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Mastering Complexity 

 The technique of mastering complexity has been 
known since ancient times: Divide et impera
(Divide and Rule). [ Dijkstra, 1965 ]

 Benefits of decomposition
- Partition the overall development effort
- Support independent testing and analysis
- Decouple parts of a system so that changes to one part 

do not affect other parts
- Permit system to be understood as a composition of 

mind-sized chunks with one issue at a time
- Enable reuse of components

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications
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Main Activities of Software Development

Peter Müller – Software Architecture and Engineering

Validation

Requirements
Elicitation

Implementation

Design
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Main Activities of Software Development
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Validation

Requirements
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Implementation
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System Design

 System design determines 
the software architecture as a 
composition of sub-systems

 Components: Computational 
units with specified interface
- Filters, databases, layers

 Connectors:  Interactions 
between components
- Method calls, pipes, events 

Peter Müller – Software Architecture and Engineering

Validation

Requirements
Elicitation

Implementation
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Detailed Design

 Detailed design chooses 
among different ways to 
implement the system design 
and provides the basis for the 
implementation

 Data structures
 Algorithms
 Subclass hierarchies

Peter Müller – Software Architecture and Engineering

Validation

Requirements
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Detailed Design: Map Example

 Is null permitted as a 
value in the hash map?

 Is it possible to iterate 
over the map?
- Is the order of elements 

stable?

 Is the implementation 
thread-safe?

Peter Müller – Software Architecture and Engineering

package java.util;
class HashMap<K,V> … {
V get( Object key ) { … }
V put( K key, V value ) { … }
…

}

HashMap<String, String> m = 
new HashMap<String, String>( );

m.put( "key", null );
String r1 = m.get( "key“ );
String r2 = m.get( "no key“ );

3. Modeling and Specifications
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Map Example: Some Design Alternatives

 Permit null-values
If key is not present, get
- returns null (Java)
- throws an exception (.NET)
- indicates this via a 

second result value 
(for instance, an out-
parameter in C#)

 Do not permit null-values:
If null-value is passed, put
- throws an exception
- does nothing

Peter Müller – Software Architecture and Engineering

HashMap<String, String> m = 
new HashMap<String, String>( );

m.put( "key", null );
String r1 = m.get( "key“ );
String r2 = m.get( "no key“ );

3. Modeling and Specifications
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Detailed Design: Initialization Example

 Initialize the 
fields of an 
object when 
the object is 
created or 
when the fields 
are accessed 
for the first 
time?

Peter Müller – Software Architecture and Engineering

class ImageFile {
String file;
Image image; 
ImageFile( String f ) { 
file = f; 

}
Image getImage( ) {
if( image == null ) {
// load the image

}
return image;

}
}

class ImageFile {
String file;
Image image; 
ImageFile( String f ) { 
file = f; 
// load the image

}
Image getImage( ) {
return image;

}
}

3. Modeling and Specifications
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Detailed Design: List Example

 Do mutating operations perform destructive 
updates or create a new list?

Peter Müller – Software Architecture and Engineering

void demo( List<String> l ) {
int len = l.length;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

3. Modeling and Specifications
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Detailed Design: List Example

 Do mutating operations perform destructive 
updates or create a new list?

Peter Müller – Software Architecture and Engineering

void demo( List<String> l ) {
int len = l.length;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}
May foo and 
bar modify l?

3. Modeling and Specifications
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Detailed Design: List Example

 Do mutating operations perform destructive 
updates or create a new list?

Peter Müller – Software Architecture and Engineering

void demo( List<String> l ) {
int len = l.length;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}
May foo and 
bar modify l?

May foo and 
bar execute 

concurrently?

3. Modeling and Specifications
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Detailed Design: List Example

 Do mutating operations perform destructive 
updates or create a new list?

Peter Müller – Software Architecture and Engineering

void demo( List<String> l ) {
int len = l.length;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}
May foo and 
bar modify l?

May foo and 
bar execute 

concurrently?
What is the 

run-time and 
memory 

consumption?

