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Program Correctness

Semantics can be used to prove correctness of a program

Partial correctness expresses that if a program terminates then there
will be a certain relationship between the initial and the final state

Total correctness expresses that a program will terminate and there will
be a certain relationship between the initial and the final state

The relationship is expressed by a formal specification

total correctness = partial correctness + termination

Peter Müller—Formal Methods and Functional Programming, SS11 p. 164
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3.1 Hoare Logic

3.1.1 Proofs of Program Correctness
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3.1.4 Properties of the Semantics
3.1.5 Extensions

3.2 Soundness and Completeness
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Program Correctness: Example

Consider the factorial statement

y := 1;
while not x = 1 do
y := y * x;
x := x - 1

end

Specification:
The final value of y is the factorial of the initial value of x

The statement is partially correct
It does not terminate for x < 1
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Formal Specification

Specification:
The final value of y is the factorial of the initial value of x

We can express the specification formally based on a formal semantics

⟨y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ⟩ → σ′

⇒ σ′(y) = σ(x)! ∧ σ(x) > 0

This specification expresses partial correctness in natural semantics

Peter Müller—Formal Methods and Functional Programming, SS11 p. 167



Correctness Proof

We prove partial correctness in three steps

Step 1: The body of the loop satisfies

⟨y:=y ∗ x;x:=x − 1, σ⟩ → σ′′ ∧ σ′′(x) > 0⇒
σ(y) × σ(x)! = σ′′(y) × σ′′(x)! ∧ σ(x) > 0

Step 2: The loop satisfies

⟨while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ⟩ → σ′′ ⇒
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

Step 3: The whole statement is partially correct

⟨y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ⟩ → σ′ ⇒
σ′(y) = σ(x)! ∧ σ(x) > 0
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Proof: Step 1—Loop Body

Since we have the transition ⟨y:=y ∗ x;x:=x − 1, σ⟩ → σ′′, we can
assume that there are transitions ⟨y:=y ∗ x, σ⟩ → σ′ and
⟨x:=x − 1, σ′⟩ → σ′′

We get σ′ = σ[y↦ A[[y ∗ x]]σ] and σ′′ = σ′[x↦ A[[x − 1]]σ′], which
imply σ′′ = σ[y↦ σ(y) × σ(x)][x↦ σ(x) − 1]

By σ′′(x) > 0, we calculate

σ′′(y) × σ′′(x)! =
σ(y) × σ(x) × (σ(x) − 1)! = σ(y) × σ(x)!

By σ′′(x) = σ(x) − 1, we get σ(x) > 0
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Proof: Step 2—Loop

Step 2: The loop satisfies

⟨while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ⟩ → σ′′ ⇒
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

We prove this property by induction on the shape of the derivation tree

Relevant base case: while-rule for B[[not x = 1]]σ = ff

We have σ(x) = 1 and σ = σ′′

Since 1 = 1!, we get σ(y) × σ(x)! = σ(y) = σ′′(y)
We trivially get σ′′(x) = 1 and σ(x) > 0
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Proof: Step 2—Loop (Case 2)

Relevant inductive case: while-rule for B[[not x = 1]]σ = tt

From the rule of the natural semantics we get for some σ′′′

(1) ⟨y:=y ∗ x;x:=x − 1, σ⟩ → σ′′′

(2) ⟨while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ′′′⟩ → σ′′

Applying the induction hypothesis to (2) yields
σ′′′(y) × σ′′′(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ′′′(x) > 0

By (1), σ′′′(x) > 0, and Proof Step 1, we get
σ(y) × σ(x)! = σ′′′(y) × σ′′′(x)! ∧ σ(x) > 0

Combining these results yields
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0
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Proof: Step 3—Factorial Statement

Step 3: The whole statement is partially correct

⟨y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ⟩ → σ′ ⇒
σ′(y) = σ(x)! ∧ σ(x) > 0

From the natural semantics we get for some σ′′

(1) ⟨y:=1, σ⟩ → σ′′

(2) ⟨while not x = 1 do y:=y ∗ x;x:=x − 1 end, σ′′⟩ → σ′

By (1), we get σ′′ = σ[y↦ 1] and, thus, σ′′(x) = σ(x)

By (2), and Proof Step 2, we get
σ′′(y) × σ′′(x)! = σ′(y) ∧ σ′(x) = 1 ∧ σ′′(x) > 0

We conclude 1 × σ(x)! = σ′(y) ∧ σ(x) > 0
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Verification Example: Observations

We can prove correctness of a program based on a formal semantics
The proof would also be possible with SOS and denotational semantics,
but even more complicated

Proofs are too detailed to be practical
We have to consider how whole states are modified
We would like to focus on certain properties of states

Axiomatic Semantics describes essential properties of syntactic
constructs

The choice of essential properties depends on what we want to prove
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Assertions

