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Why Does Software Contain Bugs?

 Our ability to predict the behavior of our 

implementations is limited

- Software is extremely complex

- No developer can understand the whole system

 We make mistakes

- Unclear requirements, miscommunication

- Wrong assumptions (e.g., behavior of operating system)

- Design errors (e.g., capacity of data structure too small)

- Coding errors (e.g., wrong loop condition)

5. Testing
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“First actual case of bug being found.”

5. Testing
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Increasing Software Reliability 

Fault Avoidance

 Detect faults statically without executing the program

 Includes development methodologies, reviews, and 

program verification

Fault Detection

 Detect faults by executing the program

 Includes testing

Fault Tolerance

 Recover from faults at runtime (e.g., transactions)

 Includes adding redundancy (e.g., n-version programming)

5. Testing
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Goal of Testing

 An error is a deviation of the observed behavior 

from the required (desired) behavior

- Functional requirements (e.g., user-acceptance testing)

- Nonfunctional requirements (e.g., performance testing)

 Testing is a process of executing a program with 

the intent of finding an error 

 A successful test is a test that finds errors

5. Testing
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Limitations of Testing

 It is impossible to completely test any nontrivial 

module or any system

- Theoretical limitations: termination

- Practical limitations: prohibitive in time and cost

Testing can only show the presence of bugs, 

not their absence. [E. W. Dijkstra]

5. Testing
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5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5. Testing – Test Stages
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Test Stages

Requirements

Elicitation

System Design

Implementation

Detailed Design Unit Test

Integration Test

System Test

5. Testing – Test Stages
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Creation of Test Harness

 Test driver

- Applies test cases to UUT including setup and clean-up

 Test stub

- Partial, temporary implementation of a component used 

by UUT

- Simulates the activity of a missing component by 

answering to the calling sequence of the UUT and 

returning back fake data

Test Stub

Test Stub

Test Driver
Unit Under 

Test (UUT)
uses

uses

5. Testing – Test Stages
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Unit Testing

 Testing individual subsystems (collection of 

classes) 

 Goal: Confirm that subsystem is correctly coded 

and carries out the intended functionality

Unit Test
Subsystem 

Code

Detailed Design

Model

5. Testing – Test Stages
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Unit Test Example (JUnit)

class SavingsAccount {

…

public void deposit( int amount ) { … }

public void withdraw( int amount ) { … }

public int getBalance( ) { … }

}

@Test

public void withdrawTest( ) {

SavingsAccount target = new SavingsAccount();

target.deposit( 300 );

int amount = 100;

target.withdraw( amount );

Assert.assertTrue( target.getBalance( ) == 200 );

}

Implement 

test driver

Create

test data

Create

test oracle

5. Testing – Test Stages
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Unit Testing: Discussion

 To achieve a reasonable test coverage, one has to 

test each method with several inputs

- To cover valid and invalid inputs

- To cover different paths through the method

Peter Müller – Software Architecture and Engineering

@Test

public void withdrawTest( ) {

SavingsAccount target = new SavingsAccount();

target.deposit( 500 );

int amount = 0;

target.withdraw( amount );

Assert.assertTrue( target.getBalance( ) == 500 );

}

Boiler-plate code 

for creating test 

data and writing 

test oracles 

5. Testing – Test Stages



13

Parameterized Unit Tests (NUnit)

 Parameterized test methods take arguments for

test data

- Decouple test driver (logic) from test data

 Test data can be specified as values, ranges, or

random values

 Requires generic test oracles

[ Test ]

public void withdrawTest( int balance, int amount ) {

SavingsAccount target = new SavingsAccount();

target.deposit( balance );

target.withdraw( amount );

Assert.IsTrue( target.getBalance( ) == balance – amount );

}

5. Testing – Test Stages
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Generic Test Oracles: Example

Peter Müller – Software Architecture and Engineering

5. Testing – Test Stages

[ Test ]

public void bubbleSortTest( ) {

int[ ] a = { 7, 2, 5, 2 };

bubbleSort( a );

int[ ] expected = { 2, 2, 5, 7 };   

Assert.AreEqual( expected, a );

}

public static void bubbleSort( int[ ] a ) {

for( int i = 0; i < a.Length - 1; i++ ) {

for( int j = i + 1; j < a.Length; j++ ) {

if( a[ i ] > a[ j ] ) 

{ int tmp = a[ i ]; a[ i ] = a[ j ]; a[ j ] = tmp; }

}

}

}

Create

test data

Create

test oracle
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Generic Test Oracles: Example

Peter Müller – Software Architecture and Engineering

5. Testing – Test Stages

[ Test ]

public void bubbleSortTest( int[ ] a ) {

int[ ] original = ( int[ ] ) a.Clone();

bubbleSort( a );

for( int i = 0; i < a.Length - 1; i++ )

Assert.IsTrue( a[ i ] <= a[ i+1 ] );

bool[ ] visited = new bool[ a.Length ];

for( int i = 0; i < a.Length; i++ ) {

int j;

for ( j = 0; j < a.Length; j++ ) {

if( !visited[ j ] && a[ i ] == original[ j ] ) 

{ visited[ j ] = true; break; }

}

Assert.IsFalse( j == a.Length );

}

}

Save test data 

for later 

comparison

Check that array 

is sorted

Check that array 

is a permutation 

of original array

Value a[ i ] is not 

in the original 

array
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Parameterized Unit Tests: Discussion

 Parameterized unit tests avoid boiler-plate code

 Writing generic test oracles is sometimes difficult

- Analogous to writing strong postconditions

 Still several test methods are needed, for instance, 

for valid and invalid input

 Parameterized unit tests are especially useful when

test data is generated automatically (see later)

5. Testing – Test Stages
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Test Execution

 Execute the test cases

 Re-execute test cases after every change

- Automate as much as possible

- For instance, after each refactoring

 Regression testing

- Testing that everything that used to work still works after 

changes are made to the system 

- Also important for system testing

5. Testing – Test Stages
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Eight Rules of Testing

1. Make sure all tests are fully 
automatic and check their 
own results

2. A test suite is a powerful 
bug detector that reduces 
the time it takes to find 
bugs

3. Run your tests frequently–
every test at least once a 
day

4. When you get a bug report, 
start by writing a unit test
that exposes the bug

5. Better to write and run 
incomplete tests than not 
run complete tests

6. Concentrate your tests on 
boundary conditions

7. Do not forget to test 
exceptions raised when 
things are expected to go 
wrong

8. Do not let the fear that 
testing can’t catch all bugs 
stop you from writing tests 
that will catch most bugs 

[M. Fowler]

5. Testing – Test Stages
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Integration Testing

 Testing groups of subsystems and eventually the 

entire system

 Goal: Test interfaces between subsystems

Subsystem 

Code

Subsystem 

Code

Subsystem 

Code

Integration 

Test

Software 

Architecture

5. Testing – Test Stages
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Integration Testing Strategy

 Typical strategies 

- Big-bang integration 

(non-incremental)

- Bottom-up integration

- Top-down integration

 Selection criteria

- Amount of test harness 

(stubs and drivers)

- Scheduling concerns

Call hierarchy

E F

DCB

A

G

5. Testing – Test Stages

 The order in which the subsystems are selected for 

testing and integration
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System Testing

 Testing the entire system

 Goal: Determine if the system meets the 

requirements (functional and non-functional)

Entire 

System

System 

Test

Requirements

Specification

5. Testing – Test Stages
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System Testing Stages

Entire System

Functional 

Test

Functional 

requirements

Performance 

Test

Non-functional 

requirements

Acceptance 

Test

Client’s understanding 

of requirements

Installation 

Test
User Environment

5. Testing – Test Stages



23

Peter Müller – Software Architecture and Engineering

Functional Testing

.

