ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Solutions of Exercise Sheet O:
IMP States and Expressions

Assignment 1 (Simplifying State Updates)

(i) Proof: We need to show that, Vy.o[z—v;][z—v2)(y) = o[z—v2](y). For arbitrary y, we
have (using the definition of state update):

ify=x
o[z—v] [z (y { oz (otherwise
/f y =z
{ otherW/se
= 0 xr—>v2

(i) Proof: We need to show that, if z # y, then Vz.o[z—v1][y—v9](2) = o|y—vs][x—v1](2).
For arbitrary z, we have (using the definition of state update):

Vg if z = Yy
olz—v]ly—e)(2) = { olr—vi](z) otherwise
V2 if z = Yy
= o ifz#yand z=x
o(z) otherwise
o ifz=ux
Uy ifz#x and z =y

o (z) otherwise

_ ifz=ux
N y|—>’02 otherwise
= oly—wvs xl—wl z)

xNote that the rewriting of the cases in the function definition only works because we
assumed x # y - this condition is necessary for each of the sets of three cases to be
disjoint, and for the two variants to define the same function (and indeed, the overall result
isn't true without this condition).

(iii) Proof: Let x be an arbitrary variable, and let vy, v, be arbitrary values.
Let P(m) be the statement: “For all sequences i and v’ of length m, and for all states ¢,
o' [z [y [e—vs] = o [][v]”

We prove Ym.P(m) by induction on m.

Induction base (m = 0):

To show: P(0)

Then the sequences ¥ and v can only be empty. Let ¢’ be an arbitrary state. We are left
with showing that o|x—v;|[x+—ve] = o|xr>wvy]. This follows from part (i) of the question.

Induction step:

To show: P(k+1), for some k, i.e., Vi, v’ of length k+1, Vo' o’ [arsv;][f—0][z—10] =
o' [if—0"][x—vs]

IH: P(k), i.e., V7,0 of length k, Yo'. o' [z] [—0][z—0y] = o [fi0"] [0

To show P(k + 1), let i and ' be arbitrary sequences of length k + 1, and let o be an
arbitrary state (we use a different name from the quantified o/, to make the argument clearer
later in the proof). Then, we need to show o[z][f0][z—vs] = o[[2515), and
our induction hypothesis tells us that the corresponding property holds for any sequences
of length k, and for all states o’.

Consider the first variable y; from the sequence . We consider two further (sub-)cases:

(y1 = x): Then, by part 1 of the question, o[z—v1][y1—v]] = olyi—v}], and so we have
oz [gv!][x—vg] = o[gv!][r—vs] as required.

(y1 # x): Then, by part 2 of the question, o|xr—v;|[y1—v]] = o[y—v]][z—v1]. Using
this fact, what we need to show is equivalent to showing:

(o[yr—=vi)) [z [yor=v3] - - [y —vp][] =

(olyi—=vi]) [ya=vy] . . . [Yrg 1=V |[x—=v2]. Since the sequences s, ..., ¥yk+1 and
Uy, ...,V are of length k, this follows from our induction hypothesis, taking the
sequences there to be ¥y, ..., yp1 and vy, ..., v;, and taking ¢’ to be (o[y;—v]]).

Assignment 2 (Substitution Properties)

Recall that b[z — e] is defined as follows:

e1[r — €] op es[x > €] if b is the arithmetic comparison e; op e,

by s ¢ not O'[z — €] if b is the Boolean expression not ¥/, and
el =
Y bi[x +— e] ® bi[x +— e] if bis the Boolean expression by & by

with & € {and, or}.

The proof uses the previously-proven substitution lemma for arithmetic expressions (see ques-
tion); we write “Lemma” below where it is applied.

We need to prove: Vb, e, z, 0. B[b[x — e]]o = B[b](c]x — Ale]o])

To do this, let e, = and o be arbitrary (note that we deal with inner quantifiers first here, but
several for-all quantifiers can always be reordered).

Now let P(b) = B[b[z — e]]o = B[b](c[z — Ale]o])
We prove Vb.P(b) by structural induction on b.