Properties of programs are specified as assertions

{ P } s { Q }

where s is a statement and P and Q are predicates

Terminology

Assertions are also called (Hoare) triples

P is called precondition

Q is called postcondition
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Meaning of Assertions

The informal meaning of { P } s { Q } is

If P evaluates to true in the initial state σ, and
if the execution of s from σ terminates in a state σ′

then Q will evaluate to true in σ′

This meaning describes partial correctness, that is, termination is not
an essential property

It is also possible to assign different meanings to assertions
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Assertions: Example

Specification of the factorial statement by an assertion

{ true }
y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end

{ y = x! ∧ x > 0 }

In general, this assertion does not hold

Consider an initial state { x↦ 2,y↦ 0 }
The final state will be { x↦ 1,y↦ 2 }

We have to express that y in the final state is the factorial of x in the
initial state
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Logical Variables

Assertions can contain logical variables
Logical variables may occur only in pre- and postconditions
Logical variables are not program variables and may, thus, not be
accessed in programs

Logical variables can be used to save values of the initial state for the
final state

{ x = N }
y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end

{ y = N! ∧N > 0 }

We assume states to map logical variables to their values
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Assertion Language

Pre- and postconditions are predicates, that is, boolean expressions
It is common to use a richer set of expressions for assertions, for
instance, to include quantification

We will use additional expressions when it is convenient (e.g., x!)

We will use the following convenient notations
“P1 ∧ P2” for “P1 and P2”

“P1 ∨ P2” for “P1 or P2”

“¬P” for “not P”

“P[x ↦ e]” for P with each free occurrence of x replaced by e

We will use the following substitution lemma (see exercise for proof):

B[[P[x ↦ e]]]σ⇔B[[P]]σ[x ↦ A[[e]]σ]
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Inference System

We formalize the semantics of a programming language by describing
the valid assertions

This is done by an inference system
An inference system consists of a set of axioms and rules
The formulas of the inference system are assertions

{ P } s { Q }

The inference system specifies an axiomatic semantics of the
programming language

Peter Müller—Formal Methods and Functional Programming, SS11 p. 181



Axiomatic Semantics of IMP

skip does not modify the state

SkipAx { P } skip { P }

x:=e assigns the value of e to variable x

AssAx { P[x ↦ e] } x:=e { P }

Let σ be the initial state

Precondition: B[[P[x ↦ e]]]σ, which is equivalent to
B[[P]]σ[x ↦ A[[e]]σ] (substitution lemma)

Final state: σ[x ↦ A[[e]]σ]
Consequently, B[[P]] holds in the final state

The rules are axiom schemes
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Axiomatic Semantics of IMP (cont’d)

Sequential composition s1;s2

SeqAx

{ P } s1 { Q } { Q } s2 { R }
{ P } s1;s2 { R }

Conditional statement if b then s1 else s2 end

IfAx
{ b ∧P } s1 { Q } { ¬b ∧P } s2 { Q }
{ P } if b then s1 else s2 end { Q }
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Axiomatic Semantics of IMP (cont’d)

Loop statement while b do s end

WhAx

{ b ∧P } s { P }
{ P } while b do s end { ¬b ∧P }

P is the loop invariant

Rule of consequence

ConsAx
{ P′ } s { Q′ }
{ P } s { Q }

if P⇒ P′ and Q′ ⇒ Q

We can strengthen preconditions
We can weaken postconditions
P⇒ Q is defined as:
“For all states σ, B[[P]]σ implies B[[Q]]σ”

Peter Müller—Formal Methods and Functional Programming, SS11 p. 184



Inference Trees

Axioms and rules are used like in natural semantics or natural deduction

Derivation trees are called inference trees since they show how to infer
an assertion

The leaves are instances of axiom schemes
The internal nodes correspond to instances of rules

A finite inference tree gives a proof of the assertion at its root

To express that an assertion { P } s { Q } can be inferred, we write

⊢ { P } s { Q }
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Inference Trees: Example 1

Prove that the following statement swaps the values in the variables x

and y

z:=x; x:=y; y:=z

We can build the following inference tree

{ P } z:=x { z = X0 ∧ y = Y0 }

{ P } z:=x { y = Y0 ∧ z = X0 } { y = Y0 ∧ z = X0 } x:=y { Q′ }

{ P } z:=x; x:=y { Q′ } { Q′ } y:=z { Q }

{ P } z:=x; x:=y; y:=z { Q }

where we write:
P for x = X0 ∧ y = Y0

Q for x = Y0 ∧ y = X0

Q′ for x = Y0 ∧ z = X0
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Inference Trees: Example 2

Consider the non-terminating loop

while true do skip end

We can build the following inference tree

ConsAx

WhAx

ConsAx

SkipAx { true } skip { true }
{ true ∧ true } skip { true }

{ true } while true do skip end { ¬true ∧ true }
{ true } while true do skip end { ¬true }

