= < X

€ Var
c 7 set of integer constants b € BExp set of boolean expressions

e Lab set of labels

The sPL Language: Syntax

set of integer variables a € AExp set of arithmetic expressions

s € Stmt set of statements

x, a, b, s arecalled meta-variables

= v | x | a; + a, | a; — a, | a; * a,
::= true | false | 17 b | b Ab, | b Vb, | a, = a, | a; £ a,

::= x := a' | skip' | s;;s, | if b' then s; else s, | while b’ do s

variables are not declared

expressions have no side-effects, all side-effects in statements
only basic statements: no functions, heap, exceptions,...
semantics usually specified at abstract syntax level

Operational Semantics

e Specifies how expressions and statements
should be evaluated

e Evaluation depends on the shape of the
expression/statement:
—1,2,3,..donot evaluate any further
— x + vy isevaluated further

* Think of it as an interpreter

Operational Semantics

e Evaluation depends on values of variables
— what does x + y evaluate to ?
— depends on the values of x and y

e Values of variables at any moment in time are
given by a function o € Store =Var — Z
— Z is the set of integers

— to simplify presentation we assume Store denotes
total functions

—ifo issuchthat x » 5 andy » 3,then x + v is 8

Operational Semantics for SPL

 Configurations:ce 2 where X = (Stmt X Store) U Store
e <S, o>is a configuration

* o isalso a configuration: a terminal configuration. All other
configurations are non-terminal

e Transitions: — C 2Xx>
* steps between configurations

e Transition system: (2, —, I, F)
— | C X initial configurations
— F C Store: final configurations

Operational Semantics for SPL

* We writec— ¢’ when(c, ¢’) e —

« —* denotes the reflexive transitive closure of
the relation —. We say ¢ — * ¢’ when:
— c=cyandc,=C
— there is a sequence ¢, —c; — ...c, forsomen =0

Notation: Rules of Inference

These are called
evaluation rules

Example:

Evaluation rules
with no premises
are called axioms

-
Hypothesis, ... Hypothesis_
Conclusion
_
4
A is true Bis true
A A Bistrue
_
4
Conclusion
_

28

Next: operational semantics of SPL

Operational Semantics of SPL

* There are two kinds: big-step and small-step

* Big-step
— ¢ — ¢’ describes the entire computation

* Small-step
— ¢ — ¢’ describes a single step of a larger computation

Small Step vs. Big Step

small step ' ' '
—)Cl —)Cz —>C3

big step

Co > C3

31

Operational Semantics of SPL

Next, we will give semantics of SPL. The statements
will be evaluated in a small-step style, while the
expressions will be evaluated in big-step style.

Auxiliary Relations

* To describe the semantics of AExp and BExp we use two
auxiliary relations

for AExp: U,
for BExp: U,

(AExp X Store) X Z
(BExp X Store) X {true, false}

N 1N

* Judgments such as
(@,0) U, v

are read as: “expression a evaluates to v in store ¢”
Boolean expressions read similarly

Evaluation rules for AExp

(@a;,0) U, vi <(a,,0) U, v,

(a;+a,,0) U, v, +v, x, o) U, o(x)

Evaluation rules for BExp

(a,0) U, vy, (a,,0) U, v,

bvisv; <v,
(a;<a,,0) U, bv

<a110-> Ua Vi <a210-> Ua Vo .
bvisv, ==V,

(a;=a,,0) U, bv

(b, Ab,,c) U, 2?7

\

What about this ?

35

Evaluation rules for BExp

(a,0) U, vy, (a,,0) U, v,

bvisv; <v,
(a,;<a,,a) U, bv

<a110-> Ua Vi <a210-> Ua Vo

bvisv, ==V,
(a;=a,,0) U, bv

(by,0) U, true (b,,o) U, true

(b; Ab,,a) U, true

(by,o) U, false (b,,o) U, false

(byAb,,a) U, false (b, Ab,,a) U, false

short-circuit
evaluation

36

How to read the rules

 Top-down: like inference rules

— If we know hypothesis holds, conclusion holds
—If x,0)4,5 and {y,o)¥.6 then (x+y,o) U, 11

* Bottom-up: read by inversion
— Suppose we want to evaluate (x+y, o) U,
— Lets look at rules with conclusion that has (x+vy, o)
— Here: only 1 rule has it as a conclusion (the addition rule)
— Repeat a recursive tree-walk

Example: Derivation Tree

Evaluate this: ((x+3)x(y+4),0) whereg:x»1,ym2

Example: Derivation Tree

Evaluate this: ((x+3)x(y+4),0) whereg:x»1,ym2

x,o) V1 (y,o) 4, 2
x,o)l,1 ((3,0),3 y,o04,2 (4,00, 4
x+3,0)U,_ 4 (y+4,0)U,6

x+3,0)U,4 (y+4,0)U,6
((x+3)*(y+4),0) U, 24

Evaluation of Statements

* Evaluating a statement produces a new store
_ <S, 0-> — <S’ ’ OJ>

e Evaluation order is important
—In s;;s, s, isevaluated before s,
— In if true then s, elses, s, is not evaluated

* Some constructs have multiple rules
— conditionals and while

Evaluation rules for Stmt |

(S1,0) ~(Sy, 09) ($1,0) > 04
(S1;53,0)~>(S,;53,07) (S1355,0)~(S,, 07) (skip, a) >0
(@a,o) U, v
(X:=a,0)—>{(X:=V, 0) (X:=V, g) = g[x — V]

AN

assignment not a single step

41

Evaluation rules for Stmt I

(if true thens, elses,, g)—(s,, o) (if falsethens,elses,, o)~ <s,, o)

(b, a) Uy, bv

(if bythen s, else s,, o) —» (if bvthen s, elses,, o)

(while bdos, g) » ???

Evaluation rules for Stmt I

(if true thens,elses,,) —>(s,, o) (if falsethens,elses,,a)—(s,,)

(b, a) Uy, bv

(if bythen s, else s,, o) —» (if bvthen s, elses,, o)

(while b do s,) - (if bthen (s; while b do s) else skip,)

AN

‘while’ expressed in terms of ‘if’

Sequences

Note that for a program S, the steps are formed via the
relation —»

That is, sequencesare (S,, ,) = (S;, ;) = ...

The relations U_ or U, are only used to justify the step with —

In other words, U, or U, are only used to build the relation —

