
D. Basin and P. Müller

Formal Methods and Functional Programming

Exercise Sheet 3: Induction, Lists, and Higher-Order
Functions

Submission deadline: March 11th, 2012

Assignment 1:

(a) Write down the induction scheme for natural numbers as an inference rule.

Hint: The conclusion of your rule should be Γ ` ∀n ∈ Nat . P (n).

(b) In Exercise 1, we saw two implementations for computing the Fibonacci numbers. Louis
Reasoner wrote the following Haskell program.

fibLouis :: Int -> Int

fibLouis 0 = 0 -- fibLouis.1

fibLouis 1 = 1 -- fibLouis.2

fibLouis n = fibLouis (n-1) + fibLouis (n-2) -- fibLouis.3

Whereas Eva La Tour wrote the following Haskell program.

fibEva :: Int -> Int

fibEva n = fst (aux n) -- fibEva.1

where aux 0 = (0,1) -- aux.1

aux n = next (aux (n-1)) -- aux.2

next (a,b) = (b, a+b) -- next.1

Prove that fibLouis and fibEva compute the same function on the naturals, i.e., show
that

∀n ∈ Nat . fibLouis n = fibEva n

You first have to prove that

∀n ∈ Nat . aux n =
(
fibLouis n, fibLouis (n + 1)

)
using induction over n.

Note: Identify the predicate P (n) used in the induction. Use the linear equational reasoning
style and justify each reasoning step by refering to the equation names given in the comments
above.

1



Assignment 2:

The One-Time Pad is a provably secure encryption scheme provided the key is only used once.
A message of length n is encrypted with a key of the same length by performing a bitwise XOR.
Every bit of the key is set independently of all others to True with probability 0.5. The encrypted
message is decrypted by performing bitwise XOR with the same key again. Here we represent
messages and keys as lists of booleans, i.e., they have type [Bool].

(a) Implement a function otp that takes a key and a message and performs the operation
described above. You may assume that the key and the message always have the same
length. Do you see a way to do this using zip and map?

(b) Is there a single function that can be used instead of zip and map here? (Tip: Use www.

haskell.org/hoogle to search for a function with the right type.)

Example: With key = [False, False, True] and msg = [False, True, True] we have
otp msg key = [False, True, False]

Assignment 3:

A natural number n ≥ 2 is prime iff its only divisors are 1 and n. In other words n is prime iff

{x | x ≤ n and n mod x = 0} = {1, n} .
(a) Use list comprehension to turn this definition into an executable primality test.

(b) Write a function that returns the list of all primes up to a given number m. You may use the
function filter from the standard prelude.

(c) Write a function that returns the list of the first m primes.

Assignment 4:

In the lecture you have seen Haskell implementations for Insertion Sort and Quicksort. In this
assignment you will have to implement Merge Sort in Haskell.

Recall: Merge Sort is based on the divide-and-conquer principle. First, it splits a list in two
halfs and sorts these lists separately. In the conquer step, it merges the two sorted lists. Note
that this can be done recursively by comparing the two heads of the lists.

Implement a Haskell function mergeSort :: [Int] -> [Int] that sorts an integer list in
ascending order by using Merge Sort. For splitting a list, you can use the function splitAt,
which is defined in the standard prelude.

Assignment 5:

(a) Let g be the function defined as g x y = 1 + y. Evaluate foldr g 0 [1,2,3] by hand.
What function is computed if [1,2,3] is replaced by an arbitrary list?

(b) What function is computed by foldr (:) []? Prove your claim!

2

http://www.haskell.org/hoogle
http://www.haskell.org/hoogle

