
Testing Exercise (Solution)

1. Control Flow Graph (CFG) for the method maximalBorderLengths

b#start

c#0 c0 = pattern == null

b#0 throw new ArgumentNullException("pattern"); b#1

int pi, borderLength;
pi = 0;
borderLength = -1;
int[] borderLengths = new int[pattern.Length() + 1];
borderLengths[0] = -1;

c#1 c1 = pi < pattern.Length()

b#2 borderLength = borderLengths[borderLength];

c#2 c2 = 0 <= borderLength && pattern[pi] != pattern[borderLength]

b#3
pi = pi + 1;
borderLength = borderLength + 1;
borderLengths[pi] = borderLength;

b#4 return borderLengths;

b#end

c0 !c0

!c1 c1

c2!c2

2. Branch coverage

(a) Tests:

• null → ArgumentNullException

• “ab”→ {-1, 0, 0}

(b) Minimal number of tests: 2

(c) No, statement coverage also needs at least two tests.

3. Loop coverage

(a) Tests:

• “”→ {-1}: outer (0), inner (0, not reached)

• “a”→ {-1, 0}: outer (1), inner (0)

• “ab”→ {-1, 0, 0}: outer (2), inner (1)

• “aab”→ {-1, 0, 1, 0}: outer (3), inner (2)

4. DU-Pair coverage



(a) DU-pairs for borderLength (bL for short)

i. Reaching Definitions

n Reach(n) ReachOut(n)
b#start {} {}
c#0 {} {}
b#0 {} {}
b#1 {} {bLb#1}
c#1 {bLb#1, bLb#3} {bLb#1, bLb#3}
b#4 {bLb#1, bLb#3} {bLb#1, bLb#3}
b#end {bLb#1, bLb#3} {bLb#1, bLb#3}
c#2 {bLb#1, bLb#2, bLb#3} {bLb#1, bLb#2, bLb#3}
b#2 {bLb#1, bLb#2, bLb#3} {bLb#2}
b#3 {bLb#1, bLb#2, bLb#3} {bLb#3}

ii. DU-pairs

• (b#1, c#2), (b#1, b#2), (b#1, b#3)

• (b#2, c#2), (b#2, b#2), (b#2, b#3)

• (b#3, c#2), (b#3, b#2), (b#3, b#3)

(b) Tests:

• “aab”→ {-1, 0, 1, 0} [c#0, b#1, c#1, c#2, b#3, c#1, c#2, b#3, c#1,
c#2, b#2, c#2, b#2, c#2, b#3, c#1 b#4]

⇒ 8/9 DU-pairs covered = 88.9% DU-pair coverage

(c) Infeasible DU-pair: (b#1, b#2)

5. Bug detection

• Branch coverage: not detected

• Loop coverage: detected (because the inner loop needs to be executed more
than once in a row)

• DU-Pair coverage: detected (because b#2 needs to be executed twice in a row)


