
Peter Müller

Chair of Programming Methodology

The slides in this section are partly based on the courses

“Software Engineering I” by Prof. Bernd Brügge, TU München and

“Software Engineering” by Prof. Jan Vitek, Purdue University

Software Architecture

and Engineering
Testing Basics

Spring Semester 12

2

Peter Müller – Software Architecture and Engineering

Why Does Software Contain Bugs?

 Our ability to predict the behavior of our creations

is imperfect

- Software is extremely complex

- No developer can understand the whole system

 We make mistakes

- Unclear requirements, miscommunication

- Wrong assumptions (e.g., behavior of operating system)

- Design errors (e.g., capacity of data structure too small)

- Coding errors (e.g., wrong loop condition)

7. Testing Basics Basics

3

Peter Müller – Software Architecture and Engineering

“First actual case of bug being found.”

7. Testing Basics

4

Peter Müller – Software Architecture and Engineering

Increasing Software Reliability

Fault Avoidance

 Detect faults statically without executing the program

 Includes development methodologies, reviews, and

program verification

Fault Detection

 Detect faults by executing the program

 Includes testing

Fault Tolerance

 Recover from faults at runtime (e.g., transactions)

 Includes adding redundancy (e.g., n-version programming)

7. Testing Basics

5

Peter Müller – Software Architecture and Engineering

Goal of Testing

 An error is a deviation of the observed behavior

from the required (desired) behavior

- Functional requirements (e.g., user-acceptance testing)

- Nonfunctional requirements (e.g., performance testing)

 Testing is a process of executing a program with

the intent of finding an error

 A successful test is a test that finds errors

7. Testing Basics

6

Peter Müller – Software Architecture and Engineering

Limitations of Testing

 It is impossible to completely test any nontrivial

module or any system

- Theoretical limitations: termination

- Practical limitations: prohibitive in time and cost

“Testing can only show the presence of bugs, not

their absence.”

 [E. W. Dijkstra]

7. Testing Basics

7

Peter Müller – Software Architecture and Engineering

7. Testing Basics Basics

7.1 Test Stages

7.2 Test Strategies

7.1 Testing Basics – Test Stages

8

Peter Müller – Software Architecture and Engineering

Test Stages

Analysis

System Design

Implementation

Detailed Design Unit Test

Integration Test

System Test

7.1 Testing Basics – Test Stages

9

Peter Müller – Software Architecture and Engineering

Creation of Test Harness

 Test driver

- Applies test cases to UUT including setup and clean-up

 Test stub

- Partial, temporary implementation of a component used

by UUT

- Simulates the activity of a missing component by

answering to the calling sequence of the UUT and

returning back fake data

Test Stub

Test Stub

Test Driver
Unit Under

Test (UUT)
uses

uses

7.1 Testing Basics – Test Stages

10

Peter Müller – Software Architecture and Engineering

Unit Testing

 Testing individual subsystems (collection of

classes)

 Goal: Confirm that subsystem is correctly coded

and carries out the intended functionality

Unit Test
Subsystem

Code

Detailed Design

Model

7.1 Testing Basics – Test Stages

11

Unit Test Example (JUnit)

class SavingsAccount {

 …

 public void deposit(int amount) { … }

 public void withdraw(int amount) { … }

 public int getBalance() { … }

}

@Test

public void withdrawTest() {

 SavingsAccount target = new SavingsAccount();

 target.deposit(300);

 int amount = 100;

 target.withdraw(amount);

 Assert.assertTrue(target.getBalance() == 200);

}

Implement

test driver

Create

test data

Create

test oracle

7.1 Testing Basics – Test Stages

12

Unit Testing: Discussion

 To achieve a reasonable test coverage, one has to

test each method with several inputs

- To cover valid and invalid inputs

- To cover different paths through the method

Peter Müller – Software Architecture and Engineering

@Test

public void withdrawTest() {

 SavingsAccount target = new SavingsAccount();

 target.deposit(500);

 int amount = 0;

 target.withdraw(amount);

 Assert.assertTrue(target.getBalance() == 500);

