
Peter Müller

Chair of Programming Methodology

Software Architecture

and Engineering
Test Case Selection

Spring Semester 2012

2

Peter Müller – Software Architecture and Engineering

8. Test Case Selection

8.1 Functional Testing

8.2 Structural Testing

8.1 Test Case Selection – Functional Testing

3

System Test

Applications of Functional Testing

 Black-box test a unit against its requirements

Peter Müller – Software Architecture and Engineering

Functional

test

Unit Test

Integration Test

Acceptance

test

Test interfaces

between

subsystems

During test-driven

development,

when code is not

yet written

8.1 Test Case Selection – Functional Testing

4

Peter Müller – Software Architecture and Engineering

8. Test Case Selection

8.1 Functional Testing

 8.1.1 Partition Testing

 8.1.2 Selecting Representative Values

 8.1.3 Combinatorial Testing

8.2 Structural Testing

8.1 Test Case Selection – Functional Testing

5

Finding Representative Inputs

Peter Müller – Software Architecture and Engineering

Failure

No failure

 Divide inputs into

equivalence classes

- Each possible input

belongs to one of the

equivalence classes

- Goal: some classes have

higher density of failures

 Choose test cases for

each equivalence class
Requirement

implemented

correctly

Requirement not

implemented

Requirement

implemented

incorrectly

8.1 Test Case Selection – Functional Testing

6

Equivalence Classes: Example

Peter Müller – Software Architecture and Engineering

month

Month with 28

or 29 days
month = 2

Months with

30 days
month  {4, 6, 9, 11}

Months with

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Given a month (an integer in [1;12]) and a year (an

integer), compute the number of days of the given

month in the given year (an integer in [28;31])

year

Leap

years

(year mod 4 = 0 and

year mod 100 ≠ 0) or

year mod 400 = 0

Non-leap

years

year mod 4 ≠ 0 or

(year mod 100 = 0 and

year mod 400 ≠ 0)

Invalid inputs

missing

8.1 Test Case Selection – Functional Testing

7

Equivalence Classes: Example (cont’d)

Peter Müller – Software Architecture and Engineering

month

Month with 28

or 29 days
month = 2

Months with

30 days
month  {4, 6, 9, 11}

Months with

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Invalid
month < 1 or

month > 12

Given a month (an integer in [1;12]) and a year (an

integer), compute the number of days of the given

month in the given year (an integer in [28;31])

year

Leap

years

(year mod 4 = 0 and

year mod 100 ≠ 0) or

year mod 400 = 0

Non-leap

years

year mod 4 ≠ 0 or

(year mod 100 = 0 and

year mod 400 ≠ 0)

Partitioning seems

too coarse

8.1 Test Case Selection – Functional Testing

8

Equivalence Classes: Example (cont’d)

Peter Müller – Software Architecture and Engineering

month

Month with 28

or 29 days
month = 2

Months with

30 days
month  {4, 6, 9, 11}

Months with

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Invalid
month < 1 or

month > 12

Given a month (an integer in [1;12]) and a year (an

integer), compute the number of days of the given

month in the given year (an integer in [28;31])

year

Standard leap

years

year mod 4 = 0 and

year mod 100 ≠ 0

Standard non-

leap years
year mod 4 ≠ 0

Special leap

years
year mod 400 = 0

Special non-

leap years

year mod 100 = 0 and

year mod 400 ≠ 0

8.1 Test Case Selection – Functional Testing

9

Sources of Information

 Use analysis knowledge to determine test cases

that check requirements

Peter Müller – Software Architecture and Engineering

Analysis Model

Functional

Model

Dynamic

Model

Analysis

Object Model

Input / output

behavior, valid

and invalid input

Data manipulated

by the system

System states

and protocols

8.1 Test Case Selection – Functional Testing

10

Using the Functional Model

 The functional model describes the input-output

behavior of the whole system

- Valid and invalid inputs, entry conditions

- Expected results, exit conditions

 Basis for functional system testing

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

11

Peter Müller – Software Architecture and Engineering

Using the Functional Model: Example

Actor steps

1. Authenticate (use case

Authenticate)

3. Client selects “Withdraw

CHF”

5. Client enters amount

System Steps

2. Bankomat displays options

4. Bankomat queries amount

6. Bankomat returns bank

card

7. Bankomat outputs

specified amount in CHF

Inputs Inputs

Expected

outputs

Expected

outputs

Expected

outputs

Expected

outputs

8.1 Test Case Selection – Functional Testing

Test_Case_03a Transfer_Cash_In.xls

12

Using the Analysis Object Model

 The analysis object model contains the main

concepts manipulated by the system, their

properties and relationships

- Useful to determine equivalence classes

- Useful to set up state of objects

 Relevant information

- Classes and attributes

- Subtypes

- Aggregations and multiplicities

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

13

Peter Müller – Software Architecture and Engineering

Using the Analysis Object Model: Example

Library Member

borrow(Copy)

Staff Member

borrow(Journal)

Borrowable

Copy

Journal

Book

1..*
0..1 0..*

0..1 0..*

Test both

cases

Test for

super- and

subclass

Recall: library

members may borrow

at most 6 items

(12 for staff members)

8.1 Test Case Selection – Functional Testing

14

Equivalence Classes

 Consider the operation member.borrow(copy)

Peter Müller – Software Architecture and Engineering

copy

Copy on shelf
copy has zero

library members

Copy borrowed

by library member

copy has one

library member

Copy borrowed

by staff member

copy has one

staff member

Invalid null

member

Library member
0 – 5

borrowed copies

Staff member
0 – 11

borrowed items

Invalid

library member

 more than 5

borrowed copies

Invalid

staff member

more than 11

borrowed items

8.1 Test Case Selection – Functional Testing

15

Using the Dynamic Model

 Sequence diagrams describe protocols for object

interactions

- Benefit for testing is similar to use cases

- Especially useful for integration testing

 State diagrams describe state-dependent behavior

- Different states typically require different equivalence

classes

- State defines valid input and expected output

- Expected output includes successor state

- Useful for protocols, GUIs, and objects

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

16

Peter Müller – Software Architecture and Engineering

Using the Dynamic Model: Example 1

<<Entity>>

:RequestPool
:Sensor

<<Control>>

:Controller

signal(floor)

<<Entity>>

:Engine

stop()

served(floor)

opt [floor = nextStop]

setIdle()

start

(direction)

alt [nextStop = ]

[else]

nextStop := getNext()

Test both

cases

Test both

cases

Test both

cases

8.1 Test Case Selection – Functional Testing

17

Equivalence Classes

 Consider the operation controller.signal(floor)

Peter Müller – Software Architecture and Engineering

controller

Serve only

request

floor = nextStop, and

there is no further request

Serve first

request

 floor = nextStop, and

there are further requests

Serve no

request
 floor  nextStop

8.1 Test Case Selection – Functional Testing

18

Peter Müller – Software Architecture and Engineering

Using the Dynamic Model: Example 2

Idle

Moving

request(floor)

Requested

Stop

signal(floor)

[floor = nextStop]

[pool is empty]

request(floor)