This proof illustrates that we have partial correctness
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Proof Outlines

Inference trees tend to get very large and are, thus, inconvenient to
write

Most statements are written many times
Many assertions are written many times

An alternative is to group the assertions around the program text

We write assertions before and after each statement to indicate which
properties hold in the states before and after the execution of this
statement
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Proof Outlines: Notation

We write instances of axioms as:

{ P }
skip

{ P }

{ P[x ↦ e] }
x:=e

{ P }

We write an instance of the rule for sequential composition as:

{ P }
s1;

{ Q }
s2

{ R }

This expresses ⊢ { P } s1 { Q }, ⊢ { Q } s2 { R }, and ⊢ { P } s1;s2 { R }
We write each statement and the intermediate assertion Q only once
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Proof Outlines: Notation (cont’d)

We write an instance of the rule
for conditional statements as:

{ P }
if b then

{ b ∧P }
s1

{ Q }
else

{ ¬b ∧P }
s2

{ Q }
end

{ Q }

We write an instance of the
rule for loops as:

{ P }
while b do

{ b ∧P }
s

{ P }
end

{ ¬b ∧P }
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Proof Outlines: Notation (cont’d)

We write an instance of the rule of consequence as:

{ P }
⇒
{ P′ }

s
{ Q′ }
⇒
{ Q }

We omit the implication when P and P′ or Q and Q′ are syntactically
identical

{ P }
s

{ Q′
}

⇒

{ Q }

{ P }
⇒

{ P′
}

s
{ Q }

Peter Müller—Formal Methods and Functional Programming, SS11 p. 191



Proof Outlines: Example

Back to our swap-example:

z:=x; x:=y; y:=z

Proof outline:

{ x = X0 ∧ y = Y0 }
⇒
{ y = Y0 ∧ x = X0 }

z := x;

{ y = Y0 ∧ z = X0 }
x := y;

{ x = Y0 ∧ z = X0 }
y := z

{ x = Y0 ∧ y = X0 }

Proof outlines are typically developed bottom-up
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Verification of Factorial Statement

{ x = N }
y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end

{ y = N! ∧N > 0 }

Determining the loop invariant

Invariant: x > 0⇒ y*x! = N! ∧N ≥ x

Peter Müller—Formal Methods and Functional Programming, SS11 p. 193



Verification of Factorial Statement

{ x = N }
y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end

{ y = N! ∧N > 0 }

Determining the loop invariant

Iteration 0 1 2 i N − 1
x N N − 1 N − 2 N − i 1
y 1 N N*(N − 1) N*(N − 1)* . . .*(N − i + 1) N!

Invariant: x > 0⇒ y*x! = N! ∧N ≥ x
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Verification of Factorial Statement

{ x = N }
y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end

{ y = N! ∧N > 0 }

Determining the loop invariant

Iteration 0 1 2 i N − 1
x N N − 1 N − 2 N − i 1
y 1 N N*(N − 1) N*(N − 1)* . . .*(N − i + 1) N!

Invariant: x > 0⇒ y*x! = N! ∧N ≥ x
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Proof Outline for Factorial Statement

{ x = N }
⇒
{ x > 0⇒ 1*x! = N! ∧N ≥ x }

y := 1;

{ x > 0⇒ y*x! = N! ∧N ≥ x }
while not x = 1 do

{ x ≠ 1 ∧ (x > 0⇒ y*x! = N! ∧N ≥ x) }
⇒
{ x-1 > 0⇒ y*x*x-1! = N! ∧N ≥ x-1 }

y := y*x;

{ x-1 > 0⇒ y*x-1! = N! ∧N ≥ x-1 }
x := x-1

{ x > 0⇒ y*x! = N! ∧N ≥ x }
end

{ x = 1 ∧ (x > 0⇒ y*x! = N! ∧N ≥ x) }
⇒
{ y = N! ∧N > 0 }
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Proof Outline for Zune Example
{ 0 < D }
⇒

{ 1980 − 1980 ≤ (D − D)/365 ∧ 0 < D }
year := 1980;

{ year − 1980 ≤ (D − D)/365 ∧ 0 < D }
days := D;

{ year − 1980 ≤ (D − days)/365 ∧ 0 < days }

while L(year) and 366 < days or not L(year) and 365 < days do

{ (L(year) ∧ 366 < days ∨ ¬L(year) ∧ 365 < days) ∧ year − 1980 ≤ (D − days)/365 ∧ 0 < days }

⇒

{ year − 1980 ≤ (D − days)/365 ∧ (L(year) ⇒ 366 < days) ∧ 365 < days }

if L(year) then

{ L(year) ∧ year − 1980 ≤ (D − days)/365 ∧ (L(year) ⇒ 366 < days) ∧ 365 < days }

⇒

{ year + 1 − 1980 ≤ (D − (days − 366))/365 ∧ 0 < (days − 366) }
days := days - 366

