
Software Architecture

and Engineering
Introduction

Spring Semester 2014

Peter Müller

Chair of Programming Methodology

2

Peter Müller – Software Architecture and Engineering

1. Introduction

1.1 Software Failures

1.2 Challenges

1.3 Solution Approaches (Course Outline)

1. Introduction – Software Failures

3

Software is Everywhere

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

4

Bad Software is Everywhere

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

5

The Patriot Accident

 The Patriot missile air defense

system tracks and intercepts

incoming missiles

 On February 25, 1991, a Patriot

system ignored an incoming Scud

missile

 28 soldiers died; 98 were injured

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

6

Patriot Bug – Rounding Error

 The tracking algorithm measures time in 1/10s

 Time is stored in a 24-bit register

- Precise binary representation of 1/10 (non-terminating):

0.00011001100110011001100110011001…

- Truncated value in 24-bit register:

0.00011001100110011001100

- Rounding error: ca. 0.000000095s every 1/10s

 After 100 hours of operation error is

0.000000095s × 10 × 3600 × 100 = 0.34s

 A Scud travels at about 1.7km/s, and so travels

more than 0.5km in this time

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

7

Analysis of the Patriot Accident

 Changed requirements were not considered

- System was originally designed for much slower missiles

(MACH 2 instead of MACH 5)

- System was designed to be mobile (to avoid detection)

and to operate only for a few hours at a time

 Maintenance was inadequate

- A conversion routine with 48-bit precision was defined to

cope with faster missiles, but was not called in all

necessary places

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

8

Peter Müller – Software Architecture and Engineering

The Therac-25 Accident

 Therac-25 is a medical linear accelerator

 High-energy

X-ray and

electron beams

destroy tumors

1. Introduction – Software Failures

9

Peter Müller – Software Architecture and Engineering

Therac-25 System Design

 Therac-25 is completely computer-controlled
- Software written in assembler code

- Therac-25 has its own real-time operating system

 Software partly taken from ancestor machines
- Software functionality limited

- Hardware safety features and interlocks

 Hazard analysis
- Extensive testing on hardware simulator

- Program software does not degrade due to wear, fatigue,
or reproduction process

- Computer errors are caused by hardware or by alpha
particles

1. Introduction – Software Failures

10

Peter Müller – Software Architecture and Engineering

Therac-25 Software Design

Keyboard

Controller

Treatment

Controller

Mode and

Energy

Data Entry

Complete

Mode and energy

level stored in

shared variable

Beamer set to

energy level

(takes 8 secs)

Cursor in lower

right corner of

screen

Proceed if data

entry complete

Check for changes

1. Introduction – Software Failures

11

Peter Müller – Software Architecture and Engineering

Accident

Keyboard

Controller

Treatment

Controller

Mode and

Energy

Data Entry

Complete

X-Ray mode

entered (sets

default energy)

Beamer set to

high energy level

(takes 8 secs)

Cursor in lower

right corner of

screen

Overdose (100x)

Patient dies

Mode switched

to electron

Check for changes

contains bug

1. Introduction – Software Failures

12

Peter Müller – Software Architecture and Engineering

Analysis of the Therac-25 Accident

 Changed requirements were not considered

- In Therac-25 software is safety-critical

 Design is too complex

- Concurrent system, shared variables (race conditions)

 Code is buggy

- Check for changes done at wrong place

 Testing was insufficient

- System test only, almost no separate software test

 Maintenance was poor

- Correction of bug instead of re-design (root cause)

1. Introduction – Software Failures

13

Peter Müller – Software Architecture and Engineering

The Windows 98 Accident

1. Introduction – Software Failures

14

Peter Müller – Software Architecture and Engineering

Software – a Poor Track Record

 Software bugs cost the U.S. economy an estimated

$59.5 billion annually, or about 0.6 percent of the

gross domestic product

31%

53%16%

 84% of all software projects are

unsuccessful

- Late, over budget, less features than

specified, cancelled

 The average unsuccessful project

- 222% longer than planned

- 189% over budget

- 61% of originally specified features

1. Introduction – Software Failures

15

Peter Müller – Software Architecture and Engineering

1. Introduction

1.1 Software Failures

1.2 Challenges

1.3 Solution Approaches (Course Outline)

1. Introduction – Challenges

16

Why is Software so Difficult to Get Right?

