
Peter Müller

Chair of Programming Methodology

The slides in this section are partly based on the courses

“Software Engineering I” by Prof. Bernd Brügge, TU München and

“Software Engineering” by Prof. Jan Vitek, Purdue University

Software Architecture

and Engineering
Testing

Spring Semester 2014

2

Peter Müller – Software Architecture and Engineering

Why Does Software Contain Bugs?

 Our ability to predict the behavior of our

implementations is limited

- Software is extremely complex

- No developer can understand the whole system

 We make mistakes

- Unclear requirements, miscommunication

- Wrong assumptions (e.g., behavior of operating system)

- Design errors (e.g., capacity of data structure too small)

- Coding errors (e.g., wrong loop condition)

5. Testing

3

Peter Müller – Software Architecture and Engineering

“First actual case of bug being found.”

5. Testing

4

Peter Müller – Software Architecture and Engineering

Increasing Software Reliability

Fault Avoidance

 Detect faults statically without executing the program

 Includes development methodologies, reviews, and

program verification

Fault Detection

 Detect faults by executing the program

 Includes testing

Fault Tolerance

 Recover from faults at runtime (e.g., transactions)

 Includes adding redundancy (e.g., n-version programming)

5. Testing

5

Peter Müller – Software Architecture and Engineering

Goal of Testing

 An error is a deviation of the observed behavior

from the required (desired) behavior

- Functional requirements (e.g., user-acceptance testing)

- Nonfunctional requirements (e.g., performance testing)

 Testing is a process of executing a program with

the intent of finding an error

 A successful test is a test that finds errors

5. Testing

6

Peter Müller – Software Architecture and Engineering

Limitations of Testing

 It is impossible to completely test any nontrivial

module or any system

- Theoretical limitations: termination

- Practical limitations: prohibitive in time and cost

Testing can only show the presence of bugs,

not their absence. [E. W. Dijkstra]

5. Testing

7

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5. Testing – Test Stages

8

Peter Müller – Software Architecture and Engineering

Test Stages

Requirements

Elicitation

System Design

Implementation

Detailed Design Unit Test

Integration Test

System Test

5. Testing – Test Stages

9

Peter Müller – Software Architecture and Engineering

Creation of Test Harness

 Test driver

- Applies test cases to UUT including setup and clean-up

 Test stub

- Partial, temporary implementation of a component used

by UUT

- Simulates the activity of a missing component by

answering to the calling sequence of the UUT and

returning back fake data

Test Stub

Test Stub

Test Driver
Unit Under

Test (UUT)
uses

uses

5. Testing – Test Stages

10

Peter Müller – Software Architecture and Engineering

Unit Testing

 Testing individual subsystems (collection of

classes)

 Goal: Confirm that subsystem is correctly coded

and carries out the intended functionality

Unit Test
Subsystem

Code

Detailed Design

Model

5. Testing – Test Stages

11

Unit Test Example (JUnit)

class SavingsAccount {

…

public void deposit(int amount) { … }

public void withdraw(int amount) { … }

public int getBalance() { … }

}

@Test

public void withdrawTest() {

SavingsAccount target = new SavingsAccount();

target.deposit(300);

int amount = 100;

target.withdraw(amount);

Assert.assertTrue(target.getBalance() == 200);

}

Implement

test driver

Create

test data

Create

test oracle

5. Testing – Test Stages

12

Unit Testing: Discussion

 To achieve a reasonable test coverage, one has to

test each method with several inputs

- To cover valid and invalid inputs

- To cover different paths through the method

Peter Müller – Software Architecture and Engineering

@Test

public void withdrawTest() {

SavingsAccount target = new SavingsAccount();

target.deposit(500);

int amount = 0;

target.withdraw(amount);

Assert.assertTrue(target.getBalance() == 500);

}

Boiler-plate code

for creating test

data and writing

test oracles

5. Testing – Test Stages

13

Parameterized Unit Tests (NUnit)

 Parameterized test methods take arguments for

test data

- Decouple test driver (logic) from test data

 Test data can be specified as values, ranges, or

random values

 Requires generic test oracles

[Test]

public void withdrawTest(int balance, int amount) {

SavingsAccount target = new SavingsAccount();

target.deposit(balance);

target.withdraw(amount);

Assert.IsTrue(target.getBalance() == balance – amount);

}

5. Testing – Test Stages

14

Generic Test Oracles: Example

Peter Müller – Software Architecture and Engineering

5. Testing – Test Stages

[Test]

public void bubbleSortTest() {

int[] a = { 7, 2, 5, 2 };

bubbleSort(a);

int[] expected = { 2, 2, 5, 7 };

Assert.AreEqual(expected, a);

}

public static void bubbleSort(int[] a) {

for(int i = 0; i < a.Length - 1; i++) {

for(int j = i + 1; j < a.Length; j++) {

if(a[i] > a[j])

{ int tmp = a[i]; a[i] = a[j]; a[j] = tmp; }

}

}

}

Create

test data

Create

test oracle

15

Generic Test Oracles: Example

Peter Müller – Software Architecture and Engineering

5. Testing – Test Stages

[Test]

public void bubbleSortTest(int[] a) {

int[] original = (int[]) a.Clone();

bubbleSort(a);

for(int i = 0; i < a.Length - 1; i++)

Assert.IsTrue(a[i] <= a[i+1]);

bool[] visited = new bool[a.Length];

for(int i = 0; i < a.Length; i++) {

int j;

for (j = 0; j < a.Length; j++) {

if(!visited[j] && a[i] == original[j])

{ visited[j] = true; break; }

}

Assert.IsFalse(j == a.Length);

}

}

Save test data

for later

comparison

Check that array

is sorted

Check that array

is a permutation

of original array

Value a[i] is not

in the original

array

16

Parameterized Unit Tests: Discussion

 Parameterized unit tests avoid boiler-plate code

 Writing generic test oracles is sometimes difficult

- Analogous to writing strong postconditions

 Still several test methods are needed, for instance,

for valid and invalid input

 Parameterized unit tests are especially useful when

test data is generated automatically (see later)

5. Testing – Test Stages

17

Peter Müller – Software Architecture and Engineering

Test Execution

 Execute the test cases

 Re-execute test cases after every change

- Automate as much as possible

- For instance, after each refactoring

 Regression testing

- Testing that everything that used to work still works after

changes are made to the system

- Also important for system testing

5. Testing – Test Stages

18

Peter Müller – Software Architecture and Engineering

Eight Rules of Testing

1. Make sure all tests are fully
automatic and check their
own results

2. A test suite is a powerful
bug detector that reduces
the time it takes to find
bugs

3. Run your tests frequently–
every test at least once a
day

4. When you get a bug report,
start by writing a unit test
that exposes the bug

5. Better to write and run
incomplete tests than not
run complete tests

6. Concentrate your tests on
boundary conditions

7. Do not forget to test
exceptions raised when
things are expected to go
wrong

8. Do not let the fear that
testing can’t catch all bugs
stop you from writing tests
that will catch most bugs

[M. Fowler]

5. Testing – Test Stages

19

Peter Müller – Software Architecture and Engineering

Integration Testing

 Testing groups of subsystems and eventually the

entire system

 Goal: Test interfaces between subsystems

Subsystem

Code

Subsystem

Code

Subsystem

Code

Integration

Test

Software

Architecture

5. Testing – Test Stages

20

Peter Müller – Software Architecture and Engineering

Integration Testing Strategy

 Typical strategies

- Big-bang integration

(non-incremental)

- Bottom-up integration

- Top-down integration

 Selection criteria

- Amount of test harness

(stubs and drivers)

- Scheduling concerns

Call hierarchy

E F

DCB

A

G

5. Testing – Test Stages

 The order in which the subsystems are selected for

testing and integration

21

Peter Müller – Software Architecture and Engineering

System Testing

 Testing the entire system

 Goal: Determine if the system meets the

requirements (functional and non-functional)

Entire

System

System

Test

Requirements

Specification

5. Testing – Test Stages

22

Peter Müller – Software Architecture and Engineering

System Testing Stages

Entire System

Functional

Test

Functional

requirements

Performance

Test

Non-functional

requirements

Acceptance

Test

Client’s understanding

of requirements

Installation

Test
User Environment

5. Testing – Test Stages

23

Peter Müller – Software Architecture and Engineering

Functional Testing

.