Case b=¢; opes:
To Show: P(e; opey), i.e., that: Bf(e; op es)[x — e]]o = B(e1 op e2)](o[z — Ale]o])

We can show this as follows:
Bl(eiopes)[z —el]]lo = Blei[r — €] opes[z — €]]o

= Alei[z — e]]o op Ales]z — e]]o

= Aled] (J[.’E > A[[eﬂo]) op Ales] (J[x > A[[e]]a])

= Blei op es] (o]z — Ale]o])

Case b =not b':

defn. [z — e])
defn. B)
using Lemma)

(
(
(
(defn. B)

To Show: P(not ¥), i.e., that: B[(not b')[x — e]]o = B[(not V)](c[z — Ale]o])

IH: P(V), i.e., that: B[V [z — e]]o = B[V](o[z —
We can show this as follows:
B[(not V)[z — e]]Jc = Bnot V[x +— e]]o
= 2 B[V [z e]]o
= = B[V](o]z — Ale]o])
= Blnot V'](o[z — Ale]o])

Ale]a])

Case b= b, @ by:
To Show: P(b; @ by), with @ € {and, or}, i.e., that:
B[(by @ b2)[z = e]lo = B[(b1 @ b2)] (o [z — Ale]o])

(defn. [x +— €])
(defn. B)

(1H)

(defn. B)

IH: P(by), P(by), i.e., that: B[bi[z — €]]o = B[bi](o[z — Ale]o]), and

Blbe[z — e]]o = B[bs](c]x — Ale]o])

We can show this as follows:

B[(by @ by)[x—e]]o = B[(bi[x €] @ bo[z — €])]o (defn. [z — €])
= Blbi[z — €]]o @ Blbs[z — €]]o (defn. B)
= B[bi](o[x — Ale]o]) @ Blbs] (o[z — Alelo]) (IH, twice)
= B[b1 @ by] o[z — Ale]o]) (defn. B)

Here, @ denotes the corresponding Boolean operation.

Assignment 3 (Similar States)

We want to prove Vo, o', e.((Vx.x € FV (e)
Let o and o’ be arbitrary states.

Let P(e) = (Vo.x € FV(e) = o(z) = d'(z)) = Ale]o =
We prove Ve.P(e) by structural induction on e.

Case ¢ = n (for some numeral n):
To Show: P(n), ie., that: (Vx.z € FV(n)
Therefore, we assume that (Vz. x € FV(n)

= o(x) = o'(x)) = A[n]o =
= o(z) = o(z)), and seek to prove that

= o(z) = 0'(z)) = Ale]o = Afe]o’)

Aln]o’

A[n]o = A[n]o’. We can show the conclusion directly; using the definition of A, we get

Aln]o = Nn] = A[n]o’.

Case ¢ = y (for some variable y):

To Show: P(y), ie., that: (Vz.x € FV(y) = o(x)
Therefore, we assume that (Vz. z € FV(y) = o(z) =

Alylo = Alylo’.

= d'(z)) = Alylo = Alylo’

x
o'(z)), and seek to prove that

Note that F'V (y) = {y}. Therefore, from our assumption, taking x to be y, we deduce
that o(y) = o’(y). Using this fact, and the definition of A, we have Afyjo = o(y) =

o' (y) = Aly]o’ as required.

Case ¢ = (e1 op ey):
To Show: P(e; op ey), i.e., that:

(Vz.x € FV(ey op ey) = o(x) = o'(x)) = Aler op ez]o = Aley op es]o’

IH: P(ey), P(es), i.e., that:

(Ve.x € FV(e1) = o(z) = d'(z)) = Alei]o
(Vz.x € FV(ex) = o(z) = o'(z)) = Alez]o
We assume (Vz.z € FV(e; op e3) = o(x) =
Ale; op es]o’.

Al
Al

e1]o’,
ex]o’.

and

o'(x)), and seek to prove Afe; op ex]o =

By definition of F'V (), we have F'V(e; op ey) = FV(ey) U FV(eg) 2 FV(ey). Therefore,
from our assumption, we can deduce that (Vz.z € FV (e;) = o(x) = ¢/(z)) holds. Using
this along with our IH, we obtain that Afe;]Jo = Afei]o’. Symmetrically to the above
argument, we can derive from our assumption and IH that Afes]o = A[es]o’. Using these
two facts, we can obtain our desired conclusion as follows:

Aley op es]o = Alei]o op Ales]o
= Alei]o’ op Ales]o’ (above facts)
= Aley op es]o’

(defn. A)

(defn. A)

