
Martin Vechev Martin Vechev 

Software Architecture and 
Engineering: Part II 
 
 
 
ETH Zurich, Spring 2014 
Prof. Martin Vechev 



Martin Vechev Martin Vechev 

SAE: Part II 

  Static 
Analysis 

  Project: 
Build Static 
   Analyzer 
    

   Alias 
Analysis 

Relational 
  Analysis 

Interval 
Analysis 

Semantics   
        & 
   Theory 

Memory 
  Safety 

   Soot Java 
 framework 

 Apron 
Library 

    Symbolic 
   Reasoning 

Synthesis 

  Concolic 
 Execution 

   Symbolic 
  Execution 

   Web &   
  Mobile  
     Apps 

     Race 
Detection 

 Context 
Bounded     Dynamic 

     Analysis 

Today 

2 



Martin Vechev Martin Vechev 

Pointer & Alias Analysis 

Pointer and Alias Analysis is fundamental to reasoning about 
heap manipulating programs (pretty much all programs today).  
Virtually all practical static analysis tools (bug finding, 
verification, etc...) contain some form of pointer analysis.  
 
Due to its importance, the topic has received much attention 
from the research and developer communities. In our lecture 
today, we will study the core concepts of such pointer analyses 
and illustrate them on examples. This will enable us to use (like 
in the course project) or to build/extend such analyzers. 
 
 
 3 



Martin Vechev Martin Vechev 

Updated Language 
x         Var        set of integer variables     
p,q       PtrVar     set of variables pointing to objects 
f         Field      set of field names 

a ::= as defined in earlier lectures (arithmetic expressions) 

s ::=  
      p := newObject T 
   |  p := q            
   |  p.f := a  

   |  x := p.f   
   |  p.f := q     
   |  p := q.f       
    

create a new object of a given type 
pointer assignment 
integer heap store 
integer heap load 
pointer heap store 
pointer heap load 

b ::= p = q  | … as before           (boolean expressions) 

4 



Martin Vechev Martin Vechev 

 Let us define the concrete store 

A little more elaborate than before: 
 
• Objs : set of all possible objects 
• PtrVal = Objs       { null } 

 
•   PrimEnv = Var     Z 
• r   PtrEnv =  PtrVar    PtrVal 
• h  Heap = Objs    ( Field   {PtrVal   Z} ) 
 
A store is now:        = , r, h  Store  =  PrimEnv    PtrEnv   Heap 

5 

This is as before 



Martin Vechev Martin Vechev 

Some Common Terms 
• Aliases 

– Two pointers p and q are aliases if they point to the 
same object 
 

• Points-to pair 
– (p, A) means p holds the address of object A 

 

• Points-to pairs and aliases 
– if (p, A) and (r, A) then p and r are aliases 
 

6 



Martin Vechev Martin Vechev 

(May) Points-to Analysis 

What to do with newObject ? A program can 
create an unbounded number of objects.  
 
We need to again use abstraction.  That is, we 
need some static naming scheme for dynamically 
allocated objects 
 

7 



Martin Vechev Martin Vechev 

Abstraction: Allocation Sites 

• Divide heap into a fixed partition based on 
allocation site (the statement label) 
 

• All objects allocated at the same program point 
(label) get represented by a single “abstract object” 
 

8 



Martin Vechev Martin Vechev 

Abstraction: Allocation Sites 

9 

• Divide heap into a fixed partition based on 
allocation site (the statement label) 
 

• All objects allocated at the same program point 
(label) get represented by a single “abstract object” 
 



Martin Vechev Martin Vechev 

Abstraction: Allocation Sites 

10 

AS2 

AS2 

AS3 

AS3 

AS3 

AS1 

AS2 

AS1 

• Divide heap into a fixed partition based on 
allocation site (the statement label) 
 

• All objects allocated at the same program point 
(label) get represented by a single “abstract object” 
 



Martin Vechev Martin Vechev 

Abstract Objects 

AbsObj = { | stmt() is p := newObject T} 

The (static) abstract objects can just be the allocations sites (labels of 
statements in our simple language) of the program.  If this is too imprecise, 
we can also use the calling context. This is for instance common in library 
frameworks where the allocation site inside the library is not useful as we 
need to know where the library was called from.  Naturally, bigger calling 
context will lead to more abstract objects. 
 
