
263-2710 Type Systems Homework #2

Homework # 2

due March 4, 13:00

The natural language explanations (§2) and research surveys (§4) should be turned in on
paper at the beginning of lecture on Tuesday, March 4. The SASyLF proof (§3) should be
submitted by email to scmalte@inf.ethz.ch before 1pm on Tuesday, March 4.

1 Reading

Please read through the end of Chapter 3 in your textbook.

2 Problems

Please do problem 3.5.13 (Funny rules). Explain your answers, but no proof (natural language
or SASyLF) is required. Also answer the following question:

Which of the theorems 3.5.4, 3.5.7, 3.5.8, 3.5.11, 3.5.12 remain true after adding the
rules for arithmetic expressions (Figure 3–2)? Explain!

(Ex. 3.5.14 and its solution should help, as should definition 3.5.15.)

Theorem 3.5.4 3.5.7 3.5.8 3.5.11 3.5.12
Summary determ valnorm normval unique termination

Add E-Funny1 false true true false true
Add E-Funny2 false true true true true
Add Numbers true true false true true

Explanation

Adding E-Funny1 drastically changes semantics:

if true then false else true

can go either to false or to true in one step which are counter-examples to determinancy
(3.5.4) and uniqueness of normal forms (3.5.11).

Adding E-Funny2 allows us to pre-evaluate the “then” part which means we don’t have
determinancy (3.5.4) but it doesn’t fundamentally change the results of the computation
(3.5.11).

Adding numbers adds a lot of new “normal forms” such as succ true, which are not
values and hence counter-examples to all normal forms being values (3.5.8) but the defini-
tions are carefully crafted to retain determinancy (3.5.4) and hence uniqueness of normal
forms (3.5.11).

None of the additions cause values to be evaluable (3.5.7), and none of them can lead to
loops in evaluation (3.5.12).

3 Proofs

Do problem 3.5.17 and write the proof in SASyLF (only for the “if” sublanguage!). More
precisely, prove that if t

∗→ t′ and t′ is a value then t ⇓ t′, and conversely if t ⇓ t′, then t
∗→ t′. (I

am not requiring you to prove that t′ is a value.) You may use the solution in the back of the
book (p. 498 in my edition) to help you write the proof.

Spring 2014 page 1 of 2



263-2710 Type Systems Homework #2

When I solved this problem, I noticed I needed the following lemmas:

1. If t → t′ and t′ ⇓ v, then t ⇓ v.

2. If t
∗→ t′ and t′ ⇓ v, then t ⇓ v.

3. If t1
∗→ t′1 then for any t2 and t3, if t1 then t2 else t3

∗→ if t′1 then t2 else t3.

Adding succ, pred, iszero doubles the size of the proof—be thankful you don’t need to handle
them! We will install a “skeleton” file on the web page to get you started.

4 Application

Find three papers from journals or academic conferences in programming languages (TOPLAS,
POPL, OOPSLA, ECOOP) from the last 5 years which define an operational semantics (eval-
uation) for a programming language. For each one, determine whether the evaluation relation
is

small-step as with the book (with errors getting the program “stuck”);

small-step with errors as in Exercise 3.5.16

big-step as in Exercise 3.5.17

Cite each paper and explain your categorization.

Spring 2014 page 2 of 2


