
Software Architecture and
Engineering: Part II

ETH Zurich, Spring 2014
Prof. Martin Vechev

Martin Vechev

Announcements

• Andrei Dan’s exercise group merges into the
other groups.

• Lectures slides will be uploaded typically a day
before the lecture

• Anonymous Feedback form:

http://tinyurl.com/ogbvbfx

2

Martin Vechev

SAE: Part II

 Static
Analysis

 Project:
Build Static
 Analyzer

 Alias
Analysis

Relational
 Analysis

Interval
Analysis

Semantics
 &
 Theory

Memory
 Safety

 Soot Java
 framework

 Apron
Library

 Symbolic
 Reasoning

Synthesis

 Concolic
 Execution

 Symbolic
 Execution

 Web &
 Mobile
 Apps

 Race
Detection

 Context
Bounded Dynamic

 Analysis

Martin Vechev

SAE: Part II

 Static
Analysis

 Project:
Build Static
 Analyzer

 Alias
Analysis

Relational
 Analysis

Interval
Analysis

Semantics
 &
 Theory

Memory
 Safety

 Soot Java
 framework

 Apron
Library

 Symbolic
 Reasoning

Synthesis

 Concolic
 Execution

 Symbolic
 Execution

 Web &
 Mobile
 Apps

 Race
Detection

 Context
Bounded Dynamic

 Analysis

Today’s
Lecture

Today’s
Lecture

Martin Vechev 5

Semantics

 Why Formal Semantics?

 Syntax of a SPL language

 Operational Semantics of SPL

Martin Vechev

Why Formal Semantics?

• Would this C program seg fault ?

6

int main(void) {
 (char) NULL;
 return 0;
}

Martin Vechev

Why Formal Semantics?

• Can this C program ever enter the branch ?

7

int x;
…
if (x + 1 < x)
{
 printf(“Overflow”);
}

Martin Vechev

Why Formal Semantics?

• What does this C program return ?

8

int main(void) {
 int x = 0;
 return (x = 1) + (x = 2);
}

Martin Vechev

Why Formal Semantics?

• Is there a division-by-zero in this C program ?

9

int d = 5;
int setDenom(int x) {
 return d = x;
}

int main(void) {
 return (10/d) + setDenom(0);
}

Martin Vechev

Why Formal Semantics?

• Understand what a program does

• Implement a language
– generate an interpreter/compiler

• Reasoning about program correctness

– if you don’t know what it does, how do you know
its correct?

10

Martin Vechev

Semantics = assigning meaning to
programs

“mathematical models of and methods
for describing and reasoning about the

behavior of programs”

11

Martin Vechev 12

a  AExp set of arithmetic expressions
b  BExp set of boolean expressions
s  Stmt set of statements

x  Var set of integer variables
v  Z set of integer constants

a ::= v | x | a1 + a2 | a1 – a2 | a1  a2

b ::= true | false |  b | b1  b2 | b1  b2 | a1 = a2 | a1  a2

s ::= x := a | skip | s1;s2 | if b then s1 else s2 | while b do s

• variables are not declared
• expressions have no side-effects, all side-effects in statements
• only basic statements: no functions, heap, exceptions,…
• semantics usually specified at abstract syntax level

x, a, b, s are called meta-variables

  Lab set of labels

The SPL Language: Syntax

Martin Vechev

Sample Programs

13

x := 5;
while (0  x) do
 x := x – 1;

• Is this a SPL program ?

Martin Vechev

Sample Programs

14

x := 5;
while (0  x) do
 x := x – 1;

• Is this a SPL program ?

YES

Martin Vechev

Sample Programs

15

• Is this a SPL program ?

x := true + 5;
while (0  x) do
 x := x – 1;

Martin Vechev

Sample Programs

16

• Is this a SPL program ?

x := true + 5;
while (0  x) do
 x := x – 1;

NO

Martin Vechev

Sample Programs

17

• Is this a SPL program ?

x := 5;
while (false) do
 x := false;

Martin Vechev

Sample Programs

18

• Is this a SPL program ?

x := 5;
while (false) do
 x := false;

NO

Martin Vechev

Semantics: main questions

• What is the meaning of an expression?

• What is the meaning of a statement?

• How is such a meaning defined?

19

Martin Vechev

 Semantics: three approaches

• Operational Semantics
– How would I execute the statement ?

• Denotational Semantics

– What is the statement computing ?

• Axiomatic Semantics
– What is true after a statement is executed ?