[pool is not empty] /

choose nextStop

Test all

cases

Test valid and

invalid operations

request(floor)
signal(floor)

[floor  nextStop]

Test all

cases

8.1 Test Case Selection – Functional Testing

19

Equivalence Classes

 Consider the operation controller.signal(floor)

Peter Müller – Software Architecture and Engineering

controller

Reach floor
controller is in state Moving and

floor = nextStop

Keep moving
controller is in state Moving and

floor  nextStop

Invalid state
 controller is in state Idle or

RequestedStop

8.1 Test Case Selection – Functional Testing

20

Peter Müller – Software Architecture and Engineering

8. Test Case Selection

8.1 Functional Testing

 8.1.1 Partition Testing

 8.1.2 Selecting Representative Values

 8.1.3 Combinatorial Testing

8.2 Structural Testing

8.1 Test Case Selection – Functional Testing

21

Selecting Representative Values

 Once we have partitioned the input values, we

need to select concrete values for the test cases

for each equivalence class

 Input from a range of valid values

- Below, within, and above the range

- Also applies to multiplicities on aggregations

 Input from a discrete set of valid values

- Valid and invalid discrete value

- Instances of each subclass

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

22

Boundary Testing

 Large number of errors tend to occur at

boundaries of the input domain

- Overflows

- Comparisons (‘<‘ instead of ‘<=‘, etc.)

- Missing emptiness checks (e.g., collections)

- Wrong number of iterations

Peter Müller – Software Architecture and Engineering

int abs(int x) {

 if(0 <= x) return x;

 return –x;

}

Given an integer x,

determine the

absolute value of x

x

Valid all values

Negative result for

x==Integer.MIN_VALUE

8.1 Test Case Selection – Functional Testing

23

Boundary Testing: Example

 Select elements at the “edge” of each equivalence

class (in addition to values in the middle)

- Ranges: lower and upper limit

- Empty sets and collections

Peter Müller – Software Architecture and Engineering

month

Month with 28 or 29 days month = 2

Months with 30 days month  {4, 6, 9, 11}

Months with 31 days month  {1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or month > 12

There is only one

value

Choose all

values

Choose 1 and 12

plus one more

Choose

MIN_VALUE, 0,

13, MAX_VALUE

8.1 Test Case Selection – Functional Testing

24

Boundary Testing: Example (cont’d)

Peter Müller – Software Architecture and Engineering

year

Standard leap

years

year mod 4 = 0 and

year mod 100 ≠ 0

Standard non-

leap years
year mod 4 ≠ 0

Special leap

years
year mod 400 = 0

Special non-

leap years

year mod 100 = 0 and

year mod 400 ≠ 0

Choose for instance

-200.004, -4, 4, 2012,

400.008

Choose for instance

-200.003, -1, 1, 2011,

400.009

Choose for instance

-200.000, 0, 2000,

400.000

Choose for instance

-200.100, 1900,

400.100

8.1 Test Case Selection – Functional Testing

25

Parameterized Unit Test for Leap Years

 Analogous test cases for February in non-leap

year, months with 30 days, and months with 31

days

Peter Müller – Software Architecture and Engineering

[Test]

public void TestDemo29(

 [Values(-200004, -200000, -4, 0,4, 2000, 2012, 400000, 400008)]

 int year)

{

 int d = Days(2, year);

 Assert.IsTrue(d == 29);

}

All selected values for

leap years and special

leap years

Only one

value

Expected

result

8.1 Test Case Selection – Functional Testing

26

Parameterized Unit Test for Invalid Inputs

Peter Müller – Software Architecture and Engineering

[Test]

[ExpectedException(typeof(ArgumentException))]

public void TestDemoInvalid(

 [Values(int.MinValue, 0, 13, int.MaxValue)] int month,

 [Values(-200100, -200004, -200003, -200000, -4, -1, 0, 1, 4, 1900,

 2000, 2011, 2012, 400000, 400008, 400009, 400100)] int year) {

 int d = Days(month, year);

}
All selected

values for year

Expected result:

an exception
All selected

invalid values

for month

8.1 Test Case Selection – Functional Testing

27

Coverage of State Diagrams

 We define coverage criteria to measure how

thorough a state diagram is tested

 Path Coverage: execute each possible path

- Not feasible with many nested conditionals

- Impossible for most loops

 State Coverage: visit each state

- A minimum criterion

 Transition Coverage: execute each edge

- Thorough testing

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

28

Peter Müller – Software Architecture and Engineering

Coverage Example

Idle

Moving

request(floor)

Requested

Stop

signal(floor)

[floor = nextStop]

[pool is empty]

request(floor)

[pool is not empty] /

choose nextStop

request(floor)
signal(floor)

[floor  nextStop]

One test for

state coverage

8.1 Test Case Selection – Functional Testing

29

Coverage Example (cont’d)

 Consider the operation controller.signal(floor)

Peter Müller – Software Architecture and Engineering

controller

Reach floor
controller is in state Moving and

floor = nextStop

Keep moving
controller is in state Moving and

floor  nextStop

Invalid state
 controller is in state Idle or

RequestedStop
Not required for

state coverage

Two test cases

for transition

coverage:

empty and

non-empty pool

One test case for

state coverage

8.1 Test Case Selection – Functional Testing

Not required for

coverage

30

Peter Müller – Software Architecture and Engineering

8. Test Case Selection

8.1 Functional Testing

 8.1.1 Partition Testing

 8.1.2 Selecting Representative Values

 8.1.3 Combinatorial Testing

8.2 Structural Testing

8.1 Test Case Selection – Functional Testing

31

Combinatorial Testing

 Combining equivalence classes and boundary

testing leads to many values for each input

- Twelve values for month and 17 values for year in the

Leap Year example

 Testing all possible combinations leads to a

combinatorial explosion (12 x 17 = 204 tests)

 Reduce test cases to make effort feasible

- Semantic constraints

- Combinatorial selection

- Random selection

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

32

Eliminating Combinations

 Inspect test cases for unnecessary combinations

- Especially for invalid values

- Use problem domain knowledge

 Reduces test cases from 204 to 17 + 4 + 3 + 4 = 28

Peter Müller – Software Architecture and Engineering

month

Month with 28

or 29 days
month = 2

Months with

30 days
month  {4, 6, 9, 11}

Months with

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Invalid
month < 1 or

month > 12

Test all

combinations

with year

Behavior is

independent of

year

Behavior is

independent of

year

Behavior is

independent of

year

8.1 Test Case Selection – Functional Testing

33

Eliminating Combinations: NUnit Example

Peter Müller – Software Architecture and Engineering

[Test, Sequential]

[ExpectedException(typeof(ArgumentException))]

public void TestDemoInvalid(

 [Values(int.MinValue, 0, 13, int.MaxValue)] int month,

 [Values(-200100, -200004, -200003, -200000)] int year) {

 int d = Days(month, year);

