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8. Test Case Selection 

 

8.1 Functional Testing 

8.2 Structural Testing 

8.1 Test Case Selection – Functional Testing 
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System Test 

Applications of Functional Testing 

 Black-box test a unit against its requirements 

Peter Müller – Software Architecture and Engineering 

Functional 

test 

Unit Test 

Integration Test 

Acceptance 

test 

Test interfaces 

between 

subsystems 

During test-driven 

development, 

when code is not 

yet written 

8.1 Test Case Selection – Functional Testing 
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8. Test Case Selection 

 

8.1 Functional Testing 

 8.1.1 Partition Testing 

 8.1.2 Selecting Representative Values 

 8.1.3 Combinatorial Testing 

8.2 Structural Testing 

8.1 Test Case Selection – Functional Testing 
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Finding Representative Inputs 
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Failure 

No failure 

 Divide inputs into 

equivalence classes 

- Each possible input 

belongs to one of the 

equivalence classes 

- Goal: some classes have 

higher density of failures 

 

 Choose test cases for 

each equivalence class 
Requirement 

implemented 

correctly 

Requirement not 

implemented 

Requirement 

implemented 

incorrectly 

8.1 Test Case Selection – Functional Testing 
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Equivalence Classes: Example 
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month 

Month with 28 

or 29 days 
month = 2 

Months with 

30 days 
month  {4, 6, 9, 11} 

Months with 

31 days 

month   

{1, 3, 5, 7, 8, 10, 12} 

Given a month (an integer in [1;12]) and a year (an 

integer), compute the number of days of the given 

month in the given year (an integer in [28;31]) 

year 

Leap 

years 

(year mod 4 = 0 and 

year mod 100 ≠ 0) or 

year mod 400 = 0  

Non-leap 

years 

year mod 4 ≠ 0 or 

(year mod 100 = 0 and 

year mod 400 ≠ 0) 

Invalid inputs 

missing 

8.1 Test Case Selection – Functional Testing 



7 

Equivalence Classes: Example (cont’d) 
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month 

Month with 28 

or 29 days 
month = 2 

Months with 

30 days 
month  {4, 6, 9, 11} 

Months with 

31 days 

month   

{1, 3, 5, 7, 8, 10, 12} 

Invalid 
month < 1 or  

month > 12 

Given a month (an integer in [1;12]) and a year (an 

integer), compute the number of days of the given 

month in the given year (an integer in [28;31]) 

year 

Leap 

years 

(year mod 4 = 0 and 

year mod 100 ≠ 0) or 

year mod 400 = 0  

Non-leap 

years 

year mod 4 ≠ 0 or 

(year mod 100 = 0 and 

year mod 400 ≠ 0) 

Partitioning seems 

too coarse 

8.1 Test Case Selection – Functional Testing 
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Equivalence Classes: Example (cont’d) 
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month 

Month with 28 

or 29 days 
month = 2 

Months with 

30 days 
month  {4, 6, 9, 11} 

Months with 

31 days 

month   

{1, 3, 5, 7, 8, 10, 12} 

Invalid 
month < 1 or  

month > 12 

Given a month (an integer in [1;12]) and a year (an 

integer), compute the number of days of the given 

month in the given year (an integer in [28;31]) 

year 

Standard leap 

years 

year mod 4 = 0 and 

year mod 100 ≠ 0 

Standard non-

leap years 
year mod 4 ≠ 0 

Special leap 

years 
year mod 400 = 0  

Special non-

leap years 

year mod 100 = 0 and 

year mod 400 ≠ 0 

8.1 Test Case Selection – Functional Testing 
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Sources of Information 

 Use analysis knowledge to determine test cases 

that check requirements 
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Analysis Model  

Functional 

Model 

Dynamic 

Model 

Analysis 

Object Model 

Input / output 

behavior, valid 

and invalid input 

Data manipulated 

by the system 

System states 

and protocols 

8.1 Test Case Selection – Functional Testing 
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Using the Functional Model 

 The functional model describes the input-output 

behavior of the whole system 

- Valid and invalid inputs, entry conditions 

- Expected results, exit conditions 

 

 Basis for functional system testing 

Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 
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Using the Functional Model: Example 

Actor steps 

1. Authenticate (use case 

Authenticate)  

3. Client selects “Withdraw 

CHF” 

 

5. Client enters amount 

System Steps 

 

2. Bankomat displays options 

 

 

4. Bankomat queries amount 

 

6. Bankomat returns bank 

card 

7. Bankomat outputs 

specified amount in CHF 

Inputs Inputs 

Expected 

outputs 

Expected 

outputs 

Expected 

outputs 

Expected 

outputs 

8.1 Test Case Selection – Functional Testing 

Test_Case_03a Transfer_Cash_In.xls
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Using the Analysis Object Model 

 The analysis object model contains the main 

concepts manipulated by the system, their 

properties and relationships 

- Useful to determine equivalence classes 

- Useful to set up state of objects 

 

 Relevant information 

- Classes and attributes 

- Subtypes 

- Aggregations and multiplicities 

Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 
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Using the Analysis Object Model: Example 

Library Member 

borrow( Copy ) 

Staff Member 

borrow( Journal ) 

Borrowable 

Copy 

Journal 

Book 

1..* 
0..1 0..* 

0..1 0..* 

Test both 

cases 

Test for 

super- and 

subclass 

Recall: library 

members may borrow 

at most 6 items 

(12 for staff members) 

8.1 Test Case Selection – Functional Testing 



14 

Equivalence Classes 

 Consider the operation member.borrow( copy ) 

Peter Müller – Software Architecture and Engineering 

copy 

Copy on shelf 
copy has zero 

library members 

Copy borrowed 

by library member 

copy has one 

library member 

Copy borrowed 

by staff member 

copy has one 

staff member 

Invalid null 

member 

Library member 
0 – 5 

borrowed copies 

Staff member 
0 – 11 

borrowed items 

Invalid 

library member 

 more than 5 

borrowed copies 

Invalid 

staff member 

more than 11 

borrowed items 

8.1 Test Case Selection – Functional Testing 
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Using the Dynamic Model 

 Sequence diagrams describe protocols for object 

interactions 

- Benefit for testing is similar to use cases 

- Especially useful for integration testing 

 

 State diagrams describe state-dependent behavior 

- Different states typically require different equivalence 

classes 

- State defines valid input and expected output 

- Expected output includes successor state 

- Useful for protocols, GUIs, and objects 

 
Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 
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Using the Dynamic Model: Example 1 

<<Entity>> 

:RequestPool 
:Sensor 

<<Control>> 

:Controller 

signal( floor ) 

<<Entity>> 

:Engine 

stop( ) 

served( floor ) 

opt            [ floor = nextStop ] 

setIdle( ) 

start 

( direction ) 

alt                 [ nextStop =  ] 

[ else ] 

nextStop := getNext( ) 

Test both 

cases 

Test both 

cases 

Test both 

cases 

8.1 Test Case Selection – Functional Testing 
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Equivalence Classes 

 Consider the operation controller.signal( floor ) 
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controller 

Serve only 

request 

floor = nextStop, and 

there is no further request 

Serve first 

request 

 floor = nextStop, and 

there are further requests 

Serve no 

request 
 floor  nextStop 

8.1 Test Case Selection – Functional Testing 
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Using the Dynamic Model: Example 2 

Idle 

Moving 

request( floor )  

Requested 

Stop 

signal( floor ) 

[ floor = nextStop ]  

[ pool is empty ] 

request( floor ) 

[ pool is not empty ] / 

choose nextStop 

Test all 

cases 

Test valid and 

invalid operations 

request( floor ) 
signal( floor ) 

[ floor  nextStop ]  

Test all 

cases 

8.1 Test Case Selection – Functional Testing 
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Equivalence Classes 

 Consider the operation controller.signal( floor ) 

Peter Müller – Software Architecture and Engineering 

controller 

Reach floor 
controller is in state Moving and 

floor = nextStop 

Keep moving 
controller is in state Moving and 

floor  nextStop 

Invalid state 
 controller is in state Idle or 

RequestedStop 

8.1 Test Case Selection – Functional Testing 
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8. Test Case Selection 

 

8.1 Functional Testing 

 8.1.1 Partition Testing 

 8.1.2 Selecting Representative Values 

 8.1.3 Combinatorial Testing 

8.2 Structural Testing 

8.1 Test Case Selection – Functional Testing 
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Selecting Representative Values 

 Once we have partitioned the input values, we 

need to select concrete values for the test cases 

for each equivalence class 
 

 Input from a range of valid values 

- Below, within, and above the range 

- Also applies to multiplicities on aggregations 

 

 Input from a discrete set of valid values 

- Valid and invalid discrete value 

- Instances of each subclass 

Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 
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Boundary Testing 

 Large number of errors tend to occur at 

boundaries of the input domain 

- Overflows 

- Comparisons (‘<‘ instead of ‘<=‘, etc.) 

