
Mock Objects and Test Driven
Development

Your friendly assistant
(<name>@inf.ethz.ch)

Chair of Programming Methodology

Peter Müller — Software Engineering (SS 2011)

Testing

Peter Müller — Software Engineering (SS 2011)

Class
under Test

Class B Class D

Class C Class A

Class E

Depends

Motivation

• How do we test an object that depends on
objects that do not exist yet?

• How do we test an object that depends on
objects on which invocation is too time-
consuming to pass the tests quickly? (e.g.
databases)

• How do we test objects that depend on
components that we don’t have access to?
(e.g. code developed by some third party)

Peter Müller — Software Engineering (SS 2011)

Mock Objects

• Objects simulating behaviour of concrete
(real) objects in a controlled way

• Used when the real object is not available or
when it is impractical to use

– E.g. databases, interfaces, mocks of remote
objects for local testing

• Speed up tests.

Peter Müller — Software Engineering (SS 2011)

Testing with mock objects

Peter Müller — Software Engineering (SS 2011)

Class
under Test

Class B Class D

Class C Class A

Class E

Testing with mock objects

Peter Müller — Software Engineering (SS 2011)

Class
under Test

Mock of
Class B

Mock of
Class A

Mock objects are
self-contained
Mock objects are
self-contained

But! How
do I create

those?

Mocking Frameworks

• jMock 2
– http://jmock.org/

• EasyMock
– http://easymock.org/

• Mockito
– http://code.google.com/p/mockito

• JMockit
– https://jmockit.dev.java.net

• …

Peter Müller — Software Engineering (SS 2011)

http://jmock.org/
http://easymock.org/
http://code.google.com/p/mockito
https://jmockit.dev.java.net/

JMock 2

• Most recent versions are:
– Unstable: 2.6.0-RC2

– Stable: 2.5.1

• Easy to use and more expressive than e.g. Easy
Mock

• Simple library using loads of reflection

• Allows: creation of mock objects, expectations
set-up, interaction execution (expect-run-
verify)

Peter Müller — Software Engineering (SS 2011)

JMock 2 – Mockery

• Serves as a context of a
tested object (i.e. it
contains objects that
the object under test is
dependent on/
communicates with)

import org.jmock.Mockery;

public class TestClassTest {

 // we create the context

 Mockery context = new Mockery();

 final ClassA mockClassA =

 context.mock(ClassA.class);

 final ClassB mockClassB =

 context.mock(ClassB.class);

 …

}

Peter Müller — Software Engineering (SS 2011)

Object that the
class under test
comunicates with

Objects that the
class under test
communicates

with

JMock 2 – Expectations

• For each mock object
we need to define the
behaviour that we
expect from it.

• This allows us to
simulate behaviour of
the real object in a
controlled way.

import org.jmock.Expectations;

…

final ClassA mockClassA =

 context.mock(ClassA.class);

Object result = …;

context.checking(new Expectations() {{

 oneOff(mockClassA).doSth();
 will(returnValue(result));

}});

Peter Müller — Software Engineering (SS 2011)

Method doSth() is called on
mockClassA only once

We anticipate that
doSth() will return
object result when
invoked

JMock 2 – Expectations (cont’d)

• We can introduce arbitrary many expectations
in the expectation block.

• There can be an arbitrary number of
expectation block in a test and they are
appended to each other sequentially.

• For more constructs that can appear in an
expectation block, see:

– http://www.jmock.org/cheat-sheet.html

Peter Müller — Software Engineering (SS 2011)

http://www.jmock.org/cheat-sheet.html
http://www.jmock.org/cheat-sheet.html
http://www.jmock.org/cheat-sheet.html
http://www.jmock.org/cheat-sheet.html

Example (taken from http://www.jmock.org/getting-started.html)

Peter Müller — Software Engineering (SS 2011)

interface Subscriber {
 void receive(String message);
}

import org.jmock.Mockery;
import org.jmock.Expectations;

class PublisherTest extends TestCase {
 Mockery context = new Mockery();

 public void testOneSubscriberReceivesAMessage() {
 // set up
 final Subscriber subscriber = context.mock(Subscriber.class);

 Publisher publisher = new Publisher();
 publisher.add(subscriber);

 final String message = "message";

 // expectations
 context.checking(new Expectations() {{
 oneOf (subscriber).receive(message);
 }});

 // execute
 publisher.publish(message);

 // verify
 context.assertIsSatisfied();
 }
}

Create a mock Subscriber object

Register a mock Subscriber with a
Publisher

We set up our expectations

The method is
expected to be
called once

verify that the mock Subscriber
was called as expected

http://www.jmock.org/getting-started.html
http://www.jmock.org/getting-started.html
http://www.jmock.org/getting-started.html
http://www.jmock.org/getting-started.html

Test Driven Development (TDD)

Peter Müller — Software Engineering (SS 2011)

Test Driven Development (TDD)

• We do not start directly with the
implementation.

• Write tests first that test some piece of
functionality.

• Write code that implements this functionality
and keep refining it until all the tests pass.

• Complies to extreme programming – test first
and short development cycles.

Peter Müller — Software Engineering (SS 2011)

TDD – Work Flow

Peter Müller — Software Engineering (SS 2011)

Write a
test

Run all
tests

Make
changes

Run all
tests

DEMO

Peter Müller — Software Engineering (SS 2011)