{ year + 1 − 1980 ≤ (D − days)/365 ∧ 0 < days }

else

{ ¬L(year) ∧ year − 1980 ≤ (D − days)/365 ∧ (L(year) ⇒ 366 < days) ∧ 365 < days }

⇒

{ year + 1 − 1980 ≤ (D − (days − 365))/365 ∧ 0 < days − 365 }
days := days - 365;

{ year + 1 − 1980 ≤ (D − days)/365 ∧ 0 < days }

end;

{ year + 1 − 1980 ≤ (D − days)/365 ∧ 0 < days }

year := year + 1

{ year − 1980 ≤ (D − days)/365 ∧ 0 < days }

end

{ ¬(L(year) ∧ 366 < days ∨ ¬L(year) ∧ 365 < days) ∧ year − 1980 ≤ (D − days)/365 ∧ 0 < days }

⇒

{ year − 1980 ≤ D/365 }
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Induction on the Shape of Inference Trees

Properties of the axiomatic semantics are typically proved by induction
on the shape of the inference tree

Analogous to induction of the shape of derivation trees in natural
semantics

Note: structural induction on the shape of the statement does not work
because of the rule of consequence

1. Induction base: Prove that the property holds for all the simple
inference trees by showing that it holds for the axioms of the inference
system

2. Induction step: Prove that the property holds for all composite
inference trees:

Induction hypothesis: For each rule, assume that the property holds for
its premises
Prove that it also holds for the conclusion, provided that the conditions
of the rule are satisfied
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Proving Properties: Example

We prove the lemma

If ⊢ { P } skip { Q } then P⇒ Q

If there exists an inference tree for { P } skip { Q } then P⇒ Q

We do induction on the shape of the inference tree for { P } skip { Q }
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Proving Properties: Example (cont’d)

Induction base:
The inference tree for { P } skip { Q } is an axiom instance

The only axiom that can form this tree is SkipAx

We get P = Q and, thus, P⇒ Q

Induction step:
The inference tree for { P } skip { Q } is a composite tree

We consider all rules that could be used at the root of the inference tree

The only applicable rule is ConsAx , because no other rule applies to
skip

From ConsAx , we know that there exists an inference tree for
{ P′ } skip { Q′ }, where P⇒ P′ and Q′ ⇒ Q

By applying the induction hypothesis to { P′ } skip { Q′ }, we get
P′ ⇒ Q′

Now we have P⇒ P′, P′ ⇒ Q′, and Q′ ⇒ Q and, thus, P⇒ Q
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Semantic Equivalence

Two statements s1 and s2 are provably equivalent if for
all preconditions P and postconditions Q we have

⊢ { P } s1 { Q }if and only if ⊢ { P } s2 { Q }

Example: s and s;skip are equivalent

Proof for “⇒”

We know there is an inference tree for { P } s { Q }
We extend that tree using the skip-axiom and the rule for sequential
composition:

SeqAx

{ P } s { Q }
SkipAx { Q } skip { Q }

{ P } s;skip { Q }
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Semantic Equivalence: Proof for “⇐”

The proof runs by induction on the shape of the inference tree for
{ P } s;skip { Q }

Induction base:
The inference tree for { P } s;skip { Q } is an axiom instance

There is no axiom that can form an inference tree for a sequential
composition

Therefore, the property holds trivially for all base cases

Induction step:
The inference tree for { P } s;skip { Q } is a composite tree

We consider all rules that could be used at the root of the inference tree

There are two applicable rules: SeqAx and ConsAx

We continue by case distinction
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Semantic Equivalence: Proof for “⇐” (cont’d)

Case SeqAx

We know there are inference trees for { P } s { R } and { R } skip { Q }
for some predicate R

Applying the auxiliary lemma to { R } skip { Q } yields R⇒ Q

We extend the inference tree for { P } s { R } using ConsAx to obtain
{ P } s { Q }

Case ConsAx

We know that there exists an inference tree for { P′ } s;skip { Q′ }
where P⇒ P′ and Q′ ⇒ Q

By applying the induction hypothesis to { P′ } s;skip { Q′ }, we know
there is an inference tree for { P′ } s { Q′ }
We extend the tree for { P′ } s { Q′ } using ConsAx to obtain a tree for
{ P } s { Q }
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Total Correctness

The informal meaning of { P } s { ⇓ Q } is

If P evaluates to true in the initial state σ
then the execution of s from σ terminates
and Q will evaluate to true in the final state

This meaning describes total correctness, that is, termination is required

All rules except the rule for loops are analogous
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Loop Variants

Termination is proved using loop variants

A loop variant is an expression that evaluates to a value in a
well-founded set, for instance, N