- Missing emptiness checks (e.g., collections) 

- Wrong number of iterations 

Peter Müller – Software Architecture and Engineering 

int abs( int x ) {  

  if( 0 <= x ) return x; 

  return –x;  

} 

Given an integer x, 

determine the 

absolute value of x 

x 

Valid all values 

Negative result for 

x==Integer.MIN_VALUE 

8.1 Test Case Selection – Functional Testing 
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Boundary Testing: Example 

 Select elements at the “edge” of each equivalence 

class (in addition to values in the middle) 

- Ranges: lower and upper limit 

- Empty sets and collections 

 

Peter Müller – Software Architecture and Engineering 

month 

Month with 28 or 29 days month = 2 

Months with 30 days month  {4, 6, 9, 11} 

Months with 31 days month  {1, 3, 5, 7, 8, 10, 12} 

Invalid month < 1 or month > 12 

There is only one 

value 

Choose all 

values 

Choose 1 and 12 

plus one more 

Choose 

MIN_VALUE, 0, 

13, MAX_VALUE 

8.1 Test Case Selection – Functional Testing 
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Boundary Testing: Example (cont’d) 
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year 

Standard leap 

years 

year mod 4 = 0 and 

year mod 100 ≠ 0 

Standard non-

leap years 
year mod 4 ≠ 0 

Special leap 

years 
year mod 400 = 0  

Special non-

leap years 

year mod 100 = 0 and 

year mod 400 ≠ 0 

Choose for instance  

-200.004, -4, 4, 2012, 

400.008 

Choose for instance 

-200.003, -1, 1, 2011, 

400.009  

Choose for instance 

-200.000, 0, 2000, 

400.000 

Choose for instance  

-200.100, 1900, 

400.100 

8.1 Test Case Selection – Functional Testing 
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Parameterized Unit Test for Leap Years 

 Analogous test cases for February in non-leap 

year, months with 30 days, and months with 31 

days 

Peter Müller – Software Architecture and Engineering 

[ Test ] 

public void TestDemo29( 

    [ Values( -200004, -200000, -4, 0,4, 2000, 2012, 400000, 400008 ) ]  

    int year )  

{ 

  int d = Days( 2, year ); 

  Assert.IsTrue( d == 29 ); 

} 

All selected values for 

leap years and special 

leap years 

Only one 

value  

Expected 

result 

8.1 Test Case Selection – Functional Testing 
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Parameterized Unit Test for Invalid Inputs 

Peter Müller – Software Architecture and Engineering 

[ Test ] 

[ ExpectedException( typeof(ArgumentException) ) ] 

public void TestDemoInvalid( 

    [ Values( int.MinValue, 0, 13, int.MaxValue ) ] int month,  

    [ Values( -200100, -200004, -200003, -200000, -4, -1, 0, 1, 4, 1900,  

       2000, 2011, 2012, 400000, 400008, 400009, 400100 ) ] int year ) { 

  int d = Days( month, year ); 

} 
All selected 

values for year 

Expected result: 

an exception 
All selected 

invalid values 

for month 

8.1 Test Case Selection – Functional Testing 
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Coverage of State Diagrams 

 We define coverage criteria to measure how 

thorough a state diagram is tested 

 Path Coverage: execute each possible path 

- Not feasible with many nested conditionals 

- Impossible for most loops 

 State Coverage: visit each state 

- A minimum criterion 

 Transition Coverage: execute each edge 

- Thorough testing 

 

Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 
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Coverage Example 

Idle 

Moving 

request( floor )  

Requested 

Stop 

signal( floor ) 

[ floor = nextStop ]  

[ pool is empty ] 

request( floor ) 

[ pool is not empty ] / 

choose nextStop 

request( floor ) 
signal( floor ) 

[ floor  nextStop ]  

One test for 

state coverage 

8.1 Test Case Selection – Functional Testing 
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Coverage Example (cont’d) 

 Consider the operation controller.signal( floor ) 

Peter Müller – Software Architecture and Engineering 

controller 

Reach floor 
controller is in state Moving and 

floor = nextStop 

Keep moving 
controller is in state Moving and 

floor  nextStop 

Invalid state 
 controller is in state Idle or 

RequestedStop 
Not required for 

state coverage 

Two test cases 

for transition 

coverage: 

empty and  

non-empty pool 

One test case for 

state coverage 

8.1 Test Case Selection – Functional Testing 

Not required for 

coverage 
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8. Test Case Selection 

 

8.1 Functional Testing 

 8.1.1 Partition Testing 

 8.1.2 Selecting Representative Values 

 8.1.3 Combinatorial Testing 

8.2 Structural Testing 

8.1 Test Case Selection – Functional Testing 
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Combinatorial Testing 

 Combining equivalence classes and boundary 

testing leads to many values for each input 

- Twelve values for month and 17 values for year in the 

Leap Year example 

 Testing all possible combinations leads to a 

combinatorial explosion (12 x 17 = 204 tests) 
 

 Reduce test cases to make effort feasible 

- Semantic constraints 

- Combinatorial selection 

- Random selection 

Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 
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Eliminating Combinations 

 Inspect test cases for unnecessary combinations 

- Especially for invalid values 

- Use problem domain knowledge 

 

 

 

 

 

 

 Reduces test cases from 204 to 17 + 4 + 3 + 4 = 28 

Peter Müller – Software Architecture and Engineering 

month 

Month with 28 

or 29 days 
month = 2 

Months with 

30 days 
month  {4, 6, 9, 11} 

Months with 

31 days 

month   

{1, 3, 5, 7, 8, 10, 12} 

Invalid 
month < 1 or  

month > 12 

Test all 

combinations 

with year 

Behavior is 

independent of 

year 

Behavior is 

independent of 

year 

Behavior is 

independent of 

year 

8.1 Test Case Selection – Functional Testing 
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Eliminating Combinations: NUnit Example  
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[ Test, Sequential ] 

[ ExpectedException( typeof(ArgumentException) ) ] 

public void TestDemoInvalid( 

    [ Values( int.MinValue, 0, 13, int.MaxValue ) ] int month,  

    [ Values( -200100, -200004, -200003, -200000 ) ] int year ) { 

  int d = Days( month, year ); 

} 
One value for 

year for each 

value for month 

All selected 

invalid values 

for month 

8.1 Test Case Selection – Functional Testing 
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Selecting Object References 

 Objects are different from values because they 

have identity 

 

 

 

 

 

 When selecting test data for objects, one has to 

consider object identities and aliasing 

 Referenced objects lead to combination problem 
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a1 = new Account( 1000 ); 

a2 = new Account( 1000 ); 

a1.transfer( a2, 500 ); 

 

a1 = new Account( 1000 ); 

a1.transfer( a1, 500 ); 

 

Might behave 

differently 

(e.g., deadlock) 

8.1 Test Case Selection – Functional Testing 
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Selecting Object References: Example 

 This is a case of combinatorial testing since it 

combines the Library Member and the collection 
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member 

Library member 
0 – 5 

borrowed copies 

Staff member 
0 – 11 

borrowed items 

Invalid 

library member 

 more than 5 

borrowed copies 

Invalid 

staff member 

more than 11 

borrowed items 

List of 6 (12) copies List of 6 (12) copies and 

very large collection 

Empty list,  

list of 1 and 5 (11) copies,  

list without duplicates,  

list with duplicates 

Empty list,  

list of 1 and 5 (11) copies,  

list without duplicates,  

list with duplicates 

8.1 Test Case Selection – Functional Testing 
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Semantic Constraints for Objects 

 Object invariants restrict the possible instances of a 

class diagram 

- Expressed as comment or OCL constraint 

 In our example, assume the following invariants 
 

 