.

 Goal: Test functionality of system

- System is treated as black box

 Test cases are designed from requirements

analysis document

- Based on use cases

- Alternative source: user manual

 Test cases describe

- Input data

- Flow of events

- Results to check

5. Testing – Test Stages

Test_Case_03a Transfer_Cash_In.xls
Test_Case_03a Transfer_Cash_In.xls

24

Peter Müller – Software Architecture and Engineering

Acceptance Testing

 Goal: Demonstrate that the system meets customer

requirements and is ready to use

 Performed by the client, not by the developer

 Alpha test

- Client uses the software at the developer’s site

- Software used in a controlled setting, with the developer

ready to fix bugs

 Beta test

- Conducted at client’s site (developer is not present)

- Software gets a realistic workout in target environment

5. Testing – Test Stages

25

Peter Müller – Software Architecture and Engineering

Independent Testing

 Programmers have a hard time believing they

made a mistake

- Plus a vested interest in not finding mistakes

- Often stick to the data that makes the program work

 Designing and programming are constructive tasks

- Testers must seek to break the software

 Testing is done best by independent testers

5. Testing – Test Stages

26

Peter Müller – Software Architecture and Engineering

Independent Testing: Responsibilities

 Performed by independent test

team

- Exception: Acceptance test performed

by client

 Performed by independent test

team

 Performed by programmer

- Requires detailed knowledge of the

code

- Immediate bug fixing

Unit Test

Integration Test

System Test

5. Testing – Test Stages

27

Peter Müller – Software Architecture and Engineering

Independent Testing: Wrong Conclusions

 The developer should not be testing at all

- “Test before you code”

 Testers get only involved once software is done

 Toss the software over the wall for testing

- Testers and developers collaborate in developing the test

suite

 Testing team is responsible for assuring quality

- Quality is assured by a good software process

5. Testing – Test Stages

28

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5. Testing – Test Strategies

29

Peter Müller – Software Architecture and Engineering

Testing Steps

Select what will be tested

Define test cases

Select test strategy

Create test oracle

What parts of the system?

What aspects of the system?

What integration strategy?

How is the test data determined?

What are the test data?

How is the test carried out?

What are the expected results?

Defined before executing tests

5. Testing – Test Strategies

30

Example: Solve Quadratic Equation

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {

double q = b*b – 4*a*c;

if(q > 0 && a != 0) {

numRoots = 2;

double r = Math.sqrt(q);

x1 = (-b + r) / (2 * a);

x2 = (-b - r) / (2 * a);

} else if(q == 0) {

numRoots = 1;

x1 = -b / (2 * a);

} else {

numRoots = 0;

}

}

x =
−b ± b2 − 4ac

2a

Fails if a==0 and

b*b–4*a*c == 0

5. Testing – Test Strategies

31

Strategy 1: Exhaustive Testing

 Check UUT for all possible inputs

- Not feasible, even for trivial programs

 Assuming that double represents 64-bit values, we

get (264)3  1058 possible values for a, b, c

 Programs with heap data structures have a much

larger state space!

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {

…

}

5. Testing – Test Strategies

32

void roots(double a, double b, double c) {

…

}

Strategy 2: Random Testing

 Select test data uniformly

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {

double q = b*b – 4*a*c;

if(q > 0 && a != 0) {

…

} else if(q == 0) {

numRoots = 1;

x1 = -b / (2 * a);

} else { … }

}

Fails if a==0 and

b*b–4*a*c == 0

The likelihood of

selecting a==0 and b==0

randomly is 1/1038

5. Testing – Test Strategies

33

Random Testing: Observations

 Random testing focuses on generating test data

fully automatically

 Advantages

- Avoids designer/tester bias

- Tests robustness, especially handling of invalid input and

unusual actions

 Disadvantages

- Treats all inputs as equally valuable

Peter Müller – Software Architecture and Engineering

5. Testing – Test Strategies

34

Strategy 3: Functional Testing

 Use requirements knowledge to determine test

cases

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

a ≠ 0 and b2-4ac > 0 a = 0 and b ≠ 0

or

a ≠ 0 and b2-4ac = 0

a = 0, b = 0, and c ≠ 0

or

a ≠ 0 and b2-4ac < 0

Given three values, a, b, c,

compute all solutions of the

equation ax2 + bx + c = 0

Test each case of

the specification

5. Testing – Test Strategies

35

Functional Testing: Observations

 Functional testing focuses on input/output behavior

- Goal: Cover all the requirements

 Attempts to find

- Incorrect or missing functions

- Interface errors

- Performance errors

 Limitations

- Does not effectively detect design and coding errors

(e.g., buffer overflow, memory management)

- Does not reveal errors in the specification (e.g., missing

cases)

Peter Müller – Software Architecture and Engineering

5. Testing – Test Strategies

36

Strategy 4: Structural Testing

 Use design knowledge about system structure,

algorithms, data structures to determine test cases

that exercise a large portion of the code

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {

double q = b*b – 4*a*c;

if(q > 0 && a != 0) {

…

} else if(q == 0) {

…

} else {

…

}

}

Test this

case

and this

case

and this

case

Error might still be

missed, for instance,

when case is tested

with a==1, b==2, c==1

5. Testing – Test Strategies

37

Structural Testing: Observations

 Not well suited for system test

- Focuses on code rather than on

requirements, for instance, does not

detect missing logic

- Requires design knowledge, which testers

and clients do not have (and do not care

about)

- Thoroughness would lead to highly-

redundant tests

Peter Müller – Software Architecture and Engineering

 Structural testing focuses on thoroughness

- Goal: Cover all the code

5. Testing – Test Strategies

38

Testing Strategies: Summary

Peter Müller – Software Architecture and Engineering

Functional testing

 Goal: Cover all the

requirements

 Black-box test

 Suitable for all test stages

Structural testing

 Goal: Cover all the code

 White-box test

 Suitable for unit testing

5. Testing – Test Strategies

Random testing

 Goal: Cover corner cases

 Black-box test

 Suitable for all test stages

39

Peter Müller – Software Architecture and Engineering

Summary

 Main objective

- Design tests that systematically uncover different classes

of errors with a minimum amount of time and effort

- A good test has a high probability of finding an error

- A successful test uncovers an error

 Secondary benefits

- Demonstrate that software appears to be working

according to specification (functional and non-functional)

- Data collected during testing provides indication of

software reliability and software quality

- Good testers clarify the specification (creative work)

5. Testing

40

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5. Testing – Functional Testing

