
D. Basin and P. Müller

Formal Methods and Functional Programming

Exercise Sheet 2: Natural Deduction and Recursion

Submission deadline: March 4th, 2012

Assignment 1:

In this exercise, we work with intuitionistic predicate logic. The corresponding natural deduction
rules are listed below.

Γ, A ` A
axiom

Γ, A ` B

Γ ` A→ B
→ I

Γ ` A→ B Γ ` A

Γ ` B
→ E

Γ ` ⊥
Γ ` A

⊥E
Γ, A ` ⊥
Γ ` ¬A

¬I
Γ ` ¬A Γ ` A

Γ ` B
¬E

Γ ` A Γ ` B

Γ ` A ∧B
∧I

Γ ` A ∧B

Γ ` A
∧EL

Γ ` A ∧B

Γ ` B
∧ER

Γ ` A

Γ ` A ∨B
∨IL

Γ ` B

Γ ` A ∨B
∨IR

Γ ` A ∨B Γ, A ` C Γ, B ` C

Γ ` C
∨E

Γ ` P (x)

Γ ` ∀x. P (x)
∀I∗

Γ ` ∀x. P (x)

Γ ` P (t)
∀E

Γ ` A(t)

Γ ` ∃x.A(x)
∃I

Γ ` ∃x.A(x) Γ, A(x) ` B

Γ ` B
∃E∗∗

Side conditions: (*) x not free in Γ and (**) x not free in Γ or B.

Recall that→ is right-associative, while ∧ and ∨ are left-associative. Moreover, ¬ binds stronger
than ∧, which binds stronger than ∨, which in turn binds stronger than →. Also note that the
scope of the quantifiers extends as far to the right as possible.

Prove that the following statements are valid in intuitionistic predicate logic.

(a) ((∃x. P (x))→ Q)→ ∀x. P (x)→ Q, where x does not occur free in Q.

(b) (∃x. P (x) ∧Q(x))→ (∃x. P (x)) ∧ (∃y.Q(y))

(c) (∀x. P (x)→ Q(x))→ ∀x.¬Q(x)→ ¬P (x)

1

Assignment 2:

For each of the following formulas, find two structures with universe {a, b, c} and nonempty
relations. One that satisfies the formula and another one that does not satisfy it.

(a) (∃x. P (x)) ∧ (∃y.Q(y))→ (∃x. P (x) ∧Q(x))

(b) ∀x. (∃y.R(x, y) ∧Q(y))→ (∀y.R(x, y)→ Q(y))

(c) ∀x, y. R(x, y)→ R(y, x)→ x = y

Hint: all the structuresAi are of the formAi = (UAi
, IAi

) for UAi
= {a, b, c} and IAi

(Sl) = {. . .}
for all relations Sl occurring in the formula.

Assignment 3:

In this assignment you will develop a Haskell program based on Newton’s method for calculating
the square root of a nonnegative Float. Since the type Float is of limited precision, your square
root function mySqrt :: Float -> Float will compute the square root up to some suitable
small error eps.

(a) Write a function improve :: Float -> Float -> Float that improves your approxima-
tion. The first argument is the number from which you want to calculate the square root
and the second argument is the approximation you have calculated so far. Newton’s method
says that if yn is an approximation of

√
x then

yn+1 =
yn + x/yn

2

is a better approximation.

(b) Write a function goodEnough :: Float -> Float -> Bool that checks whether your
approximation is in the error bound eps :: Float. More precisely, the approximation yn
is good enough if ∣∣y2n − x

∣∣ < eps

You can chose, e.g., eps as 0.001.

(c) Use the functions improve and goodEnough for writing the function mySqrt. As the first
approximation y0 you can use, e.g., y0 = 1.

Assignment 4

Write a Haskell function cntChange :: Int -> Int that computes the number of ways to
change any given amount of money by using CHF coins.
Hint: Think recursively. The number of ways to change amount a using n different kinds of
coins is equal to the sum of

• the number of ways to change a using all but the first kind of coin, and

• the number of ways to change amount a − d using the n kinds of coins, where d is the
denomination of the first kind of coin.

Test your program thoroughly!

2

	Assignment 4

