ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 10:
Big Step Semantics

Assignment 1

We use the following abbreviations: [is the statement a := a+n; b := b*n; n := n-1 and
w the statement while n#0 do [end. Moreover, we introduce the following abbreviation:

[U1, .0, Uk > M, ooy g
stands for the state

olvr ¥ nq).Jug = ngl

where o is the initial state mentioned in the exercise.
We construct the derivation tree shown in the following page.

[0‘cég <+ u‘aq‘e] + ([1‘C‘C <+ u‘q‘e] ‘pue T op O#u STTYM)

SN
v orgg crwas] « (log e crwas m) o 006 el © ([107 e 1w =& @ i(wnq = q fwre = 9))
AHM oo S [0‘cg +ru‘qe] « ([T‘C‘e 1 u‘q‘e]‘1-u =: u fuxq =: q) ey [TC‘e < u‘a‘e] < ([1'C‘C = u‘a‘e] ‘wse =: e)
S oce cuare] « ([1c'e < uare tu=:) [fz'gimael« (['z'g«uac]ma=q
SNssy SNssy
:99J1 UOI1BALIBP SUIMO||0} BY3 SI 17 aiaym
E— 0‘c‘e «wu‘a‘e] + ([g‘1‘0 - u‘q‘e] ‘pus T op O#U oTTUM)
12 SNoag [T+ u‘ae]« ([g‘T‘O« u‘qe]‘t-u =: u {(uxq =: q ‘u+e =: ®e))
[1‘ccuae)« ([g‘T'c« u‘qe‘T-u =: u ‘uxq =: q) sy [61C—uae « (g1« uaqe e =: e

ngmw 13 3 13
[ccc+u‘qe] « ([g‘1c+ u‘q‘e]‘uxq =: q)

(=4 Iﬁhﬂﬂm — [T Iﬁrﬂhm 13 U =: U
SNssy [T'z'c | ([c'c'e 't) Svssy

Assignment 2

For the direction from right to left, we consider the derivation tree for

(if b then s; while b do s end else skip end, o) — o

The last applied rule in this derivation tree is a rule for the if-then-else statement. So, the
derivation tree has either the form

(s; while b do s end,o) — o”
(if b then s; while b do s end else skip end, o) —

m IFTNS
ag

(1)

or
(skip, o) — o”

(if b then s; while b do s end else skip end,0) — 0

m IFFNS

()

e Let us first consider the case (2). The rule is only applicable when B[b]o = ff. Furthermore,
with the rule for skip, we conclude that ¢ = ¢”. We construct the following derivation
tree:

WhaF
(while b do s end,0) — o N

e Let us now consider the case (1). The rule is only applicable when B[b]o = tt. The next
applied rule in the derivation tree must be for sequential composition. The last part of the
derivation tree has the form

(s,0) — ¢’ (while b do s end,o’) — o”
(s; while b do s end,o) — o”
(if b then s; while b do s end else skip end,0) — 0

SEQus

m IFTNS

Let 77 be the derivation tree above (s,0) — ¢’ and let T, be the derivation tree above
(while b do s end,o’) — o”. We construct the following derivation tree:

T 15
(s,0) = o' (while b do s end,o’) — o”
(while b do s end,o) — o”

WHTNS

Assignment 3

Part (a)
The semantics (i) can be defined by the following rules:

(x :=ey,0) = o

Blz = "=1tt (ForT
(for x:=e€; to ey do s end,0) — o’ v = es]o ()

(x :=ey;0) > 0" (s;for z:=x+1 to ey do s end,o”’) — o’

Blz =eo” = ff (FOrF)

(for x:=e; to ey do s end,0) — o’

To get semantics (i), we can add an extra condition to the above rules that e; be a numeral,
and an extra rule that performs the evaluation of e,, if is it is not a numeral:

(for x:=e; to n do s end,0) — o

(*)

(for x:=e; to ey do s end,0) — o’

where the side condition (*) is:

ez is not a numeral and Afes]o = N[n]

Notice that both cases allow the body of a for to assign to the index variable z. If this is not
desired, we can forbid it in various ways, for example we can have extra side conditions on the
body s of the loop. Notice also that in our semantics (i), if x occurs in e5 we will use the old
value of = when evaluating e; to a numeral, while in our semantics (ii) we would first assign to
x and then start evaluating the upper bound. It isn't totally clear which is preferable, in either
case (although they do give different semantics to the construct).