If we use allocation sites (labels), we can now define the abstract objects as 
follows: 

11 



Martin Vechev Martin Vechev 

Pointer Analysis: two kinds 

•  Flow sensitive: respects the program control flow 
– a separate set of points-to pairs for every program point 
– the set at a program point represents possible may-aliases 

on some path from entry to the program  point 
 

• Flow insensitive: assume all execution orders are 
possible, abstracts away order between statements 
– good for concurrency (if not too imprecise) 

 

12 



Martin Vechev Martin Vechev 

Pointer Analysis: two kinds 

Let us first take a look at the flow sensitive analysis 
and to define its abstract domain, discuss the 
abstraction and its abstract transformers. 

13 



Martin Vechev 

 
 
 

The abstract domain is a complete lattice: 
  
   Labs  ( (PtrVar  (AbsObj))  
    (AbsObj  Field  (AbsObj)) ) 
 
That is, the abstract domain keeps two maps at every program label. The first 
map contains a mapping from a pointer variable to a set of abstract objects. 
The second map contains a mapping from the fields of abstract objects to the 
set of abstract objects they point to. 
 
Note that this lattice is of finite height. We have a finite number of abstract 
objects (i.e. AbsObj), finite number of field names (i.e. Field), and a finite 
number of pointer variables (i.e. PtrVar), and labels (i.e. Lab). Therefore, 
we will not need widening here.  

        Step 1: Define Domain 

14 



Martin Vechev 

 
 
 

The abstract domain is a complete lattice: 
  
   Labs  ( (PtrVar  (AbsObj))  
    (AbsObj  Field  (AbsObj)) ) 
 
Example of an element in the domain: 
 
   1   ( p {a5 , a10} , a5.f {a6 , a9})  
         … 
  43   … 

        Step 1: Define Domain 

15 

We read this as follows: at program label 1, pointer p points to 2 abstract 
objects a5 and a10 . Field f of abstract object a5  points to two abstract objects 
a6 and a9. In this element, we have other program labels (43 of them), where 
there are many such pointer maps, but we did not write them explicitly here.  



Martin Vechev 

 
 
 

The abstract domain is a complete lattice: 
  
   Labs  ( (PtrVar  (AbsObj))  
    (AbsObj  Field  (AbsObj)) ) 
 

        Step 1: Define Domain 

16 

What are    , ,  , , T  ? 

Example:  1   ( p {a5 , a10} , a5.f {a6 , a9})  
                                        
               1   ( p {a5 , a10 , a15} , a5.f {a6 , a9 , a52}) 

Essentially, everything is based on , , , lifted appropriately.  
It is a good exercise to define them formally.  



Martin Vechev 

 
 
 

α: ()  (Labs  ( (PtrVar  (AbsObj))  
       (AbsObj  Field  (AbsObj)) )) 
  
:  (Labs  ( (PtrVar  (AbsObj))  
         (AbsObj  Field  (AbsObj)) )))  () 

Using α,we abstract a set of states into the two kinds of maps. 
Similarly, using  ,we concretize the pointer maps to a set of states. 
 
The formal definition of α and  is left as an exercise. 
 
Let us consider an example to give an intuition. 

      Step 2: Define Abstraction 

17 



Martin Vechev 

  Example of Abstraction 
α ( 
{  5, _ , {po1,qo2} , {o1.ko3, o2.vo6} , 
   5, _ , {po2,qo3} , {o1.ko3, o2.vo3}   
} )  

Here, by _ we mean that the program has no integer variables. 
 
