ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Exercise Sheet 6: Lazy Evaluation and Repetition

Submission deadline: April 1st, 2012

Assignment 1:

Recall that the /lazy evaluation strategy for an application t1 t2 works as follows.

1. Evaluate t1
2. If beta-reduction is possible, then substitute t1 without prior evaluation

3. No evaluation under abstraction
The eager evaluation strategy for an application t1 t2 works as follows.

1. Evaluate t1 and then evaluate t2
2. Perform beta-reduction, if possible

3. Evaluation carried out under an abstraction

Consider the two A-terms F' = Az.xz (\y.xy) and G = A\x.y x. Use [-reduction to evaluate F'G
using (i) the lazy and (ii) the eager evaluation strategy.

Assignment 2:

Consider the following functions.

foldr £ z [] =z -- foldr.1
foldr f z (x:x8) = f x (foldr f z xs) -- foldr.2
foldl f z [] =z -- foldl.1

foldl £ z (x:xs)

foldl £ (f z x) xs -- foldl.2
Prove the following lemma.

Lemma: Vf:: (b -> a -> b) xs::[a] z::Db.
foldl f z xs = foldr (\x r1 >r (£ 1 x)) id xs z

Hint: Take care of handling the quantifiers correctly. Use explicit V-elimination to reason about
universal quantification.



Assignment 3: Symbolic Expressions

We represent multivariate polynomials over variables of type a with Integer coefficients using
the following Haskell type.

type Poly a = [(Integer, [al)]

For example, the Haskell value [(3, ["x","y"1), (1, ["y","y"1)] of type Poly String is
a representation of the multivariate polynomial 3zy + 3.

(a) Write a Haskell function evalPoly :: (a -> Integer) -> Poly a -> Integer such
that evalPoly f p computes the value of the polynomial p where every variable x is replaced
by the value £ x.

(b) We represent symbolic arithmetic expressions using the following Haskell type.

data AExpr a = Var a

| Lit Integer
| Add (AExpr a) (AExpr a)
| Mul (AExpr a) (AExpr a)

Define the fold function

foldAExpr :: (a -> b) -> (Integer -> b) -> (b => b => b) -> (b -> b -> b)
-> AExpr a -> b

for symbolic arithmetic expressions represented using AExpr a.
(c) Give the induction scheme for structural induction over AExpr a as an inference rule.
(d) Use the foldAExpr function from (b) to write a Haskell function
toPoly :: AExpr a -> Poly a

that converts an arithmetic expression to an equivalent multivariate polynomial. For example,
the arithmetic expression (3z+y)*y can be converted to the multivariate polynomial 3zy+y?.

Note that you do not have to prove the correctness of your solution.

Assignment 4:

(a) State the most general type (you do not have to formally prove your claims). Take also into
account the type classes like Eq, Ord, Num, ...

(1) \x y z -> head (map x y) y
) \xyzw->z x+0 +w(y+1)
B)\xyz->xy (y=z) (fst z)
M) \xyz->Gxy<zx) < (3<4
(b) Formally prove the following typing judgement:
F (Ac. (Az.iszero (c x))) (Ax.snd x) :: (a, Int) — Bool



	Assignment 1:

