
Exercise 11
– Refactoring –

Your task:

1. Write JUnit tests for the provided code.

2. Use EasyPmd NetBeans plugin to detect bugs and code style violations in the
provided code.

(a) For all detected bugs write a JUnit test which exposes the bug.

(b) Fix all detected bugs and code style violations.

(c) Check that the updated version of the source code successfully passes the new
JUnit tests.

3. Use the NetBeans code coverage plugin to ensure that JUnit tests cover 100%
of the provided code.

(a) If coverage is not 100%, add JUnit test which cover missed parts of the code.

4. Refactor addAll method of class ArrayOfMatrix. The refactored version of the
method addAll has to satisfy the refactoring criteria which are provided below.

5. Run JUnit test on the refactored code to ensure that its behavior is preserved.

(a) If a JUnit test fails, find the reason of the failure and fix the corresponding
bug.

6. Use the NetBeans code coverage plugin to identify which parts of the refactored
code are not covered by the JUnit tests.

7. Write JUnit tests which covers the missed part of the refactored code.

8. Use the EasyPmd NetBeans plugin to detect bugs and code style violations in
the refactored code.



You are provided with the following four classes:

Matrix is an abstract class that represents a square matrix. The size of a matrix is
represented by a protected field size. Here by size of a matrix we mean the number of
rows and columns in the matrix. The value of the field size can be extracted via the getter
getSize. Matrix has two abstract methods; the getter of matrix elements get and the
setter of matrix elements set.

DiagonalMatrix is a concrete class that represents a diagonal square matrix. A
diagonal matrix is a matrix with all elements outside of the diagonal (elements with index
〈i, j〉 were i 6= j) equal to zero. The class has a private field elements, which contains
elements of the matrix diagonal. DiagonalMatrix has two constructors. The first one
initializes a new matrix of a given size. The second one is a copy constructor, which
initializes a new matrix with size and elements equal to an input parameter matrix. The
field elements has length equal to the size of the matrix. Also DiagonalMatrix provides
implementations for get and set. Setter set throws an exception if i 6= j. Otherwise it
saves newValue in elements[i]. Getter get returns value of elements[i] if i = j, and zero
otherwise.

FullMatrix is a concrete class that represents a full square matrix. A full matrix is a
matrix with possibly all elements different from zero. In other words, it is an ordinary ma-
trix without additional constraints. The class has a private field elements, which contains
elements of the matrix. Similarly to DiagonalMatrix, it has two constructors; one creates
a new matrix of a given size and another one is a copy constructor. The field elements has
the first and second dimension lengths equal to the size of the matrix. Also FullMatrix
implements get which reads values of elements and set which writes values of elements.

ArrayOfMatrix is a concrete class that represents arrays of matrices. It has two
private fields; length represents the length of the array and matrices represents elements



of the array. ArrayOfMatrix has one constructor which creates a new array of matrices
of a given length. Elements of the freshly-allocated array are equal to null.

ArrayOfMatrix has a method addAll. The method gets as input parameter an array
of matrices and returns a freshly-allocated array of matrices which contains the elementwise
sum of the receiver and the input array of matrix, the source code of method addAll is
presented in figure 1.

The motivation for the refactoring is the following:

• The marketing department came to the conclusion that in the future, your system
has to deal with new kinds of matrices (e.g., symmetric or identity matrices). An
adaptation of the refactored version of the method in response to an introduction
of new kinds of matrices must be as simple as possible.

The refactored version of the method has to satisfy the following criteria:

• if A or B is a diagonal matrix of size size, the current implementation of the method
uses only size, but not size2, additions to compute A+B . Since efficiency is crucial
for the implementation, it is expected that the refactored version of the method
preserves this property.

• The refactored code can not use type casts.

• The refactored code can not have duplication of code or functionality

• The current implementation uses assertions to check preconditions (properties of
input parameters). The refactored version have to check exactly the same proper-
ties.

During the refactoring process you can use, among other, the following trans-
formation:

• The research department came to the conclusion that, for any matrices A and B,
A + B is equal to B + A. You can use this discovery by replacing a source code
which performs an A+B computation by a source code which performs an B +A
computation.



public ArrayOfMatrix addAll(ArrayOfMatrix ar){
// Check that arrays have the same length
assert(length == ar.length);
ArrayOfMatrix result = new ArrayOfMatrix(size);
// Iterates over elements of the arrays
for(int ind=0; ind<length; ind++){
Matrix resultTemp;
if (matrices[ind] instanceof FullMatrix){
FullMatrix m1 = (FullMatrix) matrices[ind];
if (ar.matrices[ind] instanceof FullMatrix){
// Add two full matrices
FullMatrix m2 = (FullMatrix) ar.matrices[ind];
assert(m1.getSize() == m2.getSize());
FullMatrix temp = new FullMatrix(m1);
for(int i=0; i<m1.getSize();i++)
for(int j=0; j<m1.getSize();j++)
temp.set(i , j , temp.get(i, j) + m2.get(i, j ));

resultTemp = temp;
} else {
// Add a full and a diagonal matrices
DiagonalMatrix m2 = (DiagonalMatrix) ar.matrices[ind];
assert(m1.getSize() == m2.getSize());
FullMatrix temp = new FullMatrix(m1);
for(int i=0; i<m1.getSize();i++)
temp.set(i , i , temp.get(i, i ) + m2.get(i, i ));

resultTemp = temp;
}
} else {
DiagonalMatrix m1 = (DiagonalMatrix) matrices[ind];
if (ar.matrices[ind] instanceof FullMatrix){
// Add a diagonal and a full matrices
FullMatrix m2 = (FullMatrix) ar.matrices[ind];
assert(m1.getSize() == m2.getSize());
FullMatrix temp = new FullMatrix(m2);
for(int i=0; i<m1.getSize();i++)
temp.set(i , i , temp.get(i, i ) + m1.get(i, i ));

resultTemp = temp;
} else {
// Add two diagonal matrices
DiagonalMatrix m2 = (DiagonalMatrix) ar.matrices[ind];
assert(m1.getSize() == m2.getSize());
DiagonalMatrix temp = new DiagonalMatrix(m1);
for(int i=0; i<m1.getSize();i++)
temp.set(i , i , temp.get(i, i ) + m2.get(i, i ));

resultTemp = temp;
}
}
// Save the result of the addition into the output array
result .matrices[ind] = resultTemp;

}
return result;
}

Figure 1: The source code of method addAll of class ArrayOfMatrix.


