ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Exercise Sheet 4: Higher-Order Functions and
Correctness

Submission deadline: March 18th, 2012

Please start the subject of your e-mail submission with [FMFP], and submit your Haskell code
in a file called sheet4_<your_nethz_username>. (1)hs

Assignment 1

In order to compute relative to an arbitrary base, we represent numbers by the following datatype:

data Number = N Int [Int]

A number N base digits where digits = [dy,dy,...,d,_1] is converted to an integer using
the function toInt :: Number -> Int defined as follows.
n—1
toInt (N base digits) = Zdi - base’
i=0

For example, N 10 [2,3,1] represents 2 - 10° + 3 - 10" +1-102 = 132 and N 2 [0,1,1,1]
represents 0-20 + 1.2 +1.22+1.23 = 14,

Implement the function toInt without using recursion according to the specification above.

Hint: You may find the functions zipWith, iterate, map, and sum useful.

Assignment 2

Consider the following functions.

rev :: [a] -> [al
rev [] = [] -- rev.1
rev (x:xs) = rev xs ++ [x] -- rev.2

(++) :: [a] —> [a] —> [a]
(++) [ys = ys -- app.1
(++) (x:xs) ys = x : (xs ++ ys) -- app.2

Formally prove that rev (xs ++ rev ys) = ys ++ rev xs holds for all xs,ys::[a]. Use struc-
tural induction over lists, be explicit about the quantification of variables, and justify all your
reasoning steps.

Hint: You can use the following lemmas without proof.

Lemma 1: Vxs::[a]. rev (rev xs) = xs.
Lemma 2: Vxs::[a].xs ++ [] = xs.

Lemma 3: Va,b,c::[a]. (a ++ b) ++ ¢ = a ++ (b ++ ¢).

Assignment 3:

(a) Define a function split :: Char -> String -> [String] that splits a string, which
consists of substrings separated by a separator, into a list of strings. Examples:
Split TH "fOO##gOO" = ["fOO","","gOO"]
Split T NHN = [un’nn]

(b) Define a function center :: [String] -> [String] that centers the strings in the list
by appending spaces to the left and right. For the argument list 1, center 1 should return
a list with the original strings enclosed in spaces so that all strings in the resulting list have
the same length and the original string is centered in the string with added spaces (i.e. when
x spaces are appended to the left and y to the right, then |z — y| < 1 must hold).

Example:

center ["fullness","of","exposition","is",'"necessary"] =
[" fullness ",

n of n s
"exposition",
" is " s

"necessary "]

Hint: You can use the predefined functions maximum :: Ord a => [a] -> a and
replicate :: Int -> a -> [al], where maximum 1 returns the maximal element in the list 1
and replicate n x returns the list of length n, where x is the value of every element.

Assignment 4

(a) The function filterMap :: (b -> Bool) -> (a -> b) -> [a] -> [b] is defined as.
filterMap p f = filter p . map £
Another possible definition is based on foldr assuming that aux and e are defined appro-
priately.
filterMap’ p f = foldr aux e
where aux =
e = ...
Give definitions for aux and e such that filterMap = filterMap’.
(b) Headache of the week: Define the foldl function with foldr. Only use A-abstraction,

id, and foldr. Note that id is the identity function, i.e., id x = x. Your solutions should
have the form myFoldl f v 1 = foldr .. .