Each iteration decreases the value of the loop variant

The loop has to terminate when a minimal value of the well-founded
set is reached

Example

x := 5;
while x # 0 do x := x - 1 end

Possible loop variant x

Peter Müller—Formal Methods and Functional Programming, SS11 p. 205



While Rule for Total Correctness

For simplicity, we consider loop variants that evaluate to values in N
We use arithmetic expressions of IMP as loop variants

We prove explicitly that A[[e]] ∈ N before each iteration

Intuition: loop variant gives an upper bound on the number of iterations

Rule:

WhTotAx

{ b ∧P ∧ e = Z } s { ⇓ P ∧ e < Z }
{ P } while b do s end { ⇓ ¬b ∧P }

if b ∧P⇒ 0 ≤ e

where Z is a logical variable

Other well-founded sets are also possible and useful
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Total Correctness of Factorial

{ x = N ∧ x > 0 }
y:=1;while not x = 1 do y:=y ∗ x;x:=x − 1 end

{ ⇓ y = N! }

Invariant: P ≡ x > 0 ∧ y*x! = N!

Variant: x

Side condition: x ≠ 1 ∧ x > 0 ∧ y*x! = N!⇒ 0 ≤ x
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Proof Outline for Factorial Statement

{ x = N ∧ x > 0 }
⇒
{ x > 0 ∧ 1*x! = N! }

y := 1;

{ x > 0 ∧ y*x! = N! }
while not x = 1 do

{ x ≠ 1 ∧ x > 0 ∧ y*x! = N! ∧ x = Z }
⇒
{ x − 1 > 0 ∧ (y*x)*(x − 1)! = N! ∧ x − 1 < Z }

y := y*x;

{ x − 1 > 0 ∧ y*(x − 1)! = N! ∧ x − 1 < Z }
x := x-1

{ ⇓ x > 0 ∧ y*x! = N! ∧ x < Z }
end

{ ⇓ x = 1 ∧ x > 0 ∧ y*x! = N! }
⇒
{ ⇓ y = N! }
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Zune Bug Revisited

//--------------------------
// Split total days since
// Jan. 01, ORIGINYEAR
// into year, month and day
//--------------------------
BOOL ConvertDays(UINT32 days, ...) {

int year = ORIGINYEAR; /* =1980 */

while (365 < days) {
if (IsLeapYear(year)) {

if (366 < days) {
days -= 366; year += 1;

}
} else {

days -= 365; year += 1;
}

}
... }

Invariant: P ≡ true

Variant: days

Side condition:
365 < days ∧ true⇒
0 ≤ days
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(Failing) Proof Attempt for Zune Bug
{ true }

while 365 < days do

{ 365 < days ∧ days = Z }

if L(year) then

{ L(year) ∧ 365 < days ∧ days = Z }
if 366 < days then

{ 366 < days ∧ L(year) ∧ 365 < days ∧ days = Z }
⇒

{ days − 366 < Z }
days := days - 366;year := year + 1

{ ⇓ days < Z }
else

{ ¬(366 < days) ∧ L(year) ∧ 365 < days ∧ days = Z }
⇒

{ days < Z }
skip

{ ⇓ days < Z }
end

{ ⇓ days < Z }
else

{ ¬L(year) ∧ 365 < days ∧ days = Z }
⇒

{ days − 365 < Z }
days := days - 365; year := year + 1

{ ⇓ days < Z }
end

{ ⇓ days < Z }
end

{ ⇓ ¬(365 < days) }

⇒

{ ⇓ true }
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Termination Proof for Corrected Zune Example
{ true }

days := D;

{ true }

while L(year) and 366 < days or not L(year) and 365 < days do

{ (L(year) ∧ 366 < days ∨ ¬L(year) ∧ 365 < days) ∧ days = Z }
⇒

{ days = Z }

if L(year) then

{ L(year) ∧ days = Z }
⇒

{ days − 366 < Z }
days := days - 366

{ ⇓ days < Z }
else

{ ¬L(year) ∧ days = Z }
⇒

{ days − 365 < Z }
days := days - 365;

{ ⇓ days < Z }
end;

{ ⇓ days < Z }
year := year + 1

{ ⇓ days < Z }
end

{ ⇓ ¬(L(year) ∧ 366 < days ∨ ¬L(year) ∧ 365 < days) }

⇒

{ ⇓ true }

Side condition: (L(year) ∧ 366 < days ∨ ¬L(year) ∧ 365 < days) ∧ true⇒ 0 ≤ days
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3. Axiomatic Semantics

3.1 Hoare Logic

3.2 Soundness and Completeness

3.2.1 Proof of Soundness
3.2.2 Proof of Completeness
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Motivation

Developing an axiomatic semantics is difficult

Soundness:
If a property can be proved then it does indeed hold

An unsound inference system is useless

Completeness:
If a property does hold then it can be proved

With an incomplete inference system, a program might be correct, but
we cannot prove it
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Unsoundness: Example

