
D. Basin and P. Müller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 11: Small Step Semantics

Assignment 1: Implementing SOS

You find a solution of this assignment in the literate Haskell file simpi.lhs.

Assignment 2: SOS derivation sequence

Let s’ be the body of the loop.

〈s, σ〉 →1 〈if n # 0 then s’; s else skip end, σ〉
→1 〈((a := a+n; b := b*n); n := n-1); s, σ〉
→1 〈(b := b*n; n := n-1); s, σ[a 7→ 2]〉
→1 〈n := n-1; s, σ[a, b 7→ 2, 2]〉
→1 〈s, σ[a, b, n 7→ 2, 2, 1]〉
→1 〈if n # 0 then s’; s else skip end, σ[a, b, n 7→ 2, 2, 1]〉
→1 〈((a := a+n; b := b*n); n := n-1); s, σ[a, b, n 7→ 2, 2, 1]〉
→1 〈(b := b*n; n := n-1); s, σ[a, b, n 7→ 3, 2, 1]〉
→1 〈n := n-1; s, σ[a, b, n 7→ 3, 2, 1]〉
→1 〈s, σ[a, b, n 7→ 3, 2, 0]〉
→1 〈if n # 0 then s’; s else skip end, σ[a, b, n 7→ 3, 2, 0]〉
→1 〈skip, σ[a, b, n 7→ 3, 2, 0]〉
→1 σ[a, b, n 7→ 3, 2, 0]

Assignment 3: Composing executions

Proof: By strong induction on the length k of the derivation sequence.

We can assume that k > 0, since there doesn’t exist a zero-length derivation sequence from a
configuration into a final state.

1



The case (k = 1) is equivalent to the first rule of the structural semantics for sequential compo-
sition, which we can apply to conclude this case.

Let’s consider the case where k ≥ 2. Recall that our induction hypothesis lets us assume that
the proposition holds for n < k, i.e. for all n < k and for all statements p, q and states
τ, τ ′:

〈p, τ〉 →n
1 τ
′ ⇒ 〈p; q , τ〉 →n

1 〈q, τ ′〉 (IH)

Our assumption from the proposition tells us, that the derivation sequence

〈s1, σ〉 →k
1 σ
′ (A1)

exists, and we want to prove that

〈s1; s2 , σ〉 →k
1 〈s2, σ′〉

From (A1) and the fact that k ≥ 2, we have that there is an intermediate configuration 〈sA, σA〉,
such that

〈s1, σ〉 →1 〈sA, σA〉 →k−1
1 σ′ (A2)

We apply (IH) to the k − 1-long derivation sequence of (A2), instantiating: τ = σA, τ ′ = σ′,
p = sA and q = s2, and we get

〈sA; s2 , σA〉 →k−1
1 〈s2, σ′〉

Thus, what remains to be proven is the first transition of our goal sequence:

〈s1; s2, σ〉 →1 〈sA; s2 , σA〉

This is proven by the first transition of (A2) and the second rule of the structural semantics for
sequential composition.

Concatinating the last two sequences yields our goal sequence and concludes the proof.

Alternative: Since we can assume that k > 0, it is also possible to start the proof by unrolling
our initially assumed derivation sequence (A1) once, and then perform a case analysis on the
intermediate configuration. This results in the two cases, namely non-final configuration and
final state, which then imply that k = 1 and k ≥ 2, respectively. The proof would still proceed
by strong induction on k.

2



Assignment 4: Semantic equivalence of NS and SOS

NS⇒ SOS: ∀σ, σ′ ∈ State, s ∈ Stm·〈s, σ〉 → σ′ ⇒ 〈s, σ〉 →∗1 σ′

Proof: By induction on the shape of the derivation tree for the NS transition.

Case AssNS:

From AssNS we get that the transition is of the form 〈x := e, σ〉 → σ[x 7→ A[[e]]σ]
for some variable x and some arithmetic expression e, and thus, that s = (x := e) and
σ′ = σ[x 7→ A[[e]]σ].

We apply AssSOS to get 〈x := e, σ〉 →1 σ[x 7→ A[[e]]σ] as required.

Case SkipNS:

Analogous to AssNS.

Case WhFNS:

Then s = while b do s′ end for some boolean expression b and some statement s′,
σ′ = σ and B[[b]] = ff .