}
One value for

year for each

value for month

All selected

invalid values

for month

8.1 Test Case Selection – Functional Testing

34

Selecting Object References

 Objects are different from values because they

have identity

 When selecting test data for objects, one has to

consider object identities and aliasing

 Referenced objects lead to combination problem

Peter Müller – Software Architecture and Engineering

a1 = new Account(1000);

a2 = new Account(1000);

a1.transfer(a2, 500);

a1 = new Account(1000);

a1.transfer(a1, 500);

Might behave

differently

(e.g., deadlock)

8.1 Test Case Selection – Functional Testing

35

Selecting Object References: Example

 This is a case of combinatorial testing since it

combines the Library Member and the collection

Peter Müller – Software Architecture and Engineering

member

Library member
0 – 5

borrowed copies

Staff member
0 – 11

borrowed items

Invalid

library member

 more than 5

borrowed copies

Invalid

staff member

more than 11

borrowed items

List of 6 (12) copies List of 6 (12) copies and

very large collection

Empty list,

list of 1 and 5 (11) copies,

list without duplicates,

list with duplicates

Empty list,

list of 1 and 5 (11) copies,

list without duplicates,

list with duplicates

8.1 Test Case Selection – Functional Testing

36

Semantic Constraints for Objects

 Object invariants restrict the possible instances of a

class diagram

- Expressed as comment or OCL constraint

 In our example, assume the following invariants

- A Library Member m contains a Copy c in its collection of

borrowed items if and only if c’s Library Member is m

- For each Library Member, the collection of borrowed

items contains no duplicates

- For each Library Member, the collection of borrowed

items contains at most 6 copies (12 items for staff)

Peter Müller – Software Architecture and Engineering

Library Member Copy
0..1 0..*

8.1 Test Case Selection – Functional Testing

37

Selecting Object References: Example (cont’d)

Peter Müller – Software Architecture and Engineering

member

Library member
0 – 5

borrowed copies

Staff member
0 – 11

borrowed items

Invalid

library member

 more than 5

borrowed copies

Invalid

staff member

more than 11

borrowed items

List of 6 (12) copies List of 6 (12) copies

copy

Copy on shelf
copy has zero

library members

Copy borrowed

by library member

copy has one

library member

Copy borrowed

by staff member

copy has one

staff member

Invalid null copy is borrowed by

member,

copy is not borrowed

by member

copy is borrowed by

«member»,

copy is not borrowed

by «member»

Empty list,

list of 5 (11) copies,

list withou

Empty list,

list of 1 and 5 (11) copies

without duplicates

8.1 Test Case Selection – Functional Testing

38

Roots Example

 53 = 125 test cases for valid inputs

Peter Müller – Software Architecture and Engineering

Given three values, a, b, c,

compute all solutions of the

equation ax2 + bx + c = 0

a b c

Valid
any

value

any

value

any

value

Invalid
infinity,

NaN

infinity,

NaN

infinity,

NaN

Boundary testing:

a, b, c 

{ Double.MIN_VALUE, -5,

0, 5, Double.MAX_VALUE }

8.1 Test Case Selection – Functional Testing

39

Roots Example (cont’d)

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

a ≠ 0 and b2-4ac > 0

a = 0 and b ≠ 0

or

a ≠ 0 and b2-4ac = 0

a = 0, b = 0, and c ≠ 0

or

a ≠ 0 and b2-4ac < 0

Given three values, a, b, c,

compute all solutions of the

equation ax2 + bx + c = 0

Partitioning seems

too coarse

Partitioning seems

too coarse

Look at

dependencies

between inputs

Semantic

constraints on

combinations

Semantic

constraints on

combinations

8.1 Test Case Selection – Functional Testing

40

Roots Example (cont’d)

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

Linear

equation a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0

(Truly)

quadratic

equation
a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

Given three values, a, b, c,

compute all solutions of the

equation ax2 + bx + c = 0

Not all inputs are

covered: a=b=c=0

8.1 Test Case Selection – Functional Testing

41

Roots Example (cont’d)

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

Linear

equation a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0

(Truly)

quadratic

equation
a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

Invalid

input a = 0, b = 0, c = 0

Given three values, a, b, c, compute all

solutions of the equation ax2 + bx + c = 0;

report an error if all three values are zero

8.1 Test Case Selection – Functional Testing

42

Roots Example: Summary

 Classifying the combinations according to semantic

constraints did not reveal any irrelevant test cases

 But we did identify an omission in the specification

- It is common that testers clarify the specification

 One option is to manually choose a manageable

number of test cases such that there is at least one

test case for each semantic constraint

- Note that omitting test cases might leave errors such as

arithmetic overflow undetected

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

43

Semantic Constraints: Discussion

 Semantic constraints potentially reduce the number

of test cases

- They also help increasing the coverage

 But too many combinations remain

- Especially when there are many input values, for

instance, for the fields of objects

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

44

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

Medical Devices

Browser

Server

NASA GSFC

Network Security

Influence of Variable Interactions

 Empirical evidence

suggests that most

errors do not depend

on the interaction of

many variables

Peter Müller – Software Architecture and Engineering

Vars
Medical

Devices
Browser Server

NASA

GSFC

Network

Security

1 66% 29% 42% 68% 20%

2 97% 76% 70% 93% 65%

3 99% 95% 89% 98% 90%

4 100% 97% 96% 100% 98%

5 99% 96% 100%

6 100% 100%

 Interactions of

two or three

variables trigger

most errors

8.1 Test Case Selection – Functional Testing

45

Pairwise-Combinations Testing

 Instead of testing all possible combinations of all

inputs, focus on all possible combinations of

each pair of inputs

- Pairwise-combinations testing is identical to

combinatorial testing for two or less inputs

 Example: Consider a method with four boolean

parameters

- Combinatorial testing requires 24 = 16 test cases

- Pairwise-combinations testing requires 5 test cases:

TTTT, TFFF, FTFF, FFTF, FFFT

 Can be generalized to k-tuples (k-way testing)

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

46

Pairwise-Combinations Testing: Complexity

 For n parameters with d values per parameter, the

number of test cases grows logarithmically in n and

quadratic in d

- Handles larger number of parameters, for instance, fields

of objects

- The number d can be influenced by the tester

 Result holds for large n and d, and for all k in k-way

testing

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

47

Pairwise-Combinations Testing: Example

 Three parameters, five values each

- Double.MIN_VALUE, -5, 0, 5, Double.MAX_VALUE

- 53 = 125 test cases for combinatorial testing

- 25 test cases for pairwise-combinations testing

 Bug is still detected (depends only on a and b)

 Some cases depend on three parameters, e.g.,

invalid input

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0

a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

a = 0, b = 0, c = 0

8.1 Test Case Selection – Functional Testing

48

Pairwise-Combinations Testing: Discussion

 Pairwise-combinations testing (or k-way testing)

reduces the number of test cases significantly

while detecting most errors

 Pairwise-combinations testing is especially

important when many system configurations

need to be tested

- Hardware, operating system, database, application

server, etc.