- A Library Member m contains a Copy c in its collection of 

borrowed items if and only if c’s Library Member is m 

- For each Library Member, the collection of borrowed 

items contains no duplicates 

- For each Library Member, the collection of borrowed 

items contains at most 6 copies (12 items for staff) 

Peter Müller – Software Architecture and Engineering 

Library Member Copy 
0..1 0..* 

8.1 Test Case Selection – Functional Testing 
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Selecting Object References: Example (cont’d) 
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member 

Library member 
0 – 5 

borrowed copies 

Staff member 
0 – 11 

borrowed items 

Invalid 

library member 

 more than 5 

borrowed copies 

Invalid 

staff member 

more than 11 

borrowed items 

List of 6 (12) copies List of 6 (12) copies 

copy 

Copy on shelf 
copy has zero 

library members 

Copy borrowed 

by library member 

copy has one 

library member 

Copy borrowed 

by staff member 

copy has one 

staff member 

Invalid null copy is borrowed by 

member, 

copy is not borrowed 

by member 

 

copy is borrowed by 

«member», 

copy is not borrowed 

by «member» 

 

Empty list,  

list of 5 (11) copies,  

list withou 

Empty list,  

list of 1 and 5 (11) copies 

without duplicates 

8.1 Test Case Selection – Functional Testing 
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Roots Example 

 53 = 125 test cases for valid inputs 
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Given three values, a, b, c, 

compute all solutions of the 

equation ax2 + bx + c = 0 

a b c 

Valid 
any 

value 

any 

value 

any 

value 

Invalid 
infinity, 

NaN 

infinity, 

NaN 

infinity, 

NaN 

Boundary testing: 

a, b, c   

{ Double.MIN_VALUE, -5, 

0, 5, Double.MAX_VALUE } 

 

8.1 Test Case Selection – Functional Testing 
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Roots Example (cont’d) 

Peter Müller – Software Architecture and Engineering 

Two solutions One solution No solution 

a ≠ 0 and b2-4ac > 0 

a = 0 and b ≠ 0 

or  

a ≠ 0 and b2-4ac = 0  

a = 0, b = 0, and c ≠ 0 

or  

a ≠ 0 and b2-4ac < 0 

Given three values, a, b, c, 

compute all solutions of the 

equation ax2 + bx + c = 0 

Partitioning seems 

too coarse 

Partitioning seems 

too coarse 

Look at 

dependencies 

between inputs 

Semantic 

constraints on 

combinations 

Semantic 

constraints on 

combinations 

8.1 Test Case Selection – Functional Testing 
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Roots Example (cont’d) 

Peter Müller – Software Architecture and Engineering 

Two solutions One solution No solution 

Linear 

equation a = 0 and b ≠ 0  a = 0, b = 0, and c ≠ 0  

(Truly) 

quadratic 

equation 
a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0  a ≠ 0 and b2-4ac < 0 

Given three values, a, b, c, 

compute all solutions of the 

equation ax2 + bx + c = 0 

Not all inputs are 

covered: a=b=c=0 

8.1 Test Case Selection – Functional Testing 
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Roots Example (cont’d) 

Peter Müller – Software Architecture and Engineering 

Two solutions One solution No solution 

Linear 

equation a = 0 and b ≠ 0  a = 0, b = 0, and c ≠ 0  

(Truly) 

quadratic 

equation 
a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0  a ≠ 0 and b2-4ac < 0 

Invalid 

input a = 0, b = 0, c = 0 

Given three values, a, b, c, compute all 

solutions of the equation ax2 + bx + c = 0; 

report an error if all three values are zero 

8.1 Test Case Selection – Functional Testing 
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Roots Example: Summary 

 Classifying the combinations according to semantic 

constraints did not reveal any irrelevant test cases 
 

 But we did identify an omission in the specification 

- It is common that testers clarify the specification 

 

 One option is to manually choose a manageable 

number of test cases such that there is at least one 

test case for each semantic constraint 

- Note that omitting test cases might leave errors such as 

arithmetic overflow undetected 

 
Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 
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Semantic Constraints: Discussion 

 Semantic constraints potentially reduce the number 

of test cases 

- They also help increasing the coverage 

 

 But too many combinations remain 

- Especially when there are many input values, for 

instance, for the fields of objects 

 

Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 
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0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

Medical Devices

Browser

Server

NASA GSFC

Network Security

Influence of Variable Interactions 

 Empirical evidence 

suggests that most 

errors do not depend 

on the interaction of 

many variables 

Peter Müller – Software Architecture and Engineering 

Vars 
Medical 

Devices 
Browser Server 

NASA 

GSFC 

Network 

Security 

1 66% 29% 42% 68% 20% 

2 97% 76% 70% 93% 65% 

3 99% 95% 89% 98% 90% 

4 100% 97% 96% 100% 98% 

5   99% 96%   100% 

6   100% 100%     

 Interactions of 

two or three 

variables trigger 

most errors 

8.1 Test Case Selection – Functional Testing 
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Pairwise-Combinations Testing 

 Instead of testing all possible combinations of all 

inputs, focus on all possible combinations of 

each pair of inputs 

- Pairwise-combinations testing is identical to 

combinatorial testing for two or less inputs 

 Example: Consider a method with four boolean 

parameters 

- Combinatorial testing requires 24 = 16 test cases 

- Pairwise-combinations testing requires 5 test cases: 

TTTT, TFFF, FTFF, FFTF, FFFT 

 Can be generalized to k-tuples (k-way testing) 

Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 



46 

Pairwise-Combinations Testing: Complexity 

 For n parameters with d values per parameter, the 

number of test cases grows logarithmically in n and 

quadratic in d 

- Handles larger number of parameters, for instance, fields 

of objects 

- The number d can be influenced by the tester 

 

 Result holds for large n and d, and for all k in k-way 

testing 

Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 
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Pairwise-Combinations Testing: Example 

 Three parameters, five values each 

- Double.MIN_VALUE, -5, 0, 5, Double.MAX_VALUE 

- 53 = 125 test cases for combinatorial testing 

- 25 test cases for pairwise-combinations testing 

 Bug is still detected (depends only on a and b) 

 Some cases depend on three parameters, e.g., 

invalid input 

Peter Müller – Software Architecture and Engineering 

Two solutions One solution No solution 

a = 0 and b ≠ 0  a = 0, b = 0, and c ≠ 0  

a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0  a ≠ 0 and b2-4ac < 0 

a = 0, b = 0, c = 0 

8.1 Test Case Selection – Functional Testing 
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Pairwise-Combinations Testing: Discussion 

 Pairwise-combinations testing (or k-way testing) 

reduces the number of test cases significantly 

while detecting most errors 

 Pairwise-combinations testing is especially 

important when many system configurations 

need to be tested 

- Hardware, operating system, database, application 

server, etc. 

 Should be combined with other approaches to 

detect errors that are triggered by more complex 

interactions among parameters 

Peter Müller – Software Architecture and Engineering 

8.1 Test Case Selection – Functional Testing 
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Functional Testing: Summary 

Peter Müller – Software Architecture and Engineering 

Functional 

Requirements, 

Analysis Model 

Independently 

Testable Feature 

Representative 

Values 

Test Case 

Specification 
Test Cases 

Equivalence classes, 

boundary testing, 

coverage 

Exhaustive enumeration,  

semantic constraints, 

pairwise combinations 

8.1 Test Case Selection – Functional Testing 
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8. Test Case Selection 

 

8.1 Functional Testing 

8.2 Structural Testing 

8.2 Test Case Selection – Structural Testing 
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Motivating Example 

Peter Müller – Software Architecture and Engineering 

public void sort( int[ ] a ) { 

  if( a == null || a.length < 2 ) // array is trivially sorted 

    return; 

  // check if array is already sorted 

  for( int i = 0; i < a.length – 1; i++ ) 

    if( a[ i ] < a[ i + 1 ] )  

      break; 

  if( i >= a.length – 1 ) // array is already sorted 

    return; 

  // use quicksort to sort the array in ascending order 

} 

Given a non-null array of integers, sort the 

array in-place in ascending order 

Error: check for 

sortedness should 

use ‘>’  

8.2 Test Case Selection – Structural Testing 
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Motivating Example: Functional Testing 

 The requirements give no clue that one should test 

with an array that is sorted in descending order 
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a 

Valid 
any non-

null array 

Invalid null 

Given a non-null array of integers, sort the 

array in-place in ascending order 

Choose for instance 

{ }, { 1 }, { 1, 2, 3 }  

8.2 Test Case Selection – Structural Testing 
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Motivating Example: Discussion 