Peter Müller – Software Architecture and Engineering

Complexity

Constraints
Competing

Objectives

Change

1. Introduction – Challenges

17

Complexity

 Modern software

systems are huge

- Created by many

developers over

several years

Peter Müller – Software Architecture and Engineering

0

10

20

30

40

50

60

70

80

90

100

Size of software systems in MLOC

 They have a very high number of:

- Discrete states (infinite if the memory is not bounded)

- Execution paths (infinite if the system may not terminate)

1. Introduction – Challenges

18

Complexity (cont’d)

 Small programs tend to

be simple

 Big programs tend to

be complex

- Complexity grows worse

than linearly with size

Peter Müller – Software Architecture and Engineering

1. Introduction – Challenges

19

Change

 Since software is (perceived as being) easy to

change, software systems often deviate from their

initial design

 Typical changes include

- New features (requested by customers or management)

- New interfaces (new hardware, new or changed

interfaces to other software systems)

- Bug fixing, performance tuning

 Changes often erode the structure of the system

Peter Müller – Software Architecture and Engineering

1. Introduction – Challenges

20

Peter Müller – Software Architecture and Engineering

Competing Objectives: Design Goals

Scalability

Repairability

Portability

Reusability

Understandability

Maintainability

Security

Usability

Reliability

Robustness

Performance

Correctness

Interoperability

Verifiability

Evolvability

1. Introduction – Challenges

Backward Comp.

21

Peter Müller – Software Architecture and Engineering

Competing Objectives: Typical Trade-Offs

Portability

Understandability

Usability

Robustness

Performance

Reusability Cost

Functionality

Cost

Backward Compatibility

1. Introduction – Challenges

22

Constraints

 Software development (like

all projects) is constrained

by limited resources

 Budget

- Marketing,

management priorities

 Time

- Market opportunities,

external deadlines

 Staff

- Available skills

Peter Müller – Software Architecture and Engineering

1. Introduction – Challenges

23

Software Engineering

 A collection of techniques,

methodologies, and tools

that help with the

production of

- a high quality software

system

- with a given budget

- before a given deadline

- while change occurs

 [Brügge]

Peter Müller – Software Architecture and Engineering

Complexity

Constraints
Competing

Objectives

Change

1. Introduction – Challenges

24

Peter Müller – Software Architecture and Engineering

1. Introduction

1.1 Software Failures

1.2 Challenges

1.3 Solution Approaches (Course Outline)

1. Introduction – Solution Approaches (Course Outline)

25

Course Outline (tentative)

 We will study

various principles of

software engineering

 We will cover both

established

practices and

innovative

approaches

 We will emphasize

software reliability
Peter Müller – Software Architecture and Engineering

Part II: Testing

 Functional and structural testing

 Automatic test case generation

 Dynamic program analysis

Part III: Static Analysis

 Mathematical foundations

 Abstract interpretation

 Practical applications

Part I: Software Design

 Modeling

 Design principles

 Architectural & design patterns

1. Introduction – Solution Approaches (Course Outline)

26

Overview: Modeling

 For non-trivial systems,

source code is too

complex to reason

about

 Abstract models may

simplify communication

and reasoning

Peter Müller – Software Architecture and Engineering

ListNode
next prev

LinkedList

head

1. Introduction – Solution Approaches (Course Outline)

27

Overview: Formal Modeling

 In contrast to informal models, formal models

enable precision and better tool support

Peter Müller – Software Architecture and Engineering

ListNode
next prev

LinkedList

head

sig LinkedList {

 head: ListNode

}

sig ListNode {

 next: ListNode,

 prev: ListNode

}

fact { all n: ListNode | n.next.prev = n }

pred show { }

run show for 5 but 2 LinkedList

1. Introduction – Solution Approaches (Course Outline)

28

Overview: Patterns

 Design problem:

How to fit a reused class into a class hierarchy?

 Patterns are general, reusable solutions to

commonly occurring design problems

Peter Müller – Software Architecture and Engineering

Line

BoundingBox()

DrawingEditor

TextShape

BoundingBox()

Shape

BoundingBox()

TextEditor

GetExtent()

Legacy

code

Reused

code

return text.GetExtent()

text

1. Introduction – Solution Approaches (Course Outline)

29

Overview: Functional Testing

 Functional testing focuses on input/output behavior

 Given the desired functionality of a program, how to

select input values to test it?

 Try at least:

- Arrays with one, more than one, and no matching strings

- Corner cases: null, arrays containing null, “Foo=“

Peter Müller – Software Architecture and Engineering

public static string ParseLines(string[] lines)

Specification:

Search for the first occurrence of

"Foo=VALUE" in lines and return VALUE.