Suppose that: object  o1 is allocated at site a3  (program label 3) 
                             object  o2 is allocated at site a4  (program label 4) 
              object  o3 is allocated at site a9  (program label 9) 
                 object  o6 is allocated at site a31 (program label 31) 
 

                            What is the result ?            
 

18 



Martin Vechev 

  Example of Abstraction 
α ( 
{  5, _ , {po1,qo2} , {o1.ko3, o2.vo6} , 
   5, _ , {po2,qo3} , {o1.ko3, o2.vo3}   
} )  

Here, by _ we mean that the program has no integer variables. 
 
Suppose that: object  o1 is allocated at site a3  (program label 3) 
                             object  o2 is allocated at site a4  (program label 4) 
              object  o3 is allocated at site a9  (program label 9) 
                 object  o6 is allocated at site a31 (program label 31) 
 

5  ({p  {a3,a4}, q  {a4,a9}}, {a3.k{a9}, a4.v{a31,a9}}) 

19 



Martin Vechev 20 

     Step 3: Define Abstract Transformers 

We now need to define the effect of program statements manipulating 
pointers on the abstract domain.  That is, creation of objects, pointer 
assignment and conditionals: 

p = q            compare two pointers
  
p := newObject T       create new object 
 
p := q                 assign pointers 
 
p.f := q               pointer heap store 
 
p := q.f                 pointer heap load 
 

Lets us take a look at the most tricky one (pointer heap store).  The rest are 
just direct assignments. The formal definitions are left as an exercise. 



Martin Vechev 21 

    What about      p.f := q ? 

Say p  {A}, where A.f  {B}, and q  {C}. Can we have A.f  {C}  as a result? 

A 

C 

q 

z 

p 

B f A 

C 

q 

z 

p 

B 

f 

p.f := q 

Is this result correct ?        Abstract Element AE1 
       Abstract Element AE2 



Martin Vechev 22 

    What about      p.f := q ? 

To see why this is not correct, we need to think what the left side means in 
the concrete and what the right side means in the concrete. 

A 

C 

q 

z 

p 

B f A 

C 

q 

z 

p 

B 

f 

p.f := q 

       Abstract Element AE1        Abstract Element AE2 



Martin Vechev 23 

       A Counter-Example in the Concrete 

O1 

z 

p f 

p.f := q 

O2 O3 

null 

O4 q 

O1 

z 

p f 

O2 O3 

O4 q 

O4 

Concrete object O1 allocated at site  A 
Concrete object O2 allocated at site  A 
Concrete object O3 allocated at site  B 
Concrete object O4 allocated at site  C 

f f 

     Possible Concrete Structure CE of AE1 
Possible Concrete Structure not  
captured by Abstract Element AE2 

The reason this structure is not captured by 
AE2 is because in AE2 we can never reach 
an object allocated at site B via pointer z, 
while here, this is possible 
  



Martin Vechev 24 

    What about      p.f := q ? 

A 

C 

q 

z 

p 

B f A 

C 

q 

z 

p 

B f p.f := q 

f 

A correct solution is to apply union on the contents of A.f and q, thereby 
obtaining that A.f  {B, C}. This is called weak updates. There are techniques 
to perform strong updates,  but we will not study them in this course.  



Martin Vechev 25 

A program which produces structure CE 
// initially x = z = p = q = null 
for  (i = 0; i < 2; i++) { 
  // allocate O1, O2 
  A:  x := newObject T1;  
  if (i == 0) 
    p := x; 
  else  
    z := x; 
} 
// allocate O3 
B:  x := newObject  T1;  
    z.f := x;  
// allocate O4 
C:  q := newObject  T1;  
x := null; 