We conclude with the following derivation sequence:

〈while b do s′ end, σ〉
→1 〈if b then s′;while b do s′ end else skip end, σ〉
→1 〈skip, σ〉
→1 σ

The second transition is justified by IfFSOS, since B[[b]]σ = ff .

Case SeqNS:

Then s = (s1; s2) for some statements s1 and s2, and the derivation tree is of the form:

T1
〈s1, σ〉 → σ′′

T2
〈s2, σ′′〉 → σ′

〈s1; s2, σ〉 → σ′

for some σ′′, where T1 is some derivation tree deriving 〈s1, σ〉 → σ′′ and where T2 is some
derivation tree deriving 〈s2, σ′′〉 → σ′. Note, that the trees T1 and T2 are meant to include
the transition they derive.

We apply the IH to T1 and T2, and get 〈s1, σ〉 →∗1 σ′′ and 〈s2, σ′′〉 →∗1 σ′.

We conclude this case with the following derivation sequence:

〈s1; s2, σ〉 →∗1 〈s2, σ′′〉 →∗1 σ′

3



where the first sub-derivation sequence is obtained by the result of assignment 3 of sheet 11.

Case IfTNS:

Then s = (if b then s1 else s2 end) for some boolean expression b and some state-
ments s1 and s2, and the derivation tree is of the form:

T
〈s1, σ〉 → σ′

〈if b then s1 else s2 end, σ〉 → σ′
B[[b]]σ = tt

We apply the IH to T , and get 〈s1, σ〉 →∗1 σ′.

We conclude this case with the following derivation sequence:

〈if b then s1 else s2 end, σ〉 →1 〈s1, σ〉 →∗1 σ′

The first transition is justified by IfTSOS, since B[[b]]σ = tt.

Case IfFNS:

Analogous to IfTNS.

Case WhTNS:

Then s = (while b do s′ end) for some boolean expression b and some statement s′,
and the derivation tree is of the following form:

T1
〈s′, σ〉 → σ′′

T2
〈while b do s′ end, σ′′〉 → σ′

〈while b do s′ end, σ〉 → σ′
B[[b]]σ = tt

for some state σ′′, where T1 is some derivation tree deriving 〈s′, σ〉 → σ′′ and where T2 is
some derivation tree deriving 〈while b do s′ end, σ′′〉 → σ′.

We apply the IH to T1 and T2, and get 〈s′, σ〉 →∗1 σ′′ and 〈while b do s′ end, σ′′〉 →∗1 σ′.

We conclude this case with the following derivation sequence:

〈while b do s′ end, σ〉
→1 〈if b then (s′; while b do s′ end) else skip end, σ〉
→1 〈(s′; while b do s′ end), σ〉
→∗1 〈while b do s′ end, σ′′〉
→∗1 σ′

where the second transition is justified by IfTSOS, since B[[b]]σ = tt , and where the second
to last transition is obtained from the result of assignment 3 of sheet 11.

4



SOS⇒ NS: ∀σ, σ′ ∈ State, s ∈ Stm, k ∈ N · 〈s, σ〉 →k
1 σ
′ ⇒ 〈s, σ〉 → σ′

Proof: By strong induction on the length k of the SOS derivation sequence.

Assume that the proposition holds ∀m < k, show it for k. We can assume k > 0, since there is no
zero-length derivation sequence from a non-final configuration to a final state, i.e., 〈s, σ〉 →0

1 σ
′

doesn’t exist.

We unroll the derivation sequence once to 〈s, σ〉 →1 γ →k−1
1 σ′ and inspect the derivation tree

of the first transition, considering cases for the last rule applied:

Case AssSOS:

Then s = (x:=e) for some variable x and some arithmetic expression e,
and γ′ = σ[x 7→ A[[e]]σ]. Since γ is a final state there is no further derivation sequence
(k = 1), and hence σ′ = γ = σ[x 7→ A[[e]]σ].

From AssNS we get 〈x := e, σ〉 → σ′, as required.

Case SkipSOS:

Similar to AssSOS, we apply the corresponding NS rule and are done.

Case Seq1SOS, Seq2SOS:

Then s = (s1; s2) for some statements s1 and s2, and the entire derivation sequence is of
the form 〈s1; s2, σ〉 →k

1 σ
′.

