
Design Patterns 
Your friendly assistant 

(<name>@inf.ethz.ch) 

Chair of Programming Methodology 

 
The slides in this section are based on 

“.NET Design Patterns in C#” 

 Peter Müller — Software Architecture and Engineering (SS 2012) 

http://www.dofactory.com/Patterns/Patterns.aspx


DESIGN PATTERNS 

1. What are Design Patterns? 
2. Why use Design Patterns? 
3. Design Pattern Catalogue 
4. Creational Patterns 
5. Structural Patterns 
6. Behavioral Patterns 
7. Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

2 



What are Design Patterns? 

• Solutions to common design problems 

 

– Abstract recurring design structures 

 

– Comprise object interaction and structure 

 

– Distil design experience 

Peter Müller — Software Architecture and Engineering (SS 2012) 

3 



DESIGN PATTERNS 

1. What are Design Patterns? 
2. Why use Design Patterns? 
3. Design Pattern Catalogue 
4. Creational Patterns 
5. Structural Patterns 
6. Behavioral Patterns 
7. Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

4 



Why use Design Patterns? 

• Abstraction 
– Explicit design information 

 

• Flexibility 
– Refactoring 

 

• Modularity 
 

• Elegance 

Peter Müller — Software Architecture and Engineering (SS 2012) 

5 



DESIGN PATTERNS 

1. What are Design Patterns? 
2. Why use Design Patterns? 
3. Design Pattern Catalogue 
4. Creational Patterns 
5. Structural Patterns 
6. Behavioral Patterns 
7. Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

6 



Design Pattern Catalogue 

Design Patterns: 

Elements of Reusable Object-Oriented Software 
 

 

by 

Erich Gamma, Richard Helm, 

Ralph Johnson and John Vlissides 

(Gang of Four or GoF) 

Peter Müller — Software Architecture and Engineering (SS 2012) 

7 



Design Pattern Catalogue 

Creational Patterns Structural Patterns Behavioral Patterns 

Abstract Factory 
Builder 
Factory Method 
Prototype 
Singleton 

Adapter 
Bridge 
Composite 
Decorator 
Façade 
Flyweight 
Proxy 

Chain of Responsibility 
Command 
Interpreter 
Iterator 
Mediator 
Memento 
Observer 
State 
Strategy 
Template Method 
Visitor 

Peter Müller — Software Architecture and Engineering (SS 2012) 

8 



DESIGN PATTERNS 

1. What are Design Patterns? 
2. Why use Design Patterns? 
3. Design Pattern Catalogue 
4. Creational Patterns 
5. Structural Patterns 
6. Behavioral Patterns 
7. Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

9 



Definition: 

Provides an interface for creating families of 
related or dependent objects without specifying 
their concrete classes. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

10 

Creational Pattern: Abstract Factory 



Peter Müller — Software Architecture and Engineering (SS 2012) 

11 

Creational Pattern: Abstract Factory 



Creational Pattern: Abstract Factory 

Example: 

Creating different animal worlds for a computer 
game using different factories. Although the 
animals created by the Continent factories are 
different, the interactions among the animals 
remain the same. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

12 



Creational Pattern: Factory Method 

Definition: 

Defines an interface for creating an object, but 
lets subclasses decide which class to instantiate. 
Factory Method lets a class defer instantiation 
to subclasses. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

13 



Creational Pattern: Factory Method 

Peter Müller — Software Architecture and Engineering (SS 2012) 

14 



Creational Pattern: Factory Method 

Example: 

Offering flexibility in creating different 
documents. The derived Document classes 
Report and Resume instantiate extended 
versions of the Document class. 

 

Peter Müller — Software Architecture and Engineering (SS 2012) 

15 



Creational Pattern: Singleton 

Definition: 

Ensures a class has only one instance and 
provides a global point of access to it. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

16 



Creational Pattern: Singleton 

Peter Müller — Software Architecture and Engineering (SS 2012) 

17 



Creational Pattern: Singleton 

Example: 

A LoadBalancing object. Only a single instance 
(the singleton) of the class can be created 
because servers may dynamically come on- or 
off-line and every request must go through the 
one object that has knowledge about the global 
state. 