 Detailed design and coding introduce many 

behaviors that are not present in the requirements 

- Choice of data structures 

- Choice of algorithms 

- Optimizations such as caches 

 

 Functional testing generally does not thoroughly 

exercise these behaviors 

- No data structure specific test cases, e.g., rotation of 

AVL-tree 

- No test cases for optimizations, e.g., cache misses 

Peter Müller – Software Architecture and Engineering 

8.2 Test Case Selection – Structural Testing 



54 

System Test 

Applications of Structural Testing 

 White-box test a unit to cover a large portion of its 

code 

Peter Müller – Software Architecture and Engineering 

Unit Test 

Integration Test 

Use design 

knowledge to 

cover most of 

the code 

8.2 Test Case Selection – Structural Testing 
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8. Test Case Selection 

8.1 Functional Testing 

8.2 Structural Testing 

 8.2.1 Control Flow Testing 

 8.2.2 Advanced Topics of Control Flow Testing 

 8.2.3 Data Flow Testing 

 8.2.4 Interpreting Coverage 

8.2 Test Case Selection – Structural Testing 



56 

Basic Blocks 

 A basic block is a sequence of statements such 

that the code in a basic block: 

- has one entry point: no code within it is the destination 

of a jump instruction anywhere in the program 

- has one exit point: only the last instruction causes the 

program to execute code in a different basic block 

 

 Whenever the first instruction in a basic block is 

executed, the rest of the instructions are 

necessarily executed exactly once, in order 

Peter Müller – Software Architecture and Engineering 
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Basic Blocks: Example 

Peter Müller – Software Architecture and Engineering 

public void sort( int[ ] a ) { 

  if( a == null || a.length < 2 ) 

    return; 

  for( int i = 0; i < a.length – 1; i++ ) { 

    if( a[ i ] < a[ i + 1 ] )  

      break; 

  } 

  if( i >= a.length – 1 ) 

    return; 

  qsort( a, 0, a.length ); 

} 
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Intraprocedural Control Flow Graphs 

 An intraprocedural control flow graph (CFG) of a 

procedure p is a graph (N,E) where: 

 N is the set of basic blocks in p plus designated 

entry and exit blocks 

 E contains 

- an edge from a to b with condition c iff the execution of 

basic block a is succeeded by the excution of basic block 

b if condition c holds 

- an edge (entry, a, true) if a is the first basic block of p 

- edges (b, exit, true) for each basic block b that ends with 

an (implicit) return statement 

Peter Müller – Software Architecture and Engineering 
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Control Flow Graphs: Example 

Peter Müller – Software Architecture and Engineering 

b1 = ( a == null || a.length < 2 ); 

b3 = ( a[ i ] < a[ i + 1 ] ); 

b4 = ( i >= a.length – 1 ); 

b2 = ( i < a.length – 1 ); return; 

exit 

qsort( a, 0, a.length ); return; 

break; i++; 

entry 

b1 b1 

b4 b4 

b2 
b2 

b3 b3 

i = 0; 

8.2 Test Case Selection – Structural Testing 



60 

Test Coverage 

 The CFG can serve 

as an adequacy 

criterion for test 

cases 

 The more parts  

are executed, the 

higher the chance  

to  uncover a bug 

 “parts” can be  

nodes, edges,  

paths, etc. 

Peter Müller – Software Architecture and Engineering 

b1 = ( a == null || a.length < 2 ); 

b3 = ( a[ i ] < a[ i + 1 ] ); 

b4 = ( i >= a.length – 1 ); 

b2 = ( i < a.length – 1 ); return; 

exit 

qsort( a, 0, a.length ); return; 

break; i++; 

entry 

b1 b1 

b4 b4 

b2 

b2 

b3 b3 

i = 0; 
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Test Coverage: Example 

 Consider the input 

a = { 3, 7, 5 } 

Peter Müller – Software Architecture and Engineering 

b1 = ( a == null || a.length < 2 ); 

b3 = ( a[ i ] < a[ i + 1 ] ); 

b4 = ( i >= a.length – 1 ); 

b2 = ( i < a.length – 1 ); return; 

exit 

qsort( a, 0, a.length ); return; 

break; i++; 

entry 

b1 b1 

b4 b4 

b2 

b2 

b3 b3 

i = 0; 
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Statement Coverage 

 Assess the quality of a test suite by measuring how 

much of the CFG it executes 

 

 Idea: one can detect a bug in a statement only by 

executing the statement 

 

 

 

 

- Can also be defined on basic blocks 

 

Peter Müller – Software Architecture and Engineering 

Statement Coverage =  
Number of executed statements 

Total number of statements 
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Statement Coverage: Example 

 Consider the input 

a = { 3, 7, 5 } 

 

 This single test 

case executes 7 

out of 10 basic 

blocks 

 

 Statement 

coverage: 70% 

Peter Müller – Software Architecture and Engineering 

b1 = ( a == null || a.length < 2 ); 

b3 = ( a[ i ] < a[ i + 1 ] ); 

b4 = ( i >= a.length – 1 ); 

b2 = ( i < a.length – 1 ); return; 

exit 

qsort( a, 0, a.length ); return; 

break; i++; 

entry 

b1 b1 

b4 b4 

b2 

b2 

b3 b3 

i = 0; 
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Statement Coverage: Example (cont’d) 

b1 = ( a == null || a.length < 2 ); 

b3 = ( a[ i ] < a[ i + 1 ] ); 

b4 = ( i >= a.length – 1 ); 

b2 = ( i < a.length – 1 ); return; 

exit 

qsort( a, 0, a.length ); return; 

break; i++; 

entry 

b1 b1 

b4 b4 

b2 

b2 

b3 b3 

i = 0; 

 We can achieve 

100% statement 

coverage with 

three test cases 

- a = { 1 } 

- a = { 5, 7 } 

- a = { 7, 5 } 

 

 The last test case 

detects the bug 

b1 = ( a == null || a.length < 2 ); 

b3 = ( a[ i ] < a[ i + 1 ] ); 

b2 = ( i < a.length – 1 ); 

b4 = ( i >= a.length – 1 ); 

return; 

exit 

qsort( a, 0, a.length ); return; 

break; i++; 

entry 

b1 b1 

b4 b4 

b2 

b2 

b3 b3 

i = 0; 

Peter Müller – Software Architecture and Engineering 

b1 = ( a == null || a.length < 2 ); 

b3 = ( a[ i ] < a[ i + 1 ] ); 

b4 = ( i >= a.length – 1 ); 

b2 = ( i < a.length – 1 ); return; 

exit 

qsort( a, 0, a.length ); return; 

break; i++; 

entry 

b1 b1 

b4 b4 

b2 

b2 

b3 b3 

i = 0; 

b1 = ( a == null || a.length < 2 ); 

b3 = ( a[ i ] < a[ i + 1 ] ); 

b4 = ( i >= a.length – 1 ); 

b2 = ( i < a.length – 1 ); return; 

exit 

qsort( a, 0, a.length ); return; 

break; i++; 

entry 

b1 b1 

b4 b4 

b2 

b2 

b3 b3 

i = 0; 
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Statement Coverage: Discussion 

Peter Müller – Software Architecture and Engineering 

boolean contains( int[ ] a, int x ) { 

  if( a == null )  return false; 

  boolean found = false; 

  for( int i = 0; i <= a.length; i++ ) { 

    if( a[ i ] == x ) {  

      found = true;  

      break;  

    }  

  } 

  return found; 

} 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 
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Statement Coverage: Discussion (cont’d) 

Peter Müller – Software Architecture and Engineering 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 

 We can achieve 100% 

statement coverage 

with two test cases 

- a = null 

- a = { 1, 2 }, x = 2 

 The test cases do not 

detect the bug! 