41

System Test

Applications of Functional Testing

 Black-box test a unit against its requirements

Peter Müller – Software Architecture and Engineering

Functional

test

Unit Test

Integration Test

Acceptance

test

Test interfaces

between

subsystems

During test-driven

development,

when code is not

yet written

5. Testing – Functional Testing

42

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.3.1 Partition Testing

5.3.2 Selecting Representative Values

5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing

43

Finding Representative Inputs

Peter Müller – Software Architecture and Engineering

Failure

No failure

 Divide inputs into

equivalence classes

- Each possible input

belongs to one of the

equivalence classes

- Goal: some classes have

higher density of failures

 Choose test cases for

each equivalence class
Requirement

implemented

correctly

Requirement not

implemented

Requirement

implemented

incorrectly

5. Testing – Functional Testing

44

Equivalence Classes: Example

Peter Müller – Software Architecture and Engineering

month

Month with 28

or 29 days
month = 2

Months with

30 days
month  {4, 6, 9, 11}

Months with

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Given a month (an integer in [1;12]) and a year (an

integer), compute the number of days of the given

month in the given year (an integer in [28;31])

year

Leap

years

(year mod 4 = 0 and

year mod 100 ≠ 0) or

year mod 400 = 0

Non-leap

years

year mod 4 ≠ 0 or

(year mod 100 = 0 and

year mod 400 ≠ 0)

Invalid inputs

missing

5. Testing – Functional Testing

45

Equivalence Classes: Example (cont’d)

Peter Müller – Software Architecture and Engineering

month

Month with 28

or 29 days
month = 2

Months with

30 days
month  {4, 6, 9, 11}

Months with

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Invalid
month < 1 or

month > 12

Given a month (an integer in [1;12]) and a year (an

integer), compute the number of days of the given

month in the given year (an integer in [28;31])

year

Leap

years

(year mod 4 = 0 and

year mod 100 ≠ 0) or

year mod 400 = 0

Non-leap

years

year mod 4 ≠ 0 or

(year mod 100 = 0 and

year mod 400 ≠ 0)

Partitioning seems

too coarse

5. Testing – Functional Testing

46

Equivalence Classes: Example (cont’d)

Peter Müller – Software Architecture and Engineering

month

Month with 28

or 29 days
month = 2

Months with

30 days
month  {4, 6, 9, 11}

Months with

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Invalid
month < 1 or

month > 12

Given a month (an integer in [1;12]) and a year (an

integer), compute the number of days of the given

month in the given year (an integer in [28;31])

year

Standard leap

years

year mod 4 = 0 and

year mod 100 ≠ 0

Standard non-

leap years
year mod 4 ≠ 0

Special leap

years
year mod 400 = 0

Special non-

leap years

year mod 100 = 0 and

year mod 400 ≠ 0

5. Testing – Functional Testing

47

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.3.1 Partition Testing

5.3.2 Selecting Representative Values

5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing

48

Selecting Representative Values

 Once we have partitioned the input values, we

need to select concrete values for the test cases

for each equivalence class

 Input from a range of valid values

- Below, within, and above the range

- Also applies to multiplicities on aggregations

 Input from a discrete set of valid values

- Valid and invalid discrete value

- Instances of each subclass

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

49

Boundary Testing

 A large number of errors tend to occur at

boundaries of the input domain

- Overflows

- Comparisons (‘<‘ instead of ‘<=‘, etc.)

- Missing emptiness checks (e.g., collections)

- Wrong number of iterations

Peter Müller – Software Architecture and Engineering

int abs(int x) {

if(0 <= x) return x;

return –x;

}

Given an integer x,

determine the

absolute value of x

x

Valid all values

Negative result for

x==Integer.MIN_VALUE

5. Testing – Functional Testing

50

Boundary Testing: Example

 Select elements at the “edge” of each equivalence

class (in addition to values in the middle)

- Ranges: lower and upper limit

- Empty sets and collections

Peter Müller – Software Architecture and Engineering

month

Month with 28 or 29 days month = 2

Months with 30 days month  {4, 6, 9, 11}

Months with 31 days month  {1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or month > 12

There is only one

value

Choose all

values

Choose 1 and 12

plus one more

Choose

MIN_VALUE, 0,

13, MAX_VALUE

5. Testing – Functional Testing

51

Boundary Testing: Example (cont’d)

Peter Müller – Software Architecture and Engineering

year

Standard leap

years

year mod 4 = 0 and

year mod 100 ≠ 0

Standard non-

leap years
year mod 4 ≠ 0

Special leap

years
year mod 400 = 0

Special non-

leap years

year mod 100 = 0 and

year mod 400 ≠ 0

Choose for instance

-200.004, -4, 4, 2012,

400.008

Choose for instance

-200.003, -1, 1, 2011,

400.009

Choose for instance

-200.000, 0, 2000,

400.000

Choose for instance

-200.100, 1900,

400.100

5. Testing – Functional Testing

52

Parameterized Unit Test for Leap Years

 Analogous test cases for February in non-leap

year, months with 30 days, and months with 31

days

Peter Müller – Software Architecture and Engineering

[Test]

public void TestDemo29(

[Values(-200004, -200000, -4, 0,4, 2000, 2012, 400000, 400008)]

int year)

{

int d = Days(2, year);

Assert.IsTrue(d == 29);

}

All selected values for

leap years and special

leap years

Only one

value

Expected

result

5. Testing – Functional Testing

53

Parameterized Unit Test for Invalid Inputs

Peter Müller – Software Architecture and Engineering

[Test]

[ExpectedException(typeof(ArgumentException))]

public void TestDemoInvalid(

[Values(int.MinValue, 0, 13, int.MaxValue)] int month,

[Values(-200100, -200004, -200003, -200000, -4, -1, 0, 1, 4, 1900,

2000, 2011, 2012, 400000, 400008, 400009, 400100)] int year) {

int d = Days(month, year);

}
All selected

values for year

Expected result:

an exception
All selected

invalid values

for month

5. Testing – Functional Testing

54

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.3.1 Partition Testing

5.3.2 Selecting Representative Values

5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing

55

Combinatorial Testing

 Combining equivalence classes and boundary

testing leads to many values for each input

- Twelve values for month and 17 values for year in the

Leap Year example

 Testing all possible combinations leads to a

combinatorial explosion (12 x 17 = 204 tests)

 Reduce test cases to make effort feasible

- Semantic constraints

- Combinatorial selection

- Random selection

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

56

Eliminating Combinations

 Inspect test cases for unnecessary combinations

- Especially for invalid values

- Use problem domain knowledge

 Reduces test cases from 204 to 17 + 4 + 3 + 4 = 28

Peter Müller – Software Architecture and Engineering

month

Month with 28

or 29 days
month = 2

Months with

30 days
month  {4, 6, 9, 11}

Months with

31 days

month 

{1, 3, 5, 7, 8, 10, 12}

Invalid
month < 1 or

month > 12

Test all

combinations

with year

Behavior is

independent of

year

Behavior is

independent of

year

Behavior is

independent of

year

5. Testing – Functional Testing

57

Eliminating Combinations: NUnit Example

Peter Müller – Software Architecture and Engineering

[Test, Sequential]

[ExpectedException(typeof(ArgumentException))]

public void TestDemoInvalid(

[Values(int.MinValue, 0, 13, int.MaxValue)] int month,

[Values(-200100, -200004, -200003, -200000)] int year) {

int d = Days(month, year);

