
Assignment 2

Exercise 1
You have seen different ways of documenting the effects of a method in the
lecture (e.g., checked exceptions, read and write effects). Purity annotations
are a specific kind of write effect specification: a pure method i) does not
modify any object that already existed in the pre-state (but it can modify
newly created objects), and ii) for given set of arguments (including the
receiver) the return value (if any) is always the same. For instance, in the
code below method equals and method hashcode are probably pure, while
method getImage is definitely not pure since it modifies the current object
by initializing the image field.

class ImageFile {
String file;
Image image;

...

public Image getImage() {
if (image == null) {

Image tmp = new Image();
// load the image
image = tmp;

}
return image;

}

boolean equals(Object o) {
if( o.getClass() != getClass() ) return false;
return file.equals( ((ImageFile) o).file );

}

int hashcode() {
if (image == null) {

return file.hashcode();

1



} else {
return image.hashcode() + file.hashcode();

}
}

}

1. Why are method equals and method hashcode probably pure? Under
which circumstances are they not pure? Is is possible to change the
class design such that they are pure under all circumstances?

2. Can you think of a practical solution that would catch (at runtime)
violations of the first requirement? Apply the instrumentation to the
code from above.

3. How would your instrumentation deal with commonly used designs,
such as lazy initialization of data structures or caching?

2



Exercise 2
Find preconditions and object invariants for all methods of the class on page
4, and postconditions for the Add method. Express them using the syntax
of C#’s Code Contracts:

• At the beginning of each method, Contract.Requires(expr); can be
used to denote a precondition. Here, expr should be a pure boolean
C# expression referring only to fields and methods with greater or
equal visibility as the method.

• Similarly, Contract.Ensures(expr); can be used to denote a post-
condition.

• If needed, Contract.ForAll(lower, upper, pred); can be used to
express that the predicate pred holds for all integers from lower (in-
clusive) to upper (exclusive).

• Contract.OldValue(expr) can be used in a postcondition to refer to
the value of expr before the execution of the method.

• Object invariants are denoted in a special contract invariant method.
Again, the visibility of all referred fields must be greater or equal to
the visibility of the contract invariant method.

[ContractInvariantMethod]
private void ObjectInvariant() {

Contract.Invariant(expr);
...

}

• Methods can be marked with the [Pure] attribute (in the line before
the method declaration) to be pure. Only pure methods can be used
in contract expressions.

3



public class Bag
{

private int[] elems;
private int count;

public Bag(int[] initialElements) {
this.count = initialElements.Length;
int[] e = new int[initialElements.Length];
initialElements.CopyTo(e, 0);
this.elems = e;

}

public Bag(int[] initialElements, int start, int howMany) {
this.count = howMany;
int[] e = new int[howMany];
Array.Copy(initialElements, start, e, 0, howMany);
this.elems = e;

}

public int Count() {
return count;

}

public int RemoveMin() {
int m = System.Int32.MaxValue;
int mindex = 0;
for (int i = 0; i < count; i++) {

if (elems[i] < m) {
mindex = i;
m = elems[i];

}
}
count--;
elems[mindex] = elems[count];
return m;

}

public void Add(int x) {
if (count == elems.Length) {

int[] b = new int[2*elems.Length];
Array.Copy(elems, 0, b, 0, elems.Length);
elems = b;

}
elems[count] = x;
count++;

}

}

4



Exercise 3
1. Draw a UML class diagram for the system described below:

(a) every student is either undergraduate or graduate student. No
student is both undergraduate and graduate student;

(b) a student should register at a university, and only registered stu-
dents are legal students;

(c) every student has a unique student ID, and he or she has only one
major;

(d) students with the same major are regarded as classmates, students
can have several classmates.

2. Which properties of the system above cannot be captured using UML
class diagrams?

5


