
Material based on Prof. Peter Müller’s
Konzepte objektorientierter Programmierung

course

Chair of Programming Methodolgy

Peter Müller — Software Engineering (SS 2011)

Technology Session II
Serialization, Sockets, RMI

Agenda for Today

• Distributed Programming

• Sockets

• Serialization

• Remote Objects

• Objectives

• Remote objects

• Remote method invocation

Peter Müller — Software Engineering (SS 2011)

Aspects of Distributed Programming

• Programs run in different processes or on different
computers
• Usually no shared memory

• Communication is crucial
• Communication is not robust
• Communication takes time

• Distributed systems are often heterogeneous
• Different hardware
• Different operating systems
• Different programming languages

Peter Müller — Software Engineering (SS 2011)

Operating

System

Network &

Hardware

Operating

System

Network &

Hardware

Operating

System

Network &

Hardware

Distributed Chat Example

• How to access objects in different address spaces?

• How to communicate across process boundaries?

• How to pass parameters, results, and exceptions?

ChatClient ChatClient ChatServer

Peter Müller — Software Engineering (SS 2011)

DISTRIBUTED PROGRAMMING

Sockets
Serialization
Remote Objects

Peter Müller — Software Engineering (SS 2011)

Process 2
(Server)

Sockets and Ports

Operating System

Process 1
(Client)

Operating System

Agreed
port

Any
port Data

channel

Socket

Peter Müller — Software Engineering (SS 2011)

API

Communication via Sockets

• Server sockets wait for communication partners on
an agreed port.

• Sockets provide communication facilities.
• Input and output streams to transmit data

Process 1
(Client)

Operating System

Socket API

Process 2
(Server)

Operating System

Socket stream stream Server
Socket

… …

Peter Müller — Software Engineering (SS 2011)

Parameter Passing

• Commands, parameters,
results, and exceptions
are transmitted as
sequential byte streams.

Process 2
(Server)

Operating System

Process 1
(Client)

Operating System

Peter Müller — Software Engineering (SS 2011)

Example: Chat server with Socket
• Main loop

accepts
clients and
starts new
threads.

• Code does
not show
exception
handling.

public class SocketChatServer {

 public static void main(String[] args) {

 SocketChatServer srv = new SocketChatServer();
ServerSocket ss = new ServerSocket(6666);

 while (true) {

 Socket s = ss.accept();

 new ServiceThread(s).start();

 }

 }

}

Peter Müller — Software Engineering (SS 2011)

Example: Chat server with Socket (cont’d)
class ServiceThread extends Thread {

 Socket s;

 public ServiceThread(Socket p) { s = p; }

 public void run() {

 ObjectInputStream ois = new ObjectInputStream(s.getInputStream());

 String cmd = (String) ois.readObject();

 if (cmd.equals("register")) { … }
 else if (cmd.equals("deregister")) { … }

 else if (cmd.equals("bcast")) { … }

 else { System.err.println("Unknown command!"); }

 ois.close();

 s.close();

 } }

Peter Müller — Software Engineering (SS 2011)

Example: Chat client Socket

1) Registers to Chat server at known server port
• (sends “register” + client IP addr + client port number)

2) Waits for messages on client port
• (checks if starts with “msg” + displays message)

3) Sends messages to server
• (sends message with “broadcast” prefix to server)

Peter Müller — Software Engineering (SS 2011)

Discussion of Socket Solution

• Communication has to be coded explicitly
– commands, parameters, results, exceptions

• No static type safety
• Loss of object identities
• Significantly different from local solution

Peter Müller — Software Engineering (SS 2011)

Socket s = new Socket(host, port);

ObjectOutputStream oos = new
 ObjectOutputStream(s.getOutputStream());

oos.writeObject("broadcast");

oos.writeObject(“Hello”);

oos.close();

s.close();

server.broadcast(“Hello”);

DISTRIBUTED PROGRAMMING

Sockets
Serialization
Remote Objects

Peter Müller — Software Engineering (SS 2011)

Serialization and Deserialization

• Serialization transforms object structures into
a sequential format

• Sequential format is independent of memory
addresses

• Serialization is used
– To save object structures persistently

– To exchange object structures between address
spaces

• Often called marshalling and unmarshalling

Peter Müller — Software Engineering (SS 2011)

Object Streams in Java

• Serialization needs access
to private fields
– Interface Serializable is

used as tag

• Object streams serialize
– Values of primitive types
– Serializable objects

• All objects except strings
are written only once

interface Serializable { }

class ObjectOutputStream

 extends OutputStream

 implements … {

 void writeObject(Object obj)

 throws IOException { … }

 … }

Peter Müller — Software Engineering (SS 2011)

Object Identity
• Serialization and deserialization

– Preserve “relative” object identities within object
structures (except strings)

– Do (of course) not preserve absolute object identities

• Consequences for side-effects and comparison

x

y

z

null

‘F’

x’

y’

z’

null

‘F’

Peter Müller — Software Engineering (SS 2011)

Aliasing

• Only reachable objects are serialized.
• Serialization can destroy aliasing properties.

x

y

z

null

‘F’

x’

y’

z’

null

‘F’

y’’

z’’

null

‘F’

b b a a

w

c

y’’’

z’’’

null

‘F’

c

w’’’

Peter Müller — Software Engineering (SS 2011)

DISTRIBUTED PROGRAMMING

Sockets
Serialization
Remote Objects

Peter Müller — Software Engineering (SS 2011)

Stubs and Skeletons

• Remote objects are represented locally by stubs.
• Stubs and skeletons provide communication.
• Code for stubs and skeletons is generated

automatically.