}
One value for

year for each

value for month

All selected

invalid values

for month

5. Testing – Functional Testing

58

Selecting Object References

 Objects are different from values because they

have identity

 When selecting test data for objects, one has to

consider object identities and aliasing

 Referenced objects lead to combination problem

Peter Müller – Software Architecture and Engineering

a1 = new Account(1000);

a2 = new Account(1000);

a1.transfer(a2, 500);

a1 = new Account(1000);

a1.transfer(a1, 500);

Might behave

differently

(e.g., deadlock)

5. Testing – Functional Testing

59

Roots Example

 53 = 125 test cases for valid inputs

Peter Müller – Software Architecture and Engineering

Given three values, a, b, c,

compute all solutions of the

equation ax2 + bx + c = 0

a b c

Valid
any

value

any

value

any

value

Invalid
infinity,

NaN

infinity,

NaN

infinity,

NaN

Boundary testing:

a, b, c 

{ Double.MIN_VALUE, -5,

0, 5, Double.MAX_VALUE }

5. Testing – Functional Testing

60

Roots Example (cont’d)

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

a ≠ 0 and b2-4ac > 0

a = 0 and b ≠ 0

or

a ≠ 0 and b2-4ac = 0

a = 0, b = 0, and c ≠ 0

or

a ≠ 0 and b2-4ac < 0

Given three values, a, b, c,

compute all solutions of the

equation ax2 + bx + c = 0

Partitioning seems

too coarse

Partitioning seems

too coarse

Look at

dependencies

between inputs

Semantic

constraints on

combinations

Semantic

constraints on

combinations

5. Testing – Functional Testing

61

Roots Example (cont’d)

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

Linear

equation a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0

(Truly)

quadratic

equation
a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

Given three values, a, b, c,

compute all solutions of the

equation ax2 + bx + c = 0

Not all inputs are

covered: a=b=c=0

5. Testing – Functional Testing

62

Roots Example (cont’d)

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

Linear

equation a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0

(Truly)

quadratic

equation
a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

Invalid

input a = 0, b = 0, c = 0

Given three values, a, b, c, compute all

solutions of the equation ax2 + bx + c = 0;

report an error if all three values are zero

5. Testing – Functional Testing

63

Roots Example: Summary

 Classifying the combinations according to semantic

constraints did not reveal any irrelevant test cases

 But we did identify an omission in the specification

- It is common that testers clarify the specification

 One option is to manually choose a manageable

number of test cases such that there is at least one

test case for each semantic constraint

- Note that omitting test cases might leave errors such as

arithmetic overflow undetected

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

64

Semantic Constraints: Discussion

 Semantic constraints potentially reduce the number

of test cases

- They also help increasing the coverage

 But too many combinations remain

- Especially when there are many input values, for

instance, for the fields of objects

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

65

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

Medical Devices

Browser

Server

NASA GSFC

Network Security

Influence of Variable Interactions

 Empirical evidence

suggests that most

errors do not depend

on the interaction of

many variables

Peter Müller – Software Architecture and Engineering

Vars
Medical

Devices
Browser Server

NASA

GSFC

Network

Security

1 66% 29% 42% 68% 20%

2 97% 76% 70% 93% 65%

3 99% 95% 89% 98% 90%

4 100% 97% 96% 100% 98%

5 99% 96% 100%

6 100% 100%

 Interactions of

two or three

variables trigger

most errors

5. Testing – Functional Testing

66

Pairwise-Combinations Testing

 Instead of testing all possible combinations of all

inputs, focus on all possible combinations of each

pair of inputs

- Pairwise-combinations testing is identical to

combinatorial testing for two or less inputs

 Example: Consider a method with four boolean

parameters

- Combinatorial testing requires 24 = 16 test cases

- Pairwise-combinations testing requires 5 test cases:

TTTT, TFFF, FTFF, FFTF, FFFT

 Can be generalized to k-tuples (k-way testing)

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

67

Pairwise-Combinations Testing: Complexity

 For n parameters with d values per parameter, the

number of test cases grows logarithmically in n and

quadratic in d

- Handles larger number of parameters, for instance, fields

of objects

- The number d can be influenced by the tester

 Result holds for large n and d, and for all k in k-way

testing

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

68

Pairwise-Combinations Testing: Example

 Three parameters, five values each

- Double.MIN_VALUE, -5, 0, 5, Double.MAX_VALUE

- 53 = 125 test cases for combinatorial testing

- 25 test cases for pairwise-combinations testing

 Bug is still detected (depends only on a and b)

 Some cases depend on three parameters, e.g.,

invalid input

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0

a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

a = 0, b = 0, c = 0

5. Testing – Functional Testing

69

Pairwise-Combinations Testing: Discussion

 Pairwise-combinations testing (or k-way testing)

reduces the number of test cases significantly while

detecting most errors

 Pairwise-combinations testing is especially

important when many system configurations need

to be tested

- Hardware, operating system, database, application

server, etc.

 Should be combined with other approaches to

detect errors that are triggered by more complex

interactions among parameters

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

70

Functional Testing: Summary

Peter Müller – Software Architecture and Engineering

Functional

Requirements,

Analysis Model

Independently

Testable Feature

Representative

Values

Test Case

Specification
Test Cases

Equivalence classes,

boundary testing,

coverage

Exhaustive enumeration,

semantic constraints,

pairwise combinations

5. Testing – Functional Testing

71

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5. Testing – Structural Testing

72

Motivating Example

Peter Müller – Software Architecture and Engineering

public void sort(int[] a) {

if(a == null || a.length < 2) // array is trivially sorted

return;

// check if array is already sorted

for(int i = 0; i < a.length – 1; i++)

if(a[i] < a[i + 1])

break;

if(i >= a.length – 1) // array is already sorted

return;

// use quicksort to sort the array in ascending order

}

Given a non-null array of integers, sort the

array in-place in ascending order

Error: check for

sortedness should

use ‘>’

5. Testing – Structural Testing

73

Motivating Example: Functional Testing

 The requirements give no clue that one should test

with an array that is sorted in descending order

Peter Müller – Software Architecture and Engineering

a

Valid
any non-

null array

Invalid null

Given a non-null array of integers, sort the

array in-place in ascending order

Choose for instance

{ }, { 1 }, { 1, 2, 3 }

5. Testing – Structural Testing

74

Motivating Example: Discussion

 Detailed design and coding introduce many

behaviors that are not present in the requirements

- Choice of data structures

- Choice of algorithms

- Optimizations such as caches

 Functional testing generally does not thoroughly

exercise these behaviors

- No data structure specific test cases, e.g., rotation of

AVL-tree

- No test cases for optimizations, e.g., cache misses

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

75

System Test

Applications of Structural Testing

 White-box test a unit to cover a large portion of its

code

Peter Müller – Software Architecture and Engineering

Unit Test

Integration Test

Use design

knowledge to

cover most of

the code

5. Testing – Structural Testing

76

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5.4.1 Control Flow Testing

5.4.2 Advanced Topics of Control Flow Testing

5.4.3 Data Flow Testing

5.4.4 Interpreting Coverage

5. Testing – Structural Testing

77

Basic Blocks

 A basic block is a sequence of statements such

that the code in a basic block:

- has one entry point: no code within it is the destination of

a jump instruction anywhere in the program

- has one exit point: only the last instruction causes the

program to execute code in a different basic block

 Whenever the first instruction in a basic block is

executed, the rest of the instructions are

necessarily executed exactly once, in order

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

78

Basic Blocks: Example

Peter Müller – Software Architecture and Engineering

public void sort(int[] a) {

if(a == null || a.length < 2)

return;

for(int i = 0; i < a.length – 1; i++) {

if(a[i] < a[i + 1])

break;