 

Peter Müller — Software Architecture and Engineering (SS 2012) 

18 



DESIGN PATTERNS 

1. What are Design Patterns? 
2. Why use Design Patterns? 
3. Design Pattern Catalogue 
4. Creational Patterns 
5. Structural Patterns 
6. Behavioral Patterns 
7. Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

19 



Structural Pattern: Adapter 

Definition: 

Converts the interface of a class into another 
interface clients expect. Adapter lets classes 
work together that couldn't otherwise because 
of incompatible interfaces. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

20 



Structural Pattern: Adapter 

Peter Müller — Software Architecture and Engineering (SS 2012) 

21 



Structural Pattern: Adapter 

Example: 

A legacy chemical databank. Chemical 
compound objects access the databank through 
an Adapter interface. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

22 



Structural Pattern: Composite 

Definition: 

Composes objects into tree structures to 
represent part-whole hierarchies. Composite 
lets clients treat individual objects and 
compositions of objects uniformly. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

23 



Structural Pattern: Composite 

Peter Müller — Software Architecture and Engineering (SS 2012) 

24 



Structural Pattern: Composite 

Example: 

Building a graphical tree structure made up of 
primitive nodes (lines, circles, etc.) and 
composite nodes (groups of drawing elements 
that make up more complex elements). 

 

Peter Müller — Software Architecture and Engineering (SS 2012) 

25 



Structural Pattern: Façade 

Definition: 

Provides a unified interface to a set of interfaces 
in a subsystem. Façade defines a higher-level 
interface that makes the subsystem easier to 
use. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

26 



Structural Pattern: Façade 

Peter Müller — Software Architecture and Engineering (SS 2012) 

27 



Structural Pattern: Façade 

Example: 

A MortgageApplication object which provides a 
simplified interface to a large subsystem of 
classes measuring the creditworthiness of an 
applicant. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

28 



Structural Pattern: Proxy 

Definition: 

Provides a surrogate or placeholder for another 
object to control access to it. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

29 



Structural Pattern: Proxy 

Peter Müller — Software Architecture and Engineering (SS 2012) 

30 



Structural Pattern: Proxy 

Example: 

A Math object represented by a MathProxy 
object. 

 

Peter Müller — Software Architecture and Engineering (SS 2012) 

31 



DESIGN PATTERNS 

1. What are Design Patterns? 
2. Why use Design Patterns? 
3. Design Pattern Catalogue 
4. Creational Patterns 
5. Structural Patterns 
6. Behavioral Patterns 
7. Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

32 



Behavioral Pattern: Command 

Definition: 

Encapsulates a request as an object, thereby 
letting you parameterize clients with different 
requests and supports undoable operations. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

33 



Behavioral Pattern: Command 

Peter Müller — Software Architecture and Engineering (SS 2012) 

34 



Behavioral Pattern: Command 

Example: 

A simple calculator with unlimited number of 
undo's and redo's. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

35 



Behavioral Pattern: Iterator 

Definition: 

Provides a way to access the elements of an 
aggregate object sequentially without exposing 
its underlying representation. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

36 



Behavioral Pattern: Iterator 

Peter Müller — Software Architecture and Engineering (SS 2012) 

37 



Behavioral Pattern: Iterator 

Example: 

Iterating over a collection of items and skipping 
a specific number of items in each iteration. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

38 



Behavioral Pattern: Observer 

Definition: 

Defines a one-to-many dependency between 
objects so that when one object changes state, 
all its dependents are notified and updated 
automatically. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

39 



Behavioral Pattern: Observer 

Peter Müller — Software Architecture and Engineering (SS 2012) 

40 



Behavioral Pattern: Observer 

Example: 

Notifying registered investors every time a stock 
changes value. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

41 



Behavioral Pattern: Strategy 

Definition: 

Defines a family of algorithms, encapsulates 
each one, and makes them interchangeable. 
Strategy lets the algorithm vary independently 
from clients that use it. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

42 



Behavioral Pattern: Strategy 

Peter Müller — Software Architecture and Engineering (SS 2012) 

43 



Behavioral Pattern: Strategy 

Example: 

Encapsulating sorting algorithms in the form of 
sorting objects. This allows clients to 
dynamically change sorting strategies including 
Quicksort, Shellsort, and Mergesort. 

Peter Müller — Software Architecture and Engineering (SS 2012) 

44 



DESIGN PATTERNS 

1. What are Design Patterns? 
2. Why use Design Patterns? 
3. Design Pattern Catalogue 
4. Creational Patterns 
5. Structural Patterns 
6. Behavioral Patterns 
7. Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

45 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

46 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

47 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

48 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

49 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

50 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

51 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

52 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

53 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

54 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

55 



Quiz 

Peter Müller — Software Architecture and Engineering (SS 2012) 

56 



Quiz 

http://www.vincehuston.org/dp/patterns_quiz.html 

Peter Müller — Software Architecture and Engineering (SS 2012) 

57 

http://www.vincehuston.org/dp/patterns_quiz.html

