
OCL Exercise: University
Master Solution

Task 1. The Analysis Object Model is shown in Figure 1. It maps the given description
in a rather straightforward way. Note that the associations between Student and University
and between Lecturer and University have been merged into one association between Person
and University. It is also possible to have only ‘one-way’ assocations. This leads to less
invariants.

Course

-ID : int
-credits : byte
-mandatory : boolean

Course

-ID : string

University

-office : int

Lecturer

+studyCourse(c : Course) : void

Student
-ID : int
-name : String
-address : String

Person

1..*

1..* +offered

+offers

*

1..*

+affiliatedPeople

+affiliatedUnis

*

*

+completedBy

+completed

1

1..4+taughtBy

+teaches

5..*

*

+currentlyStudiedBy

+currentlyStudying

Figure 1: Class Diagram

Task 2. First, we give specifications for the uniqueness properties. We have to express
that (1) all universities have unique IDs; (2) within one university each course has a unique

1

ID; and (3) within one university each student and lecturer has a unique ID. We use the
“<>” symbol for inequality.

context University inv:
University.allInstances()−>forAll(u1, u2 | u1 <> u2 implies u1.ID <> u2.ID)

context University inv:
offers−>forAll(c1, c2 | c1 <> c2 implies c1.ID <> c2.ID)

context University inv:
affiliatedPeople −>forAll(p1, p2 | p1 <> p2 implies p1.ID <> p2.ID)

Next, we express constraints that were given in the description but cannot be expressed on
the diagram: (1) mandatory courses are worth more than 5 credit points; and (2) students
only take courses that are offered by the university they are enrolled to.

context Course inv:
self .mandatory implies self.credits > 5;

context Student inv:
currentlyStudying−>forAll(c | affiliatedUnis−>exists(u | u.offers−>includes(c)))

Task 3. As a precondition, we have to express that course c is offered by one of the
universities the student is affiliated with. This precondition is necessary to maintain the
fifth invariant above.

context Student::studyCourse(c: Course)
pre: self . affiliatedUnis −>exists(u | u.offers−>includes(c))
post: self .currentlyStudying−>includes(c)

Note that in the postcondition we do not have to specify that course c is offered by one of
the universities the student is affiliated with as it is already expressed by an invariant.

2