}

if(i >= a.length – 1)

return;

qsort(a, 0, a.length);

}

5. Testing – Structural Testing

79

Intraprocedural Control Flow Graphs

 An intraprocedural control flow graph (CFG) of a

procedure p is a graph (N,E) where:

 N is the set of basic blocks in p plus designated

entry and exit blocks

 E contains

- an edge from a to b with condition c iff the execution of

basic block a is succeeded by the excution of basic block

b if condition c holds

- an edge (entry, a, true) if a is the first basic block of p

- edges (b, exit, true) for each basic block b that ends with

an (implicit) return statement

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

80

Control Flow Graphs: Example

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1b1

b4b4

b2
b2

b3b3

i = 0;

5. Testing – Structural Testing

81

Test Coverage

 The CFG can serve

as an adequacy

criterion for test

cases

 The more parts

are executed, the

higher the chance

to uncover a bug

 “parts” can be

nodes, edges,

paths, etc.

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;

5. Testing – Structural Testing

82

Test Coverage: Example

 Consider the input

a = { 3, 7, 5 }

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;

5. Testing – Structural Testing

83

Statement Coverage

 Assess the quality of a test suite by measuring how

much of the CFG it executes

 Idea: one can detect a bug in a statement only by

executing the statement

- Can also be defined on basic blocks

Peter Müller – Software Architecture and Engineering

Statement Coverage =
Number of executed statements

Total number of statements

5. Testing – Structural Testing

84

Statement Coverage: Example

 Consider the input

a = { 3, 7, 5 }

 This single test

case executes 7

out of 10 basic

blocks

 Statement

coverage: 70%

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;

5. Testing – Structural Testing

85

Statement Coverage: Example (cont’d)

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;

 We can achieve

100% statement

coverage with

three test cases

- a = { 1 }

- a = { 5, 7 }

- a = { 7, 5 }

 The last test case

detects the bug

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b2 = (i < a.length – 1);

b4 = (i >= a.length – 1);

return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;

5. Testing – Structural Testing

86

Statement Coverage: Discussion

Peter Müller – Software Architecture and Engineering

boolean contains(int[] a, int x) {

if(a == null) return false;

boolean found = false;

for(int i = 0; i <= a.length; i++) {

if(a[i] == x) {

found = true;

break;

}

}

return found;

}

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

5. Testing – Structural Testing

87

Statement Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

 We can achieve 100%

statement coverage

with two test cases

- a = null

- a = { 1, 2 }, x = 2

 The test cases do not

detect the bug!

 More thorough testing

is necessary

5. Testing – Structural Testing

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

88

Branch Coverage

 Idea: test all possible branches in the control flow

 An edge (m, n, c) in a CFG is a branch iff there is

another edge (m, n’, c’) in the CFG with n ≠ n’

- Conveniently define branch coverage to be 100% if the

code contains no branches

Peter Müller – Software Architecture and Engineering

Branch Coverage =
Number of executed branches

Total number of branches

5. Testing – Structural Testing

89

Branch Coverage: Example 1

 Consider the input

a = { 3, 7, 5 }

 This single test

case executes 4

out of 8 branches

 Branch coverage:

50%

 Three test cases

needed for 100%

branch coverage

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1b1

b4b4

b2

b2

b3b3

i = 0;

5. Testing – Structural Testing

90

Branch Coverage: Example 2

Peter Müller – Software Architecture and Engineering

 The two test cases

- a = null

- a = { 1, 2 }, x = 2

execute 5 out of 6

branches

 Branch coverage:

83%

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

5. Testing – Structural Testing

91

Branch Coverage: Example 2 (cont’d)

Peter Müller – Software Architecture and Engineering

 Achieving 100%

branch coverage

would require a test

case that runs the

loop to the end

- a = null

- a = { 1 }, x = 1

- a = { 1 }, x = 3

 The last test case

detects the bug

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

5. Testing – Structural Testing

92

Branch Coverage: Discussion

 Branch coverage leads to more thorough testing

than statement coverage

- Complete branch coverage implies complete statement

coverage

- But “at least n% branch coverage” does not generally

imply “at least n% statement coverage”

 Most widely-used adequacy criterion in industry

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

93

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int[] reverse(int[] a) {

int j = a.length – 1;

int[] res = new int[a.length];

for(int i = 0; i < a.length; i++) {

res[j] = a[i];

}

return res;

}

j = a.length – 1;

res = new int[a.length];

i = 0;

return res;

exit

res[j] = a[i];

i++;

entry

b1 b1

b1 = (i < a.length);

5. Testing – Structural Testing

94

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100%

branch coverage with

one test case

- a = { 1 }

 The test case does

not detect the bug!

 More thorough testing

is necessary

j = a.length – 1;

res = new int[a.length];

i = 0;

return res;

exit

res[j] = a[i];

i++;

entry

b1 b1

b1 = (i < a.length);

5. Testing – Structural Testing

95

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {

int x = 1;

int y = 1;

if(a)

x = 0;

else

y = 0;

if(b)

return 5 / x;

else

return 5 / y;

}

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

96

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100%

branch coverage with

two test cases

- a = true, b = false

- a = false, b = true

 The test cases do not

detect the bug!

 More thorough testing

is necessary

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

97

Path Coverage

 Idea: test all possible paths through the CFG

 A path is a sequence of nodes n1, …, nk such that

- n1 = entry

- nk = exit

- There is an edge (ni, ni+1, c) in the CFG

Peter Müller – Software Architecture and Engineering

Path Coverage =
Number of executed paths

Total number of paths

5. Testing – Structural Testing

98

Path Coverage: Example 1

Peter Müller – Software Architecture and Engineering

 The two test cases

- a = true, b = false

- a = false, b = true

execute two out of four

paths

 Path coverage: 50%

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

99

Path Coverage: Example 1 (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100%

path coverage with four

test cases

- a = true, b = false

- a = false, b = true

- a = true, b = true

- a = false, b = false

 The two additional test

cases detect the bugs

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

100

Path Coverage: Example 2

Peter Müller – Software Architecture and Engineering

boolean contains(int[] a, int x) {

if(a == null) return false;

boolean found = false;

for(int i = 0; i <= a.length; i++) {

if(a[i] == x) {

found = true;

break;

}

}

return found;

}

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

5. Testing – Structural Testing

101

Path Coverage: Example 2 (cont’d)

 Number of loop

iterations is not known

statically

 An arbitrarily large

number of test cases

is needed for

complete path

coverage

Peter Müller – Software Architecture and Engineering

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return

false;

exit

found = true;

break;

i++;

entry

b1b1

b2

b2

b3b3

found = false;

i = 0;

5. Testing – Structural Testing

102

Path Coverage: Discussion

 Path coverage leads to more thorough testing than

both statement and branch coverage

- Complete path coverage implies complete statement

coverage and complete branch coverage

- But “at least n% path coverage” does not generally imply

“at least n% statement coverage” or “at least n% branch

coverage”

 Complete path coverage is not feasible for loops

- Unbounded number of paths

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

103

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int[] reverse(int[] a) {

int j = a.length – 1;

int[] res = new int[a.length];

for(int i = 0; i < a.length; i++) {

res[j] = a[i];

}

return res;

