Refactoring Exercise

You are provided with the following four classes:

IMatrix is an interface that represents a square matrix. The size of a matrix is rep-
resented by the property size — the number of rows (and hence also columns). We also
have a read indexer for the matrix and a typed comparer.

DiagonalMatrix is a concrete class that represents a diagonal square matrix — a
matrix where all elements but the main diagonal have the value 0. The representation
used is just an array that represents the values of the main diagonal. Two constructors are
provided: a default constructor which initializes the matrix to the zero matrix and a copy
constructor.

FullMatrix is a concrete class that represents a general matrix. The representation
is an array that holds all elements in row-major format. Here also a default and copy
constructor are provided.

MatrixArray is a concrete class that represents an array of matrices. The representa-
tion is an array of IMatrix objects and the class implements the ITEnumerable<IMatrix>
interface. One constructor is provided which accepts the size as an argument. An addAll
function is provided which implements a pointwise addition of matrices into a newly allo-
cated MatrixArray.

Your task:

Refactor the addA11 method of class MatrixArray. The refactored version of the method
has to satisfy the refactoring criteria which are provided below. The refactored version
must pass the unit tests provided.

The motivation for the refactoring is the following: The marketing department
came to the conclusion that in the future, your system might have to deal with new
kinds of matrices (e.g., sparse, symmetric or identity matrices). An adaptation of the
refactored version of the method in response to an introduction of new kinds of matrices
should be as simple as possible.




The

refactored version of the method has to satisfy the following criteria:

If A or B is a diagonal matrix of size size, the current implementation of the
method uses only size, but not size?, additions to compute A+ B . Since efficiency
is crucial for the implementation, it is expected that the refactored version of the
method preserves this property.

The refactored code cannot use dynamic type casts or type checks (as or is or
(Type)e).

The refactored code should not have duplication of code or functionality.

The current implementation has some assertions — your implementation must
preserve these assertions and add additional ones if relevant.

The research department came to the conclusion that, for any pair of matrices A
and B, A+ B is equal to B+ A. You can use this discovery by replacing source
code which performs an A+ B computation by source code which performs a B+ A
computation.




public MatrixArray addAll(MatrixArray ma)
{

Contract.Requires(size == ma.size);
var result = new MatrixArray(size);

for (var index = 0; index < size; index++)

{

var ml = this[index];
var m2 = ma[index];
Contract.Assert(ml.size == m2.size);

IMatrix mi;

var mlf = ml as FullMatrix;
if (mif !'= null)
{
var m2f = m2 as FullMatrix;
if (m2f !'= null)
{
var t = new FullMatrix(mif);
for (var i = 0; i < milf.size; i++)
for (var j = 0; j < mif.size; j++)
t[i,j] =m2f[i, jl;

mi = t;
}
else
{
var m2d = m2 as DiagonalMatrix;
Contract.Assert(m2d '= null);
var t = new FullMatrix(mif);
for (var i = 0; i < mif.size; i++)
t[i, i] += m2d[i, il;
mi = t;
}
} //ml is a FullMatrix
else
{
var mld = ml1 as DiagonalMatrix;
Contract.Assert(mid !'= null);
var m2f = m2 as FullMatrix;
if (m2f !'= null)
{
Contract.Assert(mld.size == m2f.size);
var t = new FullMatrix(m2f);
for (var i = 0; i < mld.size; i++)
t[i, il+=mi1d[i, i];
mi = t;
}
else
{
var m2d = m2 as DiagonalMatrix;
Contract.Assert(m2d '= null);
var t = new DiagonalMatrix(mid);
for (var i = 0; i < mild.size; i++)
t[i, i] += m2d[i, il;
mi = t;
}
}

result[index] = mi;

}

return result;