. 

 Goal: Test functionality of system

- System is treated as black box

 Test cases are designed from requirements 

analysis document

- Based on use cases

- Alternative source: user manual

 Test cases describe

- Input data

- Flow of events

- Results to check

5. Testing – Test Stages

Test_Case_03a Transfer_Cash_In.xls
Test_Case_03a Transfer_Cash_In.xls
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Acceptance Testing

 Goal: Demonstrate that the system meets customer 

requirements and is ready to use

 Performed by the client, not by the developer

 Alpha test

- Client uses the software at the developer’s site

- Software used in a controlled setting, with the developer 

ready to fix bugs

 Beta test

- Conducted at client’s site (developer is not present)

- Software gets a realistic workout in target environment

5. Testing – Test Stages
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Independent Testing

 Programmers have a hard time believing they 

made a mistake

- Plus a vested interest in not finding mistakes

- Often stick to the data that makes the program work

 Designing and programming are constructive tasks

- Testers must seek to break the software

 Testing is done best by independent testers

5. Testing – Test Stages
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Independent Testing: Responsibilities

 Performed by independent test 

team

- Exception: Acceptance test performed 

by client

 Performed by independent test 

team

 Performed by programmer

- Requires detailed knowledge of the 

code

- Immediate bug fixing 

Unit Test

Integration Test

System Test

5. Testing – Test Stages
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Independent Testing: Wrong Conclusions

 The developer should not be testing at all

- “Test before you code”

 Testers get only involved once software is done

 Toss the software over the wall for testing

- Testers and developers collaborate in developing the test 

suite

 Testing team is responsible for assuring quality

- Quality is assured by a good software process

5. Testing – Test Stages
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5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5. Testing – Test Strategies
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Testing Steps

Select what will be tested 

Define test cases

Select test strategy

Create test oracle

What parts of the system?

What aspects of the system?

What integration strategy?

How is the test data determined?

What are the test data?

How is the test carried out?

What are the expected results?

Defined before executing tests

5. Testing – Test Strategies



30

Example: Solve Quadratic Equation

Peter Müller – Software Architecture and Engineering

void roots( double a, double b, double c ) {

double q = b*b – 4*a*c;

if( q > 0 && a != 0 ) {

numRoots = 2;

double r = Math.sqrt( q );

x1 = (-b + r) / (2 * a);

x2 = (-b - r) / (2 * a);

} else if( q == 0 ) {

numRoots = 1;

x1 = -b / (2 * a);

} else {

numRoots = 0;

}

}    

x =
−b ± b2 − 4ac

2a

Fails if a==0 and 

b*b–4*a*c == 0

5. Testing – Test Strategies
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Strategy 1: Exhaustive Testing

 Check UUT for all possible inputs

- Not feasible, even for trivial programs

 Assuming that double represents 64-bit values, we 

get (264)3  1058 possible values for a, b, c

 Programs with heap data structures have a much

larger state space!

Peter Müller – Software Architecture and Engineering

void roots( double a, double b, double c ) {

…

}    

5. Testing – Test Strategies
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void roots( double a, double b, double c ) {

…

}    

Strategy 2: Random Testing

 Select test data uniformly

Peter Müller – Software Architecture and Engineering

void roots( double a, double b, double c ) {

double q = b*b – 4*a*c;

if( q > 0 && a != 0 ) { 

… 

} else if( q == 0 ) {

numRoots = 1;

x1 = -b / (2 * a);

} else { … }

}    

Fails if a==0 and 

b*b–4*a*c == 0

The likelihood of 

selecting a==0 and b==0

randomly is 1/1038

5. Testing – Test Strategies
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Random Testing: Observations

 Random testing focuses on generating test data

fully automatically

 Advantages

- Avoids designer/tester bias

- Tests robustness, especially handling of invalid input and

unusual actions

 Disadvantages

- Treats all inputs as equally valuable

Peter Müller – Software Architecture and Engineering

5. Testing – Test Strategies
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Strategy 3: Functional Testing

 Use requirements knowledge to determine test 

cases

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

a ≠ 0 and b2-4ac > 0 a = 0 and b ≠ 0

or

a ≠ 0 and b2-4ac = 0 

a = 0, b = 0, and c ≠ 0

or

a ≠ 0 and b2-4ac < 0

Given three values, a, b, c, 

compute all solutions of the 

equation ax2 + bx + c = 0

Test each case of 

the specification

5. Testing – Test Strategies
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Functional Testing: Observations

 Functional testing focuses on input/output behavior

- Goal: Cover all the requirements

 Attempts to find

- Incorrect or missing functions

- Interface errors

- Performance errors

 Limitations

- Does not effectively detect design and coding errors

(e.g., buffer overflow, memory management)

- Does not reveal errors in the specification (e.g., missing

cases)

Peter Müller – Software Architecture and Engineering

5. Testing – Test Strategies
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Strategy 4: Structural Testing

 Use design knowledge about system structure, 

algorithms, data structures to determine test cases 

that exercise a large portion of the code

Peter Müller – Software Architecture and Engineering

void roots( double a, double b, double c ) {

double q = b*b – 4*a*c;

if( q > 0 && a != 0 ) { 

… 

} else if( q == 0 ) {

…

} else { 

… 

}

}    

Test this

case

and this

case

and this

case

Error might still be

missed, for instance, 

when case is tested

with a==1, b==2, c==1

5. Testing – Test Strategies
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Structural Testing: Observations

 Not well suited for system test

- Focuses on code rather than on 

requirements, for instance, does not 

detect missing logic

- Requires design knowledge, which testers 

and clients do not have (and do not care 

about)

- Thoroughness would lead to highly-

redundant tests

Peter Müller – Software Architecture and Engineering

 Structural testing focuses on thoroughness

- Goal: Cover all the code

5. Testing – Test Strategies
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Testing Strategies: Summary

Peter Müller – Software Architecture and Engineering

Functional testing

 Goal: Cover all the 

requirements

 Black-box test

 Suitable for all test stages

Structural testing

 Goal: Cover all the code

 White-box test

 Suitable for unit testing

5. Testing – Test Strategies

Random testing

 Goal: Cover corner cases

 Black-box test

 Suitable for all test stages
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Summary

 Main objective

- Design tests that systematically uncover different classes 

of errors with a minimum amount of time and effort

- A good test has a high probability of finding an error

- A successful test uncovers an error

 Secondary benefits

- Demonstrate that software appears to be working 

according to specification (functional and non-functional)

- Data collected during testing provides indication of 

software reliability and software quality

- Good testers clarify the specification (creative work)

5. Testing
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5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5. Testing – Functional Testing
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System Test

Applications of Functional Testing

 Black-box test a unit against its requirements

Peter Müller – Software Architecture and Engineering

Functional 

test

Unit Test

Integration Test

Acceptance 

test

Test interfaces 

between 

subsystems

During test-driven 

development, 

when code is not 

yet written

5. Testing – Functional Testing
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5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.3.1 Partition Testing