1. Introduction – Solution Approaches (Course Outline)

30

Overview: Structural Testing

 Use design knowledge about algorithms and data

structures to determine test cases that exercise a

large portion of the code

Peter Müller – Software Architecture and Engineering

public static string ParseLines(string[] lines) {

 for(int i = 0; i < lines.Length; i++) {

 string line = lines[i];

 int index = line.IndexOf('=‘);

 string key = line.Substring(0, index);

 if(key.Equals("Foo")) {

 return line.Substring(index + 1);

 }

 }

 return "??";

}

Test this

case

and this

case

Test 0, 1, and

more iterations

1. Introduction – Solution Approaches (Course Outline)

31

Overview: Automatic Test Case Generation

 Automatically determine inputs that execute a given

path through the program

 Suitable test input: [“Bar=XX”, null]

Peter Müller – Software Architecture and Engineering

public static string ParseLines(string[] lines) {

 for(int i = 0; i < lines.Length; i++) {

 string line = lines[i];

 int index = line.IndexOf('=‘);

 string key = line.Substring(0, index);

 if(key.Equals("Foo")) {

 return line.Substring(index + 1);

 }

 }

 return "??";

}

1. Introduction – Solution Approaches (Course Outline)

32

Overview: Dynamic Program Analysis

 Dynamic analyses focus on a subset of program

behaviors and prove they are correct

 Testing is a special case of dynamic analysis

 More interesting cases include data race detection,

memory safety, and API usage rules

Peter Müller – Software Architecture and Engineering

All behaviors in the universe

Possible

Program

Behaviors

Under-

approximation

1. Introduction – Solution Approaches (Course Outline)

33

Overview: Static Program Analysis

 Static analyses capture all possible program

behaviors in a mathematical model and prove

properties of this model

Peter Müller – Software Architecture and Engineering

All behaviors in the universe

Possible

Program

Behaviors

Over-

approximation

1. Introduction – Solution Approaches (Course Outline)

34

Lecturers

 First half of the course is taught by Peter Müller

- Design, functional and structural testing

 Second half is taught by Martin Vechev

- Automatic test case generation,

static and dynamic analysis

Peter Müller – Software Architecture and Engineering

1. Introduction – Solution Approaches (Course Outline)

35

Peter Müller – Software Architecture and Engineering

Projects

 There will be two projects to help you master the

techniques introduced in lectures:

1. Build a tool that generates code and test data from

design models

2. Build a program analyzer

 Done in a group of 2 or 3, never 1

- Select your team soon and enter it here:

http://tinyurl.com/ofs3jjw

 Details will be explained later

1. Introduction – Solution Approaches (Course Outline)

36

Organization of the Course

 Prerequisites

- Course is self-contained

- But it combines well with other courses:

• Formal methods and functional programming

• Compiler Design

 Grading

- 20% for code and test data generation project

- 20% for analysis project

- 60% final exam

36

1. Introduction – Solution Approaches (Course Outline)

Peter Müller – Software Architecture and Engineering

37

Peter Müller – Software Architecture and Engineering

Course Infrastructure

 Web page:

www.pm.inf.ethz.ch/education/courses/sae

- Slides will be available on the web page two days before

the lecture (Thursday and Monday)

 Mailing list: sae2014@sympa.ethz.ch

- We will sign you up

- Use your ETH mail address

- Ask general questions on the mailing list

 Submit anonymous feedback at

http://tinyurl.com/ogbvbfx

1. Introduction – Solution Approaches (Course Outline)

38

Peter Müller – Software Architecture and Engineering

Exercise Sessions

 Monday, 15:00-18:00

- Andrei Dan (CHN G22)

- Petar Tsankov (NO D11)

- Valentin Wüstholz (ML H34.3)

 Wednesday, 15:00-18:00

- Dimitar Dimitrov (ML F40)

 Sign up at http://tinyurl.com/o8ctrog

 Exercises start next week (Feb. 24 or 26)!

Can we move

this to Monday?

1. Introduction – Solution Approaches (Course Outline)

39

Don’t Forget!

 Sign up for the exercises at

http://tinyurl.com/o8ctrog

 Select your project team and enter it at

http://tinyurl.com/ofs3jjw

Peter Müller – Software Architecture and Engineering

1. Introduction – Solution Approaches (Course Outline)