}

Boiler-plate code

for creating test

data and writing

test oracles

7.1 Testing Basics – Test Stages

13

Parameterized Unit Tests (NUnit)

 Parameterized test methods take arguments for

test data

- Decouple test driver (logic) from test data

 Test data can be specified as values, ranges, or

random values

 Requires generic test oracles

[Test]

public void withdrawTest(int balance, int amount) {

 SavingsAccount target = new SavingsAccount();

 target.deposit(balance);

 target.withdraw(amount);

 Assert.IsTrue(target.getBalance() == balance – amount);

}

7.1 Testing Basics – Test Stages

14

Generic Test Oracles: Example

Peter Müller – Software Architecture and Engineering

7.1 Testing Basics – Test Stages

[Test]

public void bubbleSortTest() {

 int[] a = { 7, 2, 5, 2 };

 bubbleSort(a);

 int[] expected = { 2, 2, 5, 7 };

 Assert.AreEqual(expected, a);

}

public static void bubbleSort(int[] a) {

 for(int i = 0; i < a.Length - 1; i++) {

 for(int j = i + 1; j < a.Length; j++) {

 if(a[i] > a[j])

 { int tmp = a[i]; a[i] = a[j]; a[j] = tmp; }

 }

 }

}

Create

test data

Create

test oracle

15

Generic Test Oracles: Example

Peter Müller – Software Architecture and Engineering

7.1 Testing Basics – Test Stages

[Test]

public void bubbleSortTest(int[] a) {

 int[] original = (int[]) a.Clone();

 bubbleSort(a);

 for(int i = 0; i < a.Length - 1; i++)

 Assert.IsTrue(a[i] <= a[i+1]);

 bool[] visited = new bool[a.Length];

 for(int i = 0; i < a.Length; i++) {

 int j;

 for (j = 0; j < a.Length; j++) {

 if(!visited[j] && a[i] == original[j])

 { visited[j] = true; break; }

 }

 Assert.IsFalse(j == a.Length);

 }

}

Save test data

for later

comparison

Check that array

is sorted

Check that array

is a permutation

of original array

Value a[i] is not

in the original

array

16

Parameterized Unit Tests: Discussion

 Parameterized unit tests avoid boiler-plate code

 Writing generic test oracles is sometimes difficult

- Analogous to writing strong postconditions

 Still several test methods are needed, for instance,

for valid and invalid input

 Parameterized unit tests are especially useful

when test data is generated automatically (see

later)

7.1 Testing Basics – Test Stages

17

Peter Müller – Software Architecture and Engineering

Test Execution

 Execute the test cases

 Re-execute test cases after every change

- Automate as much as possible

- For instance, after each refactoring

 Regression testing

- Testing that everything that used to work still works after

changes are made to the system

- Also important for system testing

7.1 Testing Basics – Test Stages

18

Peter Müller – Software Architecture and Engineering

Eight Rules of Testing

1. Make sure all tests are
fully automatic and check
their own results

2. A test suite is a powerful
bug detector that reduces
the time it takes to find
bugs

3. Run your tests frequently–
every test at least once a
day

4. When you get a bug report,
start by writing a unit test
that exposes the bug

5. Better to write and run
incomplete tests than not
run complete tests

6. Concentrate your tests on
boundary conditions

7. Do not forget to test
exceptions raised when
things are expected to go
wrong

8. Do not let the fear that
testing can’t catch all bugs
stop you from writing tests
that will catch most bugs
 [M. Fowler]

7.1 Testing Basics – Test Stages

19

Peter Müller – Software Architecture and Engineering

Integration Testing

 Testing groups of subsystems and eventually the

entire system

 Goal: Test interfaces between subsystems

Subsystem

Code

Subsystem

Code

Subsystem

Code

Integration

Test

Software

Architecture

7.1 Testing Basics – Test Stages

20

Peter Müller – Software Architecture and Engineering

Steps in Integration-Testing

1. Select a component to be tested

- Unit test all the classes in the component

2. Put selected components together

- Make the integration test operational (drivers, stubs)

