
D. Basin and P. Müller

Formal Methods and Functional Programming

Exercise Sheet 10: Big Step Semantics

Submission deadline: May 7th, 2012

Please submit your solution before 10:15am on the submission date specified above. Solutions
can be submitted via e-mail or by using the boxes to the left of CAB F 51.1. Make sure that
the first page (and preferably each sheet) always contains your name, the exercise sheet number
as well as your tutor’s name and the weekday (Tuesday or Wednesday) of your exercise group.
Don’t forget to staple your pages if you submit more than one page.

Assignment 1

Consider the following IMP statement s:

while n # 0 do

a := a+n;

b := b*n;

n := n-1

end

Let σ be a state such that σ(a) = 0, σ(b) = 1, and σ(n) = 2. Prove using the natural
semantics that there is a state σ′ with σ′(a) = 3, σ′(b) = 2, and σ′(n) = 0 such that 〈s, σ〉 → σ′.

Provide the complete derivation tree. You have to explicitly write the names of the rules you
apply at each derivation step.

Assignment 2

In the lecture, you have seen the proof of the direction from left to right of the following claim:

〈while b do s end, σ〉 → σ′ ⇔ 〈if b then s; while b do s end else skip end, σ〉 → σ′

Prove the direction from right to left of the claim.

1



Assignment 3

Consider the extension of the IMP programming language with a for statement:

for x := e1 to e2 do s end

The execution of the statement first evaluates e1 and assigns the result to variable x. Then,
while the value of x is not equal to that of e2, it executes s and increases x by one.

There are two possible interpretations of the above statement: (i) e2 is evaluated once, (ii) e2
is evaluated before each comparison to the value of x.

(a) Provide derivation rules in natural semantics for both (i) and (ii). Do not use while in
your derivation rules.

(b) Consider the case of semantics (ii) only. Show that for any x, e1, e2, s, σ, σ
′:

〈for x := e1 to e2 do s end, σ〉 → σ′ ⇒
〈x := e1; while x#e2 do s;x := x+ 1 end , σ〉 → σ′

Assignment 4

In this assignment you will write a simple interpreter for IMP programs. You will use the
programming language Haskell. A skeleton of the IMP interpreter as a literate Haskell file
is available at the course web page. The skeleton file contains the data types for arithmetic
expressions, Boolean expressions, and statements for representing IMP programs in Haskell.
Moreover, the skeleton file contains some auxiliary functions. You have to use this skeleton
file instead of what you have developed in assignment 4 of exercise sheet 9. The skeleton
contains already a parser and several auxiliary functions (e.g., evaluation of arithmetic and Boolean
expressions).

Download the skeleton file and complete the definition of the function

transNS :: Config -> Config

The place where you should insert your code in the skeleton file is marked by the word TODO.
The function transNS should encode the rules of the transition relation from the lecture for the
natural semantics. Feel free to extend IMP, e.g., with local variables.

Please mail your solution of this assignment together with some test cases to your tutor. The
email addresses of the tutors are:

Malte Schwerhoff malte.schwerhoff@inf.ethz.ch

Yannis Kassios ioannis.kassios@inf.ethz.ch

Alex Summers alexander.summers@inf.ethz.ch

Assignment 5 - Headache of the week

Extend the natural semantics of IMP to support a break statement. The statement should stop
the execution of the innermost loop that is being executed, as in C. When executing a break

statement, the control should go immediately after the loop whose execution is being broken.
You may assume that break will never appear outside of a loop.

2


