
Assignment 8

Exercise 1

You have heard about Rice’s theorem several times. A computable partial
function f is a partial function that can be implemented by some computer
program κ, e.g., the factorial function x 7→ x!. A property of computable
partial functions is a predicate P over programs, such that P does not
discirminate between programs implementing the same partial function, i.e.,
if κ1 and κ2 implement the same partial function, then P (κ1) ⇐⇒ P (κ2).

Theorem (Rice). A property P of computable partial functions (c.p.f.) is
decidable iff it is trivial, i.e., either no c.p.f. has P or all c.p.f. have P .

Why the theorem speaks about a property of functions and not about an
arbitrary property of programs? Give an informal proof of Rice’s theorem
by reduction to the halting problem.

Hint: Show that any algorithm that decides a non-trivial property P
can be converted to an algorithm that decides the halting problem, i.e., an
algorithm that decides whether a given program halts for a given input.

Exercise 2

You are given the numeric programs:

1. y = x

if x < 0:

y = -x

assert y >= 0

2. if x > y:

z = x

else:

z = y

assert x <= z and y <= z

Prove via symbolic execution that the assertions hold.

1



Exercise 3

You are given the numeric program:

x = 1

y = 1

while x < n:

assert x == y

x = x + 1

y = y + y

Prove via symbolic execution that the assertion does not always hold.

Exercise 4

Suppose we execute the function main (see below) concolically with the two
symbolic variables b0 and e0 for b and e and that we unroll loops at most
twice. For the first concrete execution we assume that b and e are both 0.

int pow(int b, int e)

{

int r = b;

for (int i = 0; i < e; i++)

{

r = r * b;

}

return r;

}

void main(int b, int e)

{

var r = pow(b, e);

if (e % 2 == 0)

{

if (r < 0)

{

ERROR;

}

}

}

1. What is the path constraint that will be gathered during this first
execution?

2



2. Negate the last conjunct in the path constraint and solve the resulting
formula to generate a new input.

3. What is the path constraint that will be gathered when executing
function main with the new input?

4. Repeat this process (1. run and record path constraint, 2. negate
conjunct in path constraint and solve the constraint for a new input)
until you find an execution that reaches the ERROR statement.

5. Compare your concrete inputs to the test cases that are generated
by the concolic test-generation tool Pex when manually unrolling the
loops in the original program. Go to http://www.pexforfun.com/,
click on ”New”, and start from the following program:

using System;

using System.Diagnostics.Contracts;

sealed class __DoNotInstrumentAttribute : Attribute { }

// [__DoNotInstrument]

public static class Math

{

public static int Pow(int b, int e) {

int r = b;

for (int i = 0; i < e; i++) {

r = r * b;

}

return r;

}

}

public class Program

{

public static int Puzzle(int b, int e) {

var r = Math.Pow(b, e);

if (e % 2 == 0) {

if (r < 0) {

Contract.Assert(false);

}

}

return r;

}

}

3



6. Now, suppose that function pow was uninstrumented (e.g., because it
was part of a native library). What is the path constraint that will
be gathered during the first execution of function main (again with
b == 0 and e == 0)?

7. Negate the last conjunct in the path constraint and solve the resulting
formula to generate a new input.

8. What is the path constraint that will be gathered when executing
function main with the new input?

9. Is it possible to reach the ERROR statement by repeating this process (1.
run and record path constraint, 2. negate conjunct in path constraint
and generate new input by solving the constraint)?

10. Compare your concrete inputs to the test cases that are generated
by the concolic test-generation tool Pex when manually unrolling the
loops in the original program. You can start from the same program as
above and you should uncomment the line with the [__DoNotInstrument]
attribute, which makes all methods in class Math uninstrumented.

4


