameters and types

Visibility
Signatures
Contractsp yp Contracts

Account
Amount

Account
–Amount: int

AccountId
Deposit()
Withdraw()

#AccountId: int
+Deposit(a: int)
+Withdraw(a: int)

GetBalance() +GetBalance(): int

<<precondition>>
a >= 0

Peter Müller – Software Engineering, SS 10

a >= 0

65

Information Hiding
5. Detailed Design – Interface Specification

g
Definition
Information hiding is a technique for reducing theInformation hiding is a technique for reducing the
dependencies between modules:
- The intended client is provided with all the information p

needed to use the module correctly, and with nothing
more
Th li t l th (bli l) il bl i f ti- The client uses only the (publicly) available information

Peter Müller – Software Engineering, SS 10

66

Visibility Information
5. Detailed Design – Interface Specification

UML defines three levels of visibility
Similar to C++ Java and C#- Similar to C++, Java, and C#

Private (implementation interface): “–”(p)
- Private features can be accessed only by the class in

which they are declared (not even subclasses)
Protected (subclass interface): “#”
- Protected features can be accessed by the class in which

th d fi d d b d d t f th lthey are defined and by any descendent of the class
Public (client interface): “+”

Public features can be accessed by any class

Peter Müller – Software Engineering, SS 10

- Public features can be accessed by any class

67

Implementation of UML Visibility in Java
5. Detailed Design – Interface Specification

class Account {
private int amount;Account

–Amount: int
#AccountId: int

private int amount;
protected int accountId;

public void deposit(int a) { }+Deposit(a: int)
+Withdraw(a: int)
+GetBalance(): int

public void deposit(int a) {…}
public void withdraw(int a) {…}
public int getBalance() {…}

}

protected has a slightly different meaning in Java

}

p otected as a s g t y d e e t ea g Ja a
- Also visible to classes in the same package

Eiffel provides more fine-grained visibility control

Peter Müller – Software Engineering, SS 10

p g y

68

Information Hiding Heuristics
5. Detailed Design – Interface Specification

Public interface for classes and subsystems
Use the facade pattern- Use the facade pattern

- Define abstract interfaces that mediate between system
and external world as well as between subsystems

The less an operation knows the less likely it will be
affected by any changes
Access attributes only via operations
- Only the operations of a class should manipulate its

attributes (no public attributes)
- Trade-off: Information hiding vs. efficiency

Peter Müller – Software Engineering, SS 10

69

UML is not Enough
5. Detailed Design – Interface Specification

Person
spouse

Urs: Person
spousePerson

Marry() 0..1
Urs: Person

Sile: PersonBeat: Person spouse“is married to”

Urs is married to Sile, Sile is married to Beat, and
Beat is not married at alleat s ot a ed at a
A valid instantiation of the class diagram!
Associations describe relations between classes

Peter Müller – Software Engineering, SS 10

Associations describe relations between classes

70

UML is not Enough (cont’d)
5. Detailed Design – Interface Specification

Person
spouse spouse

Urs: PersonPerson

age 0..1
Urs: Person

age = 18

Married persons are at
least 16 years old Sile: Personspouse

age = 11

Urs is married to Sile, who is only eleven
A valid instantiation of the class diagram!
Class diagrams do not restrict values of attributes

Peter Müller – Software Engineering, SS 10

71

Expressing Contracts
5. Detailed Design – Interface Specification

Natural language
Advantage: Easy to spouse expresses - Advantage: Easy to
understand and use

- Disadvantage: Ambiguous

p p
“is married to”

spouse: Person →Person

Mathematical notation
- Advantage: Precise

p
spouse = spouse–1

souse ∩ id = ∅

∀p: Person: p ∈ dom(spouse) ⇒
- Disadvantage: Difficult for

normal customers
C t t l

∀p: Person: p ∈ dom(spouse) ⇒
spouse(p) ∈ dom(spouse) ∧
p ≠ spouse(p) ∧
p = spouse(spouse(p))Contract language

