263-2710 Type Systems Homework #7

Homework # 7
due April 8, 13:00

Turn in your answers to §2,3 on paper at the beginning of lecture, and send your lambda-ref.slf by
email to scmalte@icf.ethz.ch.

1 Reading

Please read Chapter 13 in your textbook.

2 Problems

Please do the following problem:
e Exercise 13.1.1, and include the effects of evaluating
¢ = (lambda x: Nat . {ref x, ref x}) O

Justify all three of your diagrams.

3 Discussion

1. The textbook says (page 167) that we must include a well typing in the requirements for Progress
and Preservation. Give two counter-examples, one for Progress (Theorem 13.5.7) and one for
Preservation (Theorem 13.5.3) if you omit the well typing requirement. In other words, give counter-
examples of

bogus progress If I' | ¥ F ¢t : T, then either ¢ is a value or for any p there exists ', u’ where
tlp—t"| .
bogus preservation If I' | X ¢ : T and ¢ | p—> ¢/ |/ then T' | X ¢ : T. (page 167)

2. Where do store typings come from; how does one get a store typing? In particular, for a programmer
wanting to know whether their program will execute without getting stuck, how can they use the
progress and preservation theorems? We understand that the new store typing from a preservation
step can be fed back into the next use of progress, but how can one get an initial store typing?

4 Proofs

Complete the proofs of progress and preservation for STLC with references. We provide a skeleton file
with all the syntax and judgments defined.

Unlike the textbook, stores are typed only in the empty context, but then we make the relation
recursive over store types, so our relation is ¥ F 1 : 3. The solution uses the following three “effectiveness”
lemmas:

e Given a particular term and memory, it is always possible to allocate a cell for it.

e If we have a well-typed memory, and the memory typing has a binding for a location, then so does
the memory typing. That is, if ¥ F p and X(I) = T, then there exists a term ¢ such that p(l) = t.
(That it has the right type is part of preservation, not progress.)

e If we have a well-typed memory and the memory typing has a binding for a location, then we can
update the memory at that location.

These three lemmas do the work of progress for allocation, dereference and assignment, respectively.
Preservation requires several helper lemmas as well; see the skeleton file for more information.

Spring 2014 page 1 of 2

263-2710 Type Systems Homework #7.5

Homework # 7.5
due April 8, 13:00

This is an optional homework assignment, due at the same time as the main homework.
Another optional assignment will be assigned over the Easter break.

If you turn this assignment in and do better on it than a previous assignment, the
better grade will replace it. Turn in the files record.slf and fraction.slf by email to
scmalte@inf.ethz.ch.

5 Record Types

In the next few weeks, we will be adding subtypes and object-oriented features to record
types. Prepare for these weeks by completing the proof of type soundness of record types.
A skeleton file will be provided.

Repetition must be explicitly modeled in syntax. We use a new nonterminal r to refer
to the contents of a record (and R for the contexts of a record type). We use $ to refer to
the empty record (type). Record fields are just natural numbers; equality and inequality
are defined as done previously. Since SASyLF has no module system yet, the natural
number definitions must be embedded into the proof file; starting this week, our proof
files will be thousands of lines long.

6 Mechanization

Skim the paper “Checking Interference with Fractional Permissions” (Boyland 2003) and
mechanize the definitions necessary to define evaluation. In other words, define the syntax
and judgments for evaluation. Put the results in fraction.slf. Ironically, you will not
need to define fractions.

Spring 2014 page 2 of 2