}

j = a.length – 1;

res = new int[a.length];

i = 0;

return res;

exit

res[j] = a[i];

i++;

entry

b1 b1

b1 = (i < a.length);

5. Testing – Structural Testing

104

Loop Coverage

 Idea: for each loop, test zero, one, and more than

one iterations

 Loop coverage is typically combined with other

adequacy criteria such as statement or branch

coverage

Peter Müller – Software Architecture and Engineering

Loop Coverage =

Number of executed loops

with 0, 1, and more than 1 iterations

Total number of loops * 3

5. Testing – Structural Testing

105

Loop Coverage: Example

Peter Müller – Software Architecture and Engineering

 The test case

- a = { 1 }

executes one out of

three possible cases

for the loop

 Loop coverage: 33%

j = a.length – 1;

res = new int[a.length];

i = 0;

return res;

exit

res[j] = a[i];

i++;

entry

b1 b1

b1 = (i < a.length);

5. Testing – Structural Testing

106

Loop Coverage: Example

Peter Müller – Software Architecture and Engineering

 We can achieve 100%

loop coverage with

three test cases

- a = { }

- a = { 1 }

- a = { 1, 2 }

 The last test case

detects the bug

j = a.length – 1;

res = new int[a.length];

i = 0;

return res;

exit

res[j] = a[i];

i++;

entry

b1 b1

b1 = (i < a.length);

5. Testing – Structural Testing

107

Measuring Coverage

 Coverage information

is collected while the

test cases execute

 Use code

instrumentation or

debug interface to

count executed basic

blocks, branches, etc.

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {

int x = 1; int y = 1;

if(a) {

executedBranches[0]++; x = 0;

} else {

executedBranches[1]++; y = 0;

}

if(b) {

executedBranches[2]++;

return 5 / x;

} else {

executedBranches[3]++;

return 5 / y;

}

}

5. Testing – Structural Testing

108

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5.4.1 Control Flow Testing

5.4.2 Advanced Topics of Control Flow Testing

5.4.3 Data Flow Testing

5.4.4 Interpreting Coverage

5. Testing – Structural Testing

109

CFG: Method Calls

Peter Müller – Software Architecture and Engineering

static <E> void filter(

Collection<E> from,

Filter<E> f,

Collection<E> to) {

if(from == null) return;

Iterator<E> i = from.iterator();

while(i.hasNext()) {

E e = i.next();

if(f.apply(e))

to.add(e);

}

}

Iterator<E> i = from.iterator();

to.add(e);

exit

e = i.next();

b3 = f.apply(e);

entry

b1

b1

b2 = i.hasNext();

b1 = (from == null);

b2

b2

b3

b3

5. Testing – Structural Testing

110

Dynamically-Bound Method Calls

 Intraprocedural CFGs treat

method calls as simple

statements

 Yet, calls invoke different

code depending on the

dynamic type of the

receiver

 Testing should cover the

possible behaviors

Peter Müller – Software Architecture and Engineering

static <E> void filter(

Collection<E> from,

Filter<E> f,

Collection<E> to) {

if(from == null) return;

Iterator<E> i = from.iterator();

while(i.hasNext()) {

E e = i.next();

if(f.apply(e))

to.add(e);

}

}

5. Testing – Structural Testing

111

Testing Dynamically-Bound Method Calls

 A dynamically-bound

method call can be regarded

as a case distinction on the

type of the receiver

Peter Müller – Software Architecture and Engineering

NullFilter

apply(E e)

Duplicates

apply(E e)

Filter

apply(E e)

f.apply(e)

if(type(f) == Filter)

f.Filter::apply(e);

else if(type(f) == NullFilter)

f.NullFilter::apply(e);

else // type(f) == Duplicates

f.Duplicates::apply(e);

 Now we can apply branch testing

5. Testing – Structural Testing

112

Testing Dynamically-Bound Calls (cont’d)

 Treating dynamically-

bound method calls as

branches leads to a

combinatorial explosion

 Use semantic constraints

and pairwise-

combinations testing

Peter Müller – Software Architecture and Engineering

static <E> void filter(

Collection<E> from,

Filter<E> f,

Collection<E> to) {

if(from == null) return;

Iterator<E> i = from.iterator();

while(i.hasNext()) {

E e = i.next();

if(f.apply(e))

to.add(e);

}

} java.util contains

dozens of

collection classes

java.util contains

dozens of

collection classes

Several different

Filter classes in

the program

5. Testing – Structural Testing

113

Exceptions

Peter Müller – Software Architecture and Engineering

static <E> void filter(

Collection<E> from,

Filter<E> f,

Collection<E> to) {

if(from == null) return;

if(f == null || to == null)

throw new

IllegalArgumentException();

Iterator<E> i = from.iterator();

while(i.hasNext()) {

E e = i.next();

if(f.apply(e))

to.add(e);

}

}

Iterator<E> i = from.iterator();

to.add(e);

exit

e = i.next();

b4 = f.apply(e);

entry

b1

b1

b3 = i.hasNext();

b1 = (from == null);

b3

b3

b4

b4

b2 = (f == null || to == null);

throw new

IllegalArgumentException();

b2

b2

5. Testing – Structural Testing

114

CFG: Exceptions

 Exceptions add a control flow edge from the basic

block where the exception is thrown to the exit

block or the block where the exception is caught

 Idea: Cover exceptional control flow like normal

control flow during testing

- Test oracle is checked when method terminates normally

Peter Müller – Software Architecture and Engineering

[Test]

[ExpectedException(typeof(ArgumentException))]

public void TestDemoInvalid(…) {

int d = Days(month, year);

}

5. Testing – Structural Testing

115

Example: Documented Exceptions

Peter Müller – Software Architecture and Engineering

static <E> void filter(

Collection<E> from,

Filter<E> f,

Collection<E> to) {

if(from == null) return;

if(f == null || to == null)

throw new

IllegalArgumentException();

Iterator<E> i = from.iterator();

while(i.hasNext()) {

E e = i.next();

if(f.apply(e))

to.add(e);

}

}

Might throw:

 UnsupportedOperationException

 ClassCastException

 NullPointerException

 IllegalArgumentException

 IllegalStateException

Might throw:

 NoSuchElementException

5. Testing – Structural Testing

116

Example: Documented Exceptions (cont’d)

Peter Müller – Software Architecture and Engineering

Iterator<E> i = from.iterator();

to.add(e); exit

e = i.next();

entry
b1

b1

b3 = i.hasNext();

b1 = (from == null);

b3

b3

b4

b4

b2 = (f == null || to == null);

throw new

IllegalArgumentException();

b2

b2

b4 = f.apply(e);

5. Testing – Structural Testing

117

Example: Undocumented Exceptions

Peter Müller – Software Architecture and Engineering

static <E> void filter(

Collection<E> from,

Filter<E> f,

Collection<E> to) {

if(from == null) return;

if(f == null || to == null)

throw new

IllegalArgumentException();

Iterator<E> i = from.iterator();

while(i.hasNext()) {

E e = i.next();

if(f.apply(e))

to.add(e);

}

}

The example might also throw:

 ConcurrentModificationException

 NoClassDefFoundError

 NoSuchMethodError

 OutOfMemoryError

 StackOverflowError

 ThreadDeath

 VirtualMachineError

 etc.