3. Modeling and Specifications
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List Example: Side Effects

Peter Müller – Software Architecture and Engineering

class List<E> {
E[ ] elems;
int len;
void set( int index, E e ) 
{ elems[ index ] = e; }
List<E> clone( ) {
List<E> r = new List<E>( );
r.elems = elems.clone( );
r.len = len;
return r;

}
}

3. Modeling and Specifications
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List Example: Side Effects

Peter Müller – Software Architecture and Engineering

class List<E> {
E[ ] elems;
int len;
void set( int index, E e ) 
{ elems[ index ] = e; }
List<E> clone( ) {
List<E> r = new List<E>( );
r.elems = elems.clone( );
r.len = len;
return r;

}
} void foo( List<String> p ) {

p.set( 0, “Hello” );
p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

3. Modeling and Specifications
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List Example: Side Effects

Peter Müller – Software Architecture and Engineering

class List<E> {
E[ ] elems;
int len;
void set( int index, E e ) 
{ elems[ index ] = e; }
List<E> clone( ) {
List<E> r = new List<E>( );
r.elems = elems.clone( );
r.len = len;
return r;

}
} void foo( List<String> p ) {

p.set( 0, “Hello” );
p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

Side effects 
become visible

3. Modeling and Specifications
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List Example: Side Effects

Peter Müller – Software Architecture and Engineering

class List<E> {
E[ ] elems;
int len;
void set( int index, E e ) 
{ elems[ index ] = e; }
List<E> clone( ) {
List<E> r = new List<E>( );
r.elems = elems.clone( );
r.len = len;
return r;

}
} void foo( List<String> p ) {

p.set( 0, “Hello” );
p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

Side effects 
become visible

Concurrency 
may lead to 
data races

3. Modeling and Specifications
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List Example: Side Effects

Peter Müller – Software Architecture and Engineering

class List<E> {
E[ ] elems;
int len;
void set( int index, E e ) 
{ elems[ index ] = e; }
List<E> clone( ) {
List<E> r = new List<E>( );
r.elems = elems.clone( );
r.len = len;
return r;

}
} void foo( List<String> p ) {

p.set( 0, “Hello” );
p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

Side effects 
become visible

Concurrency 
may lead to 
data races

Conservative 
cloning is 
expensive

3. Modeling and Specifications
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class List<E> {
E[ ] elems;
int len;
List( E[ ] e, int l ) {
elems = e; len = l;

}
List<E> set( int index, E e ) {
E[ ] els = elems.clone( );
els[ index ] = e;
return new List<E>( els, len );

}
}

List Example: Functional Implementation

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications
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class List<E> {
E[ ] elems;
int len;
List( E[ ] e, int l ) {
elems = e; len = l;

}
List<E> set( int index, E e ) {
E[ ] els = elems.clone( );
els[ index ] = e;
return new List<E>( els, len );

}
}

List Example: Functional Implementation

Peter Müller – Software Architecture and Engineering

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

void foo( List<String> p ) {
p.set( 0, “Hello” );
p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

3. Modeling and Specifications



21

class List<E> {
E[ ] elems;
int len;
List( E[ ] e, int l ) {
elems = e; len = l;

}
List<E> set( int index, E e ) {
E[ ] els = elems.clone( );
els[ index ] = e;
return new List<E>( els, len );

}
}

List Example: Functional Implementation

Peter Müller – Software Architecture and Engineering

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}
No side 

effects on l

void foo( List<String> p ) {
p.set( 0, “Hello” );
p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

3. Modeling and Specifications
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class List<E> {
E[ ] elems;
int len;
List( E[ ] e, int l ) {
elems = e; len = l;

}
List<E> set( int index, E e ) {
E[ ] els = elems.clone( );
els[ index ] = e;
return new List<E>( els, len );

}
}

List Example: Functional Implementation

Peter Müller – Software Architecture and Engineering

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}
No side 

effects on l

Concurrency 
is safe

void foo( List<String> p ) {
p.set( 0, “Hello” );
p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

3. Modeling and Specifications
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class List<E> {
E[ ] elems;
int len;
List( E[ ] e, int l ) {
elems = e; len = l;

}
List<E> set( int index, E e ) {
E[ ] els = elems.clone( );
els[ index ] = e;
return new List<E>( els, len );

}
}

List Example: Functional Implementation

Peter Müller – Software Architecture and Engineering

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}
No side 

effects on l

Concurrency 
is safe

void foo( List<String> p ) {
p.set( 0, “Hello” );
p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}
Significant run-
time and space 

overhead

3. Modeling and Specifications
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class List<E> {
E[ ] elems;
int len;
List( E[ ] e, int l ) {
elems = e; len = l;

}
List<E> set( int index, E e ) {
E[ ] els = elems.clone( );
els[ index ] = e;
return new List<E>( els, len );