5.3.2 Selecting Representative Values

5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing
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Finding Representative Inputs

Peter Müller – Software Architecture and Engineering

Failure

No failure

 Divide inputs into 

equivalence classes

- Each possible input 

belongs to one of the 

equivalence classes

- Goal: some classes have 

higher density of failures

 Choose test cases for 

each equivalence class
Requirement 

implemented 

correctly

Requirement not 

implemented

Requirement 

implemented 

incorrectly

5. Testing – Functional Testing
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Equivalence Classes: Example

Peter Müller – Software Architecture and Engineering

month

Month with 28 

or 29 days
month = 2

Months with 

30 days
month  {4, 6, 9, 11}

Months with 

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Given a month (an integer in [1;12]) and a year (an 

integer), compute the number of days of the given

month in the given year (an integer in [28;31])

year

Leap

years

(year mod 4 = 0 and

year mod 100 ≠ 0) or

year mod 400 = 0 

Non-leap 

years

year mod 4 ≠ 0 or

(year mod 100 = 0 and

year mod 400 ≠ 0)

Invalid inputs

missing

5. Testing – Functional Testing
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Equivalence Classes: Example (cont’d)

Peter Müller – Software Architecture and Engineering

month

Month with 28 

or 29 days
month = 2

Months with 

30 days
month  {4, 6, 9, 11}

Months with 

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Invalid
month < 1 or

month > 12

Given a month (an integer in [1;12]) and a year (an 

integer), compute the number of days of the given

month in the given year (an integer in [28;31])

year

Leap

years

(year mod 4 = 0 and

year mod 100 ≠ 0) or

year mod 400 = 0 

Non-leap 

years

year mod 4 ≠ 0 or

(year mod 100 = 0 and

year mod 400 ≠ 0)

Partitioning seems

too coarse

5. Testing – Functional Testing
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Equivalence Classes: Example (cont’d)

Peter Müller – Software Architecture and Engineering

month

Month with 28 

or 29 days
month = 2

Months with 

30 days
month  {4, 6, 9, 11}

Months with 

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Invalid
month < 1 or

month > 12

Given a month (an integer in [1;12]) and a year (an 

integer), compute the number of days of the given

month in the given year (an integer in [28;31])

year

Standard leap

years

year mod 4 = 0 and

year mod 100 ≠ 0

Standard non-

leap years
year mod 4 ≠ 0

Special leap 

years
year mod 400 = 0 

Special non-

leap years

year mod 100 = 0 and

year mod 400 ≠ 0

5. Testing – Functional Testing
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5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.3.1 Partition Testing

5.3.2 Selecting Representative Values

5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing
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Selecting Representative Values

 Once we have partitioned the input values, we 

need to select concrete values for the test cases 

for each equivalence class

 Input from a range of valid values

- Below, within, and above the range

- Also applies to multiplicities on aggregations

 Input from a discrete set of valid values

- Valid and invalid discrete value

- Instances of each subclass

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing
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Boundary Testing

 A large number of errors tend to occur at 

boundaries of the input domain

- Overflows

- Comparisons (‘<‘ instead of ‘<=‘, etc.)

- Missing emptiness checks (e.g., collections)

- Wrong number of iterations

Peter Müller – Software Architecture and Engineering

int abs( int x ) { 

if( 0 <= x ) return x;

return –x; 

}

Given an integer x, 

determine the

absolute value of x

x

Valid all values

Negative result for

x==Integer.MIN_VALUE

5. Testing – Functional Testing



50

Boundary Testing: Example

 Select elements at the “edge” of each equivalence 

class (in addition to values in the middle)

- Ranges: lower and upper limit

- Empty sets and collections

Peter Müller – Software Architecture and Engineering

month

Month with 28 or 29 days month = 2

Months with 30 days month  {4, 6, 9, 11}

Months with 31 days month  {1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or month > 12

There is only one

value

Choose all 

values

Choose 1 and 12 

plus one more

Choose

MIN_VALUE, 0, 

13, MAX_VALUE

5. Testing – Functional Testing
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Boundary Testing: Example (cont’d)

Peter Müller – Software Architecture and Engineering

year

Standard leap

years

year mod 4 = 0 and

year mod 100 ≠ 0

Standard non-

leap years
year mod 4 ≠ 0

Special leap 

years
year mod 400 = 0 

Special non-

leap years

year mod 100 = 0 and

year mod 400 ≠ 0

Choose for instance

-200.004, -4, 4, 2012, 

400.008

Choose for instance

-200.003, -1, 1, 2011, 

400.009 

Choose for instance

-200.000, 0, 2000, 

400.000

Choose for instance

-200.100, 1900, 

400.100

5. Testing – Functional Testing
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Parameterized Unit Test for Leap Years

 Analogous test cases for February in non-leap 

year, months with 30 days, and months with 31 

days

Peter Müller – Software Architecture and Engineering

[ Test ]

public void TestDemo29(

[ Values( -200004, -200000, -4, 0,4, 2000, 2012, 400000, 400008 ) ] 

int year ) 

{

int d = Days( 2, year );

Assert.IsTrue( d == 29 );

}

All selected values for

leap years and special

leap years

Only one

value

Expected

result

5. Testing – Functional Testing
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Parameterized Unit Test for Invalid Inputs

Peter Müller – Software Architecture and Engineering

[ Test ]

[ ExpectedException( typeof(ArgumentException) ) ]

public void TestDemoInvalid(

[ Values( int.MinValue, 0, 13, int.MaxValue ) ] int month, 

[ Values( -200100, -200004, -200003, -200000, -4, -1, 0, 1, 4, 1900, 

2000, 2011, 2012, 400000, 400008, 400009, 400100 ) ] int year ) {

int d = Days( month, year );

}
All selected

values for year

Expected result: 

an exception
All selected

invalid values

for month

5. Testing – Functional Testing
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5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.3.1 Partition Testing

5.3.2 Selecting Representative Values

5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing
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Combinatorial Testing

 Combining equivalence classes and boundary 

testing leads to many values for each input

- Twelve values for month and 17 values for year in the 

Leap Year example

 Testing all possible combinations leads to a 

combinatorial explosion (12 x 17 = 204 tests)

 Reduce test cases to make effort feasible

- Semantic constraints

- Combinatorial selection

- Random selection

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing



56

Eliminating Combinations

 Inspect test cases for unnecessary combinations

- Especially for invalid values

- Use problem domain knowledge

 Reduces test cases from 204 to 17 + 4 + 3 + 4 = 28

Peter Müller – Software Architecture and Engineering

month

Month with 28 

or 29 days
month = 2

Months with 

30 days
month  {4, 6, 9, 11}

Months with 

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Invalid
month < 1 or

month > 12

Test all 

combinations

with year

Behavior is

independent of 

year

Behavior is

independent of 

year

Behavior is

independent of 

year

5. Testing – Functional Testing
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Eliminating Combinations: NUnit Example 

Peter Müller – Software Architecture and Engineering

[ Test, Sequential ]

[ ExpectedException( typeof(ArgumentException) ) ]

public void TestDemoInvalid(

[ Values( int.MinValue, 0, 13, int.MaxValue ) ] int month, 

[ Values( -200100, -200004, -200003, -200000 ) ] int year ) {

int d = Days( month, year );