5. Testing – Structural Testing

118

Example: Undocumented Exceptions (cont’d)

Peter Müller – Software Architecture and Engineering

Iterator<E> i = from.iterator();

to.add(e); exit

e = i.next();

entry
b1

b1

b3 = i.hasNext();

b1 = (from == null);

b3

b3

b4

b4

b2 = (f == null || to == null);

throw new

IllegalArgumentException();

b2

b2

b4 = f.apply(e);

It is impractical to

represent and test

all exceptional

control flow in the

CFG

5. Testing – Structural Testing

119

Checked vs. Unchecked Exceptions

 Many programming languages distinguish between

checked and unchecked exceptions

 Checked exceptions represent invalid conditions

outside the immediate control of the program

- Invalid user input, database problems, network outages,

absent files

 Unchecked exceptions represent defects in the

program or the execution environment

- Illegal arguments, null-pointer dereferencing, division by

zero, assertion violation, etc.

- In Java: all subclasses of RuntimeException and Error

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

120

Testing Unchecked Exceptions

 Unchecked

exceptions are not

supposed to occur

 When computing

the CFG, ignore

unchecked

exceptions thrown

by other methods

and virtual machine

- But consider throw

statements

Peter Müller – Software Architecture and Engineering

Iterator<E> i = from.iterator();

to.add(e); exit

e = i.next();

b4 = f.apply(e);

entry

b1

b1

b3 = i.hasNext();

b1 = (from == null);

b3

b3

b4

b4

b2 = (f == null || to == null);

throw new

IllegalArgumentException();

b2

b2

5. Testing – Structural Testing

121

Unchecked Exceptions: Bad Example

 Never use unchecked exceptions to encode control

flow!

Peter Müller – Software Architecture and Engineering

static boolean contains(String[] a, String s) {

for(int i = 0; i < a.length; i++) {

try {

if(a[i].equals(s))

return true;

} catch(NullPointerException e) {

i++;

}

}

return false;

}

Exceptional

control flow

will not be

covered

Bug remains

undetected

5. Testing – Structural Testing

122

Bad Example Fixed

Peter Müller – Software Architecture and Engineering

static boolean contains(String[] a, String s) {

for(int i = 0; i < a.length; i++) {

if(a[i] != null) {

if(a[i].equals(s))

return true;

} else {

i++;

}

}

return false;

}

Normal

control flow

will be

covered

Bug will be

detected

5. Testing – Structural Testing

123

Testing Checked Exceptions

 Checked exceptions represent regular control flow

that needs to be tested

- Include control flow in CFG, testing, and coverage

 In Java, checked exceptions are declared in

method signatures

 For each call, add appropriate control flow edges

Peter Müller – Software Architecture and Engineering

interface RemoteBuffer extends Remote {

void put(String s) throws RemoteException;

}

5. Testing – Structural Testing

124

Checked Exceptions: Example

Peter Müller – Software Architecture and Engineering

class Producer {

RemoteBuffer b;

void produce() throws RemoteException {

boolean retried = false;

boolean success = false;

while(!success) {

try {

b.put("Product“);

success = true;

} catch(RemoteException e) {

if(retried) throw e;

}

}

}

}

Exceptional

control flow

will be

covered
Bug will be

detected

5. Testing – Structural Testing

125

Testing Exceptions: Summary

 Checked exceptions encode the program’s reaction

to invalid conditions in the environment

- Test like normal control flow

 Unchecked exceptions represent defects

- Test unchecked exceptions explicitly thrown by method

under test (argument validation, precondition check)

- Unchecked exceptions thrown by methods being called

indicate defect in method under test (precondition

violation) or in the called method

- Unchecked exceptions thrown by virtual machine indicate

defect in method under test (e.g., infinite recursion) or

deployment error (e.g., class not found)

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

126

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5.4.1 Control Flow Testing

5.4.2 Advanced Topics of Control Flow Testing

5.4.3 Data Flow Testing

5.4.4 Interpreting Coverage

5. Testing – Structural Testing

127

Example Revisited

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {

int x = 1;

int y = 1;

if(a)

x = 0;

else

y = 0;

if(b)

return 5 / x;

else

return 5 / y;

}

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

128

Data Flow Testing

 Testing all paths is not

feasible

- Number grows exponentially

in the number of branches

- Loops

 Idea: Test those paths

where a computation in one

part of the path affects the

computation of another

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

129

Variable Definition and Use

 A variable definition for a variable v is a basic block

that assigns to v

- v can be a local variable, formal parameter, field, or

array element

 A variable use for a variable v is a basic block that

reads the value from v

- In conditions, computations, output, etc.

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

130

Definition-Clear Paths

 A definition-clear path for a variable v is a path

n1, …, nk in the CFG such that:

- n1 is a variable definition for v

- nk is a variable use for v

- No ni (1 < i ≤ k) is a variable definition for v

(nk may be a variable definition if each assignment to v

occurs after a use)

 Note: definition-clear paths do not go from entry to

exit (in contrast to our earlier definition of path)

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

131

Definition-Use Pairs

 A definition-use pair

for a variable v is a

pair of nodes (d,u)

such that there is a

definition-clear path

d, …, u in the CFG

 We say DU-pair for

definition-use pair

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

Variable

definition

for x

Variable

definition

for x

Variable

use for x

5. Testing – Structural Testing

132

Definition-Use Pairs: Examples

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

133

DU-Pairs Coverage

 Idea: test all paths that provide a value for a

variable use

Peter Müller – Software Architecture and Engineering

DU-Pairs Coverage =
Number of executed DU-Pairs

Total number of DU-Pairs

5. Testing – Structural Testing

134

DU-Pairs Coverage: Example

Peter Müller – Software Architecture and Engineering

 The two test cases

- a = true, b = false

- a = false, b = true

achieve 100% branch

coverage, but only 50%

DU-pairs coverage

 In this example, DU-pairs

coverage is equivalent to

path coverage

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

135

Determining all DU-Pairs

 DU-Pairs are computed using a static reaching-

definitions analysis

 For each node n and for each variable v, compute

all variable definitions for v that possibly reach n via

a definition-clear path

 The reaching definitions at a node n are:

- The reaching definitions of n’s predecessors in the CFG

- minus the definitions killed by one of n’d predecessors

- plus the definitions made by one of n’d predecessors

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

136

Reaching Definitions: Algorithm

 Input

- pred(n) = { m | (m,n,c) is an edge in the CFG }

- succ(m) = { n | (m,n,c) is an edge in the CFG }

- gen(n) = { vn | n is a variable definition for v }

- kill(n) = { vm | n is a variable definition for v and m ≠ n }

 We compute via fixpoint iteration

- Reach(n): The reaching definitions at the beginning of n

- ReachOut(n): The reaching definitions at the end of n

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

137

Reaching Definitions: Algorithm (con’t)

Peter Müller – Software Architecture and Engineering

foreach node n do ReachOut(n) :=  end

worklist := nodes

while worklist   do

n := any(worklist)

remove n from worklist

Reach(n) := Umpred(n) ReachOut(m)

ReachOut(n) := Reach(n) \ kill(n)  gen(n)

if ReachOut(n) has changed then

worklist := worklist  succ(n)

end

end

5. Testing – Structural Testing

138

Reaching Definitions: Example

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

1:

2:

4:3:

6:

5:

7:

n Reach(n) ReachOut(n)