 

 More thorough testing 

is necessary 

8.2 Test Case Selection – Structural Testing 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 
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Branch Coverage 

 Idea: test all possible branches in the control flow  

 

 An edge (m, n, c) in a CFG is a branch iff there is 

another edge (m, n’, c’) in the CFG with n ≠ n’ 

 

 

 

- Conveniently define branch coverage to be 100% if the 

code contains no branches 

Peter Müller – Software Architecture and Engineering 

Branch Coverage =  
Number of executed branches 

Total number of branches 
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Branch Coverage: Example 1 

 Consider the input 

a = { 3, 7, 5 } 

 This single test 

case executes 4 

out of 8 branches 

 Branch coverage: 

50% 

 Three test cases 

needed for 100% 

branch coverage 

Peter Müller – Software Architecture and Engineering 

b1 = ( a == null || a.length < 2 ); 

b3 = ( a[ i ] < a[ i + 1 ] ); 

b4 = ( i >= a.length – 1 ); 

b2 = ( i < a.length – 1 ); return; 

exit 

qsort( a, 0, a.length ); return; 

break; i++; 

entry 

b1 b1 

b4 b4 

b2 

b2 

b3 b3 

i = 0; 
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Branch Coverage: Example 2 

Peter Müller – Software Architecture and Engineering 

 The two test cases 

- a = null 

- a = { 1, 2 }, x = 2 

execute 5 out of 6 

branches 

 

 Branch coverage: 

83% 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 
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Branch Coverage: Example 2 (cont’d) 

Peter Müller – Software Architecture and Engineering 

 Achieving 100% 

branch coverage 

would require a test 

case that runs the 

loop to the end 

- a = null 

- a = { 1 }, x = 1 

- a = { 1 }, x = 3 

 

 The last test case 

detects the bug 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 
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Branch Coverage: Discussion 

 Branch coverage leads to more thorough testing 

than statement coverage 

- Complete branch coverage implies complete statement 

coverage 

- But “at least n% branch coverage” does not generally 

imply “at least n% statement coverage” 

 

 Most widely-used adequacy criterion in industry 

Peter Müller – Software Architecture and Engineering 
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Branch Coverage: Discussion (cont’d) 

Peter Müller – Software Architecture and Engineering 

int[ ] reverse( int[ ] a ) { 

  int j = a.length – 1; 

  int[ ] res = new int[ a.length ]; 

  for( int i = 0; i < a.length; i++ ) { 

    res[ j ] = a[ i ]; 

  } 

  return res; 

} 

j = a.length – 1; 

res = new int[ a.length ]; 

i = 0;  

return res; 

exit 

res[ j ] = a[ i ]; 

i++; 

entry 

b1 b1 

b1 = ( i < a.length ); 

8.2 Test Case Selection – Structural Testing 
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Branch Coverage: Discussion (cont’d) 

Peter Müller – Software Architecture and Engineering 

 We can achieve 100% 

branch coverage with 

one test case 

- a = { 1 } 

 The test case does 

not detect the bug! 

 

 More thorough testing 

is necessary 

j = a.length – 1; 

res = new int[ a.length ]; 

i = 0;  

return res; 

exit 

res[ j ] = a[ i ]; 

i++; 

entry 

b1 b1 

b1 = ( i < a.length ); 
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Branch Coverage: Discussion (cont’d) 

Peter Müller – Software Architecture and Engineering 

int foo( boolean a, boolean b ) { 

  int x = 1; 

  int y = 1; 

  if( a ) 

    x = 0; 

  else 

    y = 0; 

  if( b ) 

    return 5 / x; 

  else 

    return 5 / y; 

} 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 
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Branch Coverage: Discussion (cont’d) 

Peter Müller – Software Architecture and Engineering 

 We can achieve 100% 

branch coverage with 

two test cases 

- a = true, b = false 

- a = false, b = true 

 The test cases do not 

detect the bug! 

 

 More thorough testing 

is necessary 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 
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Path Coverage 

 Idea: test all possible paths through the CFG 

 

 A path is a sequence of nodes n1, …, nk such that 

- n1 = entry 

- nk = exit 

- There is an edge (ni, ni+1, c) in the CFG 

Peter Müller – Software Architecture and Engineering 

Path Coverage =  
Number of executed paths 

Total number of paths 
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77 

Path Coverage: Example 1 

Peter Müller – Software Architecture and Engineering 

 The two test cases 

- a = true, b = false 

- a = false, b = true 

execute two out of four 

paths 

 

 Path coverage: 50% 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 
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Path Coverage: Example 1 (cont’d) 

Peter Müller – Software Architecture and Engineering 

 We can achieve 100% 

path coverage with four 

test cases 

- a = true, b = false 

- a = false, b = true 

- a = true, b = true 

- a = false, b = false 

 

 The two additional test 

cases detect the bugs 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 
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Path Coverage: Example 2 

Peter Müller – Software Architecture and Engineering 

boolean contains( int[ ] a, int x ) { 

  if( a == null )  return false; 

  boolean found = false; 

  for( int i = 0; i <= a.length; i++ ) { 

    if( a[ i ] == x ) {  

      found = true;  

      break;  

    }  

  } 

  return found; 

} 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 
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Path Coverage: Example 2 (cont’d) 

 Number of loop 

iterations is not known 

statically 

 

 An arbitrarily large 

number of test cases 

is needed for 

complete path 

coverage 

 

Peter Müller – Software Architecture and Engineering 

b1 = ( a == null ); 

b3 = ( a[ i ] == x ); 

return found; 

b2 = ( i <= a.length ); 

return 

false; 

exit 

found = true; 

break; 

i++; 

entry 

b1 b1 

b2 

b2 

b3 b3 

found = false; 

i = 0; 

8.2 Test Case Selection – Structural Testing 
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Path Coverage: Discussion 

 Path coverage leads to more thorough testing than 

both statement and branch coverage 

- Complete path coverage implies complete statement 

coverage and complete branch coverage 

- But “at least n% path coverage” does not generally imply 

“at least n% statement coverage” or “at least n% branch 

coverage” 

 

 Complete path coverage is not feasible for loops 

- Unbounded number of paths 

Peter Müller – Software Architecture and Engineering 
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Branch Coverage: Discussion (cont’d) 

Peter Müller – Software Architecture and Engineering 

int[ ] reverse( int[ ] a ) { 

  int j = a.length – 1; 

  int[ ] res = new int[ a.length ]; 

  for( int i = 0; i < a.length; i++ ) { 

    res[ j ] = a[ i ]; 

  } 

  return res; 

} 

j = a.length – 1; 

res = new int[ a.length ]; 

i = 0;  

return res; 

exit 

res[ j ] = a[ i ]; 

i++; 

entry 

b1 b1 

b1 = ( i < a.length ); 
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Loop Coverage 

 Idea: for each loop, test zero, one, and more than 

one iterations 

 

 

 

 

 Loop coverage is typically combined with other 

adequacy criteria such as statement or branch 

coverage 

Peter Müller – Software Architecture and Engineering 

Loop Coverage =  

Number of executed loops  

with 0, 1, and more than 1 iterations 

Total number of loops * 3 
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Loop Coverage: Example 

Peter Müller – Software Architecture and Engineering 

 The test case 

- a = { 1 } 

executes one out of 

three possible cases 

for the loop 

 

 Loop coverage: 33% 

j = a.length – 1; 

res = new int[ a.length ]; 

i = 0;  

return res; 

exit 

res[ j ] = a[ i ]; 

i++; 

entry 

b1 b1 

b1 = ( i < a.length ); 
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Loop Coverage: Example 

Peter Müller – Software Architecture and Engineering 

 We can achieve 100% 

loop coverage with 

three test cases 

- a = { } 

- a = { 1 } 

- a = { 1, 2 } 

 

 The last test case 

detects the bug 

j = a.length – 1; 

res = new int[ a.length ]; 

i = 0;  

return res; 

exit 

res[ j ] = a[ i ]; 

i++; 

entry 

b1 b1 

b1 = ( i < a.length ); 
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Measuring Coverage 

 Coverage information  

is collected while the 

test cases execute 

 

 Use code 

instrumentation or 

debug interface to 

count executed basic 

blocks, branches, etc. 