}
One value for

year for each

value for month

All selected

invalid values

for month

5. Testing – Functional Testing
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Selecting Object References

 Objects are different from values because they 

have identity

 When selecting test data for objects, one has to 

consider object identities and aliasing

 Referenced objects lead to combination problem

Peter Müller – Software Architecture and Engineering

a1 = new Account( 1000 );

a2 = new Account( 1000 );

a1.transfer( a2, 500 );

a1 = new Account( 1000 );

a1.transfer( a1, 500 );

Might behave

differently

(e.g., deadlock)

5. Testing – Functional Testing
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Roots Example

 53 = 125 test cases for valid inputs

Peter Müller – Software Architecture and Engineering

Given three values, a, b, c, 

compute all solutions of the 

equation ax2 + bx + c = 0

a b c

Valid
any

value

any

value

any

value

Invalid
infinity, 

NaN

infinity, 

NaN

infinity, 

NaN

Boundary testing:

a, b, c 

{ Double.MIN_VALUE, -5,

0, 5, Double.MAX_VALUE }

5. Testing – Functional Testing
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Roots Example (cont’d)

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

a ≠ 0 and b2-4ac > 0

a = 0 and b ≠ 0

or

a ≠ 0 and b2-4ac = 0 

a = 0, b = 0, and c ≠ 0

or

a ≠ 0 and b2-4ac < 0

Given three values, a, b, c, 

compute all solutions of the 

equation ax2 + bx + c = 0

Partitioning seems

too coarse

Partitioning seems

too coarse

Look at

dependencies

between inputs

Semantic

constraints on 

combinations

Semantic

constraints on 

combinations

5. Testing – Functional Testing



61

Roots Example (cont’d)
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Two solutions One solution No solution

Linear 

equation a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0 

(Truly) 

quadratic 

equation
a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

Given three values, a, b, c, 

compute all solutions of the 

equation ax2 + bx + c = 0

Not all inputs are

covered: a=b=c=0
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Roots Example (cont’d)
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Two solutions One solution No solution

Linear 

equation a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0 

(Truly) 

quadratic 

equation
a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

Invalid 

input a = 0, b = 0, c = 0

Given three values, a, b, c, compute all 

solutions of the equation ax2 + bx + c = 0; 

report an error if all three values are zero
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Roots Example: Summary

 Classifying the combinations according to semantic 

constraints did not reveal any irrelevant test cases

 But we did identify an omission in the specification

- It is common that testers clarify the specification

 One option is to manually choose a manageable 

number of test cases such that there is at least one 

test case for each semantic constraint

- Note that omitting test cases might leave errors such as 

arithmetic overflow undetected

Peter Müller – Software Architecture and Engineering
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Semantic Constraints: Discussion

 Semantic constraints potentially reduce the number 

of test cases

- They also help increasing the coverage

 But too many combinations remain

- Especially when there are many input values, for 

instance, for the fields of objects

Peter Müller – Software Architecture and Engineering
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0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

Medical Devices

Browser

Server

NASA GSFC

Network Security

Influence of Variable Interactions

 Empirical evidence 

suggests that most 

errors do not depend 

on the interaction of 

many variables
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Vars
Medical 

Devices
Browser Server

NASA 

GSFC

Network 

Security

1 66% 29% 42% 68% 20%

2 97% 76% 70% 93% 65%

3 99% 95% 89% 98% 90%

4 100% 97% 96% 100% 98%

5 99% 96% 100%

6 100% 100%

 Interactions of 

two or three 

variables trigger 

most errors
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Pairwise-Combinations Testing

 Instead of testing all possible combinations of all 

inputs, focus on all possible combinations of each 

pair of inputs

- Pairwise-combinations testing is identical to 

combinatorial testing for two or less inputs

 Example: Consider a method with four boolean

parameters

- Combinatorial testing requires 24 = 16 test cases

- Pairwise-combinations testing requires 5 test cases:

TTTT, TFFF, FTFF, FFTF, FFFT

 Can be generalized to k-tuples (k-way testing)

Peter Müller – Software Architecture and Engineering
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Pairwise-Combinations Testing: Complexity

 For n parameters with d values per parameter, the 

number of test cases grows logarithmically in n and 

quadratic in d

- Handles larger number of parameters, for instance, fields 

of objects

- The number d can be influenced by the tester

 Result holds for large n and d, and for all k in k-way 

testing

Peter Müller – Software Architecture and Engineering
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Pairwise-Combinations Testing: Example

 Three parameters, five values each

- Double.MIN_VALUE, -5, 0, 5, Double.MAX_VALUE

- 53 = 125 test cases for combinatorial testing

- 25 test cases for pairwise-combinations testing

 Bug is still detected (depends only on a and b)

 Some cases depend on three parameters, e.g., 

invalid input

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0 

a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

a = 0, b = 0, c = 0
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Pairwise-Combinations Testing: Discussion

 Pairwise-combinations testing (or k-way testing) 

reduces the number of test cases significantly while 

detecting most errors

 Pairwise-combinations testing is especially 

important when many system configurations need 

to be tested

- Hardware, operating system, database, application 

server, etc.

 Should be combined with other approaches to 

detect errors that are triggered by more complex 

interactions among parameters

Peter Müller – Software Architecture and Engineering
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Functional Testing: Summary

Peter Müller – Software Architecture and Engineering

Functional 

Requirements, 

Analysis Model

Independently 

Testable Feature

Representative 

Values

Test Case 

Specification
Test Cases

Equivalence classes,

boundary testing,

coverage

Exhaustive enumeration, 

semantic constraints,

pairwise combinations
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5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing
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Motivating Example

Peter Müller – Software Architecture and Engineering

public void sort( int[ ] a ) {

if( a == null || a.length < 2 ) // array is trivially sorted

return;

// check if array is already sorted

for( int i = 0; i < a.length – 1; i++ )

if( a[ i ] < a[ i + 1 ] ) 

break;

if( i >= a.length – 1 ) // array is already sorted

return;

// use quicksort to sort the array in ascending order

}

Given a non-null array of integers, sort the

array in-place in ascending order

Error: check for

sortedness should

use ‘>’ 
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Motivating Example: Functional Testing

 The requirements give no clue that one should test 

with an array that is sorted in descending order

Peter Müller – Software Architecture and Engineering

a

Valid
any non-

null array

Invalid null

Given a non-null array of integers, sort the

array in-place in ascending order

Choose for instance

{ }, { 1 }, { 1, 2, 3 } 
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Motivating Example: Discussion

 Detailed design and coding introduce many

behaviors that are not present in the requirements

- Choice of data structures

- Choice of algorithms

- Optimizations such as caches

 Functional testing generally does not thoroughly

exercise these behaviors

- No data structure specific test cases, e.g., rotation of 

AVL-tree

- No test cases for optimizations, e.g., cache misses

Peter Müller – Software Architecture and Engineering
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System Test

Applications of Structural Testing

 White-box test a unit to cover a large portion of its 

code

Peter Müller – Software Architecture and Engineering

Unit Test

Integration Test

Use design 

knowledge to 

cover most of 

the code
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5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5.4.1 Control Flow Testing

5.4.2 Advanced Topics of Control Flow Testing

5.4.3 Data Flow Testing

5.4.4 Interpreting Coverage
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Basic Blocks

 A basic block is a sequence of statements such

that the code in a basic block:

- has one entry point: no code within it is the destination of 

a jump instruction anywhere in the program

- has one exit point: only the last instruction causes the 

program to execute code in a different basic block

 Whenever the first instruction in a basic block is 

executed, the rest of the instructions are 

necessarily executed exactly once, in order

Peter Müller – Software Architecture and Engineering
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Basic Blocks: Example

Peter Müller – Software Architecture and Engineering

public void sort( int[ ] a ) {

if( a == null || a.length < 2 )

return;

for( int i = 0; i < a.length – 1; i++ ) {

if( a[ i ] < a[ i + 1 ] ) 

break;

}

if( i >= a.length – 1 )

return;

qsort( a, 0, a.length );

}
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Intraprocedural Control Flow Graphs

 An intraprocedural control flow graph (CFG) of a 

procedure p is a graph (N,E) where:

 N is the set of basic blocks in p plus designated

entry and exit blocks

 E contains

- an edge from a to b with condition c iff the execution of 

basic block a is succeeded by the excution of basic block 

b if condition c holds

- an edge (entry, a, true) if a is the first basic block of p

- edges (b, exit, true) for each basic block b that ends with

an (implicit) return statement

Peter Müller – Software Architecture and Engineering
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Control Flow Graphs: Example

Peter Müller – Software Architecture and Engineering

b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1b1

b4b4

b2
b2

b3b3

i = 0;
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Test Coverage

 The CFG can serve 

as an adequacy 

criterion for test 

cases

 The more parts 

are executed, the 

higher the chance  

to  uncover a bug

 “parts” can be 

nodes, edges, 

paths, etc.
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;
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Test Coverage: Example

 Consider the input 

a = { 3, 7, 5 }
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;
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Statement Coverage

 Assess the quality of a test suite by measuring how 

much of the CFG it executes

 Idea: one can detect a bug in a statement only by 

executing the statement

- Can also be defined on basic blocks

Peter Müller – Software Architecture and Engineering

Statement Coverage = 
Number of executed statements

Total number of statements
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Statement Coverage: Example

 Consider the input 

a = { 3, 7, 5 }

 This single test 

case executes 7 

out of 10 basic 

blocks

 Statement

coverage: 70%
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;
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Statement Coverage: Example (cont’d)

b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;

 We can achieve

100% statement

coverage with

three test cases

- a = { 1 }

- a = { 5, 7 }

- a = { 7, 5 }

 The last test case 

detects the bug

b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b2 = ( i < a.length – 1 );

b4 = ( i >= a.length – 1 );

return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;

b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;
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Statement Coverage: Discussion

Peter Müller – Software Architecture and Engineering

boolean contains( int[ ] a, int x ) {

if( a == null ) return false;

boolean found = false;

for( int i = 0; i <= a.length; i++ ) {

if( a[ i ] == x ) { 

found = true; 

break; 

} 

}

return found;

}

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;
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Statement Coverage: Discussion (cont’d)
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b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;

 We can achieve 100% 

statement coverage

with two test cases

- a = null

- a = { 1, 2 }, x = 2

 The test cases do not 

detect the bug!

 More thorough testing

is necessary

5. Testing – Structural Testing

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;
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Branch Coverage

 Idea: test all possible branches in the control flow 

 An edge (m, n, c) in a CFG is a branch iff there is

another edge (m, n’, c’) in the CFG with n ≠ n’

- Conveniently define branch coverage to be 100% if the 

code contains no branches

Peter Müller – Software Architecture and Engineering

Branch Coverage = 
Number of executed branches

Total number of branches
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Branch Coverage: Example 1

 Consider the input 

a = { 3, 7, 5 }

 This single test 

case executes 4 

out of 8 branches

 Branch coverage: 

50%

 Three test cases 

needed for 100% 

branch coverage
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;
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Branch Coverage: Example 2
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 The two test cases

- a = null

- a = { 1, 2 }, x = 2

execute 5 out of 6 

branches

 Branch coverage: 

83%

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;
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Branch Coverage: Example 2 (cont’d)
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 Achieving 100% 

branch coverage

would require a test 

case that runs the 

loop to the end

- a = null

- a = { 1 }, x = 1

- a = { 1 }, x = 3

 The last test case 

detects the bug

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;
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Branch Coverage: Discussion

 Branch coverage leads to more thorough testing

than statement coverage

- Complete branch coverage implies complete statement

coverage

- But “at least n% branch coverage” does not generally 

imply “at least n% statement coverage”

 Most widely-used adequacy criterion in industry

Peter Müller – Software Architecture and Engineering
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Branch Coverage: Discussion (cont’d)
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int[ ] reverse( int[ ] a ) {

int j = a.length – 1;

int[ ] res = new int[ a.length ];

for( int i = 0; i < a.length; i++ ) {

res[ j ] = a[ i ];

}

return res;

}

j = a.length – 1;

res = new int[ a.length ];

i = 0; 

return res;

exit

res[ j ] = a[ i ];

i++;

entry

b1 b1

b1 = ( i < a.length );
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Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100% 

branch coverage with

one test case

- a = { 1 }

 The test case does

not detect the bug!

 More thorough testing

is necessary

j = a.length – 1;

res = new int[ a.length ];

i = 0; 

return res;

exit

res[ j ] = a[ i ];

i++;

entry

b1 b1

b1 = ( i < a.length );
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Branch Coverage: Discussion (cont’d)
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int foo( boolean a, boolean b ) {

int x = 1;

int y = 1;

if( a )

x = 0;

else

y = 0;

if( b )

return 5 / x;

else

return 5 / y;

}

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Branch Coverage: Discussion (cont’d)
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 We can achieve 100% 

branch coverage with

two test cases

- a = true, b = false

- a = false, b = true

 The test cases do not 

detect the bug!

 More thorough testing

is necessary

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Path Coverage

 Idea: test all possible paths through the CFG

 A path is a sequence of nodes n1, …, nk such that

- n1 = entry

- nk = exit

- There is an edge (ni, ni+1, c) in the CFG

Peter Müller – Software Architecture and Engineering

Path Coverage = 
Number of executed paths

Total number of paths
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Path Coverage: Example 1
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 The two test cases

- a = true, b = false

- a = false, b = true

execute two out of four 

paths

 Path coverage: 50%

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Path Coverage: Example 1 (cont’d)
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 We can achieve 100% 

path coverage with four 

test cases

- a = true, b = false

- a = false, b = true

- a = true, b = true

- a = false, b = false

 The two additional test 

cases detect the bugs

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Path Coverage: Example 2

Peter Müller – Software Architecture and Engineering

boolean contains( int[ ] a, int x ) {

if( a == null ) return false;

boolean found = false;

for( int i = 0; i <= a.length; i++ ) {

if( a[ i ] == x ) { 

found = true; 

break; 

} 

}

return found;

}

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;
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Path Coverage: Example 2 (cont’d)

 Number of loop 

iterations is not known 

statically

 An arbitrarily large 

number of test cases 

is needed for 

complete path 

coverage

Peter Müller – Software Architecture and Engineering

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false; 

i = 0;
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Path Coverage: Discussion

 Path coverage leads to more thorough testing than

both statement and branch coverage

- Complete path coverage implies complete statement

coverage and complete branch coverage

- But “at least n% path coverage” does not generally imply 

“at least n% statement coverage” or “at least n% branch 

coverage”

