ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Exercise Sheet 1: First Steps in Haskell and
Natural Deduction

Submission deadline: February 26th, 2012

Introduction

Important: The exercise groups start this week; i.e., February 21th (Tue) and February 22th
(Wed). If you have missed the registration during the first lecture, you can send an e-mail to
pgrgur@inf .ethz.ch and just visit one of the exercise groups in the first week. You can look
up the exercise group assignments on the course web page (www.infsec.ethz.ch/education/
$52012/fmfp).

In this course, you will use the Haskell interpreter GHCi. You can install GHCi on your own
computer or use the Haskell platform installed on Windows on the computers in the D-INFK
student labs. The GHCi interpreter is included in the Haskell Platform available at hackage.
haskell.org/platform/. If you have problems with the Haskell Platform, you can also install
the GHC environment www.haskell.org/ghc/ which includes GHCi.

There exists a wealth of resources on Haskell. You find links to almost all of them on www.
haskell.org. The most informative ones for you as a becoming Haskell programmer are:

e www.haskell.org/hoogle search the Haskell libraries by name or type

e book.realworldhaskell.org/read this online book contains introductory material on
Haskell (in case you do not want to buy Hutton's “Programming in Haskell” or Thompson's
“Haskell: The craft of functional programming”)

e see the links on the course homepage for a printable version of the GHCi Prelude and other
material about Haskell

Please send your solutions by e-mail to your tutor as a Haskell file. The subject of your e-mail
should start with [FMFP]. You can find the e-mail address on the course web page. Hand in your
solution no later than the given submission deadline?.

You can use -- for single line comments and {- and -} to enclose multiline comments. You
should use multiline comments for your answers to non-programming exercises. You can find
an example of a Haskell file at the course web page. The name of your Haskell file must be

1The given submission date means that the solution must be sent to your tutor before midnight of Feb 26th.

mailto:pgrgur@inf.ethz.ch
http://www.infsec.ethz.ch/education/ss2012/fmfp
http://www.infsec.ethz.ch/education/ss2012/fmfp
http://hackage.haskell.org/platform/
http://hackage.haskell.org/platform/
http://www.haskell.org/ghc/
http://www.haskell.org
http://www.haskell.org
http://www.haskell.org/hoogle
http://book.realworldhaskell.org/read

sheet<nr>_<nethz-username>.hs and the maximal line length is 100 characters. You also
must not use TAB characters in your Haskell files. This helps your tutor to sort and print all
submissions easily.? In general, provide detailed comments in your solutions in order to help your
tutor to understand your solutions.

Assignment 1:

The purpose of this assignment is to get used to GHCi and writing Haskell programs. You
do not have to hand in your solution for this assignment; you can find a solution in the file
sheet1_johndo.hs, which is available from the course web page.

Important prompt commands in GHCi are

e help

:load <filename> or :1 <filename> load the file filename
:reload or :r repeat the last load command
:quit or :q quit

We recommend to use a decent text editor that supports syntax highlighting for editing your
Haskell files. See the Haskell links on the course homepage for suggestions for all major operating
systems.

(a) Download the file gcd.hs from the course web page and load it into GHCi. Use GHCi to
calculate the greatest common divisor of 139629 and 83496. What happens if one of the
arguments of the function gcdiv is negative? What happens if one of the arguments is 07

Generalize the gcdiv function to a function gcdInt :: Int -> Int -> Int such that
gcdInt x y = gecdiv x’ y’, where x’ is the absolute value of x and y’ is the absolute
value of y. Does your function terminate for all inputs?

(b) GHCi has already many predefined functions. These functions are defined in the Prelude,
which is automatically loaded when you start GHCi. You can find a link to the standard
Prelude files on the course homepage.

Look at the Prelude and check whether you can simplify your solution in (a) by using some
of the predefined functions.

(c) You can query GHCi for the type of a function with the prompt command :t. For instance,
GHCi will output Int -> Int -> Int if you type in :t gcdiv.

What happens if you apply gcdiv to the floats 3.6 and 7.27 Change the type of gcdiv to
Float -> Float -> Float. What is now the output of gcdiv 3.6 7.27 What is the
output of gcdiv 3.6 7.19999997 What function does this new typed gcdiv calculate?

Assignment 2:

Complex numbers can be represented as pairs of reals: the first coordinate of a pair represents
the real part of the complex number and the second coordinate represents the imaginary part. In
Haskell, we can use pairs of type Float for complex numbers.

2TAB characters are also prone to result in strange GHCi error messages, as Haskell is layout sensitive.

(a) Write functionsre :: (Float, Float) -> Floatandim :: (Float, Float) -> Float
that return the real part and the imaginary part of a complex number, respectively.

(b) Write a function conj :: (Float, Float) -> (Float, Float) that conjugates a com-
plex number.

(c) Write functions for addition and multiplication of complex numbers, and write a function
that returns the absolute value of a complex number.

Assignment 3:
The Fibonacci numbers are defined as

0 ifn=20
fib(n) =<1 ifn=1,
fib(n — 1) + fib(n — 2) otherwise.

Louis Reasoner writes the following Haskell program for computing Fibonacci numbers:

fibLouis :: Int -> Int
fibLouis 0 = 0
fibLouis 1 =1

fibLouis n = fibLouis (n-1) + fibLouis (n-2)
Eva La Tour writes another Haskell program for the Fibonacci numbers:

fibEva :: Int -> Int
fibEva n = fst (aux n)
where aux 0 = (0,1)
aux n = next (aux (n-1))
next (a,b) = (b, a+b)

(a) Complete the evaluation steps in Haskell given below for fibLouis 4.
fibLouis 4 =
(fibLouis (4-1) + fibLouis (4-2)) =
(fibLouis 3 + fibLouis (4-2)) =

(b) Complete the evaluation steps for fibEva 4.

fibEva 4 =
fst (aux 4) =

Assignment 4:

Recall that — is right-associative, while A and V are left-associative. Moreover, = binds stronger
than A, which binds stronger than V, which in turn binds stronger than —. Hence, the formula

AANBVC — —-E — CVAAB is parenthesized as ((AAB)VC) — ((=F) — (CV(AAB))) .

We recommend to always parenthesize formulas before proving them using natural deduction.
This simplifies matching the inference rules and you avoid trivial parsing errors.

(a) Parenthesize the following formulas.
(i) AvB—-C—ANCVBAC
(i) (A= B—-C)—-AANB—C
(b) Prove that the formulas in (a) are tautologies in intuitionistic logic using natural deduction.

Give complete proof trees and label each rule application with the rule’s name. For your
convenience, the rules for natural deduction in intuitionistic logic are copied below.

T A B I'-A—-B THkA
——— axiom —_— — / — E
T A A I'-A— B T'+B
T 1 T AR L -4 TFA
1E —_— —-E
THA T+ —A T'+B
r'-A4 TFB I'-AAB I'-AAB
Al — NEL — AER
T-AAB THA T'+B
T A I'+B '-AvB T,ArC T,BFC
— VIL — VIR VE
T'-AVB T'-AVB T-C

(c) We define A <» B as (A — B) A (B — A). Provide suitable introduction and elimination
rules for «» and use them to prove the validity of (A <+ B) — (B + A).

Assignment 5 (headache of the week?):

Recall that one way to make the above inference system complete for classical logic is to add an
axiom formalizing the “law of excluded middle” (lat. “tertium non datur").

—— TND
'-Av-A

Prove that the formula ((A — B) — A) — A is valid in classical logic.

30ur weekly headaches are challenging problems. They are meant as supplements to test your FMFP skills.