- Formal, but easy to use
Examples: Eiffel JML

spouse /= Void implies
spouse /= Current and

p spouse(spouse(p))

Peter Müller – Software Engineering, SS 10

- Examples: Eiffel, JML p
spouse.spouse = Current

72

Contracts in Eiffel: Object Invariants
5. Detailed Design – Interface Specification

Associated with classes

class PERSON feature

INTEGERAssociated with classes

Describe consistency

age: INTEGER
spouse: PERSON

invariantDescribe consistency
criteria of objects and
object structures

invariant
spouse /= Void
implies
spouse /= Currentobject structures

Hold for all instances of a

spouse / Current
and
spouse.spouse = Current

and

class age >= 16

end -- class PERSON

Peter Müller – Software Engineering, SS 10

73

Object Constraint Language – OCL
5. Detailed Design – Interface Specification

The contract language for UML

Used to specify
- Invariants of objectsInvariants of objects
- Pre- and postconditions of operations
- Guards (for instance, in state diagrams)

Special support for
- Navigation through UML class diagram
- Associations with multiplicities

Peter Müller – Software Engineering, SS 10

74

Form of OCL Invariants
5. Detailed Design – Interface Specification

Constrains can mention
self: the contextual

The context is
an instance of- self: the contextual

instance
- Attributes and role names

an instance of
a class in the
UML diagram

Declares an
invariant

- Side-effect free methods
(stereotype <<query>>)
L i l ti

context Person inv:
self.age >= 0

- Logical connectives
- Operations on integers,

reals, strings, sets, bags, A boolean reals, strings, sets, bags,
sequences

- Etc.

constraint

Peter Müller – Software Engineering, SS 10

75

OCL Invariants: Example
5. Detailed Design – Interface Specification

Account
t

Customer* owner

amount age

Role name

A savings account has S i A i

CheckingAccountSavingsAccount

A savings account has
a non-negative balance

context SavingsAccount inv:
self.amount >= 0

Checking accounts are
owned by adults

context CheckingAccount inv:
self.owner.age >= 18

Peter Müller – Software Engineering, SS 10

76

OCL Invariants: Contexts
5. Detailed Design – Interface Specification

Account
amount

Customer
age

* owner

amount

CheckingAccountSavingsAccount

age

Checking accounts are
owned by adults

context CheckingAccount inv:
self.owner.age >= 18

gg

y

Accounts are owned by
adults

self.owner.age 18

context Account inv:
self owner age >= 18adults

Customers are adults

self.owner.age >= 18

context Customer inv:
lf 18

Peter Müller – Software Engineering, SS 10

self.age >= 18

77

Collections
5. Detailed Design – Interface Specification

OCL provides three predefined collection types
Set Sequence Bag- Set, Sequence, Bag

Common operations on collections

size()

includes(object)

Number of elements in the collection

True iff the object is an element

isEmpty() True iff collection contains no elements

True iff expression is true for at least one

forAll(expression)

exists(expression)

True iff expression is true for all elements

True iff expression is true for at least one
element

Peter Müller – Software Engineering, SS 10

forAll(expression) True iff expression is true for all elements

78

Generating Collections
5. Detailed Design – Interface Specification

Explicitly enumerating the elements Set { 1, 7, 16 }

By navigating along 1:n associations
- Navigation along a single 1:n g g g

association yields a Set
- Navigation along a single 1:n

association labeled with the constraint

self.accounts

association labeled with the constraint
{ ordered } yields a Sequence

Account
amount

Customer
age

*
accounts

{ ordered }

Peter Müller – Software Engineering, SS 10

amount age

79

Example: Multiplicity Zero or One
5. Detailed Design – Interface Specification

Person
spouse

0 1age 0..1

self can be
omitted

spouse
used as set

context Person inv:
spouse->size() = 1 implies
age >= 16 and spouse spouse = self and spouse <> selfage >= 16 and spouse.spouse = self and spouse <> self

spouse used

Peter Müller – Software Engineering, SS 10

as object

80

Example: Quantification and Type Information
5. Detailed Design – Interface Specification

