
Exercise 9
– Design Patterns –

1. We want to implement a text paragraph. A paragraph is a sequence of lines. Each
line is represented by a string. The Paragraph class has to provide at least the
following methods:

List<String> alignedText(); // Returns the list of formatted lines in the paragraph.
String getLine(int i ); // Returns the line at the i−th position.
int getCountLines(); // Returns the number of lines in the paragraph.
void addLine(String s); // Appends a line to the paragraph.

The formatting algorithm (e.g., left-align or centered) can be selected at runtime. It
also has to be possible to add new formatting algorithms to the program without
modifying the Paragraph class.

Your task: Develop a design for Paragraph that satisfies the above requirements.
Which design pattern could you use?

2. We want to develop a Java AWT component that can display formatted text in a
flexible way. To do that, we want to reuse the Paragraph class. Each Java AWT
component inherits from class Component. Our FormattedTextArea will inherit from
the following library classes:

public class TextComponent extends Component implements Accessible { ... }

public class TextArea extends TextComponent {
public void append(String str) { ... }
public String getText() { ... }
...

}

Your task: Develop a design for FormattedTextArea that allows us to reuse Para-

graph and to inherit from TextArea. Which design pattern could you use? You
should also provide implementations for the methods append and getText.

3. We want to extend our design by a character counter. This counter is a separate
object that stores the number of characters in a Paragraph object. Whenever the
Paragraph object is changed, the counter has to be adapted automatically.

Your task: Develop a design for the counter. You are allowed to modify the Para-

graph class and possibly FormattedTextArea. Which design pattern could you use?


