Software Architecture

and Engineering
Introduction

Peter Muller
Chair of Programming Methodology

Spring Semester 2014 ETH:zurich

1. Introduction — Software Failures 2

1. Introduction

1.1 Software Failures
1.2 Challenges
1.3 Solution Approaches (Course Outline)

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures 3

Software Is Everywhere

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures 4

Bad Software is Everywhere

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures 5

The Patriot Accident

= The Patriot missile air defense
system tracks and intercepts
Incoming missiles

= On February 25, 1991, a Patriot
system ignored an incoming Scud
missile

= 28 soldiers died; 98 were injured

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures 6

Patriot Bug — Rounding Error

= The tracking algorithm measures time in 1/10s

= Time Is stored in a 24-bit register

- Precise binary representation of 1/10 (non-terminating):
0.00011001100110011001100110011001...

- Truncated value in 24-bit reqister:
0.00011001100110011001100

- Rounding error: ca. 0.000000095s every 1/10s

= After 100 hours of operation error Is
0.000000095s x 10 x 3600 x 100 = 0.34s

= A Scud travels at about 1.7km/s, and so travels
more than 0.5km in this time

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures 7

Analysis of the Patriot Accident

= Changed reguirements were not considered

- System was originally designed for much slower missiles
(MACH 2 instead of MACH 5)

- System was designed to be mobile (to avoid detection)
and to operate only for a few hours at a time

= Maintenance was inadequate

- A conversion routine with 48-bit precision was defined to
cope with faster missiles, but was not called in all
necessary places

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures 8

The Therac-25 Accident

= Therac-25 I1s a medical linear accelerator

= High-energy
X-ray and
electron beams
destroy tumors

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures 9

herac-25 System Design

= Therac-25 is completely computer-controlled
- Software written in assembler code
- Therac-25 has its own real-time operating system

= Software partly taken from ancestor machines
- Software functionality limited
- Hardware safety features and interlocks

= Hazard analysis
- Extensive testing on hardware simulator

- Program software does not degrade due to wear, fatigue,
or reproduction process

- Computer errors are caused by hardware or by alpha
particles

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures 10

Therac-25 Software Design

Cursor in lower
right corner of
screen
Mode and Data Entry
Energy Complete

\ / Proceed if data
entry complete

>

Mode and energy
level stored In
shared variable

Beamer set to
energy level
(takes 8 secs)

\/L Check for changes }

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures 11

Accident Mode switched
to electron
X-Ray mode Cursor in lower
entered (sets right corner of
default energy) screen
Mode and Data Entry
Energy Complete

\ / Qgse (100x) }

Patient dies

Beamer set to
high energy level
(takes 8 secs)

>

\/ Check for changes W
contains bug

Peter Miller — Software Architecture and Engineering - / ETHz(rich

1. Introduction — Software Failures 12

Analysis of the Therac-25 Accident

= Changed requirements were not considered
- In Therac-25 software is safety-critical

= Design Is too complex

- Concurrent system, shared variables (race conditions)
= Code Is buggy

- Check for changes done at wrong place
= Testing was insufficient

- System test only, almost no separate software test

= Maintenance was poor
- Correction of bug instead of re-design (root cause)

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures

The Windows 98 Accident

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Software Failures 14

Software — a Poor Track Record

= Software bugs cost the U.S. economy an estimated
$59.5 billion annually, or about 0.6 percent of the
gross domestic product

= 84% of all software projects are
unsuccessful

- Late, over budget, less features than
specified, cancelled

* The average unsuccessful project

- 222% longer than planned
- 189% over budget
- 61% of originally specified features

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Challenges 15

1. Introduction

1.1 Software Failures
1.2 Challenges
1.3 Solution Approaches (Course Outline)

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Challenges 16

Why Is Software so Difficult to Get Right?