WhUAx

{ b ∧P ∧ e = Z } s { ⇓ P ∧ e < Z }
{ P ∧ 0 ≤ e } while b do s end { ⇓ ¬b ∧P }

With e ≡ x, we can derive:

Cons

WhU

Cons

Ass
{ true ∧ x − 1 < Z } x:=x − 1 { ⇓ true ∧ x < Z }

{ true ∧ true ∧ x = Z } x:=x − 1 { ⇓ true ∧ x < Z }

{ true ∧ 0 ≤ x } while true do x:=x − 1 end { ⇓ ¬true ∧ true }

{ 0 ≤ x } while true do x:=x − 1 end { ⇓ true }

This derivation is not sound (the derived triple does not hold)

The rule does not ensure that the loop variant is non-negative before
each loop iteration
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Incompleteness: Example

WhIAx
{ b ∧P ∧ e = Z } s { ⇓ P ∧ e < Z }

{ P } while b do s end { ⇓ ¬b ∧P }
if P⇒ 0 ≤ e

With this rule, we cannot prove that the following loop always
terminates

while 0 < x do
x := x - 1

end

The loop variant is x

The strongest possible loop invariant is true (because we want to show
termination for all initial states)

This loop invariant is not strong enough to show the side condition
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Soundness and Completeness

Soundess and completeness can be proved w.r.t. an operational or
denotational semantics

The partial correctness assertion { P } s { Q } is
valid—written as ⊧ { P } s { Q }— iff

∀σ,σ′ ∈ State ∶ B[[P]]σ = tt ∧ ⟨s, σ⟩ → σ′ ⇒ B[[Q]]σ′ = tt

Soundness: ⊢ { P } s { Q } ⇒ ⊧ { P } s { Q }

Completeness: ⊧ { P } s { Q } ⇒ ⊢ { P } s { Q }
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Theorem

Soundess and completeness theorem

For all partial correctness assertions { P } s { Q }
of IMP we have

⊢ { P } s { Q } ⇔ ⊧ { P } s { Q }
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3. Axiomatic Semantics

3.1 Hoare Logic

3.2 Soundness and Completeness

3.2.1 Proof of Soundness
3.2.2 Proof of Completeness
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Soundness Proof

We prove ⊢ { P } s { Q } ⇒ ⊧ { P } s { Q }

That is, we have to show

⊢ { P } s { Q } ∧ B[[P]]σ = tt ∧ ⟨s, σ⟩ → σ′ ⇒ B[[Q]]σ′ = tt

The proof runs by induction on the shape of the inference tree for
⊢ { P } s { Q }
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Soundness Proof: Base Cases

Case AssAx

Assume ⟨x:=e, σ⟩ → σ′

We have to prove B[[P[x ↦ e]]]σ = tt ⇒ B[[P]]σ′ = tt

From the natural semantics, we get ⟨x:=e, σ⟩ → σ[x ↦ A[[e]]σ]

By the substitution lemma, we have
B[[P[x ↦ e]]]σ = tt ⇔B[[P]]σ[x ↦ A[[e]]σ] = tt

Case SkipAx : Trivial
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Soundness Proof: Composition

Consider arbitrary states σ and σ′′ where B[[P]]σ = tt holds and
⟨s1;s2, σ⟩ → σ′′

From the natural semantics, we know that there is a state σ′ such that
⟨s1, σ⟩ → σ′ and ⟨s2, σ′⟩ → σ′′

From the induction hypothesis, we get ⊧ { P } s1 { Q } and
⊧ { Q } s2 { R }

From ⊧ { P } s1 { Q }, ⟨s1, σ⟩ → σ′, and B[[P]]σ = tt, we get
B[[Q]]σ′ = tt

From ⊧ { Q } s2 { R }, ⟨s2, σ′⟩ → σ′′, and B[[Q]]σ′ = tt, we get
B[[R]]σ′′ = tt
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Soundness Proof: Conditional

Case 1: B[[b]]σ = tt

Consider arbitrary states σ and σ′ where B[[P]]σ = tt holds and
⟨if b then s1 else s2 end, σ⟩ → σ′

From the natural semantics, we get ⟨s1, σ⟩ → σ′

From the induction hypothesis, we get ⊧ { b ∧P } s1 { Q }

From B[[P]]σ = tt and B[[b]]σ = tt, we get B[[b ∧P]]σ = tt

From ⊧ { b ∧P } s1 { Q } and B[[b ∧P]]σ = tt, we get B[[Q]]σ′ = tt

Case 2: B[[b]]σ = ff is analogous
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Soundness Proof: Loop