Peter Müller – Software Architecture and Engineering 

int foo( boolean a, boolean b ) { 

  int x = 1;  int y = 1; 

  if( a ) { 

    executedBranches[ 0 ]++;  x = 0; 

  } else { 

    executedBranches[ 1 ]++;  y = 0; 

  } 

  if( b ) { 

    executedBranches[ 2 ]++; 

    return 5 / x; 

  } else { 

    executedBranches[ 3 ]++; 

    return 5 / y; 

  } 

} 

8.2 Test Case Selection – Structural Testing 
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Peter Müller – Software Architecture and Engineering 

8. Test Case Selection 

8.1 Functional Testing 

8.2 Structural Testing 

 8.2.1 Control Flow Testing 

 8.2.2 Advanced Topics of Control Flow Testing 

 8.2.3 Data Flow Testing 

 8.2.4 Interpreting Coverage 
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CFG: Method Calls 

Peter Müller – Software Architecture and Engineering 

static <E> void filter(   

  Collection<E> from,  

  Filter<E> f,  

  Collection<E> to ) { 

  if( from == null ) return; 

  Iterator<E> i = from.iterator( ); 

  while( i.hasNext( ) ) { 

    E e = i.next( ); 

    if( f.apply( e ) ) 

      to.add( e ); 

  } 

} 

Iterator<E> i = from.iterator( ); 

to.add( e ); 

exit 

e = i.next( ); 

b3 = f.apply( e ); 

entry 

b1 

b1 

b2 = i.hasNext( ); 

b1 = ( from == null ); 

b2 

b2 

b3 

b3 

8.2 Test Case Selection – Structural Testing 
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Dynamically-Bound Method Calls 

 Intraprocedural CFGs treat 

method calls as simple 

statements 
 

 Yet, calls invoke different 

code depending on the 

dynamic type of the 

receiver 
 

 Testing should cover the 

possible behaviors 

Peter Müller – Software Architecture and Engineering 

static <E> void filter(   

  Collection<E> from,  

  Filter<E> f,  

  Collection<E> to ) { 

  if( from == null ) return; 

  Iterator<E> i = from.iterator( ); 

  while( i.hasNext( ) ) { 

    E e = i.next( ); 

    if( f.apply( e ) ) 

      to.add( e ); 

  } 

} 
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Testing Dynamically-Bound Method Calls 

 A dynamically-bound 

method call can be regarded 

as a case distinction on the 

type of the receiver 

Peter Müller – Software Architecture and Engineering 

NullFilter 

apply( E e ) 

Duplicates 

apply( E e ) 

Filter 

apply( E e ) 

f.apply( e ) 

if( type( f ) == Filter ) 

  f.Filter::apply( e ); 

else if( type( f ) == NullFilter ) 

  f.NullFilter::apply( e ); 

else // type( f ) == Duplicates 

  f.Duplicates::apply( e ); 

 Now we can apply branch testing 
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Testing Dynamically-Bound Calls (cont’d) 

 Treating dynamically-

bound method calls as 

branches leads to a 

combinatorial 

explosion 

 Use semantic constraints 

and pairwise-

combinations testing 

Peter Müller – Software Architecture and Engineering 

static <E> void filter(   

  Collection<E> from,  

  Filter<E> f,  

  Collection<E> to ) { 

  if( from == null ) return; 

  Iterator<E> i = from.iterator( ); 

  while( i.hasNext( ) ) { 

    E e = i.next( ); 

    if( f.apply( e ) ) 

      to.add( e ); 

  } 

} java.util contains 

dozens of 

collection classes 

java.util contains 

dozens of 

collection classes 

Several different 

Filter classes in 

the program 

8.2 Test Case Selection – Structural Testing 



92 

Exceptions 

Peter Müller – Software Architecture and Engineering 

static <E> void filter(   

  Collection<E> from,  

  Filter<E> f,  

  Collection<E> to ) { 

  if( from == null ) return; 

  if( f == null || to == null ) 

    throw new  

      IllegalArgumentException( ); 

  Iterator<E> i = from.iterator( ); 

  while( i.hasNext( ) ) { 

    E e = i.next( ); 

    if( f.apply( e ) ) 

      to.add( e ); 

  } 

} 

Iterator<E> i = from.iterator( ); 

to.add( e ); 

exit 

e = i.next( ); 

b4 = f.apply( e ); 

entry 

b1 

b1 

b3 = i.hasNext( ); 

b1 = ( from == null ); 

b3 

b3 

b4 

b4 

b2 = ( f == null || to == null ); 

throw new 

IllegalArgumentException( ); 
b2 

b2 

8.2 Test Case Selection – Structural Testing 
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CFG: Exceptions 

 Exceptions add a control flow edge from the basic 

block where the exception is thrown to the exit 

block or the block where the exception is caught 

 Idea: Cover exceptional control flow like normal 

control flow during testing 

- Test oracle is checked when method terminates normally 

Peter Müller – Software Architecture and Engineering 

[ Test ] 

[ ExpectedException( typeof(ArgumentException) ) ] 

public void TestDemoInvalid( … ) { 

  int d = Days( month, year ); 

} 

8.2 Test Case Selection – Structural Testing 
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Example: Documented Exceptions 

Peter Müller – Software Architecture and Engineering 

static <E> void filter(   

  Collection<E> from,  

  Filter<E> f,  

  Collection<E> to ) { 

  if( from == null ) return; 

  if( f == null || to == null ) 

    throw new  

      IllegalArgumentException( ); 

  Iterator<E> i = from.iterator( ); 

  while( i.hasNext( ) ) { 

    E e = i.next( ); 

    if( f.apply( e ) ) 

      to.add( e ); 

  } 

} 

Might throw: 

 UnsupportedOperationException 

 ClassCastException 

 NullPointerException  

 IllegalArgumentException  

 IllegalStateException 

Might throw: 

 NoSuchElementException 

8.2 Test Case Selection – Structural Testing 
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Example: Documented Exceptions (cont’d) 
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Iterator<E> i = from.iterator( ); 

to.add( e ); exit 

e = i.next( ); 

entry 
b1 

b1 

b3 = i.hasNext( ); 

b1 = ( from == null ); 

b3 

b3 

b4 

b4 

b2 = ( f == null || to == null ); 

throw new 

IllegalArgumentException( ); 
b2 

b2 

b4 = f.apply( e ); 

8.2 Test Case Selection – Structural Testing 
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Example: Undocumented Exceptions 
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static <E> void filter(   

  Collection<E> from,  

  Filter<E> f,  

  Collection<E> to ) { 

  if( from == null ) return; 

  if( f == null || to == null ) 

    throw new  

      IllegalArgumentException( ); 

  Iterator<E> i = from.iterator( ); 

  while( i.hasNext( ) ) { 

    E e = i.next( ); 

    if( f.apply( e ) ) 

      to.add( e ); 

  } 

} 

The example might also throw: 

 ConcurrentModificationException 

 NoClassDefFoundError 

 NoSuchMethodError 

 OutOfMemoryError 

 StackOverflowError 

 ThreadDeath 

 VirtualMachineError 

 etc. 

8.2 Test Case Selection – Structural Testing 
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Example: Undocumented Exceptions (cont’d) 
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Iterator<E> i = from.iterator( ); 

to.add( e ); exit 

e = i.next( ); 

entry 
b1 

b1 

b3 = i.hasNext( ); 

b1 = ( from == null ); 

b3 

b3 

b4 

b4 

b2 = ( f == null || to == null ); 

throw new 

IllegalArgumentException( ); 
b2 

b2 

b4 = f.apply( e ); 

It is impractical to 

represent and test 

all exceptional 

control flow in the 

CFG 

8.2 Test Case Selection – Structural Testing 
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Checked vs. Unchecked Exceptions 

 Many programming languages distinguish between 

checked and unchecked exceptions 

 Checked exceptions represent invalid conditions 

outside the immediate control of the program  

- Invalid user input, database problems, network outages, 

absent files 

 Unchecked exceptions represent defects in the 

program  or the execution environment 

- Illegal arguments, null-pointer dereferencing, division by 

zero, assertion violation, etc. 