 Should be combined with other approaches to

detect errors that are triggered by more complex

interactions among parameters

Peter Müller – Software Architecture and Engineering

8.1 Test Case Selection – Functional Testing

49

Functional Testing: Summary

Peter Müller – Software Architecture and Engineering

Functional

Requirements,

Analysis Model

Independently

Testable Feature

Representative

Values

Test Case

Specification
Test Cases

Equivalence classes,

boundary testing,

coverage

Exhaustive enumeration,

semantic constraints,

pairwise combinations

8.1 Test Case Selection – Functional Testing

50

Peter Müller – Software Architecture and Engineering

8. Test Case Selection

8.1 Functional Testing

8.2 Structural Testing

8.2 Test Case Selection – Structural Testing

51

Motivating Example

Peter Müller – Software Architecture and Engineering

public void sort(int[] a) {

 if(a == null || a.length < 2) // array is trivially sorted

 return;

 // check if array is already sorted

 for(int i = 0; i < a.length – 1; i++)

 if(a[i] < a[i + 1])

 break;

 if(i >= a.length – 1) // array is already sorted

 return;

 // use quicksort to sort the array in ascending order

}

Given a non-null array of integers, sort the

array in-place in ascending order

Error: check for

sortedness should

use ‘>’

8.2 Test Case Selection – Structural Testing

52

Motivating Example: Functional Testing

 The requirements give no clue that one should test

with an array that is sorted in descending order

Peter Müller – Software Architecture and Engineering

a

Valid
any non-

null array

Invalid null

Given a non-null array of integers, sort the

array in-place in ascending order

Choose for instance

{ }, { 1 }, { 1, 2, 3 }

8.2 Test Case Selection – Structural Testing

53

Motivating Example: Discussion

 Detailed design and coding introduce many

behaviors that are not present in the requirements

- Choice of data structures

- Choice of algorithms

- Optimizations such as caches

 Functional testing generally does not thoroughly

exercise these behaviors

- No data structure specific test cases, e.g., rotation of

AVL-tree

- No test cases for optimizations, e.g., cache misses

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

54

System Test

Applications of Structural Testing

 White-box test a unit to cover a large portion of its

code

Peter Müller – Software Architecture and Engineering

Unit Test

Integration Test

Use design

knowledge to

cover most of

the code

8.2 Test Case Selection – Structural Testing

55

Peter Müller – Software Architecture and Engineering

8. Test Case Selection

8.1 Functional Testing

8.2 Structural Testing

 8.2.1 Control Flow Testing

 8.2.2 Advanced Topics of Control Flow Testing

 8.2.3 Data Flow Testing

 8.2.4 Interpreting Coverage

8.2 Test Case Selection – Structural Testing

56

Basic Blocks

 A basic block is a sequence of statements such

that the code in a basic block:

- has one entry point: no code within it is the destination

of a jump instruction anywhere in the program

- has one exit point: only the last instruction causes the

program to execute code in a different basic block

 Whenever the first instruction in a basic block is

executed, the rest of the instructions are

necessarily executed exactly once, in order

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

57

Basic Blocks: Example

Peter Müller – Software Architecture and Engineering

public void sort(int[] a) {

 if(a == null || a.length < 2)

 return;

 for(int i = 0; i < a.length – 1; i++) {

 if(a[i] < a[i + 1])

 break;

 }

 if(i >= a.length – 1)

 return;

 qsort(a, 0, a.length);

}

8.2 Test Case Selection – Structural Testing

58

Intraprocedural Control Flow Graphs

 An intraprocedural control flow graph (CFG) of a

procedure p is a graph (N,E) where:

 N is the set of basic blocks in p plus designated

entry and exit blocks

 E contains

- an edge from a to b with condition c iff the execution of

basic block a is succeeded by the excution of basic block

b if condition c holds

- an edge (entry, a, true) if a is the first basic block of p

- edges (b, exit, true) for each basic block b that ends with

an (implicit) return statement

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

59

Control Flow Graphs: Example

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break; i++;

entry

b1 b1

b4 b4

b2
b2

b3 b3

i = 0;

8.2 Test Case Selection – Structural Testing

60

Test Coverage

 The CFG can serve

as an adequacy

criterion for test

cases

 The more parts

are executed, the

higher the chance

to uncover a bug

 “parts” can be

nodes, edges,

paths, etc.

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break; i++;

entry

b1 b1

b4 b4

b2

b2

b3 b3

i = 0;

8.2 Test Case Selection – Structural Testing

61

Test Coverage: Example

 Consider the input

a = { 3, 7, 5 }

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break; i++;

entry

b1 b1

b4 b4

b2

b2

b3 b3

i = 0;

8.2 Test Case Selection – Structural Testing

62

Statement Coverage

 Assess the quality of a test suite by measuring how

much of the CFG it executes

 Idea: one can detect a bug in a statement only by

executing the statement

- Can also be defined on basic blocks

Peter Müller – Software Architecture and Engineering

Statement Coverage =
Number of executed statements

Total number of statements

8.2 Test Case Selection – Structural Testing

63

Statement Coverage: Example

 Consider the input

a = { 3, 7, 5 }

 This single test

case executes 7

out of 10 basic

blocks

 Statement

coverage: 70%

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break; i++;

entry

b1 b1

b4 b4

b2

b2

b3 b3

i = 0;

8.2 Test Case Selection – Structural Testing

64

Statement Coverage: Example (cont’d)

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break; i++;

entry

b1 b1

b4 b4

b2

b2

b3 b3

i = 0;

 We can achieve

100% statement

coverage with

three test cases

- a = { 1 }

- a = { 5, 7 }

- a = { 7, 5 }

 The last test case

detects the bug

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b2 = (i < a.length – 1);

b4 = (i >= a.length – 1);

return;

exit

qsort(a, 0, a.length); return;

break; i++;

entry

b1 b1

b4 b4

b2

b2

b3 b3

i = 0;

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break; i++;

entry

b1 b1

b4 b4

b2

b2

b3 b3

i = 0;

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break; i++;

entry

b1 b1

b4 b4

b2

b2

b3 b3

i = 0;

8.2 Test Case Selection – Structural Testing

65

Statement Coverage: Discussion

Peter Müller – Software Architecture and Engineering

boolean contains(int[] a, int x) {

 if(a == null) return false;

 boolean found = false;

 for(int i = 0; i <= a.length; i++) {

 if(a[i] == x) {

 found = true;

 break;

 }

 }

 return found;

}

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

8.2 Test Case Selection – Structural Testing

66

Statement Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

 We can achieve 100%

statement coverage

with two test cases

- a = null

- a = { 1, 2 }, x = 2

 The test cases do not

detect the bug!