Account Customer* owner
accounts

amount age
accounts

CheckingAccountSavingsAccount

Subtype

context Customer inv:
age <= 18 implies

Subtype
relation

accounts->forAll(a | a.oclIsKindOf(SavingsAccount))

∀a∈accounts: a oclIsKindOf(Savingsaccount)

Peter Müller – Software Engineering, SS 10

∀a∈accounts: a.oclIsKindOf(Savingsaccount)

81

Example: Composite Pattern
5. Detailed Design – Interface Specification

*Component children

Leaf Composite

children

parent
0..1

A composite is

Leaf Composite parent

context Composite inv:
the parent of its
components

context Composite inv:
children->forAll(c | c.parent = self)

A component is
contained in its
parent composite

context Component inv:
parent->size() = 1 implies
parent children >includes(self)

Peter Müller – Software Engineering, SS 10

parent composite parent.children->includes(self)

82

Contracts in Eiffel: Method Specifications
5. Detailed Design – Interface Specification

Method precondition
Must be true before the method is executed- Must be true before the method is executed

Method postcondition
- Must be true after the method terminates- Must be true after the method terminates
- old expressions is used to refer to values of the pre-state

l i t f ACCOUNT f tclass interface ACCOUNT feature

withdraw (a: INTEGER) is
require a >= 0require a >= 0
ensure GetBalance() = old(GetBalance() – a)

end

Peter Müller – Software Engineering, SS 10

end

83

Pre- and Postconditions in OCL
5. Detailed Design – Interface Specification

Context specifies
method signature

context Account::Withdraw(a: int)
pre: a >= 0
post: GetBalance() = GetBalance@pre() - a

Suffix @pre isSuffix @pre is
used to refer to
prestate values

result is used to refer to return value
Pre- and postconditions can be named (like in Eiffel)

Peter Müller – Software Engineering, SS 10

84

Alternative Notation
5. Detailed Design – Interface Specification

Contracts can be depicted as notes in diagrams
Stereotypes instead of keywords inv pre post- Stereotypes instead of keywords inv, pre, post

Account
–Amount: int
#AccountId: int

<<invariant>>
AccountId >= 0

#AccountId: int
+Deposit(a: int)
+Withdraw(a: int)
+GetBalance(): int

<<precondition>>
a >= 0

()
<<postcondition>>

GetBalance() = GetBalance@pre() - a

Peter Müller – Software Engineering, SS 10

85

5. Detailed Design
5. Detailed Design – Object Model Restructuring and Optimization

5 1 Overview5.1 Overview
5.2 Reuse

5 2 1 D i P tt5.2.1 Design Patterns
5.2.2 Case Study: Patterns in the Java AWT
3 I f S ifi i5.3 Interface Specification

5.4 Object Model Restructuring and Optimization

Peter Müller – Software Engineering, SS 10

86

Object Model Restructuring and Optimization
5. Detailed Design – Object Model Restructuring and Optimization

Check use cases

Optimize access Revisit inheritance

OptimizationRestructuring

Cache complex
computations

p
pathsRevisit inheritance

Delay complex
computations

computations

Collapse classes

Peter Müller – Software Engineering, SS 10

87

Increasing Inheritance
5. Detailed Design – Object Model Restructuring and Optimization

Rearrange and adjust classes and operations to
prepare for inheritanceprepare for inheritance
- Generalization
- Specializationp

Generalization is a common modeling activity
- Abstracts common behavior out of a group of classesg p
- If operations or attributes are repeated in 2 classes the

classes might be instances of a more general class
Superclasses are desirable
- Increase of modularity, extensibility, and reusability

Peter Müller – Software Engineering, SS 10

88

Increasing Inheritance: Example
5. Detailed Design – Object Model Restructuring and Optimization