- In Java: all subclasses of RuntimeException and Error 

Peter Müller – Software Architecture and Engineering 

8.2 Test Case Selection – Structural Testing 
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Testing Unchecked Exceptions 

 Unchecked 

exceptions are not 

supposed to occur 

 When computing 

the CFG, ignore 

unchecked 

exceptions thrown 

by other methods 

and virtual machine 

- But consider throw 

statements 
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Iterator<E> i = from.iterator( ); 

to.add( e ); exit 

e = i.next( ); 

b4 = f.apply( e ); 

entry 

b1 

b1 

b3 = i.hasNext( ); 

b1 = ( from == null ); 

b3 

b3 

b4 

b4 

b2 = ( f == null || to == null ); 

throw new 

IllegalArgumentException( ); 

b2 

b2 

8.2 Test Case Selection – Structural Testing 
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Unchecked Exceptions: Bad Example 

 Never use unchecked exceptions to encode control 

flow! 
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static boolean contains( String[ ] a, String s ) { 

  for( int i = 0; i < a.length; i++ ) { 

    try { 

      if( a[ i ].equals(s) ) 

        return true; 

      } catch( NullPointerException e ) {  

        i++; 

      } 

    } 

  return false; 

} 

Exceptional 

control flow 

will not be 

covered  

Bug remains 

undetected 

8.2 Test Case Selection – Structural Testing 
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Bad Example Fixed 

Peter Müller – Software Architecture and Engineering 

static boolean contains( String[ ] a, String s ) { 

  for( int i = 0; i < a.length; i++ ) { 

    if( a[ i ] != null ) { 

      if( a[ i ].equals(s) ) 

        return true; 

    } else { 

      i++; 

    } 

  } 

  return false; 

} 

Normal 

control flow 

will be 

covered  

Bug will be 

detected 

8.2 Test Case Selection – Structural Testing 
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Testing Checked Exceptions 

 Checked exceptions represent regular control 

flow that needs to be tested 

- Include control flow in CFG, testing, and coverage 

 

 In Java, checked exceptions are declared in 

method signatures 

 

 

 

 For each call, add appropriate control flow edges 

Peter Müller – Software Architecture and Engineering 

interface RemoteBuffer extends Remote { 

  void put( String s ) throws RemoteException; 

} 

8.2 Test Case Selection – Structural Testing 
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Checked Exceptions: Example 

Peter Müller – Software Architecture and Engineering 

class Producer { 

  RemoteBuffer b; 
 

  void produce( ) throws RemoteException { 

    boolean retried = false; 

    boolean success = false; 

    while( !success ) { 

      try { 

        b.put( "Product“ ); 

        success = true; 

      } catch( RemoteException e ) { 

        if( retried )  throw e; 

      } 

    } 

  } 

} 

Exceptional 

control flow 

will be 

covered  
Bug will be 

detected 

8.2 Test Case Selection – Structural Testing 
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Testing Exceptions: Summary 

 Checked exceptions encode the program’s reaction 

to invalid conditions in the environment 

- Test like normal control flow 

 Unchecked exceptions represent defects 

- Test unchecked exceptions explicitly thrown by method 

under test (argument validation, precondition check) 

- Unchecked exceptions thrown by methods being called 

indicate defect in method under test (precondition 

violation) or in the called method 

- Unchecked exceptions thrown by virtual machine indicate 

defect in method under test (e.g., infinite recursion) or 

deployment error (e.g., class not found) 

Peter Müller – Software Architecture and Engineering 

8.2 Test Case Selection – Structural Testing 
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Peter Müller – Software Architecture and Engineering 

8. Test Case Selection 

8.1 Functional Testing 

8.2 Structural Testing 

 8.2.1 Control Flow Testing 

 8.2.2 Advanced Topics of Control Flow Testing 

 8.2.3 Data Flow Testing 

 8.2.4 Interpreting Coverage 

8.2 Test Case Selection – Structural Testing 



106 

Example Revisited 
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int foo( boolean a, boolean b ) { 

  int x = 1; 

  int y = 1; 

  if( a ) 

    x = 0; 

  else 

    y = 0; 

  if( b ) 

    return 5 / x; 

  else 

    return 5 / y; 

} 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

8.2 Test Case Selection – Structural Testing 
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Data Flow Testing 

 Testing all paths is not 

feasible 

- Number grows exponentially 

in the number of branches 

- Loops 

 

 Idea: Test those paths 

where a computation in one 

part of the path affects the 

computation of another 

Peter Müller – Software Architecture and Engineering 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

8.2 Test Case Selection – Structural Testing 
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Variable Definition and Use 

 A variable definition for a variable v is a basic 

block that assigns to v 

- v can be a local variable, formal parameter, field, or  

array element 

 

 A variable use for a variable v is a basic block that 

reads the value from v 

- In conditions, computations, output, etc. 

Peter Müller – Software Architecture and Engineering 
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Definition-Clear Paths 

 A definition-clear path for a variable v is a path  

n1, …, nk in the CFG such that: 

- n1 is a variable definition for v 

- nk is a variable use for v 

- No ni (1 < i ≤ k) is a variable definition for v  

(nk may be a variable definition if each assignment to v 

occurs after a use) 

 

 Note: definition-clear paths do not go from entry to 

exit (in contrast to our earlier definition of path) 

Peter Müller – Software Architecture and Engineering 
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Definition-Use Pairs 

 A definition-use pair 

for a variable v is a 

pair of nodes (d,u) 

such that there is a 

definition-clear path  

d, …, u in the CFG 

 

 We say DU-pair for 

definition-use pair  
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b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

Variable 

definition 

for x 

Variable 

definition 

for x 

Variable 

use for x 

8.2 Test Case Selection – Structural Testing 
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Definition-Use Pairs: Examples 

Peter Müller – Software Architecture and Engineering 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

8.2 Test Case Selection – Structural Testing 
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DU-Pairs Coverage 

 Idea: test all paths that provide a value for a 

variable use 

Peter Müller – Software Architecture and Engineering 

DU-Pairs Coverage =  
Number of executed DU-Pairs 

Total number of DU-Pairs 

8.2 Test Case Selection – Structural Testing 
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DU-Pairs Coverage: Example 

Peter Müller – Software Architecture and Engineering 

 The two test cases 

- a = true, b = false 

- a = false, b = true 

achieve 100% branch 

coverage, but only 50% 

DU-pairs coverage 

 

 In this example, DU-pairs 

coverage is equivalent to 

path coverage  

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

8.2 Test Case Selection – Structural Testing 
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Determining all DU-Pairs 

 DU-Pairs are computed using a static reaching-

definitions analysis 

 For each node n and for each variable v, compute 

all variable definitions for v that possibly reach n via 

a definition-clear path 

 

 The reaching definitions at a node n are: 

- The reaching definitions of n’s predecessors in the CFG 

- minus the definitions killed by one of n’d predecessors  

- plus the definitions made by one of n’d predecessors  

Peter Müller – Software Architecture and Engineering 
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Reaching Definitions: Algorithm 

 Input 

- pred( n )  = { m | (m,n,c) is an edge in the CFG } 

- succ( m ) = { n | (m,n,c) is an edge in the CFG } 

- gen( n )  = { vn | n is a variable definition for v } 

- kill( n ) = { vm | n is a variable definition for v and m ≠ n } 

 

 We compute via fixpoint iteration 

- Reach( n ): The reaching definitions at the beginning of n 

- ReachOut( n ): The reaching definitions at the end of n 

Peter Müller – Software Architecture and Engineering 
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Reaching Definitions: Algorithm (con’t) 

Peter Müller – Software Architecture and Engineering 

foreach node n do ReachOut( n ) :=  end 

worklist := nodes 

while worklist   do 

  n := any( worklist ) 

  remove n from worklist 

  Reach( n ) := Umpred(n) ReachOut( m ) 

  ReachOut( n ) := Reach( n ) \ kill( n )  gen( n ) 

  if ReachOut( n ) has changed then  

    worklist := worklist  succ( n ) 

  end 

end 

8.2 Test Case Selection – Structural Testing 



117 

Reaching Definitions: Example 

Peter Müller – Software Architecture and Engineering 

b1 = a; 

b2 = b; 

exit 

entry 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

1: 

2: 

4: 3: 

6: 

5: 

7: 

n Reach( n ) ReachOut( n ) 

1  

2 x1, y1 x1, y1 

3 x1, y1 x3, y1 

4 x1, y1 x1, y4 

5 x1, x3, y1, y4 x1, x3, y1, y4 

6 x1, x3, y1, y4 x1, x3, y1, y4 

7 x1, x3, y1, y4 x1, x3, y1, y4 

8.2 Test Case Selection – Structural Testing 
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From Reaching Definitions to DU-Pairs 

 The set of DU-pairs is easily determined as  

{ (d,u) | u is a variable use for v and vd  Reach(u) } 

Peter Müller – Software Architecture and Engineering 

b1 = a; 

b2 = b; 

b1 b1 

b2 b2 

x = 1; 

y = 1; 

return 5 / x; return 5 / y; 

x = 0; y = 0; 

1: 

2: 

4: 3: 

6: 

5: 

7: 

n Reach( n ) 

