
Modules and Abstract Data Types∗

Andreas Lochbihler

Department of Computer Science
ETH Zurich

∗Presented by Ralf Sasse

Functional Programming

Andreas Lochbihler 1

Grouping definitions

• Until now, all our functions, types, and classes are in one file.

� Does not scale to large programs (name space pollution).

� To reuse a function in another project, you have to copy it.

• A module groups functions, types, and classes into a component.

� Reuse by importing

import Data.List
import Data.Char

� Mechanisms to control name space pollution.

� Gains in abstraction by controlling exports.

Hide internals by explicitly listing exports.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 2

Running example: FIFO Queues
data Queue a = Queue [a] ? pull (push 3

deriving (Show) (push 2
(push 1 empty)))

empty :: Queue a (1,Queue [2,3])
empty = Queue []

isEmpty :: Queue a -> Bool
isEmpty (Queue xs) = null xs

push :: a -> Queue a -> Queue a
push x (Queue xs) = Queue (xs ++ [x])

pull :: Queue a -> (a, Queue a)
pull (Queue (x:xs)) = (x, Queue xs)
pull _ = error errEmptyQueue

top :: Queue a -> a
top (Queue (x:xs)) = x
top _ = error errEmptyQueue

errEmptyQueue = "Queue is empty"
Functional Programming Spring Semester, 2014

Andreas Lochbihler 3

Modules

• Declaration: File starts with

module <module name> where

Convention: The module name is the same as the file name.

• Example:

module Queue where

data Queue a = Queue [a]

empty :: Queue a
empty = ...

• If there’s no module declaration, Haskell automatically inserts

module Main where.

That’s why ghci’s prompt says *Main>.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 4

Export List

• The export list specifies which functions and types a client of the

module can use.

module Queue
(Queue(..) -- export Queue data type and all its constructors
, empty, isEmpty, push, pull, top
) -- Do not export errQueueEmpty

where

data Queue a = Queue
...

• Corresponds to public modifier in Java, C++, and C#.

• Without export list, everything is exported.

Every module should specify its exports explicitly.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 5

Module import

• Import modules immediately after module declaration.

module Tree where

import qualified Queue as Q
import Data.Char (ord)

f x = ... ord ... Q.empty ...
g (Q.Queue xs) = ...

• Recommended forms of import:

� Qualified import: import qualified Queue as Q

import all exported names with explicit prefix

� Selective import: import Queue (push, pop)

specify list of imported names

• Prelude is imported automatically.
Functional Programming Spring Semester, 2014

Andreas Lochbihler 6

Abstract data types
• Constructors determine the representation of the data type.

If exported, clients can pattern-match and directly access

representation. They are like public fields in Java/C++/C#.

import qualified Queue as Q
g (Q.Queue xs) = ... -- direct access to implementation

• Violates encapsulation:

Cannot change implementation. Cannot ensure invariants.

• Do not export datatype constructors to get an ADT.

� Provide functions to build values.

� Provide accessor functions to destruct datatype (get methods).

module Queue (Queue, -- export only datatype Queue, not constructors
empty, isEmpty, push, pull, top, toList) where

toList (Queue xs) = xs
Functional Programming Spring Semester, 2014

Andreas Lochbihler 7

More Efficient Queues
module Queue (Queue, empty, isEmpty, push, pull, top, toList) where

-- second list caches pushed elements in reversed order until they are pulled
data Queue a = Queue [a] [a] deriving (Show)

toList (Queue xs ys) = xs ++ reverse ys
empty = Queue [] []
isEmpty (Queue xs ys) = null xs && null ys

push x (Queue xs ys) = Queue xs (x:ys)

pull (Queue [] []) = error "Queue is empty."
pull (Queue (x:xs) ys) = (x, Queue xs ys)
pull (Queue [] ys) = pull (Queue (reverse ys) [])

top = fst . pull

ADT ensures that clients work unchanged with both implementations.

? push 4 (push 3 (snd (pull (push 2 (push 1 empty)))))
Queue [2] [4,3]

Functional Programming Spring Semester, 2014

Andreas Lochbihler 8

Module Summary

module Queue (Queue, empty, push, toList) where
import Data.List (reverse)
data Queue a = Queue [a] [a]
empty = Queue [] []
toList (Queue xs ys) = xs ++ reverse ys

• Group types, functions, and classes into components.

• Export lists control exports.

• Qualified or selective imports avoid namespace pollution.

• Encapsulation: Hide datatype representation by not exporting

constructors.

� Export functions, not constructors, to build and destruct values.

� Raise level of abstraction.

Functional Programming Spring Semester, 2014

