
D. Basin and P. Müller

Formal Methods and Functional Programming

Exercise Sheet 5: Typing and Algebraic Data Types

Submission deadline: March 25th, 2012

Assignment 1:

(a) Recall the following functions from the Prelude.

map :: (a -> b) -> [a] -> [b]

elem :: Eq a => a -> [a] -> Bool

0 :: Num a => a

(<) :: Ord a => a -> a -> Bool

Give the most general type for each of the following functions.

1. (\x y z -> x (y z))

2. (\f -> (\h -> (f,h)))

3. map (elem 0)

4. (\x -> x (<))

(b) We extend mini-Haskell with the let construct that binds a term t1 locally to a variable x in
term t2. The extended term language is as follows, where V is a set of variables and Z is
the set of integers:

t ::= V
∣∣ (λx. t) ∣∣ (t1 t2) ∣∣

True
∣∣ False ∣∣ (iszero t) ∣∣

Z
∣∣ (t1 + t2)

∣∣ (t1 × t2) ∣∣ (if t0 then t1 else t2)
∣∣

(t1, t2)
∣∣ (fst t) ∣∣ (snd t)

∣∣
(let x = t1 in t2)

Give the typing rule for the let construct.

1



Assignment 2:

Use the typing rules for mini-Haskell to prove the following statements.

(a) λx. (x 1 True, x 0) :: (Int → Bool → a)→ (a,Bool → a)

(b) (λx. λy. (y (iszero (y x)))) True :: (Bool → Int)→ Int

(c) λx. λy. if y x then (fst x) else (snd (snd x)) :: (a, (b, a))→ ((a, (b, a))→ Bool)→ a

Assignment 3:

Formulas in propositional logic are built from variables of type a, conjunctions, disjunctions, and
negations.

(a) Specify a Haskell data type Prop a to represent formulas in propositional logic.

(b) Implement a Haskell function foldProp that folds a proposition using separate folding func-
tions for variables, negations, conjunctions, and disjunctions.

(c) Implement a Haskell function evalProp :: (a -> Bool) -> Prop a -> Bool using the
foldProp function from (b) such that evalProp v p evaluates the formula p under the
variable assignment v.

(d) Implement a function propVars :: Prop a -> [a] using the foldProp function from (b)
such that propVars p computes the list of variables occuring in formula p.

(e) Implement a function satProp :: Eq a => Prop a -> Bool that checks whether a given
formula is satisfiable, i.e., whether there is a variable assignment under which the formula
evaluates to True.
Note: Your implementation does not need to be efficient.

Assignment 4:

Recall the algebraic data type Tree a from the lecture:

data Tree t = Leaf | Node t (Tree t) (Tree t)

(a) Implement a breadth-first traversal on trees of the data type Tree t. Your function should
traverse a given tree in a breadth-first manner and return a list with the elements that are
stored in the tree.

(b) Recall the function mapTree from the lecture:

mapTree f Leaf = Leaf

mapTree f (Node x t1 t2) = Node (f x) (mapTree f t1) (mapTree f t2)

Prove that
∀x :: Tree a. mapTree g (mapTree f x) = mapTree (g.f) x

for arbitrary f :: a -> b and g :: b -> c by structural induction over Tree.

2