 Complete path coverage is not feasible for loops

- Unbounded number of paths

Peter Müller – Software Architecture and Engineering
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Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int[ ] reverse( int[ ] a ) {

int j = a.length – 1;

int[ ] res = new int[ a.length ];

for( int i = 0; i < a.length; i++ ) {

res[ j ] = a[ i ];

}

return res;

}

j = a.length – 1;

res = new int[ a.length ];

i = 0; 

return res;

exit

res[ j ] = a[ i ];

i++;

entry

b1 b1

b1 = ( i < a.length );
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Loop Coverage

 Idea: for each loop, test zero, one, and more than

one iterations

 Loop coverage is typically combined with other

adequacy criteria such as statement or branch

coverage

Peter Müller – Software Architecture and Engineering

Loop Coverage = 

Number of executed loops

with 0, 1, and more than 1 iterations

Total number of loops * 3
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Loop Coverage: Example

Peter Müller – Software Architecture and Engineering

 The test case

- a = { 1 }

executes one out of 

three possible cases 

for the loop

 Loop coverage: 33%

j = a.length – 1;

res = new int[ a.length ];

i = 0; 

return res;

exit

res[ j ] = a[ i ];

i++;

entry

b1 b1

b1 = ( i < a.length );
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Loop Coverage: Example

Peter Müller – Software Architecture and Engineering

 We can achieve 100% 

loop coverage with

three test cases

- a = { }

- a = { 1 }

- a = { 1, 2 }

 The last test case 

detects the bug

j = a.length – 1;

res = new int[ a.length ];

i = 0; 

return res;

exit

res[ j ] = a[ i ];

i++;

entry

b1 b1

b1 = ( i < a.length );
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Measuring Coverage

 Coverage information  

is collected while the 

test cases execute

 Use code 

instrumentation or 

debug interface to 

count executed basic 

blocks, branches, etc.
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int foo( boolean a, boolean b ) {

int x = 1;  int y = 1;

if( a ) {

executedBranches[ 0 ]++;  x = 0;

} else {

executedBranches[ 1 ]++;  y = 0;

}

if( b ) {

executedBranches[ 2 ]++;

return 5 / x;

} else {

executedBranches[ 3 ]++;

return 5 / y;

}

}
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5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5.4.1 Control Flow Testing

5.4.2 Advanced Topics of Control Flow Testing

5.4.3 Data Flow Testing

5.4.4 Interpreting Coverage
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CFG: Method Calls

Peter Müller – Software Architecture and Engineering

static <E> void filter( 

Collection<E> from, 

Filter<E> f, 

Collection<E> to ) {

if( from == null ) return;

Iterator<E> i = from.iterator( );

while( i.hasNext( ) ) {

E e = i.next( );

if( f.apply( e ) )

to.add( e );

}

}

Iterator<E> i = from.iterator( );

to.add( e );

exit

e = i.next( );

b3 = f.apply( e );

entry

b1

b1

b2 = i.hasNext( );

b1 = ( from == null );

b2

b2

b3

b3
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Dynamically-Bound Method Calls

 Intraprocedural CFGs treat 

method calls as simple 

statements

 Yet, calls invoke different 

code depending on the 

dynamic type of the 

receiver

 Testing should cover the 

possible behaviors

Peter Müller – Software Architecture and Engineering

static <E> void filter( 

Collection<E> from, 

Filter<E> f, 

Collection<E> to ) {

if( from == null ) return;

Iterator<E> i = from.iterator( );

while( i.hasNext( ) ) {

E e = i.next( );

if( f.apply( e ) )

to.add( e );

}

}
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Testing Dynamically-Bound Method Calls

 A dynamically-bound 

method call can be regarded 

as a case distinction on the 

type of the receiver
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NullFilter

apply( E e )

Duplicates

apply( E e )

Filter

apply( E e )

f.apply( e )

if( type( f ) == Filter )

f.Filter::apply( e );

else if( type( f ) == NullFilter )

f.NullFilter::apply( e );

else // type( f ) == Duplicates

f.Duplicates::apply( e );

 Now we can apply branch testing
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Testing Dynamically-Bound Calls (cont’d)

 Treating dynamically-

bound method calls as 

branches leads to a 

combinatorial explosion

 Use semantic constraints 

and pairwise-

combinations testing
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static <E> void filter( 

Collection<E> from, 

Filter<E> f, 

Collection<E> to ) {

if( from == null ) return;

Iterator<E> i = from.iterator( );

while( i.hasNext( ) ) {

E e = i.next( );

if( f.apply( e ) )

to.add( e );

}

} java.util contains 

dozens of 

collection classes

java.util contains 

dozens of 

collection classes

Several different 

Filter classes in 

the program
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Exceptions

Peter Müller – Software Architecture and Engineering

static <E> void filter( 

Collection<E> from, 

Filter<E> f, 

Collection<E> to ) {

if( from == null ) return;

if( f == null || to == null )

throw new

IllegalArgumentException( );

Iterator<E> i = from.iterator( );

while( i.hasNext( ) ) {

E e = i.next( );

if( f.apply( e ) )

to.add( e );

}

}

Iterator<E> i = from.iterator( );

to.add( e );

exit

e = i.next( );

b4 = f.apply( e );

entry

b1

b1

b3 = i.hasNext( );

b1 = ( from == null );

b3

b3

b4

b4

b2 = ( f == null || to == null );

throw new

IllegalArgumentException( );

b2

b2
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CFG: Exceptions

 Exceptions add a control flow edge from the basic 

block where the exception is thrown to the exit 

block or the block where the exception is caught

 Idea: Cover exceptional control flow like normal 

control flow during testing

- Test oracle is checked when method terminates normally
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[ Test ]

[ ExpectedException( typeof(ArgumentException) ) ]

public void TestDemoInvalid( … ) {

int d = Days( month, year );

}
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Example: Documented Exceptions
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static <E> void filter( 

Collection<E> from, 

Filter<E> f, 

Collection<E> to ) {

if( from == null ) return;

if( f == null || to == null )

throw new

IllegalArgumentException( );

Iterator<E> i = from.iterator( );

while( i.hasNext( ) ) {

E e = i.next( );

if( f.apply( e ) )

to.add( e );

}

}

Might throw:

 UnsupportedOperationException

 ClassCastException

 NullPointerException

 IllegalArgumentException

 IllegalStateException

Might throw:

 NoSuchElementException
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Example: Documented Exceptions (cont’d)
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Iterator<E> i = from.iterator( );

to.add( e ); exit

e = i.next( );

entry
b1

b1

b3 = i.hasNext( );

b1 = ( from == null );

b3

b3

b4

b4

b2 = ( f == null || to == null );

throw new

IllegalArgumentException( );

b2

b2

b4 = f.apply( e );
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Example: Undocumented Exceptions
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static <E> void filter( 

Collection<E> from, 

Filter<E> f, 

Collection<E> to ) {

if( from == null ) return;

if( f == null || to == null )

throw new

IllegalArgumentException( );

Iterator<E> i = from.iterator( );

while( i.hasNext( ) ) {

E e = i.next( );

if( f.apply( e ) )

to.add( e );

}

}

The example might also throw:

 ConcurrentModificationException

 NoClassDefFoundError

 NoSuchMethodError

 OutOfMemoryError

 StackOverflowError

 ThreadDeath

 VirtualMachineError

 etc.
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Example: Undocumented Exceptions (cont’d)
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Iterator<E> i = from.iterator( );

to.add( e ); exit

e = i.next( );

entry
b1

b1

b3 = i.hasNext( );

b1 = ( from == null );

b3

b3

b4

b4

b2 = ( f == null || to == null );

throw new

IllegalArgumentException( );

b2

b2

b4 = f.apply( e );

It is impractical to 

represent and test 

all exceptional 

control flow in the 

CFG
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Checked vs. Unchecked Exceptions

 Many programming languages distinguish between 

checked and unchecked exceptions

 Checked exceptions represent invalid conditions 

outside the immediate control of the program 

- Invalid user input, database problems, network outages, 

absent files

 Unchecked exceptions represent defects in the 

program  or the execution environment

- Illegal arguments, null-pointer dereferencing, division by 

zero, assertion violation, etc.