 More thorough testing

is necessary

8.2 Test Case Selection – Structural Testing

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

67

Branch Coverage

 Idea: test all possible branches in the control flow

 An edge (m, n, c) in a CFG is a branch iff there is

another edge (m, n’, c’) in the CFG with n ≠ n’

- Conveniently define branch coverage to be 100% if the

code contains no branches

Peter Müller – Software Architecture and Engineering

Branch Coverage =
Number of executed branches

Total number of branches

8.2 Test Case Selection – Structural Testing

68

Branch Coverage: Example 1

 Consider the input

a = { 3, 7, 5 }

 This single test

case executes 4

out of 8 branches

 Branch coverage:

50%

 Three test cases

needed for 100%

branch coverage

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break; i++;

entry

b1 b1

b4 b4

b2

b2

b3 b3

i = 0;

8.2 Test Case Selection – Structural Testing

69

Branch Coverage: Example 2

Peter Müller – Software Architecture and Engineering

 The two test cases

- a = null

- a = { 1, 2 }, x = 2

execute 5 out of 6

branches

 Branch coverage:

83%

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

8.2 Test Case Selection – Structural Testing

70

Branch Coverage: Example 2 (cont’d)

Peter Müller – Software Architecture and Engineering

 Achieving 100%

branch coverage

would require a test

case that runs the

loop to the end

- a = null

- a = { 1 }, x = 1

- a = { 1 }, x = 3

 The last test case

detects the bug

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

8.2 Test Case Selection – Structural Testing

71

Branch Coverage: Discussion

 Branch coverage leads to more thorough testing

than statement coverage

- Complete branch coverage implies complete statement

coverage

- But “at least n% branch coverage” does not generally

imply “at least n% statement coverage”

 Most widely-used adequacy criterion in industry

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

72

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int[] reverse(int[] a) {

 int j = a.length – 1;

 int[] res = new int[a.length];

 for(int i = 0; i < a.length; i++) {

 res[j] = a[i];

 }

 return res;

}

j = a.length – 1;

res = new int[a.length];

i = 0;

return res;

exit

res[j] = a[i];

i++;

entry

b1 b1

b1 = (i < a.length);

8.2 Test Case Selection – Structural Testing

73

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100%

branch coverage with

one test case

- a = { 1 }

 The test case does

not detect the bug!

 More thorough testing

is necessary

j = a.length – 1;

res = new int[a.length];

i = 0;

return res;

exit

res[j] = a[i];

i++;

entry

b1 b1

b1 = (i < a.length);

8.2 Test Case Selection – Structural Testing

74

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {

 int x = 1;

 int y = 1;

 if(a)

 x = 0;

 else

 y = 0;

 if(b)

 return 5 / x;

 else

 return 5 / y;

}

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

8.2 Test Case Selection – Structural Testing

75

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100%

branch coverage with

two test cases

- a = true, b = false

- a = false, b = true

 The test cases do not

detect the bug!

 More thorough testing

is necessary

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

8.2 Test Case Selection – Structural Testing

76

Path Coverage

 Idea: test all possible paths through the CFG

 A path is a sequence of nodes n1, …, nk such that

- n1 = entry

- nk = exit

- There is an edge (ni, ni+1, c) in the CFG

Peter Müller – Software Architecture and Engineering

Path Coverage =
Number of executed paths

Total number of paths

8.2 Test Case Selection – Structural Testing

77

Path Coverage: Example 1

Peter Müller – Software Architecture and Engineering

 The two test cases

- a = true, b = false

- a = false, b = true

execute two out of four

paths

 Path coverage: 50%

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

8.2 Test Case Selection – Structural Testing

78

Path Coverage: Example 1 (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100%

path coverage with four

test cases

- a = true, b = false

- a = false, b = true

- a = true, b = true

- a = false, b = false

 The two additional test

cases detect the bugs

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

8.2 Test Case Selection – Structural Testing

79

Path Coverage: Example 2

Peter Müller – Software Architecture and Engineering

boolean contains(int[] a, int x) {

 if(a == null) return false;

 boolean found = false;

 for(int i = 0; i <= a.length; i++) {

 if(a[i] == x) {

 found = true;

 break;

 }

 }

 return found;

}

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

8.2 Test Case Selection – Structural Testing

80

Path Coverage: Example 2 (cont’d)

 Number of loop

iterations is not known

statically

 An arbitrarily large

number of test cases

is needed for

complete path

coverage

Peter Müller – Software Architecture and Engineering

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1 b1

b2

b2

b3 b3

found = false;

i = 0;

8.2 Test Case Selection – Structural Testing

81

Path Coverage: Discussion

 Path coverage leads to more thorough testing than

both statement and branch coverage

- Complete path coverage implies complete statement

coverage and complete branch coverage

- But “at least n% path coverage” does not generally imply

“at least n% statement coverage” or “at least n% branch

coverage”

 Complete path coverage is not feasible for loops

- Unbounded number of paths

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

82

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int[] reverse(int[] a) {

 int j = a.length – 1;

 int[] res = new int[a.length];

 for(int i = 0; i < a.length; i++) {

 res[j] = a[i];

 }

 return res;

}

j = a.length – 1;

res = new int[a.length];

i = 0;

return res;

exit

res[j] = a[i];

i++;

entry

b1 b1

b1 = (i < a.length);

8.2 Test Case Selection – Structural Testing

83

Loop Coverage

 Idea: for each loop, test zero, one, and more than

one iterations

 Loop coverage is typically combined with other

adequacy criteria such as statement or branch

coverage

Peter Müller – Software Architecture and Engineering

Loop Coverage =

Number of executed loops

with 0, 1, and more than 1 iterations

Total number of loops * 3

8.2 Test Case Selection – Structural Testing

84

Loop Coverage: Example

Peter Müller – Software Architecture and Engineering

 The test case

- a = { 1 }

executes one out of

three possible cases

for the loop

 Loop coverage: 33%

j = a.length – 1;

res = new int[a.length];

i = 0;

return res;

exit

res[j] = a[i];

i++;

entry

b1 b1

b1 = (i < a.length);

8.2 Test Case Selection – Structural Testing

85

Loop Coverage: Example

Peter Müller – Software Architecture and Engineering

 We can achieve 100%

loop coverage with

three test cases

- a = { }

- a = { 1 }

- a = { 1, 2 }

 The last test case

detects the bug

j = a.length – 1;

res = new int[a.length];

i = 0;

return res;

exit

res[j] = a[i];

i++;

entry

b1 b1

b1 = (i < a.length);

8.2 Test Case Selection – Structural Testing

86

Measuring Coverage

 Coverage information

is collected while the

test cases execute

 Use code

instrumentation or

debug interface to

count executed basic

blocks, branches, etc.