1 

2 x1, y1 x1, y1

3 x1, y1 x3, y1

4 x1, y1 x1, y4

5 x1, x3, y1, y4 x1, x3, y1, y4

6 x1, x3, y1, y4 x1, x3, y1, y4

7 x1, x3, y1, y4 x1, x3, y1, y4

5. Testing – Structural Testing

139

From Reaching Definitions to DU-Pairs

 The set of DU-pairs is easily determined as

{ (d,u) | u is a variable use for v and vd  Reach(u) }

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

b1 b1

b2 b2

x = 1;

y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

1:

2:

4:3:

6:

5:

7:

n Reach(n)

1 

2 x1, y1

3 x1, y1

4 x1, y1

5 x1, x3, y1, y4

6 x1, x3, y1, y4

7 x1, x3, y1, y4

 DU-pairs for x:

(1,6), (3,6)

 DU-pairs for y:

(1,7), (4,7)

5. Testing – Structural Testing

140

Data Flow Testing Example

 Convert character sequence to integer

- Input format: ddec* | ‘x’(dhex*), where d is a (decimal or

hexadecimal) digit

Peter Müller – Software Architecture and Engineering

static int convert(char[] a) {

int base; int i = 0; int val = 0;

if (a.length == 0) return 0;

if(a[i] == 'x') { base = 12; i = i + 1; }

else { base = 10; }

while(i < a.length) {

val = val * base + Character.digit(a[i], base);

i = i + 1;

}

return val;

}

5. Testing – Structural Testing

We assume here

that all inputs are of

the required format

141

Data Flow Testing Example: CFG

Peter Müller – Software Architecture and Engineering

val = val * base + Character.digit(a[i], base);

i = i + 1; return val; exit

entry

b1

b1

b3 = (i < a.length);

b2 = (a[i] == 'x');

b3

b3

1:

b2b2

5. Testing – Structural Testing

i = 0;

val = 0;

b1 = (a.length == 0);

return 0;

base = 12;

i = i + 1;
base = 10;

2:

4:
5:

6:

7:

8:

3:

142

Data Flow Testing Example: DU-Pairs

 We get 14 DU-pairs

 DU-pairs for i:

(1,2), (1,4), (1,6), (4,6),

(7,6), (1,7), (4,7), (7,7)

 DU-pairs for val:

(1,7), (7,7), (1,8), (7,8)

 DU-pairs for base:

(4,7), (5,7)

Peter Müller – Software Architecture and Engineering

n Reach(n) ReachOut(n)

1  i1, val1

2 i1, val1 i1, val1

3 i1, val1 i1, val1

4 i1, val1 i4, val1, base4

5 i1, val1 i1, val1, base5

6 i1, i4, i7, val1, val7,

base4, base5

i1, i4, i7, val1, val7,

base4, base5

7 i1, i4, i7, val1, val7,

base4, base5

i7, val7, base4,

base5

8 i1, i4, i7, val1, val7,

base4, base5

i1, i4, i7, val1, val7,

base4, base5

5. Testing – Structural Testing

143

Data Flow Testing Example: Bug

 Consider the

test cases

- a = { }

- a = { ‘x’ }

- a = { ‘1’ }

- a = { ‘1’, ‘2’ }

 The bug is not

detected!

Peter Müller – Software Architecture and Engineering

static int convert(char[] a) {

int base; int i = 0; int val = 0;

if (a.length == 0) return 0;

if(a[i] == 'x‘) { base = 12; i = i + 1; }

else { base = 10; }

while(i < a.length) {

val = val * base + Character.digit(a[i], base);

i = i + 1;

}

return val;

}

 Branch and loop coverage: 100%

 DU-pairs missed: (4,7) for i, base (coverage 86%)

5. Testing – Structural Testing

 Branch and loop coverage: 100%

144

Data Flow Testing Example: Observation

 DU-pairs for i and val include (7,7)

 Complete DU-pairs coverage requires more than

one loop iteration

Peter Müller – Software Architecture and Engineering

static int convert(char[] a) {

int base; int i = 0; int val = 0;

if (a.length == 0) return 0;

if(a[i] == 'x') { base = 16; i = i + 1; }

else { base = 10; }

while(i < a.length) {

val = val * base + Character.digit(a[i], base);

i = i + 1;

}

return val;

}

5. Testing – Structural Testing

145

Determining all DU-Pairs: Heap Structures

 Determining

whether a definition

and a usage refer to

the same heap

location, a static

analysis would need

arithmetic and

aliasing information

 Static analysis has

to over-approximate

Peter Müller – Software Architecture and Engineering

static void repeat(int[] from, int[] to) {

int i = 0;

if (from.length == 0) return;

while(i < to.length) {

to[i] = to[i] + from[i % from.length];

i = i + 1;

}

}

5. Testing – Structural Testing

146

Measuring DU-Pairs Coverage

 Keep track of currently active definitions

- defCover: Variable → Block

 Keep track of executed DU-pairs

- useCover: Variable × Blockdef × Blockuse → 

 Maps can be encoded as arrays, indexed by

identifiers for variables and basic blocks

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

147

Measuring DU-Pairs Coverage: Example

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {

int x = 1; defCover[“x”] = 0;

int y = 1; defCover[“y”] = 0;

if(a) {

x = 0; defCover[“x”] = 1;

} else {

y = 0; defCover[“y”] = 2;

}

if(b) {

useCover[“x”, defCover[“x”], 3]++;

return 5 / x;

} else {

useCover[“y”, defCover[“y”], 4]++;

return 5 / y;

}

}

5. Testing – Structural Testing

Current variable

definition for x is

basic block 0

Current variable

definition for x is

basic block 1

DU-pair for variable x

with current definition

and use-block 3 has

been executed

148

Data Flow Testing: Discussion

 Data flow testing complements control flow testing

- Choose test cases that maximize branch and DU-pairs

coverage

 Like with path coverage, not all DU-pairs are

feasible

- Static analysis over-approximates data flow

- Complete DU-pairs coverage might not be possible

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

149

Data Flow Testing: Discussion (cont’d)

 DU-pairs coverage is not the only adequacy

criterion for data flow testing

- All definitions, all predicate-usages, all simple-DU-paths,

etc.

 DU-pair “anomalies” may point to errors

- Use before definition (not possible for locals in Java)

- Double definition without use

- Termination after definition without use

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

150

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages

5.2 Test Strategies

5.3 Functional Testing

5.4 Structural Testing

5.4.1 Control Flow Testing

5.4.2 Advanced Topics of Control Flow Testing

5.4.3 Data Flow Testing

5.4.4 Interpreting Coverage

5. Testing – Structural Testing

151

Interpreting Coverage

 High coverage does not mean that code is well

tested

- But: low coverage means that code is not well tested

- Make sure you do not blindly optimize coverage but

develop test suites that test the code well

 Coverage tools do not only measure coverage

metrics, they also identify which parts of the code

have not been tested

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

152

Experimental Evaluation: Approach

 Several studies investigate the benefit of coverage

metrics

- Andrews et al.: “Using Mutation Analysis for Assessing

and Comparing Testing Coverage Criteria”, TR SCE-06-

02, 2006

 Approach

- Seed defects in the code

- Develop test suites that satisfy various coverage criteria

- Measure how many of the seeded defects are found by

the test suits

- Extrapolate to “real” defects in the code

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

153

Experimental Evaluation: Some Findings

 The test suite size grows exponentially in the

coverage

 More demanding coverage criteria lead to larger

test suites, but do not detect more bugs

- Block, decision, data flow coverage

 There is no significant difference in the cost-

efficiency of the various coverage metrics

 All adequacy criteria lead to test suites that detect

more bugs then random testing, especially for large

test suites

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