St d t P f
Adaptation of
attribute nameStudent

email: Address

Professor

eaddr: Address

attribute name
necessary

Person

email: Address

Object model
t f ti

Student Professor
transformation

Peter Müller – Software Engineering, SS 10

89

Collapsing Classes
5. Detailed Design – Object Model Restructuring and Optimization

Collapse a class without interesting behavior into
an attributean attribute
- If the only operations defined on the attributes are Set()

and Get()

Person

Person
SocialSecurity

Number
number: String

Person

SSN: String

Associations are more flexible than attributes but
often introduce unnecessary indirection

number: String

Peter Müller – Software Engineering, SS 10

often introduce unnecessary indirection

90

Optimizing Access Paths
5. Detailed Design – Object Model Restructuring and Optimization

Add redundant associations to minimize access
costcost
- What are the most frequent operations?
- How often is the operation called? (30 times a month, p (,

every 50 ms)

Turn classes into attributes (collapse classes)

Peter Müller – Software Engineering, SS 10

91

Caching Complex Computations
5. Detailed Design – Object Model Restructuring and Optimization

ShortestPath is an expensive
operation2 4 3 operation
Result can be cached

2

6

4
1

1

3

4
3

EdgeGraph *

4
7

3

4

5 Edge

distance: int

Graph

start: Node
end: Node

5

start: Node
end: Node

NodeshortestPath() *
2sp: Path

return sp;

Peter Müller – Software Engineering, SS 10

92

Keeping Caches Up-to-Date: Eager Update
5. Detailed Design – Object Model Restructuring and Optimization

Operations that change
the state of the datathe state of the data
structure update the
cache

void addEdge(Node n, Node m) {
// add (n,m) to edges

t Sh t tP th()

Possible if cache update

sp = computeShortestPath();
}

Path shortestPath() {is cheap or state
changes are rare

Path shortestPath() {
return sp;

}

Also called push
solution

Peter Müller – Software Engineering, SS 10

solution

93

Keeping Caches Up-to-Date: Lazy Update
5. Detailed Design – Object Model Restructuring and Optimization

Operations that change
the state of the datathe state of the data
structure increment a
version counter or set

void addEdge(Node n, Node m) {
// add (n,m) to edges
sp = null; // invalidate cache

a flag
p

}

Path shortestPath() {
Access to cached value
updates cache if cache
is outdated

if (sp == null)
sp = computeShortestPath();

return sp;
}is outdated

Also called pull solution

}

Peter Müller – Software Engineering, SS 10

Also called pull solution

94

Keeping Caches Up-to-Date: Active Values
5. Detailed Design – Object Model Restructuring and Optimization

Observer pattern
Active value is subject void addEdge(Node n Node m) {- Active value is subject

- Cache is observer

void addEdge(Node n, Node m) {
// add (n,m) to edges
notify(); // trigger event

}

Operations that change
the state of the data

}

void update() { // eager update
sp = computeShortestPath();

structure trigger an
event (notify)

}

Path shortestPath() {
t

Cache can be updated
eagerly or lazily

return sp;
}

Peter Müller – Software Engineering, SS 10

eagerly or lazily

95

Delaying Complex Computations
5. Detailed Design – Object Model Restructuring and Optimization

Computation is delayed until result is accessed
Example: lazy object initializationExample: lazy object initialization

Image ImageImage

filename: String
data: byte[]

Image

filename: String
paint()

paint()
paint()

image
RealImage

data: byte[]
i t()

ImageProxy

filename: String
i t()

1 0..1
image

Peter Müller – Software Engineering, SS 10

paint()paint()

96

Design Optimizations: Summary
5. Detailed Design – Object Model Restructuring and Optimization

Design optimizations are an important part of the
detailed design phasedetailed design phase
- The requirements analysis model is semantically correct

but often too inefficient if directly implemented
- Strike a balance between efficiency and clarity

Aim for Measure
clarity Implementation performance

Optimize

Source

Optimize
where

necessary

Peter Müller – Software Engineering, SS 10

code spaceModel space