3. Do the testing

- Functional testing, structural testing, performance testing

4. Keep records of the test cases and testing

activities

5. Repeat steps 1 to 4 until the full system is tested

7.1 Testing Basics – Test Stages

21

Peter Müller – Software Architecture and Engineering

Integration Testing Strategy

 The order in which the

subsystems are selected

for testing and integration

 Typical strategies

- Big-bang integration

(non-incremental)

- Bottom-up integration

- Top-down integration

- Sandwich testing

- Variations of the above

Call hierarchy

E F

D C B

A

G

7.1 Testing Basics – Test Stages

22

Peter Müller – Software Architecture and Engineering

Big-Bang Strategy: Example

E

F

D

C

B

A

G

Whole

System

Don’t try this!

Integration

Test

7.1 Testing Basics – Test Stages

23

Peter Müller – Software Architecture and Engineering

Bottom-Up Strategy

 Strategy

1. Start with subsystems in lowest layer of call hierarchy

2. Test subsystems that call the previously tested

subsystems

3. Repeat until all subsystems are included

 Pros

- Useful for integrating

object-oriented systems

and systems with strict

performance

requirements

 Cons

- Tests the most important

subsystem (UI) last

7.1 Testing Basics – Test Stages

24

Peter Müller – Software Architecture and Engineering

Bottom-Up Strategy: Example

E

F

B

B,E,F

D

G
D,G

C

A
Whole

System

7.1 Testing Basics – Test Stages

E F

D C B

A

G

25

Peter Müller – Software Architecture and Engineering

Top-Down Strategy

 Strategy

1. Start with subsystems in top layer of call hierarchy

2. Include subsystems that are called by the previously

tested subsystems

3. Repeat until all subsystems are included

7.1 Testing Basics – Test Stages

 Pros

- Supports test cases for

the functionality of the

system

 Cons

- Writing stubs is difficult:

Stubs must allow all

possible conditions to be

tested

- Possibly very large

number of stubs required

26

Peter Müller – Software Architecture and Engineering

Top-Down Strategy: Example

C

D

B

A

A,B,C,

D

F

E

G

Whole

System

7.1 Testing Basics – Test Stages

E F

D C B

A

G

27

Peter Müller – Software Architecture and Engineering

Sandwich Strategy

 Combines top-down with bottom-up strategy

 The system is viewed as having three layers

- A target layer in the middle

- A layer above the target

- A layer below the target

- Testing converges at the target layer

 How do you select the target layer if there are more

than three layers?

- Try to minimize the number of stubs and drivers

7.1 Testing Basics – Test Stages

28

Peter Müller – Software Architecture and Engineering

Sandwich Strategy: Example

E

B

F

B,E,F

G

D
D,G

C

A
A,B,C,

D

Whole

System

Top / target

7.1 Testing Basics – Test Stages

E F

D C B

A

G

Target layer

Bottom / target Bottom / target

29

Peter Müller – Software Architecture and Engineering

Sandwich Strategy: Discussion

 Pros

- Top and bottom layer

can be tested in parallel

- Fewer drivers and stubs

needed (target layer

instead of driver for

bottom layer and stub

for top layer)

 Cons

- Does not test the

individual subsystems

thoroughly before

integration

7.1 Testing Basics – Test Stages

30

Peter Müller – Software Architecture and Engineering

Choosing an Integration Strategy

 Amount of test harness (stubs and drivers)

 Availability of hardware (e.g., parallelization)

 Scheduling concerns

- Availability of components

- Location of critical parts in the system

7.1 Testing Basics – Test Stages

31

Peter Müller – Software Architecture and Engineering

System Testing

 Testing the entire system

 Goal: Determine if the system meets the

requirements (functional and non-functional)

Entire

System

System

Test

Requirements

Specification

7.1 Testing Basics – Test Stages

32

Peter Müller – Software Architecture and Engineering

System Testing Stages

Entire System

Functional

Test

Functional

requirements

Performance

Test

Non-functional

requirements

Acceptance

Test

Client’s understanding

of requirements

Installation

Test
User Environment

7.1 Testing Basics – Test Stages

33

Peter Müller – Software Architecture and Engineering

Functional Testing

.

