
D. Basin and P. Müller

Formal Methods and Functional Programming

Exercise Sheet 8: Motivation and Induction

Submission deadline: April 23rd, 2012

Note that the tutors for exercise groups will mostly be different for the second half of the
course. Please have a look at the course web page (http://www.infsec.ethz.ch/education/
ss2012/fmfp) to see who is your tutor. However, the times and rooms of exercise sessions
remain the same. For questions about the new exercise groups, please contact Malte Schwerhoff
(malte.schwerhoff@inf.ethz.ch).

Please submit your solution before 9:15am on the submission date specified above. Solutions
can be submitted via e-mail or by using the boxes in front of CAB F 51.1. Make sure that the
first page (and preferably each sheet) always contains your name, the exercise sheet number as
well as your tutor’s name and the weekday (Tuesday or Wednesday) of your exercise group. Don’t
forget to staple your pages if you submit more than one page.

Assignment 1

Write a program - in your preferred imperative programming language - that computes d x
√
ye,

for integers x > 0 and y ≥ 0. Give textual arguments justifying the correctness of your pro-
gram.

The notation dxe denotes the “ceiling” function applied to x, i.e., the number x rounded up to
the nearest integer. More precisely:

∀x ∈ R · dxe ∈ Z ∧ dxe − 1 < x ≤ dxe

You should restrict yourself to using only the basic arithmetic operations (addition, substraction,
multiplication, division) on integers (i.e., no built-in mathematical procedures!).

Hint: You might want to first look at the simplified problem where x = 2 and then generalize
your solution to x > 0.

Hint: You might also want to have a look at the slides of “Einführung in die Programmierung” by
Bertrand Meyer that are concerned with loop invariants and loop variants.

1

Assignment 2

Consider the following definition (Peano numerals) of the natural numbers and the addition
operation defined on them:

data Nat = Zero

| Succ Nat

plus Zero n = n

plus (Succ m) n = Succ (plus m n)

Prove the associativity of plus, i.e.,

∀x, y, z ∈ Nat· plus x (plus y z) = plus (plus x y) z.

Assignment 3

Using the same definitions as the previous question, consider the following less-than-or-equal-to
predicate defined as:

leq Zero n = true

leq (Succ m) Zero = false

leq (Succ m) (Succ n) = leq m n

Prove the following property of the leq predicate:
∀m,n ∈ Nat· (leq (plus m n) m = true) ⇒ n = Zero

Assignment 4

The following is a Haskell function that computes the sum of the items in a list, using tail
recursion:

sum l = sumaux l 0

where

sumaux[] i = i

sumaux(x:xs) i = sumaux xs (x+i)

Prove the correctness of the function, i.e., show ∀l ∈ [Int]·P (l) where

P (l) ≡ sum l =

(length l)−1∑
i=0

l!!i

The notation !! denotes the element i of list l (starting from index 0).

2

Hint: Is P (l) an adequate induction hypothesis for your proof?

Assignment 5 - Headache of the week

Consider the Haskell quick sort program:

qsort[] = []

qsort(p:xs) = qsort[x | x<-xs, x<=p] ++ [p] ++ qsort[x | x<-xs, x>p]

Prove formally that qsort l is sorted, assuming l is of finite length. You should first state
formally what it means for a list of integers to be sorted.

You may use without proof the following lemmas:

Lemma 1: length [x|x <- l, P(x)] ≤ length l

(the list resulting from a list comprehension is no longer than the original list).

Lemma 2: l1 = [x|x <- l, P(x)] ⇒ ∀i ∈ N : 0 ≤ i < length(l1)⇒ P(l1!!i)
(every element of the result of a list comprehension, satisfies the property used to filter the
original list).

You may also use as lemmas any properties of length, list append (++), list indexing (!!) and
list comprehension that you need, provided that you state them clearly first, and provided that
they are true!

3

