
ETH 263-2710 Homework #14

Homework # 14
due Tuesday, June 10, 13:00

This is an optional homework assignment. If you do better on this assignment than on a
previous assignment, this assignment will take the place of the latter. Please email a ZIP
archive of your src directory to malte.schwerhoff@inf.ethz.ch before the deadline.

1 Reading

Read chapter 22 on type reconstruction, also known as type inference.

2 Overview

Your task is to implement type inference for a simple lambda in Scala1. The calculus
corresponds to the basic lambda calculus extended with let-bindings and the Y-combinator
(fix). The types are Nat, Bool, type variables and functions (→ aka Arrow).

You are given a skeleton project for the implementation that defines the syntax and types
of the lambda calculus, the basic classes and methods that you have to implement, and
several unit tests illustrating the expected output of your type inference implementation.
You should be able to follow the book quite closely; the only additions are the fix

construct and transitive type variable substitution.

3 Skeleton Setup

3.1 Installation

- Download the skeleton project provided on the course website and unzip it into a
directory. For the rest of this document, we assume that this directory is named
pancake. The project uses Scala’s de-facto standard build tool sbt2 for dependency
management, building and testing.

- Make sure that you have Java 1.7 installed.

- Download and install sbt. The latter essentially corresponds to putting the start
script sbt.bat/codesbt.sh into the path.

- Open a command-line/terminal/shell in directory pancake and run sbt. You should
see some output indicating that certain dependencies are being resolved and down-
loaded, including the required Scala version 2.10.3. After a while you should be able
to use the sbt prompt, indicated by a leading > character.

1http://scala-lang.org/
2http://www.scala-sbt.org/

Spring 2014 page 1 of 4

http://scala-lang.org/
http://www.scala-sbt.org/


ETH 263-2710 Homework #14

- Run > project (without the leading >) on the sbt prompt. The reply should
be something like “pancake-skeleton (in build file:...”.

- Run > compile. The project should be compiled, and you should eventually
see something like “[success] Total time:...”.

- Run > test. The output should include four groups called TermTests,
AbsTypingTests, DSLTests and TraverserTests. All tests in groups TermTests
and AbsTypingTests should be reported as ignored. At the end of the output
it should say “All tests passed”.

- Run > run. The output should be “Welcome to homework 14”.

- It is recommended to use an IDE such as IntelliJ IDEA or Eclipse, although
you can use a regular text editor in combination with sbt for development. Sbt
can generate project configurations for both by either running > gen-idea, or
respectively, > eclipse.
If you want to use IntelliJ3 you need to install the Scala plugin. If you want
to use sbt’s console from inside IntelliJ then you also need to install the SBT

plugin (there might be two plugins, the right one is the one saying “Simple
Build Tool” in its description). The course assistant uses IntelliJ together with
sbt’s console.
If you want to use Eclipse, get the Scala-IDE4.

3.2 Overview

You should only need to look at the directories pancake/src/main/scala and
pancake/src/test/scala. The former contains the skeleton of the actual implementa-
tion, the latter a couple of unit tests. You should only need to change main/scala/Types.scala,
which is where the type inference is to be implemented, and test/scala/TermTests.scala,
which is where the main unit tests reside.

Syntax.scala contains the abstract syntax tree of our lambda terms, Types.scala con-
tains the types and the main components of the type inference implementation,
PrettyPrinter.scala contains a pretty printer for lambda terms, DSL.scala contains a
few helpers that make it more convenient to create lambda terms, and Pancake.scala is
essentially empty and can be used for experimenting.

Running > run on the sbt prompt executes the code in the body of Pancake.scala.
Running > test runs the tests in the Scala files in test/scala/.

Any command in sbt can be prefixed with a tilde, e.g., > ~test. This tells sbt to invoke
the command (here test) each time a file from the code base changes.

3https://www.jetbrains.com/idea/
4http://scala-ide.org/

Spring 2014 page 2 of 4

https://www.jetbrains.com/idea/
http://scala-ide.org/


ETH 263-2710 Homework #14

4 Your Task (100pt)

Implement type inference by following chapter 22 of the book. Figures 22-1 and 22-
2 are the most relevant parts, as well as sections 22.6 and 22.7, which deal with let-
polymorphism. Your implementation should support all terms and types defined by the
skeleton. All tests found in TermTests.scala should pass.

It should not be necessary to change the signature of classes and methods declared in the
skeleton! It should also not be necessary to change Syntax.scala, PrettyPrinter.scala
and DSL.scala.

1. Open Types.scala and look for places marked by ???. This is where your code
should go.

2. Open TermTests.scala to see which kind of output is expected from your imple-
mentation. The tests are ignored by default. To enable them, replace ignore("..."
by test("...". Initially, all tests will fail because of exceptions thrown by the
unimplemented methods which you are supposed to implement.

3. Start implementing type inference by initially supporting only simple lambda terms.
The test case titled "very simple terms" shows a few examples.

5 Bonus Task

This task is just for fun, but won’t earn you additional points.

Can you modify your implementation such that it records and pretty-prints the types of
variables bound in lambda abstractions as well? Here are some examples:

((lambda x : Nat . succ x) 0): Nat

(lambda f : Nat -> A . f 1): (Nat -> A) -> A

(lambda f : A -> B -> C .

lambda x : A . lambda y : B .

f x y): (A -> B -> C) -> A -> B -> C

AbsTypingTests.scala contains a few tests. In order to get similar output you will have
to modify the pretty printer as well. Try solving this task by subclassing TypeInferer

and PrettyPrinter in a way that allows you to reuse most of what has already been
implemented.

6 Scala Primer

Scala is a hybrid language that mixes concepts from object-oriented and functional pro-
gramming. It has a powerful, static type system and decent type inference. It compiles to

Spring 2014 page 3 of 4



ETH 263-2710 Homework #14

Java byte code, and thus, all Java/JVM libraries can be used. It supports closures/higher-
order functions. It has a flexible syntax which makes it well-suited for embedded DSLs.
It’s standard library is documented5 reasonably well.

Scala has Java-like classes (class), but the primary constructor is implicit. That is, the
arguments to a class, e.g., class Foo(s: String) println(s), are the arguments of
the primary constructor, and the statements that occur inside the class (and not inside a
method) are the body of the primary constructor. Arguments to the primary constructor
are automatically stored in object fields.

Scala distinguishes between vars and vals. The former are mutable references which can
be re-assigned to, whereas the latter are immutable references (similar to Java’s final

fields/variables). A declaration var x: Int = 0 inside a class body declares a mutable
object field, whereas val x: Int = 0 declares an immutable one. The same declaration
inside a method body declares a local var/val.

case classes are similar to Haskell’s data types. Unlike regular classes, they can be
constructed without new, and they can be deconstructed in pattern matching.

Scala encourages the use of immutable data structures. Hence, the default List and Map

data structures are immutable. Mutable versions can be imported from collections.mutable.
Scala has a very (very!) rich collection library and most collection classes support a variety
of operations known from functional programming such as map, filter and foldLeft.

5http://www.scala-lang.org/api/2.10.3/

Spring 2014 page 4 of 4

http://www.scala-lang.org/api/2.10.3/

	Reading
	Overview
	Skeleton Setup
	Installation
	Overview

	Your Task (100pt)
	Bonus Task
	Scala Primer

