
Exercise 11

Exercise 1

Recall from the lecture that the pointer analysis abstract domain is defined
as:

Labs→ ((PtrVar→ P(AbsObj))× (AbsObj× Field→ P(AbsObj)))

, where the abstract domain keeps two maps at every program label. The
first map contains a mapping from a pointer variable to a set of abstract
objects. The second map contains a mapping from the fields of abstract
objects to the set of abstract objects they point to.

• Write down the formal definition for all the abstract transformers that
capture the effect of program statements manipulating pointers on the
abstract domain:

(object creation) p := newObjectl

(compare two pointers) p = q
(pointer assignment) p := q
(pointer heap store) p.f := q
(pointer heap load) p := q.f

• Define:

1. the partial order v
2. the least (⊥) and greatest (>) elements

3. the meet u
4. the join t

Exercise 2

You are given the following program:

0: c = newObject T;

1: t = c;

2: i = 0;

1



3: while (i < count) {

4: n = newObject T;

5: c.f = n;

6: c = n;

7: i++;

8: }

9: c.f = t;

10: assert t != n;

1) Run the flow-sensitive pointer analysis from the lecture on it.
2) Can you prove the assertion on line 10 using the results of the analysis?

Exercise 3

Write a program for which the flow-sensitive pointer analysis from the lecture
infers the following abstract state at the end of the program:

{ a->{A0}, b->{A0,A1}, A0.f->{A0}, A1.f->{A0} }

Exercise 4

Run both the flow-sensitive and the flow-insensitive pointer analysis on the
following program:

0: a = newObject T;

1: b = a;

2: if (a == b) {

3: b = newObject T;

4: } else {

5: }

2