There could be many programs which produce the structure CE 



Martin Vechev 26 

 Lets apply pointer analysis to the program 

// initially x = z = p = q = null 
for  (i = 0; i < 2; i++) { 
  // allocate O1, O2 
  A:  x := newObject T1;  
  if (i == 0) 
    p := x; 
  else  
    z := x; 
} 
// allocate O3 
B:  x := newObject  T1;  
    z.f := x;  
// allocate O4 
C:  q := newObject  T1;  
x := null; 

p  , q  , x  , z   

p  {A}, q  , x  {A}, z  {A} 

p  {A}, q  , x  {A}, z  {A} 

p  {A}, q  , x  {A}, z  {A} 

p  {A}, q  , x  {B}, z  {A} 

p  {A}, q  , x  {B}, z  {A}, 
A.f  {B} 

p  {A}, q  {C}, x  {}, z  {A}, 
A.f  {B} 

The result of pointer analysis 
        at the fixed point: 



Martin Vechev 27 

     Notes on the pointer analysis 
The pointer analysis simply applies the transformers of the pointer manipulating 
statements from slide 20 on the control-flow graph. The function is the same shape 
as Interval domain, except applied to the pointer relevant statements: 
 
 
 
           Here, Lab  A denotes the pointer analysis domain from slide 14. 

(’,action, ) 

 action(m( ’))              

T 
Fpointer(m)   = 

if  is initial label 

otherwise 

   Fpointer: (Lab  A)(Lab  A) 



Martin Vechev Martin Vechev 

Example 

28 

p :=newObject1  T1;  // A1 
q :=newObject2  T2;  // A2 
if  p=q 3 then 
    z:=p 4  
else   
    z:=q 5 

 
Allocation-site based naming (using Alab instead of just “lab” for clarity) 



Martin Vechev Martin Vechev 29 

Allocation-site based naming (using Alab instead of just “lab” for clarity) 

p :=newObject1  T1;  // A1 
q :=newObject2  T2;  // A2 
if  p=q 3 then 
    z:=p 4  
else   
    z:=q 5 

 

Result of Pointer Analysis 
p  , q  , z   

p  {A1}, q  , z   

p  {A1}, q  {A2}, z   

p  , q  , z   

p  , q  , z   

p  {A1}, q  {A2}, z   

p  {A1}, q  {A2}, z  {A2} 



Martin Vechev Martin Vechev 

A note on handling null 
In our domain so far:   p  {A1} is interpreted to mean that pointer   p can 
point to some concrete object allocated at allocation site A1 or that p can point 
to  null. 
 
This means that if our program performs   p.f := q, this interpretation 
requires the analysis to consider the case  null.f := q , meaning that the 
program can trigger a segmentation fault (in C) or an exception (in Java) .  
 
Practical analyzers often ignore null dereferences and simply continue the 
analysis, which in theory, leads to over-approximation (as they execute more than 
what the program would execute in the concrete).  Some analyzers do include the  
null  element explicitly in the abstract domain to recover more precision.  
 
Many practical analyzers (for say Java) do not however track the control flow 
triggered by the null pointer exception (which can be caught in Java). This means 
that in practice, the analysis actually computes an under-approximation. 
 

30 



Martin Vechev Martin Vechev 

A note on handling null 
For our interpretation, when we have the abstract state: 
    p  {A1}, q  {A2}, z  {A1000} 
 
and evaluate statement   if(p=q){L: //} on that state, at label L, we get: 

   
    p  ,  q  , z  {A1000} 

 
The reason is that the only way for   p and q to be equal is when the two 
pointers are null, which in turn abstracts to . 
 
However, if we had  null in the abstract domain, then  p  {A1} would mean 
that p cannot point to  null and therefore, the result at label L would be:  
 
    p  ,  q  , z   
 
meaning that essentially, the label is unreachable. 
 

31 



Martin Vechev Martin Vechev 

Flow-Sensitive: Output 

32 

A2 

A1 

p 

 3 points-to pairs 
 
 z and p do not alias 
 z and q alias 

z 

q 

Showing results at the end of the program: 



Martin Vechev Martin Vechev 

Pointer Analysis: two kinds 

• Lets now take a look at the flow insensitive 
analysis.  
– Scalable points-to analysis is typically flow-insensitive 

 
• Soot implements a few flow-insensitive analyses 

33 



Martin Vechev 

 
 
 

 
  (PtrVar  (AbsObj))  
  (AbsObj  Field  (AbsObj)) 
 
 
This abstract domain does not  keep information per label, essentially 
ignoring the control flow of the program. 
 