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {

 int x = 1; int y = 1;

 if(a) {

 executedBranches[0]++; x = 0;

 } else {

 executedBranches[1]++; y = 0;

 }

 if(b) {

 executedBranches[2]++;

 return 5 / x;

 } else {

 executedBranches[3]++;

 return 5 / y;

 }

}

8.2 Test Case Selection – Structural Testing

87

Peter Müller – Software Architecture and Engineering

8. Test Case Selection

8.1 Functional Testing

8.2 Structural Testing

 8.2.1 Control Flow Testing

 8.2.2 Advanced Topics of Control Flow Testing

 8.2.3 Data Flow Testing

 8.2.4 Interpreting Coverage

8.2 Test Case Selection – Structural Testing

88

CFG: Method Calls

Peter Müller – Software Architecture and Engineering

static <E> void filter(

 Collection<E> from,

 Filter<E> f,

 Collection<E> to) {

 if(from == null) return;

 Iterator<E> i = from.iterator();

 while(i.hasNext()) {

 E e = i.next();

 if(f.apply(e))

 to.add(e);

 }

}

Iterator<E> i = from.iterator();

to.add(e);

exit

e = i.next();

b3 = f.apply(e);

entry

b1

b1

b2 = i.hasNext();

b1 = (from == null);

b2

b2

b3

b3

8.2 Test Case Selection – Structural Testing

89

Dynamically-Bound Method Calls

 Intraprocedural CFGs treat

method calls as simple

statements

 Yet, calls invoke different

code depending on the

dynamic type of the

receiver

 Testing should cover the

possible behaviors

Peter Müller – Software Architecture and Engineering

static <E> void filter(

 Collection<E> from,

 Filter<E> f,

 Collection<E> to) {

 if(from == null) return;

 Iterator<E> i = from.iterator();

 while(i.hasNext()) {

 E e = i.next();

 if(f.apply(e))

 to.add(e);

 }

}

8.2 Test Case Selection – Structural Testing

90

Testing Dynamically-Bound Method Calls

 A dynamically-bound

method call can be regarded

as a case distinction on the

type of the receiver

Peter Müller – Software Architecture and Engineering

NullFilter

apply(E e)

Duplicates

apply(E e)

Filter

apply(E e)

f.apply(e)

if(type(f) == Filter)

 f.Filter::apply(e);

else if(type(f) == NullFilter)

 f.NullFilter::apply(e);

else // type(f) == Duplicates

 f.Duplicates::apply(e);

 Now we can apply branch testing

8.2 Test Case Selection – Structural Testing

91

Testing Dynamically-Bound Calls (cont’d)

 Treating dynamically-

bound method calls as

branches leads to a

combinatorial

explosion

 Use semantic constraints

and pairwise-

combinations testing

Peter Müller – Software Architecture and Engineering

static <E> void filter(

 Collection<E> from,

 Filter<E> f,

 Collection<E> to) {

 if(from == null) return;

 Iterator<E> i = from.iterator();

 while(i.hasNext()) {

 E e = i.next();

 if(f.apply(e))

 to.add(e);

 }

} java.util contains

dozens of

collection classes

java.util contains

dozens of

collection classes

Several different

Filter classes in

the program

8.2 Test Case Selection – Structural Testing

92

Exceptions

Peter Müller – Software Architecture and Engineering

static <E> void filter(

 Collection<E> from,

 Filter<E> f,

 Collection<E> to) {

 if(from == null) return;

 if(f == null || to == null)

 throw new

 IllegalArgumentException();

 Iterator<E> i = from.iterator();

 while(i.hasNext()) {

 E e = i.next();

 if(f.apply(e))

 to.add(e);

 }

}

Iterator<E> i = from.iterator();

to.add(e);

exit

e = i.next();

b4 = f.apply(e);

entry

b1

b1

b3 = i.hasNext();

b1 = (from == null);

b3

b3

b4

b4

b2 = (f == null || to == null);

throw new

IllegalArgumentException();
b2

b2

8.2 Test Case Selection – Structural Testing

93

CFG: Exceptions

 Exceptions add a control flow edge from the basic

block where the exception is thrown to the exit

block or the block where the exception is caught

 Idea: Cover exceptional control flow like normal

control flow during testing

- Test oracle is checked when method terminates normally

Peter Müller – Software Architecture and Engineering

[Test]

[ExpectedException(typeof(ArgumentException))]

public void TestDemoInvalid(…) {

 int d = Days(month, year);

}

8.2 Test Case Selection – Structural Testing

94

Example: Documented Exceptions

Peter Müller – Software Architecture and Engineering

static <E> void filter(

 Collection<E> from,

 Filter<E> f,

 Collection<E> to) {

 if(from == null) return;

 if(f == null || to == null)

 throw new

 IllegalArgumentException();

 Iterator<E> i = from.iterator();

 while(i.hasNext()) {

 E e = i.next();

 if(f.apply(e))

 to.add(e);

 }

}

Might throw:

 UnsupportedOperationException

 ClassCastException

 NullPointerException

 IllegalArgumentException

 IllegalStateException

Might throw:

 NoSuchElementException

8.2 Test Case Selection – Structural Testing

95

Example: Documented Exceptions (cont’d)

Peter Müller – Software Architecture and Engineering

Iterator<E> i = from.iterator();

to.add(e); exit

e = i.next();

entry
b1

b1

b3 = i.hasNext();

b1 = (from == null);

b3

b3

b4

b4

b2 = (f == null || to == null);

throw new

IllegalArgumentException();
b2

b2

b4 = f.apply(e);

8.2 Test Case Selection – Structural Testing

96

Example: Undocumented Exceptions

Peter Müller – Software Architecture and Engineering

static <E> void filter(

 Collection<E> from,

 Filter<E> f,

 Collection<E> to) {

 if(from == null) return;

 if(f == null || to == null)

 throw new

 IllegalArgumentException();

 Iterator<E> i = from.iterator();

 while(i.hasNext()) {

 E e = i.next();

 if(f.apply(e))

 to.add(e);

 }

}

The example might also throw:

 ConcurrentModificationException

 NoClassDefFoundError

 NoSuchMethodError

 OutOfMemoryError

 StackOverflowError

 ThreadDeath

 VirtualMachineError

 etc.

8.2 Test Case Selection – Structural Testing

97

Example: Undocumented Exceptions (cont’d)

Peter Müller – Software Architecture and Engineering

Iterator<E> i = from.iterator();

to.add(e); exit

e = i.next();

entry
b1

b1

b3 = i.hasNext();

b1 = (from == null);

b3

b3

b4

b4

b2 = (f == null || to == null);

throw new

IllegalArgumentException();
b2

b2

b4 = f.apply(e);

It is impractical to

represent and test

all exceptional

control flow in the

CFG

8.2 Test Case Selection – Structural Testing

98

Checked vs. Unchecked Exceptions

 Many programming languages distinguish between

checked and unchecked exceptions

 Checked exceptions represent invalid conditions

outside the immediate control of the program

- Invalid user input, database problems, network outages,

absent files

 Unchecked exceptions represent defects in the

program or the execution environment

- Illegal arguments, null-pointer dereferencing, division by

zero, assertion violation, etc.

- In Java: all subclasses of RuntimeException and Error

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

99

Testing Unchecked Exceptions

 Unchecked

exceptions are not

supposed to occur

 When computing

the CFG, ignore

unchecked

exceptions thrown

by other methods

and virtual machine

- But consider throw

statements

Peter Müller – Software Architecture and Engineering

Iterator<E> i = from.iterator();

to.add(e); exit

e = i.next();

b4 = f.apply(e);

entry

b1

b1

b3 = i.hasNext();

b1 = (from == null);

b3

b3

b4

b4

b2 = (f == null || to == null);

throw new

IllegalArgumentException();

b2

b2

8.2 Test Case Selection – Structural Testing

100

Unchecked Exceptions: Bad Example

 Never use unchecked exceptions to encode control

flow!