20

Martin Vechev

 Semantics: three approaches
• Operational Semantics

– define a transition system, transition relation describes evaluation
steps of a program

• Denotational Semantics

– define an input/output relation that assigns meaning to each
construct (denotation)

• Axiomatic Semantics

– define the effect of each construct on logical statements about
program store (assertions)

21

Martin Vechev

Operational Semantics

22

int double1(int x) {

 int t = 0;

 t = t + x;

 t = t + x;

 return t;

}

int double2(int x) {

 int t = 2*x;

 return t;

}

[t  0, x  2]

x  2

[t  2, x  2]

[t  4, x  2]

[t  4, x  2]

[t  4, x  2]

Martin Vechev

Denotational Semantics

23

λx.2  x

λx.2  x

int double1(int x) {

 int t = 0;

 t = t + x;

 t = t + x;

 return t;

}

int double2(int x) {

 int t = 2*x;

 return t;

}

Martin Vechev

Axiomatic Semantics

24

int double1(int x) {

 { x = x0 }

 int t = 0;

 { x = x0 ∧ t = 0 }
 t = t + x;

 {x = x0 ∧ t = x0 }
 t = t + x;

 {x = x0 ∧ t = 2*x0 }
 return t;

}

int double2(int x) {
 { x = x0 }
 int t = 2x;
 { x = x0 ∧ t = 2*x0 }
 return t;
}

Martin Vechev

 Next: operational semantics

25

Martin Vechev

Operational Semantics
• Specifies how expressions and statements

should be evaluated

• Evaluation depends on the shape of the

expression/statement:
– 1,2,3, … do not evaluate any further
– x + y is evaluated further

• Think of it as an interpreter

26

Martin Vechev

Operational Semantics
• Evaluation depends on values of variables

– what does x + y evaluate to ?
– depends on the values of x and y

• Values of variables at any moment in time are

given by a function   Store = Var  Z
– Z is the set of integers
– to simplify presentation we assume Store denotes

total functions
– if  is such that x  5 and y  3, then x + y is 8

27

Martin Vechev

 Operational Semantics for SPL
• Configurations: c   where  = (Stmt  Store)  Store

• <S, > is a configuration
•  is also a configuration: a terminal configuration. All other

configurations are non-terminal

• Transitions:   
• steps between configurations

• Transition system: (, , I, F)
– I  : initial configurations
– F  Store: final configurations

28

Martin Vechev

 Operational Semantics for SPL

• We write c  c’ when (c, c’) ∈ 

• * denotes the reflexive transitive closure of

the relation . We say c  * c’ when:
– c = c0 and cn = c’
– there is a sequence c0  c1  … cn for some n ≥ 0

29

Martin Vechev

Notation: Rules of Inference

30

Hypothesis1 … Hypothesisn

Conclusion

A is true B is true

A  B is true
Example:

 These are called
 evaluation rules

Conclusion

Evaluation rules
with no premises
are called axioms

Martin Vechev

 Next: operational semantics of SPL

31

Martin Vechev

Operational Semantics of SPL

• There are two kinds: big-step and small-step

• Big-step
– c  c’ describes the entire computation

• Small-step

– c  c’ describes a single step of a larger computation

32

Martin Vechev

 Small Step vs. Big Step

33

c0  c1 c1  c2 c2  c3

c0  c3

small step

big step

Martin Vechev

Operational Semantics of SPL

Next, we will give semantics of SPL. The statements
will be evaluated in a small-step style, while the
expressions will be evaluated in big-step style.

34

Martin Vechev

 Auxiliary Relations

35

• To describe the semantics of AExp and BExp we use two
auxiliary relations

for AExp: a  (AExp  Store)  Z
for BExp: b  (BExp  Store)  {true, false}

• Judgments such as

 a ,  a v

are read as: “expression a evaluates to v in store ”
Boolean expressions read similarly

Martin Vechev

 Evaluation rules for AExp

36

a1 ,  a v1 a2 ,  a v2

 a1 + a2 ,  a v1 + v2

 x ,  a (x)

Martin Vechev

 Evaluation rules for BExp

37

a1 ,  a v1 a2 ,  a v2

 a1  a2 ,  b bv
 bv is v1  v2

a1 ,  a v1 a2 ,  a v2

 a1 = a2 ,  b bv
 bv is v1 == v2

 b1  b2 ,  b ???

What about this ?

Martin Vechev

 Evaluation rules for BExp

38

a1 ,  a v1 a2 ,  a v2

 a1  a2 ,  b bv
 bv is v1  v2

 b1 ,  b false

 b1  b2 ,  b false

a1 ,  a v1 a2 ,  a v2

 a1 = a2 ,  b bv
 bv is v1 == v2

 b2 ,  b false

 b1  b2 ,  b false

 b1 ,  b true

 b1  b2 ,  b true

 b2 ,  b true
 short-circuit
 evaluation

Martin Vechev

 How to read the rules

• Top-down: like inference rules
– If we know hypothesis holds, conclusion holds
– If and then

• Bottom-up: read by inversion

– Suppose we want to evaluate
– Lets look at rules with conclusion that has
– Here: only 1 rule has it as a conclusion (the addition rule)
– Repeat a recursive tree-walk

39

x ,  a 5 y ,  a 6 x + y ,  a 11

x + y ,  a 11

x + y , 

Martin Vechev

Example: Derivation Tree

40

 (x + 3)  (y + 4) ,  where : x  1, y  2 Evaluate this:

Martin Vechev

Example: Derivation Tree

41

 (x + 3)  (y + 4) ,  where : x  1, y  2

x + 3,  a 4 y + 4 ,  a 6

 (x + 3)  (y + 4) ,  a 24

x ,  a 1 3 ,  a 3

 x + 3 ,  a 4

y ,  a 2 4 ,  a 4

 y + 4 ,  a 6

 x ,  a 1 y ,  a 2

Evaluate this:

Martin Vechev

Evaluation of Statements

• Evaluating a statement produces a new store
– s ,   s’ , ’

• Evaluation order is important

– In s1 ; s2 s1 is evaluated before s2

– In if true then s1 else s2 s2 is not evaluated

• Some constructs have multiple rules
– conditionals and while

 42

Martin Vechev

Evaluation rules for Stmt I

43

a ,  a v

x:= a,    x:= v , 

s1 ,   s2 , 1

 s1 ; s3 ,   s2 ; s3 , 1 skip,   

x:= v,   [x  v]

s1 ,   1

 s1 ; s2 ,   s2 , 1

assignment not a single step

Martin Vechev

Evaluation rules for Stmt II

44

 if true then s1 else s2 ,   s1 , 

 while b do s,   ???

if false then s1 else s2 ,   s2 , 

 if b1 then s1 else s2 ,   if bv then s1 else s2 ,  

b1 ,  b bv

Martin Vechev

Evaluation rules for Stmt II

45

 if true then s1 else s2 ,   s1 , 

 while b do s,   if b then (s; while b do s) else skip, 

 if false then s1 else s2 ,   s2 , 

‘while’ expressed in terms of ‘if’

 if b1 then s1 else s2 ,   if bv then s1 else s2 ,  

b1 ,  b bv

Martin Vechev

Sequences

Note that for a program S0 the steps are formed via the
relation 

That is, sequences are S0 , 0  S1 , 1  …

The relations a or b are only used to justify the step with 
In other words, a or b are only used to build the relation 

46

Martin Vechev

we understand semantics…
but what do we do with them ?

47

 next: Program Analysis

Martin Vechev 48

What is the meaning of this code?

y := x1;
z := 12;
while y > 03 do
 z := z * y4;
 y := y − 15;
 ;
y := 06

Lets look at its traces

Martin Vechev

A program trace

49

 y:=x1;z:=12; while y > 03 do z:=zy4; y:=y−15; y:=06, { x42, y0, z0 }

  z:=12; while y > 03 do z:=zy4; y:=y−15; y:=06, { x42, y42, z0 }

  while y > 03 do z:=zy4; y:=y−15; y:=06, { x42, y42, z1 }

  z:=zy4; y:=y−15; while y > 03 do z:=zy4; y:=y−15; y:=06, {x42, y42, z1 }

  …

z := 12

y > 03

Note: some steps are not shown.

y := x1

Martin Vechev

Trace Semantics

• Trace semantics are the set of all program traces
starting from initial configurations

 P = { c0  c1  …  cn-1 | n  1  c0  I   i  [0 , n - 2]: ci  ci+1 }

• Note that traces need not end in final configurations

• Traces are of finite length, but the number of initial

configurations can be infinite. Hence, an infinite
number of traces: computation is non-feasible

 50

All behaviors in
the universe

P over-approximation of P
(e.g. static analysis)

under-approximation of P
(e.g. dynamic analysis)

Approaches to Program Analysis

51

over and under
approximation
of P

(e.g. symbolic
execution)

	Slide Number 1
	Announcements
	Slide Number 3
	Slide Number 4
	Semantics
	Why Formal Semantics?
	Why Formal Semantics?
	Why Formal Semantics?
	Why Formal Semantics?
	Why Formal Semantics?
	Semantics = assigning meaning to programs
	The SPL Language: Syntax
	Sample Programs
	Sample Programs
	Sample Programs
	Sample Programs
	Sample Programs
	Sample Programs
	Semantics: main questions
	 Semantics: three approaches
	 Semantics: three approaches
	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics
	Slide Number 25
	Operational Semantics
	Operational Semantics
	 Operational Semantics for SPL
	 Operational Semantics for SPL
	Notation: Rules of Inference
	Slide Number 31
	Operational Semantics of SPL
	 Small Step vs. Big Step
	Operational Semantics of SPL
		 Auxiliary Relations
	 Evaluation rules for AExp
		Evaluation rules for BExp
		Evaluation rules for BExp
	 How to read the rules
	Example: Derivation Tree
	Example: Derivation Tree
	Evaluation of Statements
	Evaluation rules for Stmt I
	Evaluation rules for Stmt II
	Evaluation rules for Stmt II
	Sequences
	we understand semantics…�but what do we do with them ?
	What is the meaning of this code?
	A program trace
	Trace Semantics
	Slide Number 51