Assignment 4 (Implementing IMP Expressions)

data Aexp = Bin Op Aexp Aexp
| Var String
| Num Integer

data Op = Add | Sub | Mul
data Bexp = Or Bexp Bexp
| And Bexp Bexp
I
I

Not Bexp
Rel Rop Aexp Aexp

data Rop = Eq | Neq | Le
| Leq | Ge | Geq

data State = VarAssign (String -> Integer)

evalAexp :: Aexp —> State -> Integer
evalAexp (Num n) =n

evalAexp (Var x) (VarAssign val) = val x

evalAexp (Bin Add el e2) sigma = (evallexp el sigma) + (evalAexp e2 sigma)
evalAexp (Bin Sub el e2) sigma = (evallexp el sigma) - (evalAexp e2 sigma)
evalAexp (Bin Mul el e2) sigma = (evallexp el sigma) * (evalAexp e2 sigma)

evalBexp :: Bexp -> State -> Bool
evalBexp (Rel op el e2) sigma =
(evalOp op) (evallexp el sigma) (evallexp e2 sigma)
where evalOp Eq = (==
evalOp Neq = (/=)
evalOp Le = (<)
evalOp Leq = (<=)
evalOp Ge = (>)
evalOp Geq = (>=)
evalBexp (Not b) sigma = not (evalBexp b sigma)
evalBexp (Or bl b2) sigma = (evalBexp bl sigma) || (evalBexp b2 sigma)
evalBexp (And bl b2) sigma = (evalBexp bl sigma) && (evalBexp b2 sigma)

Assignment 5 - Headache of the week

(i) Suppose that y € F'V(e;) were allowed (but that = # vy is still true). Then, by choosing e
to be =, and e; to be y, and e3 to be 1, we get a counter-example by observing that:
gl ylly=] =1#y=zly— 1z -yl

(ii) Let x,y,eq, ey be arbitrary. We need to prove that:
(x#yNy& FV(en) Nx & FV(ea) = Ve. e[z — eq]ly — ea] = ely — ea][x +— e1])

To do this, we assume that x # y and y € FV(e;) and = & FV (ez) all hold, and seek to
prove: Ve. e[x — e[y — ea] = e[y — ex][x — €]

Let P(e) = e[z +— ei]y — e2] = e[y — es][x — e1]. We prove Ve.P(e) by structural
induction on e.

Case ¢ = n:
To Show: P(n), i.e., that: n[z — e1][y — e3] = nly — es][x — €]
By definition of substitution, n[z — ei]ly — es] = n[y — e2] = n and, similarly,
nly — es][r — e1] = n.

Case ¢ = z:
To Show: P(z), i.e., that: z[z — e1][y — es] = z[y — es][x — €]
We consider three cases:

(z = x): Then, by our assumption (z # y) we have z # y. Therefore, we know that:

zlz = e[y = e] = ey — e (defn. substitution)
el (lemma from question, y & F'V (e1))

= z[x > e] (defn. substitution)

= zly — es][x > e1] (defn. substitution)

(z = y): By symmetric argument to the previous case.

(z£xAz#y): Then z[x — eq]ly — ea] = 2z = z[y — es][x — €], as required.

Case ¢ = (e3 op ey):
To Show: P(e3 op ey), i.e., that:
(e3 op eq)[x — e1][y — ea] = (e3 op eq)|y — es][z — €]

IH: P(e3), P(ey), i.e., that: es[z — e1][y — es] = e3[y — es][r — e4], and
eqlr — ey = e = esly — es][r — e1]. We can show the required result as

follows:

e3 op eq)[x — e[y — eg

]
eslr — e1] op eqx — eq])]y — €3]

= (es[z = e[y = e2] op ear = €]y — ea])
= (esly > e[z = e1] op ealy > e[1 1)
= (es[y = ea] op esly = ea])[x = e

(
(
(
(
(
(

ez op eq)[r > e[y — ey

defn. substitution)
defn. substitution)
IH, twice)

defn. substitution)
defn. substitution)

(
(
(
(
(

(iii) Let z,y,eq,e2,0 be arbitrary. We assume = # y and y & FV(e;) and © € FV (ey) and

seek to prove that Ve. Afe[z — ei]ly — es]]o = Alely —

es][x — eq]]o. Let e also

be arbitrary. We can then prove Afe[z +— e1][y +— es]]o = Alely — ex][z — ei]]o by
applying the substitution lemma for arithmetic expressions (mentioned in Assignment 2),
the result proved in Assignment 3, and the result proved in Assignment 1(ii). The argument

goes as follows:

Alelz — e1][y — es]]o
= Ale[x — ei]]oly — Alez]o] (
= Ale](oly = Ales]o])[x = Aler]oly — Alea]o]] (
= Ale](oly = Alez]o])[x — Aled] o] (

Ale](olz — Ales]o])[y — Alez]o] (
= Ale](o[z — Alei]o)) |y — Ales]oz — Alei]o]] (
= Alely — es]]olz — Alei]o] (
= Alely — es][x — e1]]o (

substitution lemma)
substitution lemma)
Ass. 3,y & FV(ey))
Ass. 1(ii), x # vy)

Ass. 3, x & FV(e2))
substitution lemma)
substitution lemma)