Peter Müller – Software Architecture and Engineering

static boolean contains(String[] a, String s) {

 for(int i = 0; i < a.length; i++) {

 try {

 if(a[i].equals(s))

 return true;

 } catch(NullPointerException e) {

 i++;

 }

 }

 return false;

}

Exceptional

control flow

will not be

covered

Bug remains

undetected

8.2 Test Case Selection – Structural Testing

101

Bad Example Fixed

Peter Müller – Software Architecture and Engineering

static boolean contains(String[] a, String s) {

 for(int i = 0; i < a.length; i++) {

 if(a[i] != null) {

 if(a[i].equals(s))

 return true;

 } else {

 i++;

 }

 }

 return false;

}

Normal

control flow

will be

covered

Bug will be

detected

8.2 Test Case Selection – Structural Testing

102

Testing Checked Exceptions

 Checked exceptions represent regular control

flow that needs to be tested

- Include control flow in CFG, testing, and coverage

 In Java, checked exceptions are declared in

method signatures

 For each call, add appropriate control flow edges

Peter Müller – Software Architecture and Engineering

interface RemoteBuffer extends Remote {

 void put(String s) throws RemoteException;

}

8.2 Test Case Selection – Structural Testing

103

Checked Exceptions: Example

Peter Müller – Software Architecture and Engineering

class Producer {

 RemoteBuffer b;

 void produce() throws RemoteException {

 boolean retried = false;

 boolean success = false;

 while(!success) {

 try {

 b.put("Product“);

 success = true;

 } catch(RemoteException e) {

 if(retried) throw e;

 }

 }

 }

}

Exceptional

control flow

will be

covered
Bug will be

detected

8.2 Test Case Selection – Structural Testing

104

Testing Exceptions: Summary

 Checked exceptions encode the program’s reaction

to invalid conditions in the environment

- Test like normal control flow

 Unchecked exceptions represent defects

- Test unchecked exceptions explicitly thrown by method

under test (argument validation, precondition check)

- Unchecked exceptions thrown by methods being called

indicate defect in method under test (precondition

violation) or in the called method

- Unchecked exceptions thrown by virtual machine indicate

defect in method under test (e.g., infinite recursion) or

deployment error (e.g., class not found)

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

105

Peter Müller – Software Architecture and Engineering

8. Test Case Selection

8.1 Functional Testing

8.2 Structural Testing

 8.2.1 Control Flow Testing

 8.2.2 Advanced Topics of Control Flow Testing

 8.2.3 Data Flow Testing

 8.2.4 Interpreting Coverage

8.2 Test Case Selection – Structural Testing

106

Example Revisited

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {

 int x = 1;

 int y = 1;

 if(a)

 x = 0;

 else

 y = 0;

 if(b)

 return 5 / x;

 else

 return 5 / y;

}

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

8.2 Test Case Selection – Structural Testing

107

Data Flow Testing

 Testing all paths is not

feasible

- Number grows exponentially

in the number of branches

- Loops

 Idea: Test those paths

where a computation in one

part of the path affects the

computation of another

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

8.2 Test Case Selection – Structural Testing

108

Variable Definition and Use

 A variable definition for a variable v is a basic

block that assigns to v

- v can be a local variable, formal parameter, field, or

array element

 A variable use for a variable v is a basic block that

reads the value from v

- In conditions, computations, output, etc.

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

109

Definition-Clear Paths

 A definition-clear path for a variable v is a path

n1, …, nk in the CFG such that:

- n1 is a variable definition for v

- nk is a variable use for v

- No ni (1 < i ≤ k) is a variable definition for v

(nk may be a variable definition if each assignment to v

occurs after a use)

 Note: definition-clear paths do not go from entry to

exit (in contrast to our earlier definition of path)

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

110

Definition-Use Pairs

 A definition-use pair

for a variable v is a

pair of nodes (d,u)

such that there is a

definition-clear path

d, …, u in the CFG

 We say DU-pair for

definition-use pair

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

Variable

definition

for x

Variable

definition

for x

Variable

use for x

8.2 Test Case Selection – Structural Testing

111

Definition-Use Pairs: Examples

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

8.2 Test Case Selection – Structural Testing

112

DU-Pairs Coverage

 Idea: test all paths that provide a value for a

variable use

Peter Müller – Software Architecture and Engineering

DU-Pairs Coverage =
Number of executed DU-Pairs

Total number of DU-Pairs

8.2 Test Case Selection – Structural Testing

113

DU-Pairs Coverage: Example

Peter Müller – Software Architecture and Engineering

 The two test cases

- a = true, b = false

- a = false, b = true

achieve 100% branch

coverage, but only 50%

DU-pairs coverage

 In this example, DU-pairs

coverage is equivalent to

path coverage

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

8.2 Test Case Selection – Structural Testing

114

Determining all DU-Pairs

 DU-Pairs are computed using a static reaching-

definitions analysis

 For each node n and for each variable v, compute

all variable definitions for v that possibly reach n via

a definition-clear path

 The reaching definitions at a node n are:

- The reaching definitions of n’s predecessors in the CFG

- minus the definitions killed by one of n’d predecessors

- plus the definitions made by one of n’d predecessors

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

115

Reaching Definitions: Algorithm

 Input

- pred(n) = { m | (m,n,c) is an edge in the CFG }

- succ(m) = { n | (m,n,c) is an edge in the CFG }

- gen(n) = { vn | n is a variable definition for v }

- kill(n) = { vm | n is a variable definition for v and m ≠ n }

 We compute via fixpoint iteration

- Reach(n): The reaching definitions at the beginning of n

- ReachOut(n): The reaching definitions at the end of n

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

116

Reaching Definitions: Algorithm (con’t)

Peter Müller – Software Architecture and Engineering

foreach node n do ReachOut(n) :=  end

worklist := nodes

while worklist   do

 n := any(worklist)

 remove n from worklist

 Reach(n) := Umpred(n) ReachOut(m)

 ReachOut(n) := Reach(n) \ kill(n)  gen(n)

 if ReachOut(n) has changed then

 worklist := worklist  succ(n)

 end

end

8.2 Test Case Selection – Structural Testing

117

Reaching Definitions: Example

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

1:

2:

4: 3:

6:

5:

7:

n Reach(n) ReachOut(n)

1 

2 x1, y1 x1, y1

3 x1, y1 x3, y1

4 x1, y1 x1, y4

5 x1, x3, y1, y4 x1, x3, y1, y4

6 x1, x3, y1, y4 x1, x3, y1, y4

7 x1, x3, y1, y4 x1, x3, y1, y4

8.2 Test Case Selection – Structural Testing

118

From Reaching Definitions to DU-Pairs

 The set of DU-pairs is easily determined as

{ (d,u) | u is a variable use for v and vd  Reach(u) }

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

1:

2:

4: 3:

6:

5:

7:

n Reach(n)

1 

2 x1, y1

3 x1, y1

4 x1, y1

5 x1, x3, y1, y4

6 x1, x3, y1, y4

7 x1, x3, y1, y4

 DU-pairs for x:

(1,6), (3,6)

 DU-pairs for y:

(1,7), (4,7)

