
Assignment 8: Solution

Exercise 1

Theorem (Rice). A property P of the computable partial functions (c.p.f.)
is decidable iff it is trivial, i.e., either no c.p.f. has P or all c.p.f. have P .

The theorem speaks about a property of functions, simply because it is
not true for arbitrary properties of programs. For example, the property
“the program κ has length of 13 characters” is non-trivial and decidable.

Let P be a decidable and non-trivial property of computable partial
functions. We shall give an informal proof of Rice’s theorem by reducing
the halting problem to the problem of deciding P . Let P be any program
that decides P , that is for all programs κ we have that

P(κ) =

{
true if P (κ)

false otherwise.

Our goal is to define an algorithm halts(k, n) that, given a program κ
and an input n, decides whether κ(n) halts:

halts(κ,n) =

{
true if κ(n) halts

false otherwise.

Now, observe that a never terminating program implements the nowhere
defined partial function. Without loss of generality, we can assume that the
property P does not hold for all such programs, for otherwise we could
choose its complement ¬P instead, which is again decidable and non-trivial.
Let ok be any program for which P holds. Define halts as:

def halts(k, n):

def test(m):

k(n)

return ok(m)

return P(test)

If κ(n) halts, then test behaves like ok for all inputs m. If κ(n) loops
forever, then test loops forever for all inputs. Consequently, halts uses
the algorithm P to distinguish between these two cases.

1



Exercise 2

1. y = x

if x < 0:

y = -x

assert y >= 0

The program states before the assertion α ⇐⇒ y ≥ 0 satisfy either
one of the constraints

(a) π1 ⇐⇒ x0 < 0 ∧ x = x0 ∧ y = −x0
(b) π2 ⇐⇒ x0 6< 0 ∧ x = x0 ∧ y = x0

Both ∀xyx0y0(π1 → α) and ∀xyx0y0(π2 → α) are valid.

2. if x > y:

z = x

else:

z = y

assert x <= z and y <= z

The program states before the assertion α ⇐⇒ x ≤ z ∧ y ≤ z satisfy
either one of the constraints:

(a) π1 ⇐⇒ x0 > y0 ∧ x = x0 ∧ y = y0 ∧ z = x0

(b) π2 ⇐⇒ x0 6> y0 ∧ x = x0 ∧ y = y0 ∧ z = y0

Both ∀xyzx0y0z0(π1 → α) and ∀xyzx0y0z0(π2 → α) are valid.

Exercise 3

Unrolling the loop three times we obtain (else branches omitted for clarity):

x = 1

y = 1

if x < n:

assert x == y

x = x + 1

y = y + y

if x < n:

assert x == y

x = x + 1

y = y + y

if x < n:

assert x == y

x = x + 1

y = y + y

2



The states before the third assertion α ⇐⇒ x = y satisfy the constraint

π ⇐⇒ 1 < n0 ∧ 2 < n0 ∧ 3 < n0 ∧ x = 3 ∧ y = 4 ∧ n = n0

Clearly, the implication ∀xynn0(π → α) is not valid.

Exercise 4

Suppose we execute the function main (see below) concolically with the two
symbolic variables b0 and e0 for b and e and that we unroll loops at most
twice. For the first concrete execution we assume that b and e are both 0.

int pow(int b, int e)

{

int r = b;

for (int i = 0; i < e; i++)

{

r = r * b;

}

return r;

}

void main(int b, int e)

{

var r = pow(b, e);

if (e % 2 == 0)

{

if (r < 0)

{

ERROR;

}

}

}

1. What is the path constraint that will be gathered during this first
execution?

Solution:

PC_0 == !(0 < e_0) && (e_0 % 2 == 0) && !(b_0 < 0)

2. Negate the last conjunct in the path constraint and solve the resulting
formula to generate a new input.

Solution (other solutions are possible): e_0 == 0, b_0 == -1

3



3. What is the path constraint that will be gathered when executing
function main with the new input?

Solution (other solutions are possible):

PC_1 == !(0 < e_0) && (e_0 % 2 == 0) && (b_0 < 0)

4. Repeat this process (1. run and record path constraint, 2. negate
conjunct in path constraint and generate new input by solving the
constraint) until you find an execution that reaches the =ERROR=
statement.

Solution (other solutions are possible): The statement was already
reached by the last execution.

5. Compare your concrete inputs to the test cases that are generated
by the concolic test-generation tool Pex when manually unrolling the
loops in the original program. Go to http://www.pexforfun.com/,
click on “New”, and start from the following program:

using System;

using System.Diagnostics.Contracts;

sealed class __DoNotInstrumentAttribute : Attribute { }

// [__DoNotInstrument]

public static class Math

{

public static int Pow(int b, int e) {

int r = b;

for (int i = 0; i < e; i++) {

r = r * b;

}

return r;

}

}

public class Program

{

public static int Puzzle(int b, int e) {

var r = Math.Pow(b, e);

if (e % 2 == 0) {

if (r < 0) {

Contract.Assert(false);

}

4



}

return r;

}

}

Solution:

Pex generates the following test case inputs:

(a) b == 0, e == 0

(b) b == int.MinValue, e == 0 (failing)

(c) b == 0, e == 1

(d) b == 0, e == 2

6. Now, suppose that function pow was uninstrumented (e.g., because it
was part of a native library). What is the path constraint that will be
gathered during the first execution of function =main= (again with
b == 0 and e == 0)?

Solution:

PC_0 == (e_0 % 2 == 0)

7. Negate the last conjunct in the path constraint and solve the resulting
formula to generate a new input.

Solution (other solutions are possible): e_0 == 1, b_0 == 0

8. What is the path constraint that will be gathered when executing
function main with the new input?

Solution:

PC_1 == !(e_0 % 2 == 0)

9. Is it possible to reach the ERROR statement by repeating this process (1.
run and record path constraint, 2. negate conjunct in path constraint
and generate new input by solving the constraint)?

Solution: Only if the same constraints are solved multiple times and
the solver returns a new solution/input that so happens to reach the
ERROR statement.

10. Compare your concrete inputs to the test cases that are generated
by the concolic test-generation tool Pex when manually unrolling the
loops in the original program. You can start from the same program as
above and you should uncomment the line with the [__DoNotInstrument]
attribute, which makes all methods in class Math uninstrumented.

Solution: Pex generates the following successful test case inputs, but
no failing ones:

5



(a) b == 0, e == 0

(b) b == 0, e == 1

6


