263-2710 Type Systems Homework #3

Homework # 3 SOLUTION
due March 11, 13:00

Turn in your explanations (§3) on paper at the beginning of lecture, and send your SASyLF
proofs (§2) as a file lambda-eval.slf to scmalte@inf.ethz.ch before 1 pm.

1 Reading

Please read Chapter 5 in your textbook.

2 Proofs

Prove the following theorems in SASyLF":

1. Prove that multi-step full beta-reduction of w where
w= A -zz) \x-xx)

never reaches a “value,” (a lambda abstraction). To do this, you need to specify multi-step
full beta-reduction. If you use the same rules for multi-step evaluation as in Homework #2,
you will require another lemma. It is easier if you define multi-step evaluation to be right
recursive.

2. Prove that call-by-value evaluation is deterministic.

3. Prove that every term either can evaluate one step (using call-by-value evaluation) or that
it is a value (a lambda term).

3 Evaluation Orders

1. For each of the following situations, give a pure lambda-calculus term that has the given
properties:

(a) diverges under normal evaluation but not under call-by-value
(b) diverges under call-by-value but not under normal evaluation

(c) diverges under normal evaluation and under call-by-value evaluation, but not under
call-by-name

You may use w defined above.
(a) \z-w

Call-by-value doesn’t evaluate ‘under’ the lambda, but normal evaluation
does.

(b) (z-Ay-y)w

Call-by-value evaluates the argument before reducing the redex, causing it to
loop. Normal evaluation performs the reduction and ends up with the identity
function.

(c) Az -y -2)w

Call-by-value evaluates the argument and so loops. Normal evaluation and
call-by-name each perform the reduction, but then call-by-name stops whereas
normal evaluation go into the lambda and loops.

Spring 2014 page 1 of 2



263-2710 Type Systems Homework #3

2. Call-by-need is used in lazy languages such as Haskell. Explain how it differs from the
three: call-by-value, call-by-name and normal evaluation. Explain which of the three
diverges on exactly the same terms as call-by-need, while still not being the same. Explain
on paper.

Call-by-need is very similar to call-by-name, but it keeps track of the parameters
that get substituted in, and shares the evaluation. Thus even though the actual
parameter is copied into multiple places, the evaluation of that parameter is shared,
not duplicated. So call-by-need has the same result as call-by-name, but is more
efficient.

Spring 2014 page 2 of 2