8.2 Test Case Selection – Structural Testing

119

Data Flow Testing Example

 Convert character sequence to integer

- Input format: ddec* | ‘x’(dhex*), where d is a (decimal or

hexadecimal) digit

Peter Müller – Software Architecture and Engineering

static int convert(char[] a) {

 int base; int i = 0; int val = 0;

 if (a.length == 0) return 0;

 if(a[i] == 'x') { base = 12; i = i + 1; }

 else { base = 10; }

 while(i < a.length) {

 val = val * base + Character.digit(a[i], base);

 i = i + 1;

 }

 return val;

}

8.2 Test Case Selection – Structural Testing

We assume here

that all inputs are of

the required format

120

Data Flow Testing Example: CFG

Peter Müller – Software Architecture and Engineering

val = val * base + Character.digit(a[i], base);

i = i + 1; return val; exit

entry

b1

b1

b3 = (i < a.length);

b2 = (a[i] == 'x');

b3

b3

1:

b2 b2

8.2 Test Case Selection – Structural Testing

i = 0;

val = 0;

b1 = (a.length == 0);

return 0;

base = 12;

i = i + 1;
base = 10;

2:

4:
5:

6:

7:

8:

3:

121

Data Flow Testing Example: DU-Pairs

 We get 14 DU-pairs

 DU-pairs for i:

(1,2), (1,4), (1,6), (4,6),

(7,6), (1,7), (4,7), (7,7)

 DU-pairs for val:

(1,7), (7,7), (1,8), (7,8)

 DU-pairs for base:

(4,7), (5,7)

Peter Müller – Software Architecture and Engineering

n Reach(n) ReachOut(n)

1  i1, val1

2 i1, val1 i1, val1

3 i1, val1 i1, val1

4 i1, val1 i4, val1, base4

5 i1, val1 i1, val1, base5

6 i1, i4, i7, val1, val7,

base4, base5

i1, i4, i7, val1, val7,

base4, base5

7 i1, i4, i7, val1, val7,

base4, base5

i7, val7, base4,

base5

8 i1, i4, i7, val1, val7,

base4, base5

i1, i4, i7, val1, val7,

base4, base5

8.2 Test Case Selection – Structural Testing

122

Data Flow Testing Example: Bug

 Consider the

test cases

- a = { }

- a = { ‘x’ }

- a = { ‘1’ }

- a = { ‘1’, ‘2’ }

 The bug is not

detected!

Peter Müller – Software Architecture and Engineering

static int convert(char[] a) {

 int base; int i = 0; int val = 0;

 if (a.length == 0) return 0;

 if(a[i] == 'x‘) { base = 12; i = i + 1; }

 else { base = 10; }

 while(i < a.length) {

 val = val * base + Character.digit(a[i], base);

 i = i + 1;

 }

 return val;

}

 Branch and loop coverage: 100%

 DU-pairs missed: (4,7) for i, base (coverage 86%)

8.2 Test Case Selection – Structural Testing

 Branch and loop coverage: 100%

123

Data Flow Testing Example: Observation

 DU-pairs for i and val include (7,7)

 Complete DU-pairs coverage requires more than

one loop iteration

Peter Müller – Software Architecture and Engineering

static int convert(char[] a) {

 int base; int i = 0; int val = 0;

 if (a.length == 0) return 0;

 if(a[i] == 'x') { base = 16; i = i + 1; }

 else { base = 10; }

 while(i < a.length) {

 val = val * base + Character.digit(a[i], base);

 i = i + 1;

 }

 return val;

}

8.2 Test Case Selection – Structural Testing

124

Determining all DU-Pairs: Heap Structures

 Determining

whether a definition

and a usage refer to

the same heap

location, a static

analysis would need

arithmetic and

aliasing information

 Static analysis has

to over-approximate

Peter Müller – Software Architecture and Engineering

static void repeat(int[] from, int[] to) {

 int i = 0;

 if (from.length == 0) return;

 while(i < to.length) {

 to[i] = to[i] + from[i % from.length];

 i = i + 1;

 }

}

8.2 Test Case Selection – Structural Testing

125

Measuring DU-Pairs Coverage

 Keep track of currently active definitions

- defCover: Variable → Block

 Keep track of executed DU-pairs

- useCover: Variable × Blockdef × Blockuse → 

 Maps can be encoded as arrays, indexed by

identifiers for variables and basic blocks

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

126

Measuring DU-Pairs Coverage: Example

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {

 int x = 1; defCover[“x”] = 0;

 int y = 1; defCover[“y”] = 0;

 if(a) {

 x = 0; defCover[“x”] = 1;

 } else {

 y = 0; defCover[“y”] = 2;

 }

 if(b) {

 useCover[“x”, defCover[“x”], 3]++;

 return 5 / x;

 } else {

 useCover[“y”, defCover[“y”], 4]++;

 return 5 / y;

 }

}

8.2 Test Case Selection – Structural Testing

Current variable

definition for x is

basic block 0

Current variable

definition for x is

basic block 1

DU-pair for variable x

with current definition

and use-block 3 has

been executed

127

Data Flow Testing: Discussion

 Data flow testing complements control flow testing

- Choose test cases that maximize branch and DU-pairs

coverage

 Like with path coverage, not all DU-pairs are

feasible

- Static analysis over-approximates data flow

- Complete DU-pairs coverage might not be possible

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

128

Data Flow Testing: Discussion (cont’d)

 DU-pairs coverage is not the only adequacy

criterion for data flow testing

- All definitions, all predicate-usages, all simple-DU-paths,

etc.

 DU-pair “anomalies” may point to errors

- Use before definition (not possible for locals in Java)

- Double definition without use

- Termination after definition without use

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

129

Peter Müller – Software Architecture and Engineering

8. Test Case Selection

8.1 Functional Testing

8.2 Structural Testing

 8.2.1 Control Flow Testing

 8.2.2 Advanced Topics of Control Flow Testing

 8.2.3 Data Flow Testing

 8.2.4 Interpreting Coverage

8.2 Test Case Selection – Structural Testing

130

Interpreting Coverage

 High coverage does not mean that code is well

tested

- But: low coverage means that code is not well tested

- Make sure you do not blindly optimize coverage but

develop test suites that test the code well

 Coverage tools do not only measure coverage

metrics, they also identify which parts of the code

have not been tested

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

131

Experimental Evaluation: Approach

 Several studies investigate the benefit of coverage

metrics

- Andrews et al.: “Using Mutation Analysis for Assessing

and Comparing Testing Coverage Criteria”, TR SCE-06-

02, 2006

 Approach

- Seed defects in the code

- Develop test suites that satisfy various coverage criteria

- Measure how many of the seeded defects are found by

the test suits

- Extrapolate to “real” defects in the code

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

132

Experimental Evaluation: Some Findings

 The test suite size grows exponentially in the

coverage

 More demanding coverage criteria lead to larger

test suites, but do not detect more bugs

- Block, decision, data flow coverage

 There is no significant difference in the cost-

efficiency of the various coverage metrics

 All adequacy criteria lead to test suites that detect

more bugs then random testing, especially for large

test suites

Peter Müller – Software Architecture and Engineering

8.2 Test Case Selection – Structural Testing