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Challenges 17

Complexity
100
90
80
= Modern software 1
systems are huge 20 I I
30
20
- Created by many o - .I.l.l.-. | E
developers over R P LI P
(\Q) o ._ bo (Q <<\k ,(\& Q‘JQ “L Vv
Several ye ars ‘Q&_{@ & o ¢ ¥ OOOQ‘\Q,Q «° Q}Cg@b\ %Os&\o
WV 4\90 ~c}°%o
N

Size of software systems in MLOC

= They have a very high number of:
- Discrete states (infinite if the memory is not bounded)
- Execution paths (infinite if the system may not terminate)

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Challenges

18

Complexity (cont'd)

= Small programs tend to
be simple

= Big programs tend to
be complex

- Complexity grows worse
than linearly with size

Peter Muller — Software Architecture and Engineering

ETHzurich

1. Introduction — Challenges 19

Change

»= Since software Is (perceived as being) easy to
change, software systems often deviate from their
initial design

= Typical changes include
- New features (requested by customers or management)

- New Interfaces (new hardware, new or changed
Interfaces to other software systems)

- Bug fixing, performance tuning

= Changes often erode the structure of the system

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Challenges

20

Competing Objectives: Design Goals

Correctness Maintainability
Performance Verifiability
Robustness Understandability
Scalability Reusability
Reliability Evolvability
Usability Portability
Security Repairability

Interoperability

Backward Comp.

Peter Muller — Software Architecture and Engineering

ETHzurich

1. Introduction — Challenges 21

Competing Objectives: Typical Trade-Offs

Functionality : > Usability
Cost ‘ > Robustness
Performance “ - Portability
Cost -— Reusability
Backward Compatibility |t » Understandability

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Challenges

22

Constraints

= Software development (like
all projects) is constrained
by limited resources

= Budget

- Marketing,
management priorities

= Time

- Market opportunities,
external deadlines

= Staff
- Avallable skills

GOOD/ CHEAP

T

Peter Muller — Software Architecture and Engineering

ETHzurich

1. Introduction — Challenges 23

Software Engineering

= A collection of techniques,
methodologies, and tools
that help with the
production of

a high quality software
- - ina

with a given budget
before a given deadline

while change occurs
[Brigge]

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 24

1. Introduction

1.1 Software Failures
1.2 Challenges
1.3 Solution Approaches (Course Outline)

Peter Miller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 25

Course Outline (tentative)

= We will study Part |: Software Design

various principles of |* Modeling

software engineering | Design principles
= Architectural & design patterns

= \We will cover both Part Il: Testing

established » Functional and structural testing
practices and = Automatic test case generation
innovative = Dynamic program analysis
approaches Part lIl: Static Analysis

= Mathematical foundations
= We will emphasize = Abstract interpretation
software reliablility = Practical applications

Peter Miller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 26

Overview: Modeling

= For non-trivial systems, = Abstract models may
source code is too simplify communication
complex to reason and reasoning

ramespace SystemColieciors Genarc] Lshg ?asm

zar Sring Vermiariiars =
throw rew w RnA St o e

Valdahewticdeineuhiode. FiemalinsriodeSetonsinode, newhions)
Lrkeg_immiode-<5 resut = rew LrkealSfoge<m0ns sl fhesg
eSSt pulicucid AJOFIN) [imasmsinicase

roemalr e Ty saesu,

LinkedLis

PeWNodaEIEy = POR FrEN, ROGEErEN et = PEWNODE: arsre; e LS icae) [a
B8 00Ut me 0, "LinkedLIst PLstbe arpy when T PRI B 3 - munte=;
Dezug Amerinode. = =

\ 4

rev next

e e e of e Ay n e i 3 2 - Ty GetType amentTipal. Tyoe SoUr=TiDe mbEech Ty -
et pe Ao e o e - coecTosierme amey asonea T
4 CetETIrgiER I - ode s t t objeds)rexs+] =
3 ' i i W 3 A tf coni £ A T .
Sysoem Colectons: = X [71 #ere erosot Feomancs

Srvate Senaizitiorintd Sird: A DRy

vemen | ermsTy Indestiame = Tndex’

\ 4
N

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 27

Overview: Formal Modeling

= |n contrast to informal models, formal models
enable precision and better tool support

sig LinkedList {
head: ListNode

LinkedList }

sig ListNode {
next: ListNode

head : ’

prev: ListNode

previ next }
ListNode

fact { all n: ListNode | n.next.prev =n }

\ 4

N

pred show {}

run show for 5 but 2 LinkedList

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 28

Overview: Patterns

» Design problem:
How to fit a reused class into a class hierarchy?