We have to prove

⊢ { P } while b do s end { ¬b ∧P }∧
B[[P]]σ = tt ∧ ⟨while b do s end, σ⟩ → σ′′

⇒ B[[¬b ∧P]]σ′′

where σ and σ′′ are arbitrary states

The proof runs by induction on the shape of the derivation tree for
⟨while b do s end, σ⟩ → σ′′
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Soundness Proof: Loop (cont’d)

Case 1: B[[b]]σ = tt

From the natural semantics, we get ⟨s, σ⟩ → σ′ and
⟨while b do s end, σ′⟩ → σ′′

From B[[P]]σ = tt and B[[b]]σ = tt, we get B[[b ∧P]]σ = tt

By applying the induction hypothesis of the outer induction to
⊧ { b ∧P } s { P }, we get B[[P]]σ′ = tt

Now we can apply the induction hypothesis of the nested induction to
⟨while b do s end, σ′⟩ → σ′′ to get B[[¬b ∧P]]σ′′ = tt

Case 2: B[[b]]σ = ff

From the natural semantics, we get σ = σ′′

B[[P]]σ = tt and B[[b]]σ = ff imply B[[¬b ∧P]]σ′′ = tt
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Soundness Proof: Consequence

Consider arbitrary states σ and σ′ where B[[P]]σ = tt holds and
⟨s, σ⟩ → σ′

We have ⊧ { P′ } s { Q′ }, P⇒ P′, and Q′ ⇒ Q

From B[[P]]σ = tt and P⇒ P′, we get B[[P′]]σ = tt

By applying the induction hypothesis, we get B[[Q′]]σ′ = tt

From B[[Q′]]σ′ = tt and Q′ ⇒ Q, we get B[[Q]]σ′ = tt
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3. Axiomatic Semantics

3.1 Hoare Logic

3.2 Soundness and Completeness

3.2.1 Proof of Soundness
3.2.2 Proof of Completeness
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Weakest (Liberal) Preconditions

The weakest precondition of a statement s and a postcondition Q is
the weakest predicate that has to hold in the initial state of an
execution of s to guarantee that Q holds in the final state

The weakest precondition wp(s,Q) guarantees termination

The weakest liberal precondition wlp(s,Q) does not guarantee
termination

B[[wp(s,Q)]]σ = tt ⇔∃σ′ ∶ (⟨s, σ⟩ → σ′ ∧ B[[Q]]σ′)
B[[wlp(s,Q)]]σ = tt ⇔∀σ′ ∶ (⟨s, σ⟩ → σ′ ⇒ B[[Q]]σ′)

In the following, we consider partial correctness
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wlp-Lemma

Lemma: For every statement s and predicate Q we have
1. ⊧ { wlp(s,Q) } s { Q }
2. ⊧ { P } s { Q } ⇒ (P⇒ wlp(s,Q))

Proof 1:

Let B[[wlp(s,Q)]]σ = tt and ⟨s, σ⟩ → σ′

From the definition of wlp, we get B[[Q]]σ′

Proof 2:

Let B[[P]]σ = tt and ⟨s, σ⟩ → σ′

From ⊧ { P } s { Q }, we get B[[Q]]σ′ = tt

From the definition of wlp, we get B[[wlp(s,Q)]]σ′

Peter Müller—Formal Methods and Functional Programming, SS11 p. 228



Completeness Proof

We prove ⊧ { P } s { Q } ⇒ ⊢ { P } s { Q }

It suffices to infer ⊢ { wlp(s,Q) } s { Q }

By ⊧ { P } s { Q }, the wlp-lemma implies P⇒ wlp(s,Q)

ConsAx
{ wlp(s,Q) } s { Q }

{ P } s { Q }

We prove ⊢ { wlp(s,Q) } s { Q } by structural induction on s
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Completeness Proof: Base Cases

Case assignment:

From the natural semantics, we get ⟨x:=e, σ⟩ → σ[x ↦ A[[e]]σ]

From the definition of wlp and the substitution lemma, we get
B[[wlp(x:=e,Q)]]σ⇔B[[Q]]σ[x ↦ A[[e]]σ] ⇔ B[[Q[x ↦ e]]]σ

Therefore, we get wlp(x:=e,Q) ⇔ Q[x ↦ e]

Using AssAx and ConsAx , we can infer ⊢ { wlp(x:=e,Q) } x:=e { Q }

Case skip:

From the natural semantics, we get wlp(skip,Q) ⇔ Q

We can infer ⊢ { Q } skip { Q }
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Completeness Proof: Composition

By the induction hypothesis, we get ⊢ { wlp(s2,Q) } s2 { Q } and
⊢ { wlp(s1,wlp(s2,Q)) } s1 { wlp(s2,Q) }

We can infer ⊢ { wlp(s1,wlp(s2,Q)) } s1;s2 { Q }

It remains to prove that wlp(s1;s2,Q) ⇒ wlp(s1,wlp(s2,Q))

