ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Exercise Sheet 9: IMP States and Expressions

Submission deadline: April 30th, 2012

Please submit your solution before 10:15am on the submission date specified above. Solutions
can be submitted via e-mail or by using the boxes in front of CAB F 51.1. Make sure that
the first page (and preferably each sheet) always contains your name, the exercise sheet number
as well as your tutor's name and the weekday (Tuesday or Wednesday) of your exercise group.
Don’t forget to staple your pages if you submit more than one page.

Assignment 1 (Simplifying State Updates)
(i) Prove that (for all states o, variables = and values vy, v3), oz |[z—=vs] = o[x19).

(ii) Prove that (for all states o, variables =,y and values vy, vs), if  # y, then
olz — vy = va] = oly — ve][x — v1]. Is the condition = # y necessary?

(iii) Prove that for all variables z, values vy, vs, for all natural numbers m, for all sequences of
length m of variables ¥/ = y1,ya, . .., ym and corresponding values v' = v}, v}, ..., v/ , and
for all states o”:

o' [x—= 01| [= 0| [wvs] = o [0 ] [ v).

Note: these results tell you that you can “clean up” states as you apply additional state updates
to them: if many state updates to the same variable have been applied, you can always leave out
all except the last one, and you'll still define exactly the same state (part (iii)), and reordering
state updates applied to different variables never changes the state (part (ii)).

Assignment 2 (Substitution Properties)

Consider the substitution operations a[x — €] on arithmetic expressions and b[z — e] on boolean
expressions, as described on p.70 of the lecture notes. These substitution operations replace all
occurrences of the variable z in the expression a (or b) with the arithmetic expression e.

In the exercise sessions, we proved the following property for substitution on arithmetic ex-
pressions (in which the second — indicates a state update as defined in p.56 of the lecture
notes):



Substitution lemma for arithmetic expressions For all arithmetic expressions e, ¢/, for all
variables z, and all states o,

Alelz — €]o = Ale] (o]z — A[e']o]) .

Prove the following corresponding substitution property for boolean expressions (which was
also mentioned on p.70 of the lecture), i.e., prove :
For all boolean expressions b, all arithmetic expressions e, all variables =, and all states o,

B[blz — e]]o = B[b] (o[z — Ale]a]),

Assignment 3 (Similar States)

Consider the definition of the free variables of an expression, as defined on p.69 of the lecture
notes. In this question, we show that an expression will always be evaluated the same way in two
different states, provided that the states agree on the values assigned to the free variables of the
expression.

Formally, prove that:

Vo,o' e.((Vx.x € FV(e) = o(x) = o'(z)) = Ale]o = Ale]o’)

Assignment 4 (Implementing IMP Expressions)

Implement, using the programming language Haskell, the syntax of the IMP language as algebraic
(Haskell) data types (where Aexp and Bexp are the datatypes representing arithmetic and boolean
expressions respectively). Implement also the semantics of boolean and arithmetic expressions
(note that you do not have to implement a parser for IMP, but only the data types representing
its expression syntax, and the semantics has to deal with these data types). The signature of
these functions should be evalBexp :: Bexp -> State -> Bool and evalAexp :: Aexp
-> State -> Integer respectively (where State is the datatype representing states).

Please email your solution for this assignment to your tutor. The email addresses of the tutors
are:

Malte Schwerhoff malte.schwerhoff@inf.ethz.ch
Yannis Kassios ioannis.kassios@inf.ethz.ch
Alex Summers alexander.summers@inf.ethz.ch

Assignment 5 - Headache of the week

Substitutions on expressions do not necessarily commute; that is, it is not always the case that
elx — eq][y — es] = e[y — es][x —> e1]. In general, three extra conditions need to be imposed
for substitutions to commute in this way: we need to know that = # y, that y ¢ F'V (e;) and that
x & FV(ey). For example, if 2 = y were allowed, then we could choose e to be z, e; to be the
numeral 1 and e; to be the numeral 2, and then e[z — e;][y > e3] =1 # 2 = e[y — es][z — €1].

(i) Show that the condition y ¢ F'V (e;) is also necessary.



(ii) Prove that:

Vr,y,er,ea. (x#yANye& FViey) ANx & FV(ey) =
Ve. elx — eq]ly — ea] = ely — ex][x — e1])

You may assume the following lemma (which was proved in your exercise session):

Ve, x. 2 & FV(e) = ez €] =e

(iii) Consider the following, closely-related result (which states that the interpretations of the
two expressions will always be the same):

Ve, y,er,e2,0 (x#yANy & FViey) ANax & FV(ex) =
Ve. Ale[z — e1]ly — eq]]o = Alely — es][x — eq]]o)

A simple way to prove this result is to use the result from part (ii) of this question. Find an
alternative proof of this result, which does not use part (ii), and which does not require a
further induction argument (Hint: consider using the other results from this exercise sheet).