DrawingEditor Shape [Reused
BoundingBox() L code
| | text)
Line TextShape > TextEditor
BoundingBox() BoundingBox() GetExtent()

N
N

1 return text.GetExtent()1

= Patterns are general, reusable solutions to
commonly occurring design problems

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 29

Overview: Functional Testing

* Functional testing focuses on input/output behavior

= Given the desired functionality of a program, how to
select input values to test it?

Specification:
Search for the first occurrence of
"FOo=VALUE" in lines and return VALUE.

public static string ParseLines(string[] lines)

= Try at least:
- Arrays with one, more than one, and no matching strings

- Corner cases: null, arrays containing null, “Foo="

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 30

Overview: Structural Testing

= Use design knowledge about algorithms and data
structures to determine test cases that exercise a
large portion of the code

public static string ParseLines(string[] lines) {
for(inti=0;i<lines.Length; i++) { }

T o Test O, 1, and
string line = lines[i]; e R Ee
int index = line.IndexOf('=");

string key = line.Substring(O, index); |

)

if(key.Equals("Foo")) { - Test this
return line.Substring(index + 1); L case
) —
} and this
return "??"; L tesls

}

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline)

31

Overview:. Automatic Test Case Generation

= Automatically determine inputs that execute a given

path through the program

public static string ParseLines(string[] lines) {

r(inti=0;i<sMmEs.Cength; I++){
s\ring line =fines[i];
inf) index = lings =)

f(key.Equals("Foo")) {
return line.Substring(index + 1);

}

return "??":

}

ring key = Iine.Substring(IO, index);

= Suitable test input: [“Bar=XX", null]

Peter Muller — Software Architecture and Engineering

ETHzurich

1. Introduction — Solution Approaches (Course Outline) 32

Overview: Dynamic Program Analysis

= Dynamic analyses focus on a subset of program
pbehaviors and prove they are correct

/ Unc_ler- | }
approximation
Possible
Program
Behaviors
@II behaviors in the universe /

= Testing is a special case of dynamic analysis

= More interesting cases include data race detection,
memory safety, and API usage rules

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 33

Overview: Static Program Analysis

= Static analyses capture all possible program
behaviors in a mathematical model and prove
properties of this model

-

Over-
approximation

Possible
Program
Behaviors

@II behaviors in the universe /

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 34

Lecturers

= First half of the course Is taught by Peter Muller
- Design, functional and structural testing

= Second half Is taught by Martin Vechev

- Automatic test case generation,
static and dynamic analysis

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 35

Projects

= There will be two projects to help you master the
techniques introduced in lectures:

1. Build a tool that generates code and test data from
design models

2. Build a program analyzer

= Done in a group of 2 or 3, never 1

- Select your team soon and enter it here:
http://tinyurl.com/ofs3jjw

= Detalls will be explained later

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 36

Organization of the Course

* Prerequisites
- Course Is self-contained

- But it combines well with other courses:
* Formal methods and functional programming
« Compiler Design

= Grading
- 20% for code and test data generation project
- 20% for analysis project
- 60% final exam

Peter Miiller — Software Architecture and Engineering E'ﬁzurjch

1. Introduction — Solution Approaches (Course Outline) 37

Course Infrastructure

= Web page:
www.pm.inf.ethz.ch/education/courses/sae

- Slides will be available on the web page two days before
the lecture (Thursday and Monday)

= Mailing list: sae2014@sympa.ethz.ch
- We will sign you up
- Use your ETH mail address
- Ask general questions on the mailing list

= Submit anonymous feedback at
http://tinyurl.com/ogbvbfx

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 38

Exercise Sessions

= Monday, 15:00-18:00
- Andrei Dan (CHN G22)
- Petar Tsankov (NO D11)
- Valentin Wustholz (ML H34.3)

Can we move }

* Wednesday, 15:00-18:00 2”“5 to Monday?
- Dimitar Dimitrov (ML F40)

= Sign up at http://tinyurl.com/o8ctrog

» EXxercises start next week (Feb. 24 or 26)!

Peter Miiller — Software Architecture and Engineering ETHZurich

1. Introduction — Solution Approaches (Course Outline) 39

Don'’t Forget!

= Sign up for the exercises at
http://tinyurl.com/o8ctrog

= Select your project team and enter it at
http://tinyurl.com/ofs3jjw

Peter Miiller — Software Architecture and Engineering ETHZurich