- In Java: all subclasses of RuntimeException and Error

Peter Müller – Software Architecture and Engineering
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Testing Unchecked Exceptions

 Unchecked 

exceptions are not 

supposed to occur

 When computing 

the CFG, ignore 

unchecked 

exceptions thrown 

by other methods 

and virtual machine

- But consider throw

statements
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Iterator<E> i = from.iterator( );

to.add( e ); exit

e = i.next( );

b4 = f.apply( e );

entry

b1

b1

b3 = i.hasNext( );

b1 = ( from == null );

b3

b3

b4

b4

b2 = ( f == null || to == null );

throw new

IllegalArgumentException( );

b2

b2
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Unchecked Exceptions: Bad Example

 Never use unchecked exceptions to encode control 

flow!
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static boolean contains( String[ ] a, String s ) {

for( int i = 0; i < a.length; i++ ) {

try {

if( a[ i ].equals(s) )

return true;

} catch( NullPointerException e ) { 

i++;

}

}

return false;

}

Exceptional 

control flow 

will not be 

covered 

Bug remains 

undetected
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Bad Example Fixed
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static boolean contains( String[ ] a, String s ) {

for( int i = 0; i < a.length; i++ ) {

if( a[ i ] != null ) {

if( a[ i ].equals(s) )

return true;

} else {

i++;

}

}

return false;

}

Normal 

control flow 

will be 

covered 

Bug will be 

detected
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Testing Checked Exceptions

 Checked exceptions represent regular control flow 

that needs to be tested

- Include control flow in CFG, testing, and coverage

 In Java, checked exceptions are declared in 

method signatures

 For each call, add appropriate control flow edges
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interface RemoteBuffer extends Remote {

void put( String s ) throws RemoteException;

}
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Checked Exceptions: Example
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class Producer {

RemoteBuffer b;

void produce( ) throws RemoteException {

boolean retried = false;

boolean success = false;

while( !success ) {

try {

b.put( "Product“ );

success = true;

} catch( RemoteException e ) {

if( retried )  throw e;

}

}

}

}

Exceptional 

control flow 

will be 

covered 
Bug will be 

detected
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Testing Exceptions: Summary

 Checked exceptions encode the program’s reaction 

to invalid conditions in the environment

- Test like normal control flow

 Unchecked exceptions represent defects

- Test unchecked exceptions explicitly thrown by method 

under test (argument validation, precondition check)

- Unchecked exceptions thrown by methods being called 

indicate defect in method under test (precondition 

violation) or in the called method

- Unchecked exceptions thrown by virtual machine indicate 

defect in method under test (e.g., infinite recursion) or 

deployment error (e.g., class not found)

Peter Müller – Software Architecture and Engineering
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5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5.4.1 Control Flow Testing

5.4.2 Advanced Topics of Control Flow Testing

5.4.3 Data Flow Testing

5.4.4 Interpreting Coverage
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Example Revisited
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int foo( boolean a, boolean b ) {

int x = 1;

int y = 1;

if( a )

x = 0;

else

y = 0;

if( b )

return 5 / x;

else

return 5 / y;

}

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Data Flow Testing

 Testing all paths is not 

feasible

- Number grows exponentially 

in the number of branches

- Loops

 Idea: Test those paths 

where a computation in one 

part of the path affects the 

computation of another
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b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Variable Definition and Use

 A variable definition for a variable v is a basic block 

that assigns to v

- v can be a local variable, formal parameter, field, or 

array element

 A variable use for a variable v is a basic block that 

reads the value from v

- In conditions, computations, output, etc.

Peter Müller – Software Architecture and Engineering
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Definition-Clear Paths

 A definition-clear path for a variable v is a path

n1, …, nk in the CFG such that:

- n1 is a variable definition for v

- nk is a variable use for v

- No ni (1 < i ≤ k) is a variable definition for v 

(nk may be a variable definition if each assignment to v 

occurs after a use)

 Note: definition-clear paths do not go from entry to 

exit (in contrast to our earlier definition of path)

Peter Müller – Software Architecture and Engineering
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Definition-Use Pairs

 A definition-use pair 

for a variable v is a 

pair of nodes (d,u) 

such that there is a 

definition-clear path 

d, …, u in the CFG

 We say DU-pair for 

definition-use pair 
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b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

Variable 

definition 

for x

Variable 

definition 

for x

Variable 

use for x
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Definition-Use Pairs: Examples
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b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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DU-Pairs Coverage

 Idea: test all paths that provide a value for a 

variable use
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DU-Pairs Coverage = 
Number of executed DU-Pairs

Total number of DU-Pairs
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DU-Pairs Coverage: Example

Peter Müller – Software Architecture and Engineering

 The two test cases

- a = true, b = false

- a = false, b = true

achieve 100% branch

coverage, but only 50% 

DU-pairs coverage

 In this example, DU-pairs 

coverage is equivalent to 

path coverage

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Determining all DU-Pairs

 DU-Pairs are computed using a static reaching-

definitions analysis

 For each node n and for each variable v, compute 

all variable definitions for v that possibly reach n via 

a definition-clear path

 The reaching definitions at a node n are:

- The reaching definitions of n’s predecessors in the CFG

- minus the definitions killed by one of n’d predecessors 

- plus the definitions made by one of n’d predecessors 

Peter Müller – Software Architecture and Engineering
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Reaching Definitions: Algorithm

 Input

- pred( n ) = { m | (m,n,c) is an edge in the CFG }

- succ( m ) = { n | (m,n,c) is an edge in the CFG }

- gen( n ) = { vn | n is a variable definition for v }

- kill( n ) = { vm | n is a variable definition for v and m ≠ n }

 We compute via fixpoint iteration

- Reach( n ): The reaching definitions at the beginning of n

- ReachOut( n ): The reaching definitions at the end of n

Peter Müller – Software Architecture and Engineering
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Reaching Definitions: Algorithm (con’t)
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foreach node n do ReachOut( n ) :=  end

worklist := nodes

while worklist   do

n := any( worklist )

remove n from worklist

Reach( n ) := Umpred(n) ReachOut( m )

ReachOut( n ) := Reach( n ) \ kill( n )  gen( n )

if ReachOut( n ) has changed then 

worklist := worklist  succ( n )

end

end
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Reaching Definitions: Example
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b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

1:

2:

4:3:

6:

5:

7:

n Reach( n ) ReachOut( n )

1 

2 x1, y1 x1, y1

3 x1, y1 x3, y1

4 x1, y1 x1, y4

5 x1, x3, y1, y4 x1, x3, y1, y4

6 x1, x3, y1, y4 x1, x3, y1, y4

7 x1, x3, y1, y4 x1, x3, y1, y4
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From Reaching Definitions to DU-Pairs