 

       Flow Insensitive Abstract Domain 

34 



Martin Vechev Martin Vechev 

 Flow-Insensitive Analysis 

35 

Allocation-site based naming (using Alab instead of just “lab” for clarity) 

p :=newObject1  T1;  // A1 
q :=newObject2  T2;  // A2 
if  p=q 3 then 
    z:=p 4  
else   
    z:=q 5 

 



Martin Vechev Martin Vechev 

 Flow-Insensitive Analysis 

36 

Allocation-site based naming (using Alab instead of just “lab” for clarity) 

p :=newObject1  T1;  // A1 
q :=newObject2  T2;  // A2 
 
    z:=p 4  
 
    z:=q 5 

 



Martin Vechev Martin Vechev 

 Flow-Insensitive Analysis 

37 

Allocation-site based naming (using Alab instead of just “lab” for clarity) 

Output of Analysis: 

p :=newObject1  T1;  // A1 
q :=newObject2  T2;  // A2 
 
    z:=p 4  
 
    z:=q 5 

 

p  {A1}, q  {A2}, z  {A1, A2} 



Martin Vechev Martin Vechev 

Flow-Insensitive Output 

38 

A2 

A1 

p 

 4 points-to pairs 
 
 z and q alias 
 z and p alias 

z 

q 

At any program point we have: 



Martin Vechev Martin Vechev 

Alias Analysis 
(this is a particular client of the pointer analysis) 

• Once we have performed the pointer analysis, it is trivial 
to compute alias analysis 
– but not vice versa 

 
• A function points-to (p) returns the set of all abstract 

objects that a pointer p can point to 
– Practically, frameworks like Soot contain similar call to points-to, 

where one can obtain the abstract objects a pointer points to. 
 

• Two pointers p and q may alias if: 
–  points-to (a)    points-to(b)  ∅ 

39 



Martin Vechev Martin Vechev 

Static Analysis 

In our study of static analysis, we have studied 
and seen how to work with both numerical 
domains as well as heap domains (like pointer 
analysis). Both of these are very popular 
domains when it comes to analysis of real-world 
programs. 
 
This concludes our study of static analysis and 
over-approximation. 

40 



Martin Vechev Martin Vechev 

SAE: Part II 

  Static 
Analysis 

  Project: 
Build Static 
   Analyzer 
    

   Alias 
Analysis 

Relational 
  Analysis 

Interval 
Analysis 

Semantics   
        & 
   Theory 

Memory 
  Safety 

   Soot Java 
 framework 

 Apron 
Library 

    Symbolic 
   Reasoning 

Synthesis 

  Concolic 
 Execution 

   Symbolic 
  Execution 

   Web &   
  Mobile  
     Apps 

     Race 
Detection 

 Context 
Bounded     Dynamic 

     Analysis 

41 

Completed 


	Slide Number 1
	Slide Number 2
	Pointer & Alias Analysis
	Updated Language
	 Let us define the concrete store
	Some Common Terms
	(May) Points-to Analysis
	Abstraction: Allocation Sites
	Abstraction: Allocation Sites
	Abstraction: Allocation Sites
	Abstract Objects
	Pointer Analysis: two kinds
	Pointer Analysis: two kinds
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Example
	Result of Pointer Analysis
	A note on handling null
	A note on handling null
	Flow-Sensitive: Output
	Pointer Analysis: two kinds
	Slide Number 34
		Flow-Insensitive Analysis
		Flow-Insensitive Analysis
		Flow-Insensitive Analysis
	Flow-Insensitive Output
	Alias Analysis�(this is a particular client of the pointer analysis)
	Static Analysis
	Slide Number 41