.

 Goal: Test functionality of system

- System is treated as black box

 Test cases are designed from requirements

analysis document

- Based on use cases

- Alternative source: user manual

 Test cases describe

- Input data

- Flow of events

- Results to check

7.1 Testing Basics – Test Stages

Test_Case_03a Transfer_Cash_In.xls

34

Peter Müller – Software Architecture and Engineering

Performance Testing

 Stress Testing
- Stress limits of system (maximum number of users, peak

demands)

 Volume testing
- Large amounts of data

 Configuration testing
- Various software and hardware configurations

 Compatibility testing
- Backward compatibility with existing systems

 Security testing
- Try to violate security requirements (“red team”)

7.1 Testing Basics – Test Stages

35

Peter Müller – Software Architecture and Engineering

Performance Testing (cont’d)

 Timing testing

- Response times and time to perform a function

 Environmental testing

- Tolerances for heat, humidity, motion

 Quality testing

- Reliability, maintainability, and availability

 Recovery testing

- System’s response to presence of errors or loss of data

 Usability testing

- Tests user interface with user

7.1 Testing Basics – Test Stages

36

Peter Müller – Software Architecture and Engineering

Acceptance Testing

 Goal: Demonstrate that the system meets customer

requirements and is ready to use

 Choice of tests is made by client

- Many tests can be taken from integration testing

 Performed by the client, not by the developer

7.1 Testing Basics – Test Stages

37

Peter Müller – Software Architecture and Engineering

Acceptance Testing (cont’d)

 Majority of bugs is typically found by the client, not

by the developers or testers

 Alpha test

- Client uses the software at the developer’s site

- Software used in a controlled setting, with the developer

always ready to fix bugs

 Beta test

- Conducted at client’s site (developer is not present)

- Software gets a realistic workout in target environment

- Potential client might get discouraged

7.1 Testing Basics – Test Stages

38

Peter Müller – Software Architecture and Engineering

Independent Testing

 Programmers have a hard time believing they

made a mistake

- Plus a vested interest in not finding mistakes

- Often stick to the data that makes the program work

 Designing and programming are constructive tasks

- Testers must seek to break the software

 Testing is done best by independent testers

7.1 Testing Basics – Test Stages

39

Peter Müller – Software Architecture and Engineering

Independent Testing: Responsibilities

 Performed by independent test

team

- Exception: Acceptance test performed

by client

 Performed by independent test

team

 Performed by programmer

- Requires detailed knowledge of the

code

- Immediate bug fixing

Unit Test

Integration Test

System Test

7.1 Testing Basics – Test Stages

40

Peter Müller – Software Architecture and Engineering

Independent Testing: Wrong Conclusions

 The developer should not be testing at all

- “Test before you code”

 Testers get only involved once software is done

 Toss the software over the wall for testing

- Testers and developers collaborate in developing the test

suite

 Testing team is responsible for assuring quality

- Quality is assured by a good software process

7.1 Testing Basics – Test Stages

41

Peter Müller – Software Architecture and Engineering

7. Testing Basics Basics

7.1 Test Stages

7.2 Test Strategies

7.2 Testing Basics – Test Strategies

42

Peter Müller – Software Architecture and Engineering

Testing Steps

Select what will be tested

Define test cases

Select test strategy

Create test oracle

What parts of the system?

What aspects of the system?

What integration strategy?

How is the test data determined?

What are the test data?

How is the test carried out?

What are the expected results?

Defined before executing tests

7.2 Testing Basics – Test Strategies

43

Example: Solve Quadratic Equation

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {

 double q = b*b – 4*a*c;

 if(q > 0 && a != 0) {

 numRoots = 2;

 double r = Math.sqrt(q);

 x1 = (-b + r) / (2 * a);

 x2 = (-b - r) / (2 * a);

 } else if(q == 0) {

 numRoots = 1;

 x1 = -b / (2 * a);

 } else {

 numRoots = 0;

 }

}

Fails if a==0 and

b*b–4*a*c == 0

7.2 Testing Basics – Test Strategies

44

Strategy 1: Exhaustive Testing

 Check UUT for all possible inputs

- Not feasible, even for trivial programs

 Assuming that double represents 64-bit values, we

get (264)3  1058 possible values for a, b, c

 Programs with heap data structures have a much

larger state space!

