
D. Basin and P. Müller

Formal Methods and Functional Programming

Exercise Sheet 7: Monads and Repetition

Submission deadline: —

Assignment 1: Monads

Recall the Monad typeclass.

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

A Monad class instance is valid iff it satisfies the following three monad laws.

1. Left identity: return x >>= f = f x

2. Right identity: m >>= return = m

3. Associativity: (m >>= f) >>= g = m >>= (\x -> f x >>= g)

Consider the following type of binary trees.

data Tree a = Leaf a | Node (Tree a) (Tree a)

(a) Give a Monad class instance for Tree.

(b) Prove that your Monad class instance is valid; i.e., satisfies the monad laws.

Note: The typeclassopedia1 provides a very good ressource for learning more about standard
typeclasses like the Monad typeclass. Moreover, as it happens, the typeclassopedia will be dis-
cussed by the Zurich Haskell user group2 here at ETH in CNB 100.5 on Thu, 12th of April 2012.
If you are interested in learning more about Haskell and functional programming in general, then
you are more than welcome :-)

1http://www.haskell.org/haskellwiki/Typeclassopedia#Monad
2http://www.meetup.com/HaskellerZ/

1

http://www.haskell.org/haskellwiki/Typeclassopedia#Monad
http://www.meetup.com/HaskellerZ/


Assignment 2: Evaluation

Simplify the following terms stepwise using (i) lazy and (ii) eager evaluation reduction.

(a) (λx. λy. x y) (λz. y z)

(b) (λf. λx. x f) (λr. r) ((λy. λz. y z) (λa. a))

Note: You can download a mini Haskell interpreter from the course web page that outputs
stepwise reductions of terms (lazy and eager).

Assignment 3: Typing

(a) Recall the following functions from the Haskell libraries.

(:) :: a -> [a] -> [a]

map :: (a -> b) -> [a] -> [b]

inits :: [a] -> [[a]]

1 :: Num a => a

(<) :: Ord a => a -> a -> Bool

State the most general type of each of the following expressions.

1. (\x y z -> (y x, x z))

2. (\x y -> x (\z -> y))

3. map (1 :)

4. (\x ys -> inits (map (x <) ys))

(b) Recall the proof rules for the mini-Haskell type system:

. . . , x : a, . . . ` x :: a A ` n :: Int A ` True :: Bool A ` False :: Bool

A, x : σ ` t :: τ
A ` (λx. t) :: σ → τ

x /∈ A
A ` t1 :: σ → τ A ` t2 :: σ

A ` (t1 t2) :: τ

A ` t1 :: Int A ` t2 :: Int
A ` (t1 + t2) :: Int

A ` t1 :: τ1 A ` t2 :: τ2
A ` (t1, t2) :: (τ1, τ2)

Formally prove the following typing judgement using the typing rules above:

` (λy. (True, λx. 1 + x y)) :: a→ (Bool , (a→ Int)→ Int)

2



Assignment 4: Proof by Induction

Consider the following functions.

addShifted :: [Int] -> Int -> [Int]

addShifted [] i = [i] -- addShifted.1

addShifted (x:xs) i = (x + i):addShifted xs x -- addShifted.2

sum :: [Int] -> Int

sum [] = 0 -- sum.1

sum (x:xs) = x + sum xs -- sum.2

Prove that ∀xs :: [Int]. ∀i :: Int. sum (addShifted xs i) = i+ 2 ∗ sum xs.

Assignment 5: List Functions

(a) Define a Haskell function match :: String -> Bool that checks whether the parentheses
match. You may assume that () and {} are the only parentheses. Note that a string can
contain arbitrary letters of type Char.

Example: match "(a{b} cd)()ef" = True and match "(xy{z}}" = False

Hint: Use a stack and represent this stack as a list.

(b) Write a function risers :: Ord a => [a] -> [[a]] that splits a list xs :: [a] into
the list of longest non-empty monotonically rising subsequences of xs.

Example: risers [1,3,3,4,1,0,2,6] = [[1,3,3,4],[1],[0,2,6]]

Assignment 6: Symbolic Differentiation

In this assignment, you have to implement a Haskell function that symbolically computes the first
derivative of a functional expression. Functional expressions f(x) are interpreted in the common
way and may contain the variable symbol x, the constant e, the real numbers (represented as
values of type Double), addition, multiplication, division, potentiation (f(x)g(x))), exponentiation
(ef(x)), and the natural logarithm.

(a) Find a suitable representation in Haskell for functional expressions f : R→ R.

(b) Implement a function that computes the first derivative of a functional expression.

Recall the derivation rules (f(x), g(x), and h(x) are functional expressions):
x′ = 1.0 c′ = 0.0 for c ∈ R(

g(x) + h(x)
)′

= g′(x) + h′(x)
(
g(x) · h(x)

)′
= g′(x) · h(x) + g(x) · h′(x)(

g(h(x))
)′

= g′(h(x)) · h′(x)
(
ef(x)

)′
= f ′(x) · ef(x)(

ln(f(x))
)′

= f ′(x)
f(x)

and remember the equality g(x)h(x) = eh(x)·ln(g(x)).

Note: Simplification rules need not be implemented.

3


	Assignment 1: Monads
	Assignment 2: Evaluation