Part (b)

Consider now semantics (ii). We will prove the proposition of the question, by induction on the
derivation tree of
(for x:=e; to ey do s end,0) — o (ASO)

We want to prove that
(v :=e; while x#ey do s;x:=x+1 end, o) — o' (PO)

Let 7" be a derivation tree (ASO).
We know that for all subtrees 7" of T, variables I, expressions ¢é;,éy, statements §, states
&,0’, such that 7" proves

(for Z:=¢; to é; do § end,G) — ¢

we have that
At

(:=é;; while T#éy do $;2: =%+ 1 end, 6) > &
We call this the induction hypothesis (IH).
The last rule applied in T is either FORT or FORF. We split into two cases:
Case FORT': If the last rule applied was FORT, then we know that (z := e;,0) — ¢ and
that Bz = es]o’ = tt, which implies that B[z#es]o’ = ff. We can construct the derivation for
(PO) as follows:

; WHFNS

(r:=ey,0) - 0’ (while z#ey do s;z:=x+1 end, 0') =0
SEQps

(r:=e;; while a#ey do s;z:=x+1 end, o) = o

Case FORF': If the last rule applied was FORF', then we know that there is a ¢” such that
(r:=-ey,0) — " (AS1)

and
(s;for x:=x+1 to ey do s end,0”) — o’ (AS2)

and that B[z = es]o” = ff, which implies that Bz#es]o” = ¢t (AS3).

There is a derivation tree for (AS2). The root of that tree must have been derived by the
SEQps rule, which means that there is a ¢ such that

(s,0") = " (AS4)

and
(for x:=x+1 to ey do s end, o) — o’ (ASH)

Let 77 be the subtree of 7" which derives (AS5).
We apply (IH) for: & =2, é; = (x+1), és =€y, §=5,6=0",6 =0, and T' = T'. We
get:
(r:=x+1; while a#ey do s;z:=x+1 end, 0”) — o’ (AS6)

The last rule applied to the derivation tree for (AS6) must have been SEQys. Therefore, there
is a state o; such that
(r:=x+1,0") = o1 (AST)

and
(while z#ey; do s;z:=x+1 end, 01) = o (AS8)

We can get a derivation tree for (PO), as follows:

(AS4) (AST)
: (s;x:=x+1,0") = 0y
(AS1) (while z#e; do s;x:=x+1 end, o”
(PO)

SEQps =

(*) this rule applies because of (AS3).

Assignment 4

You find a solution of this assignment in the literate Haskell file simpi_onlyns.1lhs.

Assignment 5 - Headache of the week

To support break, an idea is to add a flag to the state that makes it explicit if a break statement
has been executed. We define a new set of states State’ that contains this information:

State’ = {tt, ff} x State

Let 7, 7', 7;.. range over elements of set State’ and 0,0’ 0;.. over elements of set State.
The behavior of the break statement is to set this flag to true:

(break, (v,0)) — (tt,0)

When the flag is true, this means that a break statement has been activated. No change to
the state must happen, until the flag is reset to false. This changes the rules for the assignment
as follows:

(x:=e (ff,0)) = (f,olz = Alelo])

(x :=e,(tt,0)) — (tt,0)
Skipping should not change the state, regardless of the flag:
(skip,T) = T

The sequential composition should behave as before, regardless of the flag. In case the flag is
true, this propagates to the end of the sequential composition:

(s1,7) = 1" (s9,7"y = 7'
(s1;82,7) = 7'

A conditional can be ignored if the flag is initially true:

(if b then s; else so,(tt,0)) — (it,0)

If the flag is initially false, it behaves as before:

(s1, (ff 1 0)) = 7

(if b then s; else sy, (ff,0)) = 7

Bb]o = tt

<827 (ﬁ,O)) — T

(if b then s; else sy, (ff,0)) =7

B[b]o = ff

A loop is also ignored if the flag is initially true:

v=tt or B|bjo =
(while b do s end,(v,0)) — (v,0) lblo =1

If the flag is initially false and the loop condition is initially true, then the loop should execute.
However, its behavior depends on whether the loop body raises the flag or not. If the body does
not raise the flag, then the loop execution continues after the first iteration

(s, (ff,o)) = (ff,o") (while b do s end, (ff,0")) — (ff,0’)
(while b do s end, (ff,o0)) — (ff,o)

Bb]o = tt

If the body raises the flag, then there are no more iterations: the loop execution is broken.
Notice that the flag is reset to false:

(s, (ff, 0)) = (#,0")
(while b do s end, (ff,0)) — (ff,0)

B[b]o = tt

