
263-2710 Type Systems Homework #11

Homework # 11

due May 13th, 13:00
Turn in your solution as two files systemF.slf and list.f by email to scmalte@inf.ethz.ch.

1 Reading

Please read Chapters 23 and 24 in your textbook.

2 Proofs

Prove the type soundness of pure System F (see Figure 23-1, page 343) in SASyLF in the same style as
previous proofs (canonical forms, progress, substitution and preservation). You are not given a skeleton
file, but can start with stlc.slf, remove booleans and add the new System F specific terms, contexts,
values, evaluation forms and type rules. Up to now, we had only one binding context in the environment,
now we will need another binding: Γ, X, and a new judgment to support it.

Use the partial solutions to Exercises 23.5.1 and 23.5.2 to help you write the proof. The solution to
Exercise 23.5.1 mentions a new substitution lemma. If you add a trivial way to satisfy the new judgment
(supporting type variables), then you can use SASyLF’s built-in “by substitution” justification. The
proof cannot be done by induction over the typing derivation because of the inability to use “exchange”
in the T-Abs case. You are encouraged to use “by substitution” also for the normal substitution lemma
for practice. The Google project wiki pages have some documentation.

3 Programming

For this section, use the fullomega type checker. You should copy the Church encoding of pairs and lists
from test.f in the fullomega checker directory and then solve the following:

1. Exercise 23.4.2 1
2 [?]: Write a recursive sum function with type: sum : (List Nat) → Nat

2. Write another implementation of sum that is not recursive but which has the same type and the
same behavior. (You are permitted to still use a recursive plus.)

3. Exercise 23.4.11 1
2 [??]: Write a non-recursive map using the Church encoding of lists. It should

have the same type as on page 346.

4. Exercise 24.2.5 1
2 [???]: The List type defined on page 351 exposes the internal representation. For

example, we couldn’t substitute an implementation using recursive types. The following definition
fixes this problem

OOList = lambda X.

{Some R,{state:R, nil:R,

isnil: R->Bool,

cons: X->R->R,

head: R->X,

tail: R->R}};

(a) Write a term oonil that has type ∀X.OOList X; use the pre-existing List X definition.

(b) Write definitions of ooisnil, oocons, oohead, ootail so that they have the following types:

ooisnil : ∀X. (OOList X) → Bool

oocons : ∀X. X → (OOList X) → (OOList X)

oohead : ∀X. (OOList X) → X

ootail : ∀X. (OOList X) → (OOList X)

(c) Write oomap to use these primitives (you may assume fix). Test your program by running

oohead[Bool]

(oomap[Int][Bool] iseven

(oocons[Nat] 1 (oocons[Nat] 2 (oonil[Nat]))))

Leave all your code in list.f.

Spring 2014 page 1 of 1

http://code.google.com/p/sasylf/wiki/Main

	Reading
	Proofs
	Programming