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {

 …

}

7.2 Testing Basics – Test Strategies

45

void roots(double a, double b, double c) {

 …

}

Strategy 2: Random Testing

 Select test data uniformly

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {

 double q = b*b – 4*a*c;

 if(q > 0 && a != 0) {

 …

 } else if(q == 0) {

 numRoots = 1;

 x1 = -b / (2 * a);

 } else { … }

}

Fails if a==0 and

b*b–4*a*c == 0

The likelihood of

selecting a==0 and b==0

randomly is 1/1038

7.2 Testing Basics – Test Strategies

46

Random Testing: Observations

 Random testing focuses on generating test data

fully automatically

 Advantages

- Avoids designer/tester bias

- Tests robustness, especially handling of invalid input and

unusual actions

 Disadvantages

- Treats all inputs as equally valuable

Peter Müller – Software Architecture and Engineering

7.2 Testing Basics – Test Strategies

47

Strategy 3: Functional Testing

 Use analysis knowledge to determine test cases

that check requirements

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

a ≠ 0 and b2-4ac > 0 a = 0 and b ≠ 0

or

a ≠ 0 and b2-4ac = 0

a = 0, b = 0, and c ≠ 0

or

a ≠ 0 and b2-4ac < 0

Given three values, a, b, c,

compute all solutions of the

equation ax2 + bx + c = 0

Test each case of

the specification

7.2 Testing Basics – Test Strategies

48

Functional Testing: Observations

 Functional testing focuses on input/output behavior

- Goal: Cover all the requirements

 Attempts to find

- Incorrect or missing functions

- Interface errors

- Performance errors

 Limitations

- Does not effectively detect design and coding errors

(e.g., buffer overflow, memory management)

- Does not reveal errors in the specification (e.g., missing

cases)

Peter Müller – Software Architecture and Engineering

7.2 Testing Basics – Test Strategies

49

Strategy 4: Structural Testing

 Use design knowledge about system structure,

algorithms, data structures to determine test cases

that exercise a large portion of the code

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {

 double q = b*b – 4*a*c;

 if(q > 0 && a != 0) {

 …

 } else if(q == 0) {

 …

 } else {

 …

 }

}

Test this

case

and this

case

and this

case

Error might still be

missed, for instance,

when case is tested

with a==1, b==2, c==1

7.2 Testing Basics – Test Strategies

50

Structural Testing: Observations

 Not well suited for system test

- Focuses on code rather than on

requirements, for instance, does not

detect missing logic

- Requires design knowledge, which

testers and clients do not have (and do

not care about)

- Thoroughness would lead to highly-

redundant tests

Peter Müller – Software Architecture and Engineering

 Structural testing focuses on thoroughness

- Goal: Cover all the code

7.2 Testing Basics – Test Strategies

51

Testing Strategies: Summary

Peter Müller – Software Architecture and Engineering

Functional testing

 Goal: Cover all the

requirements

 Black-box test

 Suitable for all test stages

Structural testing

 Goal: Cover all the code

 White-box test

 Suitable for unit testing

7.2 Testing Basics – Test Strategies

Random testing

 Goal: Cover corner cases

 Black-box test

 Suitable for all test stages

52

Peter Müller – Software Architecture and Engineering

Summary

 Main objective

- Design tests that systematically uncover different classes

of errors with a minimum amount of time and effort

- A good test has a high probability of finding an error

- A successful test uncovers an error

 Secondary benefits

- Demonstrate that software appears to be working

according to specification (functional and non-functional)

- Data collected during testing provides indication of

software reliability and software quality

- Good testers clarify the specification (creative work)

7. Testing Basics