Process 1
(Client)

Process 2
(Server)

obj
Remote
Object

Stub Skeleton Serialized

parameters and results

Peter Müller — Software Engineering (SS 2011)

Remote Interfaces

• Methods that are
available
remotely must be
specified in an
interface that
extends Remote

interface Remote { }

interface ServerInterface extends Remote {

 void register(ClientInterface c)

 throws RemoteException;

 void sendMessage(String msg)
 throws RemoteException;

}

Peter Müller — Software Engineering (SS 2011)

Client Code
Server Code

 Remote interfaces

 Parameter and result
types (serializable) Implementations

of remote
interfaces

RMI compiler

Stubs Skeletons

Compiler

Server Program

Compiler

Client Program

Dynamic Generation
with Java 1.5+

Programming with Remote Objects

Peter Müller — Software Engineering (SS 2011)

Remote Method Invocation

• Implementations of remote objects extend
UnicastRemoteObject (or similar classes).

• Constructors may throw exception.
• Remote interfaces can be used to invoke

methods of remote objects.
• Communication is transparent except for:

– Error handling
– Problems of serialization

• Coding is almost identical to local solutions.

Peter Müller — Software Engineering (SS 2011)

Process 1 Process 3

ChatServer
Impl

Stub

Skeleton

Process 2

ChatClientImpl

Stub

Skeleton

Skeleton Stub

Stub

ChatClientImpl

Process Interaction of Chat application

Peter Müller — Software Engineering (SS 2011)

Finding Objects
• References to remote objects are obtained through

a name service.

• Name server (rmiregistry) must run on server site.

– Offers service at a certain port.

– Communication with name server is handled by API.

class Naming {

 static Remote lookup(String name) throws … { … }

 static void rebind(String name, Remote obj) throws … { … }

 …

}

Peter Müller — Software Engineering (SS 2011)

Using RMI in Java

1. Define interface of remote object (extends
Remote)

2. Define implementation of remote object
(extends UnicastRemoteObject)

3. Start name server (rmiregistry)
4. Server program registers remote objects at

registry
5. Client programs retrieve remote references

through URL (name of computer and name
of remote object)

Peter Müller — Software Engineering (SS 2011)

Process 1

Serialization of Remote Objects
• Remote objects are not serialized when passed as

parameters or results
• Passing remote objects lead to remote references

x

y

z

null

‘F’

Process 2

Skeleton Stub

Peter Müller — Software Engineering (SS 2011)

Remote Objects: Summary

• Remote objects can be accessed similarly to local
objects.

• Remote objects are accessed through Remote
interfaces.
– No field access
– Only public methods

• Communication is transparent except for:
– Error handling
– Problems of serialization

Peter Müller — Software Engineering (SS 2011)

Further references

• Slides of Konzepte objektorientierter Programmierung:
http://pm.ethz.ch/teaching/as2008/KOOP

• Sun’s RMI Tutorial:
http://download.oracle.com/javase/tutorial/rmi/index.html

• URLClassLoader (load classes from given URLs):
http://download.oracle.com/javase/6/docs/api/java/net/URLClassLoader.html

• Reflection (examine and manipulate running
program)
http://download.oracle.com/javase/tutorial/reflect/index.html

Peter Müller — Software Engineering (SS 2011)

http://pm.ethz.ch/teaching/as2008/KOOP
http://pm.ethz.ch/teaching/as2008/KOOP
http://download.oracle.com/javase/tutorial/rmi/index.html
http://download.oracle.com/javase/tutorial/rmi/index.html
http://download.oracle.com/javase/tutorial/rmi/index.html
http://download.oracle.com/javase/6/docs/api/java/net/URLClassLoader.html
http://download.oracle.com/javase/6/docs/api/java/net/URLClassLoader.html
http://download.oracle.com/javase/6/docs/api/java/net/URLClassLoader.html
http://download.oracle.com/javase/tutorial/reflect/index.html
http://download.oracle.com/javase/tutorial/reflect/index.html
http://download.oracle.com/javase/tutorial/reflect/index.html

Task:
Implement Distributed Chat application

• Create Remote interfaces for server and client side.
• Server side:

– Register server on a given port (and localhost):
LocateRegistry.createRegistry(PORT). bind(SERVICE, server)

– Implement method for registering new clients.
– Implement method for broadcasting messages to

registered clients.

• Client side:
– Register application to server:

LocateRegistry.getRegistry(PORT).lookup(SERVICE)

– Implement method for receiving broadcast messages.
– Implement method for sending messages to server.

Peter Müller — Software Engineering (SS 2011)

BACKUP

Peter Müller — Software Engineering (SS 2011)

Process 2 Process 1

Details of Serialization
• Remote objects are not serialized when passed as

parameters or results.

• Rule also applies to remote objects that are
referenced indirectly.

Peter Müller — Software Engineering (SS 2011)

x

y

z

null

‘F’

x’

y’

null

Details of Serialization: Aliasing
• Parameters of one remote method invocation

are serialized together
• Aliases do not lead to duplicate objects

Peter Müller — Software Engineering (SS 2011)

Process 1

x

y

z

null

‘F’

remote.m(x, x, y);

Process 2

x’

y’

null

p1 p2 p3