 The set of DU-pairs is easily determined as 

{ (d,u) | u is a variable use for v and vd  Reach(u) }
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b1 = a;

b2 = b;

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

1:

2:

4:3:

6:

5:

7:

n Reach( n )

1 

2 x1, y1

3 x1, y1

4 x1, y1

5 x1, x3, y1, y4

6 x1, x3, y1, y4

7 x1, x3, y1, y4

 DU-pairs for x: 

(1,6), (3,6)

 DU-pairs for y: 

(1,7), (4,7)
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Data Flow Testing Example

 Convert character sequence to integer

- Input format: ddec* | ‘x’(dhex*), where d is a (decimal or 

hexadecimal) digit
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static int convert( char[ ] a ) {

int base;  int i = 0;  int val = 0;

if ( a.length == 0 )  return 0;

if( a[ i ] == 'x' ) { base = 12; i = i + 1; } 

else { base = 10; }

while( i < a.length ) {

val = val * base + Character.digit( a[ i ], base );

i = i + 1;

}

return val;

}

5. Testing – Structural Testing

We assume here 

that all inputs are of 

the required format
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Data Flow Testing Example: CFG
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val = val * base + Character.digit( a[ i ], base );

i = i + 1; return val; exit

entry

b1

b1

b3 = ( i < a.length );

b2 = ( a[ i ] == 'x' );

b3

b3

1:

b2b2
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i = 0;

val = 0;

b1 = ( a.length == 0 );

return 0;

base = 12;

i = i + 1;
base = 10;

2:

4:
5:

6:

7:

8:

3:
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Data Flow Testing Example: DU-Pairs

 We get 14 DU-pairs

 DU-pairs for i: 

(1,2), (1,4), (1,6), (4,6), 

(7,6), (1,7), (4,7), (7,7)

 DU-pairs for val: 

(1,7), (7,7), (1,8), (7,8)

 DU-pairs for base: 

(4,7), (5,7)
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n Reach( n ) ReachOut( n )

1  i1, val1

2 i1, val1 i1, val1

3 i1, val1 i1, val1

4 i1, val1 i4, val1, base4

5 i1, val1 i1, val1, base5

6 i1, i4, i7, val1, val7, 

base4, base5

i1, i4, i7, val1, val7, 

base4, base5

7 i1, i4, i7, val1, val7, 

base4, base5

i7, val7, base4, 

base5

8 i1, i4, i7, val1, val7, 

base4, base5

i1, i4, i7, val1, val7, 

base4, base5
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Data Flow Testing Example: Bug

 Consider the 

test cases

- a = { }

- a = { ‘x’ }

- a = { ‘1’ }

- a = { ‘1’, ‘2’ }

 The bug is not 

detected!

Peter Müller – Software Architecture and Engineering

static int convert( char[ ] a ) {

int base;  int i = 0;  int val = 0;

if ( a.length == 0 )  return 0;

if( a[ i ] == 'x‘ ) { base = 12; i = i + 1; } 

else { base = 10; }

while( i < a.length ) {

val = val * base + Character.digit( a[ i ], base );

i = i + 1;

}

return val;

}

 Branch and loop coverage: 100%

 DU-pairs missed: (4,7) for i, base (coverage 86%)

5. Testing – Structural Testing

 Branch and loop coverage: 100%
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Data Flow Testing Example: Observation

 DU-pairs for i and val include (7,7)

 Complete DU-pairs coverage requires more than 

one loop iteration
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static int convert( char[ ] a ) {

int base;  int i = 0;  int val = 0;

if ( a.length == 0 )  return 0;

if( a[ i ] == 'x' ) { base = 16; i = i + 1; } 

else { base = 10; }

while( i < a.length ) {

val = val * base + Character.digit( a[ i ], base );

i = i + 1;

}

return val;

}
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Determining all DU-Pairs: Heap Structures

 Determining 

whether a definition 

and a usage refer to 

the same heap 

location, a static 

analysis would need 

arithmetic and 

aliasing information

 Static analysis has 

to over-approximate
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static void repeat( int[ ] from, int[ ] to ) {

int i = 0;

if ( from.length == 0 )  return;

while( i < to.length ) {

to[ i ] = to[ i ] + from[ i % from.length ];

i = i + 1;

}

}
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Measuring DU-Pairs Coverage

 Keep track of currently active definitions

- defCover: Variable → Block

 Keep track of executed DU-pairs

- useCover: Variable × Blockdef × Blockuse → 

 Maps can be encoded as arrays, indexed by 

identifiers for variables and basic blocks

Peter Müller – Software Architecture and Engineering
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Measuring DU-Pairs Coverage: Example

Peter Müller – Software Architecture and Engineering

int foo( boolean a, boolean b ) {

int x = 1;  defCover[ “x” ] = 0;

int y = 1; defCover[ “y” ] = 0;

if( a ) {

x = 0; defCover[ “x” ] = 1;

} else {

y = 0; defCover[ “y” ] = 2;

}

if( b ) {

useCover[ “x”, defCover[ “x” ], 3 ]++;

return 5 / x;

} else {

useCover[ “y”, defCover[ “y” ], 4 ]++;

return 5 / y;

}

}
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Current variable 

definition for x is 

basic block 0

Current variable 

definition for x is 

basic block 1

DU-pair for variable x 

with current definition 

and use-block 3 has 

been executed
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Data Flow Testing: Discussion

 Data flow testing complements control flow testing

- Choose test cases that maximize branch and DU-pairs 

coverage

 Like with path coverage, not all DU-pairs are 

feasible

- Static analysis over-approximates data flow

- Complete DU-pairs coverage might not be possible

Peter Müller – Software Architecture and Engineering
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Data Flow Testing: Discussion (cont’d)

 DU-pairs coverage is not the only adequacy 

criterion for data flow testing

- All definitions, all predicate-usages, all simple-DU-paths, 

etc.

 DU-pair “anomalies” may point to errors

- Use before definition (not possible for locals in Java)

- Double definition without use

- Termination after definition without use

Peter Müller – Software Architecture and Engineering
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5. Testing
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5.4.3 Data Flow Testing
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Interpreting Coverage

 High coverage does not mean that code is well 

tested

- But: low coverage means that code is not well tested

- Make sure you do not blindly optimize coverage but 

develop test suites that test the code well

 Coverage tools do not only measure coverage 

metrics, they also identify which parts of the code 

have not been tested
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Experimental Evaluation: Approach

 Several studies investigate the benefit of coverage 

metrics

- Andrews et al.: “Using Mutation Analysis for Assessing 

and Comparing Testing Coverage Criteria”, TR SCE-06-

02, 2006

 Approach

- Seed defects in the code

- Develop test suites that satisfy various coverage criteria

- Measure how many of the seeded defects are found by 

the test suits

- Extrapolate to “real” defects in the code
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Experimental Evaluation: Some Findings

 The test suite size grows exponentially in the 

coverage

 More demanding coverage criteria lead to larger 

test suites, but do not detect more bugs

- Block, decision, data flow coverage

 There is no significant difference in the cost-

efficiency of the various coverage metrics

 All adequacy criteria lead to test suites that detect 

more bugs then random testing, especially for large 

test suites
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