
D. Basin and P. Müller

Formal Methods and Functional Programming

Exercise Sheet 12: Axiomatic Semantics

Submission deadline: May 21st, 2012

Please submit your solution before 10:15am on the submission date specified above. Solutions
can be submitted via e-mail or by using the boxes in front of CAB F 51.1. Make sure that the
first page (and preferably each sheet) always contains your name, the exercise sheet number as
well as your tutor’s name and the weekday (Tuesday or Wednesday) of your exercise group. Don’t
forget to staple your pages if you submit more than one page.

Assignment 1 - loop invariants in Dafny

Dafny is a verification tool which can be used to prove functional properties (and termination) of
imperative programs. In particular, Dafny supports verification of loops via loop invariants (and
variants, when proving termination). In this exercise, you can try out Dafny as a tool for helping
experiment with the important skill of finding loop invariants. A version of Dafny can be used
via a web interface, at: http://rise4fun.com/Dafny

The syntax of Dafny programs is slightly different to that of IMP, but mostly quite similar. Syntax
for assignments is the same (although local variables must be declared, using the syntax var x;

(variables are of type int, by default). There is no skip command, but statement blocks (e.g.,
branches of conditionals) may be left empty. Dafny uses C/Java-like syntax for conditionals and
loops. For example, the IMP program:
if x>0 then x:=x-1; while x>0 do x:=x-1 else skip end could be translated into Dafny
as:

if (x>0) {

x := x-1;

while (x>0)

{

x := x-1;

}

} else {

// leave blank for skip - or omit the else-branch

}

1

Loop invariants can be written between the while-condition and the open brace {. For exam-
ple:

while (x>0)

invariant x >= 0;

{

x := x-1;

}

Consider now the following program (which we call s) below:

i := 0;

r := 1;

while i < k do

i := i + 1;

r := r * n

end

This program computes nk and stores it in the variable r, provided that k > 0. We want to find
an invariant for the while loop in this program. Recall that a loop invariant is a formula that
holds before the loop, and that is preserved by the loop body.

You can find a pre-prepared version of the corresponding Dafny program at, http://rise4fun.
com/Dafny/fpSJ In this pre-prepared version, the translated program is the body of a method,
whose pre-condition (requires) is k ≥ 0 and whose post-condition is that r = nk. Since Dafny
doesn’t support “power” as a built in operator, we have defined it as a function.

(a) The loop invariant is initially set to be true. Try running the verifier by clicking “ask
Dafny”. As you would expect, this loop invariant is not strong enough such that, along
with the negation of the while-condition, we can prove the post-condition.

(b) Try changing the loop invariant to i > 0 and run Dafny again. What is the problem now?

(c) Try changing the loop invariant to i < k and run Dafny again. What is the problem now?

(d) Try changing the loop invariant to r == pow(n,i) and run Dafny. Why does the post-
condition not verify?

(e) Find a suitable loop invariant, such that the verifier succeeds with 0 errors.

(f) Using your discovered loop invariant, prove in axiomatic semantics that the above program
s computes nk. More formally, show that

` { k ≥ 1 ∧K = k } s { r = nK }

(g) Find a suitable loop invariant for the program found at http://rise4fun.com/Dafny/

cucW. Your invariant should be strong enough to prove the assertion in the code (i.e., the
verifier should succeed with no errors).

(h) Do the same for the program found at http://rise4fun.com/Dafny/K32F.

2

Assignment 2 - program correctness

Let s be the following IMP program:

a := 1;

b := 0;

while a<n do

a := a * 10;

if (a <= n) then

b := b + 1

else

skip

end

end

In your session exercises, you found that a suitable loop invariant for program is:
(a ≤ n⇒ a = 10b) ∧ (a > n⇒ a = 10b+1) ∧ 10b ≤ n
Using this loop invariant (or an alternative one if you prefer), prove that the program computes
the floor of log10(n); i.e., that:
` { n = N ∧ n ≥ 1 } s { 10b ≤ N ∧N < 10b+1 }

Assignment 3 - rule of consequence

Recall the rule of consequence as presented in the lecture

{ P′ } s { Q′ }
{ P } s { Q }

if P⇒ P′ and Q′ ⇒ Q

and compare it to the following unsound variation

{ P′ } s { Q′ }
{ P } s { Q }

if P′ ⇒ P and Q⇒ Q′

Give textual arguments why the first rule is sound and why the second one is not and support your
argumentation in the second case with two counter-examples.

Assignment 4 - decomposing sequential compositions

Show that (for all statements s1,s2, and for all predicates P and Q):

` { P } s1; s2 { Q } ⇔ there exists R such that: ` { P } s1 { R } and ` { R } s2 { Q }

3

Assignment 5 - Headache of the week

Consider the following program s computing the greatest common divisor (gcd) of two given
positive integers:

b := x;

c := y;

while b # c do

if b < c then

c := c - b

else

b := b - c

end

end;

z := b

Convince yourself that the program terminates when x and y store positive integers (you do not
need to prove this).

Tasks: For these tasks, you can write gcd(m,n) in assertions, to denote the actual greatest
common divisor of two positive integers m and n. You may assume that ∀n.gcd(n, n) = n and
∀m,n.gcd(m+ n, n) = gcd(m,n) = gcd(m,m+ n).

(a) Formalise the claim that the above program computes the gcd of x and y as pre- and
postcondition P and Q, respectively.

(b) Find an invariant for the loop.

(c) Show that ` { P } s { Q }.

In case it helps you to think about the questions, you might want to recall the definition of the
gcd:
Let x, y be positive integers. The number z is the greatest common divisor of x and y iff z|x
and z|y and there is no z′, with z′ > z, such that z′|x and z′|y. Here, z|x means that z divides
x, i.e., z · k = x, for some k ∈ N.

Hint: Consider using a relationship between the input variables x, y and the ’loop’ variables b,
c as part of your loop invariant.

4

