
Testing Exercise
— based on an old exam question (Spring 2011) —

In this task you should test the method maximalBorderLengths (see Listing 1).

Please note the following:

• && is a short-circuit operator; i.e. the right-hand boolean expression will not be
evaluated if the left-hand expression evaluates to false.

• After creating an int[] array all elements are initialized to 0.

• The ith character of the string s can be accessed using s[i]

• You are not required to write full-blown unit tests. However, you should provide
both required inputs and expected outputs for each test.

Your tasks:

1. Draw a Control Flow Graph (CFG) for the method maximalBorderLengths.

2. Branch coverage

(a) Provide tests for the method maximalBorderLengths that guarantee 100%
branch coverage.

(b) What is the minimal number of tests that are necessary to guarantee 100%
branch coverage?

(c) Can you achieve statement coverage with fewer tests?

3. Loop coverage

(a) Provide tests for method maximalBorderLengths that guarantee 100% loop
coverage.

Hint : For an inner loop, you need to test that: for some iteration of the outer
loop, the inner loop is executed as required by the loop coverage criterion for
a single non-nested loop.



4. DU-Pair coverage

(a) Provide all DU-pairs for the local variable borderLength and write down the
details of the analysis necessary to compute them.

(b) Provide tests for method maximalBorderLengths that maximize DU-Pair cov-
erage for the variable borderLength.

(c) If you are not able to reach 100% DU-Pair coverage for the variable border-

Length, provide the infeasible DU-pairs.

5. Bug detection: Suppose we introduce a bug in method maximalBorderLengths by
dropping Line 45. For each coverage criterion (branch coverage, loop coverage, and
DU-Pair coverage for the variable borderLength) determine whether this bug will
be detected, if we run any test suite that guarantees maximal coverage with respect
to that particular criterion.



0 /// <summary>
1 /// Calculate the maximal border length for each prefix of ’pattern’.
2 ///
3 /// The border of a string is a proper prefix that is also a suffix.
4 /// The maximal border length of the empty string is defined to be -1.
5 /// </summary>
6 /// <example>
7 /// For example, for the string "abcab" it should return {-1, 0, 0, 0, 1, 2}, where
8 /// -1 is the maximal border length of the prefix "", 0 is the maximal border length of
9 /// the prefix "a", and so on.

10 /// </example>
11 /// <param name="pattern">string to be analyzed</param>
12 /// <returns>maximal border lengths for each prefix of ’pattern’</returns>
13 /// <exception cref="ArgumentNullException">
14 /// Thrown when <paramref name="pattern"/> is equal to null.
15 /// </exception>
16 public static int[] maximalBorderLengths(string pattern) {
17 if (pattern == null) {
18 throw new ArgumentNullException("pattern");
19 }
20

21 int pi, borderLength;
22 pi = 0;
23 borderLength = -1;
24

25 int[] borderLengths = new int[pattern.Length + 1];
26 borderLengths[0] = -1;
27

28 // We iterate over each prefix of ’pattern’ and compute its maximal border length.
29 while (pi < pattern.Length) {
30 while (0 <= borderLength && pattern[pi] != pattern[borderLength]) {
31 // The last character of the current prefix (pattern.substring(0, pi + 1))
32 // doesn’t match the last character of the current border
33 // (pattern.substring(0, borderLength + 1).
34

35 // The next shorter border that might work is the maximal border of the
36 // current border.
37 borderLength = borderLengths[borderLength];
38 }
39

40 // We can extend the current border, because the last character of the current
41 // prefix matches the last character of the current border or the current
42 // border length went negative.
43 pi = pi + 1;
44 borderLength = borderLength + 1;
45 borderLengths[pi] = borderLength;
46 }
47

48 return borderLengths;
49 }

Listing 1: maximalBorderLengths