1  

2 x1, y1 

3 x1, y1 

4 x1, y1 

5 x1, x3, y1, y4 

6 x1, x3, y1, y4 

7 x1, x3, y1, y4 

 DU-pairs for x: 

(1,6), (3,6) 

 DU-pairs for y: 

(1,7), (4,7) 

 

8.2 Test Case Selection – Structural Testing 
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Data Flow Testing Example 

 Convert character sequence to integer 

- Input format: ddec* | ‘x’(dhex*), where d is a (decimal or 

hexadecimal) digit 

Peter Müller – Software Architecture and Engineering 

static int convert( char[ ] a ) { 

  int base;  int i = 0;  int val = 0; 

  if ( a.length == 0 )  return 0; 

  if( a[ i ] == 'x' ) { base = 12; i = i + 1; }  

  else { base = 10; } 
 

  while( i < a.length ) { 

      val = val * base + Character.digit( a[ i ], base ); 

      i = i + 1; 

  } 

  return val; 

} 

8.2 Test Case Selection – Structural Testing 

We assume here 

that all inputs are of 

the required format 
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Data Flow Testing Example: CFG 
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val = val * base + Character.digit( a[ i ], base ); 

i = i + 1; return val; exit 

entry 

b1 

b1 

b3 = ( i < a.length ); 

b2 = ( a[ i ] == 'x' ); 

b3 

b3 

1: 

b2 b2 

8.2 Test Case Selection – Structural Testing 

i = 0; 

val = 0;  

b1 = ( a.length == 0 ); 

 

return 0; 

base = 12; 

i = i + 1; 
base = 10; 

2: 

4: 
5: 

6: 

7: 

8: 

3: 
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Data Flow Testing Example: DU-Pairs 

 We get 14 DU-pairs 

 

 DU-pairs for i:  

(1,2), (1,4), (1,6), (4,6), 

(7,6), (1,7), (4,7), (7,7) 

 DU-pairs for val:  

(1,7), (7,7), (1,8), (7,8) 

 DU-pairs for base:  

(4,7), (5,7) 
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n Reach( n ) ReachOut( n ) 

1  i1, val1 

2 i1, val1 i1, val1 

3 i1, val1 i1, val1 

4 i1, val1 i4, val1, base4 

5 i1, val1 i1, val1, base5 

6 i1, i4, i7, val1, val7, 

base4, base5 

i1, i4, i7, val1, val7, 

base4, base5 

7 i1, i4, i7, val1, val7, 

base4, base5 

i7, val7, base4, 

base5 

8 i1, i4, i7, val1, val7, 

base4, base5 

i1, i4, i7, val1, val7, 

base4, base5 

8.2 Test Case Selection – Structural Testing 
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Data Flow Testing Example: Bug 

 Consider the 

test cases 

- a = { } 

- a = { ‘x’ } 

- a = { ‘1’ } 

- a = { ‘1’, ‘2’ } 

 The bug is not 

detected! 

 

Peter Müller – Software Architecture and Engineering 

static int convert( char[ ] a ) { 

  int base;  int i = 0;  int val = 0; 

  if ( a.length == 0 )  return 0; 

  if( a[ i ] == 'x‘ ) { base = 12; i = i + 1; }  

  else { base = 10; } 
 

  while( i < a.length ) { 

      val = val * base + Character.digit( a[ i ], base ); 

      i = i + 1; 

  } 

  return val; 

} 

 Branch and loop coverage: 100% 

 DU-pairs missed: (4,7) for i, base (coverage 86%) 

8.2 Test Case Selection – Structural Testing 

 Branch and loop coverage: 100% 
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Data Flow Testing Example: Observation 

 DU-pairs for i and val include (7,7) 

 Complete DU-pairs coverage requires more than 

one loop iteration 

Peter Müller – Software Architecture and Engineering 

static int convert( char[ ] a ) { 

  int base;  int i = 0;  int val = 0; 

  if ( a.length == 0 )  return 0; 

  if( a[ i ] == 'x' ) { base = 16; i = i + 1; }  

  else { base = 10; } 
 

  while( i < a.length ) { 

      val = val * base + Character.digit( a[ i ], base ); 

      i = i + 1; 

  } 

  return val; 

} 

8.2 Test Case Selection – Structural Testing 
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Determining all DU-Pairs: Heap Structures 

 Determining 

whether a definition 

and a usage refer to 

the same heap 

location, a static 

analysis would need 

arithmetic and 

aliasing information 

 

 Static analysis has 

to over-approximate 
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static void repeat( int[ ] from, int[ ] to ) { 

  int i = 0; 

  if ( from.length == 0 )  return; 
 

  while( i < to.length ) { 

      to[ i ] = to[ i ] + from[ i % from.length ]; 

      i = i + 1; 

  } 

} 

8.2 Test Case Selection – Structural Testing 
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Measuring DU-Pairs Coverage 

 Keep track of currently active definitions 

- defCover: Variable → Block 

 

 Keep track of executed DU-pairs 

- useCover: Variable × Blockdef × Blockuse →  

 

 Maps can be encoded as arrays, indexed by 

identifiers for variables and basic blocks 

Peter Müller – Software Architecture and Engineering 

8.2 Test Case Selection – Structural Testing 
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Measuring DU-Pairs Coverage: Example 
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int foo( boolean a, boolean b ) { 

  int x = 1;  defCover[ “x” ] = 0; 

  int y = 1;  defCover[ “y” ] = 0; 

  if( a ) { 

    x = 0; defCover[ “x” ] = 1; 

  } else { 

    y = 0; defCover[ “y” ] = 2; 

  } 

  if( b ) { 

    useCover[ “x”, defCover[ “x” ], 3 ]++; 

    return 5 / x; 

  } else { 

    useCover[ “y”, defCover[ “y” ], 4 ]++; 

    return 5 / y; 

  } 

} 

8.2 Test Case Selection – Structural Testing 

Current variable 

definition for x is 

basic block 0 

Current variable 

definition for x is 

basic block 1 

DU-pair for variable x 

with current definition 

and use-block 3 has 

been executed 
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Data Flow Testing: Discussion 

 Data flow testing complements control flow testing 

- Choose test cases that maximize branch and DU-pairs 

coverage 

 

 Like with path coverage, not all DU-pairs are 

feasible 

- Static analysis over-approximates data flow 

- Complete DU-pairs coverage might not be possible 

Peter Müller – Software Architecture and Engineering 
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Data Flow Testing: Discussion (cont’d) 

 DU-pairs coverage is not the only adequacy 

criterion for data flow testing 

- All definitions, all predicate-usages, all simple-DU-paths, 

etc. 

 

 DU-pair “anomalies” may point to errors 

- Use before definition (not possible for locals in Java) 

- Double definition without use 

- Termination after definition without use 

 

Peter Müller – Software Architecture and Engineering 
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8. Test Case Selection 

8.1 Functional Testing 

8.2 Structural Testing 

 8.2.1 Control Flow Testing 

 8.2.2 Advanced Topics of Control Flow Testing 

 8.2.3 Data Flow Testing 

 8.2.4 Interpreting Coverage 

8.2 Test Case Selection – Structural Testing 
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Interpreting Coverage 

 High coverage does not mean that code is well 

tested 

- But: low coverage means that code is not well tested 

- Make sure you do not blindly optimize coverage but 

develop test suites that test the code well 

 

 Coverage tools do not only measure coverage 

metrics, they also identify which parts of the code 

have not been tested 

Peter Müller – Software Architecture and Engineering 
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Experimental Evaluation: Approach 

 Several studies investigate the benefit of coverage 

metrics 

- Andrews et al.: “Using Mutation Analysis for Assessing 

and Comparing Testing Coverage Criteria”, TR SCE-06-

02, 2006 
 

 Approach 

- Seed defects in the code 

- Develop test suites that satisfy various coverage criteria 

- Measure how many of the seeded defects are found by 

the test suits 

- Extrapolate to “real” defects in the code 

Peter Müller – Software Architecture and Engineering 

8.2 Test Case Selection – Structural Testing 
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Experimental Evaluation: Some Findings 

 The test suite size grows exponentially in the 

coverage 

 More demanding coverage criteria lead to larger 

test suites, but do not detect more bugs 

- Block, decision, data flow coverage 

 There is no significant difference in the cost-

efficiency of the various coverage metrics 

 All adequacy criteria lead to test suites that detect 

more bugs then random testing, especially for large 

test suites 
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