From the lemma on p. 132 of the lecture slides, we get 〈s1, σ〉 →k1
1 σ′′ and 〈s2, σ′′〉 →k2

1 σ′,
for some state σ′′ and some natural numbers k1 and k2, such that k1 + k2 = k. Since
both sub-derivations sequences are from non-final configurations to final states, we have
k1, k2 ≥ 1, and therefore k1, k2 < k.

Applying the IH to both sub-derivations yields 〈s1, σ〉 → σ′′ and 〈s2, σ′′〉 → σ′, which we
combine by applying SeqNS to get 〈s1; s2, σ〉 → σ′, as required.

Case IfTSOS:

Then s = (if b then s1 else s2 end), for some boolean expression b and some state-
ments s1 and s2, B[[b]]σ = tt , and the unrolled derivation sequence is of the form:

〈if b then s1 else s2 end, σ〉 →1 〈s1, σ〉 →k−1
1 σ′

We apply the IH to the tail sequence, and get 〈s1, σ〉 → σ′, which enables us to conclude
this case by applying IfTNS:

〈s1, σ〉 → σ′

〈if b then s1 else s2 end, σ〉 → σ′
B[[b]]σ = tt

5



Case IfFSOS:

Analogous to IfTSOS.

Case WhSOS:

Then s = (while b do s′ end) for some boolean expression b and some statement s′,
γ = 〈if b then s′; while b do s′ end else skip end, σ〉, and the unrolled derivation
sequence is of the form:

〈while b do s′ end, σ〉
→1 〈if b then s′; while b do s′ end else skip end, σ〉
→k−1

1 σ′

We apply the IH to the tail sequence, and get

〈if b then s′; while b do s′ end else skip end, σ〉 → σ′.

From the semantic equivalence proved on p. 87 we get 〈while b do s′ end, σ〉 → σ′,
which concludes this case.

Note: We can also “manually” conclude this case, i.e. not use the semantic equiva-
lence. This requires a case split on which branch of the if-statement is taken, and some
decomposing and recomposing of the resulting derivation tree.

Assignment 5 - Headache of the Week: Transactions

In order to maintain a backup of the state that existed before statement s in revert s if b end

had been executed, we extend our state to be a list of regular states:

State′ = [State]

The extended state is used as a stack of backups. The top-most state is the current state, i.e.
the one that is used to evaluate expressions and that is changed by assigments, and the other
states are used to rollback actions, if necessary. We decompose a state by Haskell-like pattern
matching, σ′ = σ : σs means that the extended state σ′ consists of a head state σ and tail states
σs.

The first new rule pushes the current state as a backup onto the state stack, and inserts a marker
statement that is used to conditionally trigger a rollback.

RevSOS 〈revert s if b, σ : σs〉 →1 〈s;rollback-if b, σ : σ : σs〉

The semantics of the marker statement are captured by the next two rules. The first one performs
a rollback by discarding the head state, whereas the second one keeps the head state and instead

6



removes the backup state. Note that rollback-if is assumed to not occur in the source
programs, i.e., it is only inserted into the program by RevSOS.

RbiTSOS 〈rollback-if b, σ : σs〉 →1 σs
if B[[b]]σ = tt

RbiFSOS 〈rollback-if b, σ : σ′ : σs〉 →1 σ : σs
if B[[b]]σ = ff

All other rules have to be adapted to the extended state. For some rules it is sufficient to
simply propagate the extended state, e.g. for SkipSOS or SeqSOS. For others, such as
AssSOS, we have to decompose the extended state in order to preserve the original seman-
tics.

Skip’SOS 〈skip, σs〉 →1 σs

Ass’SOS 〈x:=e, σ : σs〉 →1 σ[x 7→ A[[e]]σ] : σs

Seq1’SOS

〈s1, σs〉 →1 σ
′
s

〈s1;s2, σs〉 →1 〈s2, σ′s〉

Seq2’SOS

〈s1, σs〉 →1 〈s′1, σ′s〉
〈s1;s2, σs〉 →1 〈s′1;s2, σ′s〉

IfT’SOS 〈if b then s1 else s2 end, σ : σs〉 →1 〈s1, σ : σs〉
if B[[b]]σ = tt

IfF’SOS 〈if b then s1 else s2 end, σ : σs〉 →1 〈s2, σ : σs〉
if B[[b]]σ = ff

While’SOS 〈while b do s end, σs〉 →1 〈if b then s;while b do s end else skip end, σs〉

7