We assume that B[[wlp(s1;s2,Q)]]σ = tt for some σ and show that
B[[wlp(s1,wlp(s2,Q))]]σ = tt
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Completeness Proof: Composition (2)

If there is no σ′ such that ⟨s1, σ⟩ → σ′ then
B[[wlp(s1,wlp(s2,Q))]]σ = tt follows immediately from the definition
of wlp

Otherwise, we have to show B[[wlp(s2,Q)]]σ′ = tt

Again, if there is no σ′′ such that ⟨s2, σ′⟩ → σ′′ then
B[[wlp(s2,Q)]]σ′ = tt follows immediately from the definition of wlp

Otherwise, we have to show B[[Q]]σ′′

B[[Q]]σ′′ follows from B[[wlp(s1;s2,Q)]]σ = tt and ⟨s1;s2, σ⟩ → σ′′
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Completeness Proof: Conditional

By the induction hypothesis, we get ⊢ { wlp(s1,Q) } s1 { Q } and
⊢ { wlp(s2,Q) } s2 { Q }

Define P ≡ (b ∧wlp(s1,Q)) ∨ (¬b ∧wlp(s2,Q))

We have b ∧P⇒ wlp(s1,Q) and ¬b ∧P⇒ wlp(s2,Q)

We derive

If

Cons
{ wlp(s1,Q) } s1 { Q }

{ b ∧P } s1 { Q }
Cons

{ wlp(s2,Q) } s2 { Q }
{ ¬b ∧P } s2 { Q }

{ P } if b then s1 else s2 end { Q }
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Completeness Proof: Conditional (2)

We have P ≡ (b ∧wlp(s1,Q)) ∨ (¬b ∧wlp(s2,Q))

It remains to show that wlp(if b then s1 else s2 end,Q) ⇒ P

Case 1: B[[b]]σ = tt

If there is no σ′ such that ⟨s1, σ⟩ → σ′ then B[[wlp(s1,Q)]]σ = tt follows
immediately from the definition of wlp

Otherwise, we have to prove B[[Q]]σ′

From B[[wlp(if b then s1 else s2 end,Q)]]σ = tt and
⟨if b then s1 else s2 end, σ⟩ → σ′, we get B[[Q]]σ′

Case 2: B[[b]]σ = ff is analogous
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Completeness Proof: Loop

Define P ≡ wlp(while b do s end,Q)

We will prove

(1) (¬b ∧P) ⇒ Q

(2) (b ∧P) ⇒ wlp(s,P)

By the induction hypothesis, we get ⊢ { wlp(s,P) } s { P }

From (2), we get ⊢ { b ∧P } s { P }

By WhAx , we get ⊢ { P } while b do s end { ¬b ∧P }

From (1), we get ⊢ { P } while b do s end { Q }

Peter Müller—Formal Methods and Functional Programming, SS11 p. 235



Completeness Proof: Loop (2)

We prove (1): (¬b ∧P) ⇒ Q

Assume B[[¬b ∧P]]σ = tt

Then we have ⟨while b do s end, σ⟩ → σ

By B[[wlp(while b do s end,Q)]]σ = tt and the definition of wlp, we
get B[[Q]]σ = tt
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Completeness Proof: Loop (3)

We prove (2): (b ∧P) ⇒ wlp(s,P)

We assume B[[b ∧P]]σ = tt and show that B[[wlp(s,P)]]σ = tt

If there is no σ′ such that ⟨s, σ⟩ → σ′ then B[[wlp(s,P)]]σ = tt follows
immediately from the definition of wlp

Otherwise, we have to show B[[P]]σ′ = tt
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Completeness Proof: Loop (4)

Case 1: There is no σ′′ such that ⟨while b do s end, σ′⟩ → σ′′

By the definition of wlp, we get that
B[[wlp(while b do s end,Q)]]σ′ = tt and, thus, B[[P]]σ′ = tt

Case 2: There is a σ′′ such that ⟨while b do s end, σ′⟩ → σ′′

From ⟨s, σ⟩ → σ′ and ⟨while b do s end, σ′⟩ → σ′′, we get
⟨while b do s end, σ⟩ → σ′′

By B[[P]]σ = tt and ⟨while b do s end, σ⟩ → σ′′, we get B[[Q]]σ′′ = tt

By B[[Q]]σ′′ = tt and ⟨while b do s end, σ′⟩ → σ′′, we get
B[[wlp(while b do s end,Q)]]σ′ = tt and, thus, B[[P]]σ′ = tt
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Summary: Axiomatic Semantics

Axiomatic semantics
expresses specific properties of the effect of executing a program
Some aspects of the computation may be ignored

Axiomatic semantics is used to verify programs
Partial correctness
Total correctness
Other properties, e.g., resource consumption

The inference system should be sound and complete
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