}
}

List Example: Functional Implementation

Peter Müller – Software Architecture and Engineering

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}
No side 

effects on l

Concurrency 
is safe

Conservative 
cloning is 

unnecessary

void foo( List<String> p ) {
p.set( 0, “Hello” );
p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}
Significant run-
time and space 

overhead

3. Modeling and Specifications
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List Example: Reference Counting

Peter Müller – Software Architecture and Engineering

class List<E> {
ListRep<E> rep;  int len;
List( ListRep<E> r, int l ) { rep = r; len = l; }
List<E> set( int index, E e ) {
if( rep.shared ) {
ListRep<E> r = new ListRep<E>( rep );
r.elems[ index ] = e;
return new List<E>( r, len );

} else {
rep.elems[ index ] = e;
return this;

}
}

}

class ListRep<E> {
E[ ] elems;
boolean shared;
ListRep( ListRep<E> o ) {
elems = o.elems.clone( )
shared = false;

}
}

3. Modeling and Specifications

List<E> clone( ) {
rep.shared = true;
return new List<E>( rep, len );

}
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List Example: Reference Counting (cont’d)

void foo( List<String> p ) {
p = p.set( 0, “Hello” );
p = p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications
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List Example: Reference Counting (cont’d)

void foo( List<String> p ) {
p = p.set( 0, “Hello” );
p = p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

Side effects 
may become 

visible

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications
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List Example: Reference Counting (cont’d)

void foo( List<String> p ) {
p = p.set( 0, “Hello” );
p = p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

Side effects 
may become 

visible

Concurrency 
may lead to 
data races

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications
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List Example: Reference Counting (cont’d)

void foo( List<String> p ) {
p = p.set( 0, “Hello” );
p = p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

Side effects 
may become 

visible

Concurrency 
may lead to 
data races

Conservative 
cloning is 

cheap

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications
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List Example: Reference Counting (cont’d)

void foo( List<String> p ) {
p = p.set( 0, “Hello” );
p = p.set( 1, “World” );

}

void bar( List<String> p ) {
… p.itemAt( 0 ) …
… p.itemAt( 1 ) …

}

void demo( List<String> l ) {
int len = l.len;
foo( l );
bar( l );
if( l.length != len )
throw new Exception( );

}

Side effects 
may become 

visible

Concurrency 
may lead to 
data races

Conservative 
cloning is 

cheap

Low run-time 
and space 
overhead

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications
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Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Code Documentation
3.2 Informal Models
3.3 Formal Models

3. Modeling and Specifications – Code Documentation
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Design Documentation

 Design decisions determine how code should be 
written
- During the initial development
- When extending code through inheritance
- When writing client code
- During code maintenance

 Design decisions must be communicated among 
many different developers
- Does source code convey design decisions 

appropriately?

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Code Documentation
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Example: Using HashMap

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo( );
String s = m.get( “key” );
// can s be null?

3. Modeling and Specifications – Code Documentation



34

V get( Object key ) {
if( key == null )
return getForNullKey( );

int hash = hash( key.hashCode() );
for( Entry<K,V> e = table[ indexFor(hash, table.length) ];

e != null; e = e.next ) {
Object k;
if( e.hash == hash && 

( (k = e.key) == key || key.equals(k) ) )
return e.value;

}
return null;

}

Example: Using HashMap

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo( );
String s = m.get( “key” );
// can s be null?

3. Modeling and Specifications – Code Documentation
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V get( Object key ) {
if( key == null )
return getForNullKey( );

int hash = hash( key.hashCode() );
for( Entry<K,V> e = table[ indexFor(hash, table.length) ];

e != null; e = e.next ) {
Object k;
if( e.hash == hash && 

( (k = e.key) == key || key.equals(k) ) )
return e.value;

}
return null;

}

Example: Using HashMap

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo( );
String s = m.get( “key” );
// can s be null?

Iterate over all 
entries for this key’s 

hash code

3. Modeling and Specifications – Code Documentation
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V get( Object key ) {
if( key == null )
return getForNullKey( );

int hash = hash( key.hashCode() );
for( Entry<K,V> e = table[ indexFor(hash, table.length) ];

e != null; e = e.next ) {
Object k;
if( e.hash == hash && 

( (k = e.key) == key || key.equals(k) ) )
return e.value;

}
return null;

}

Example: Using HashMap

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo( );
String s = m.get( “key” );
// can s be null?

Iterate over all 
entries for this key’s 

hash code
key was 
not found

3. Modeling and Specifications – Code Documentation
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V get( Object key ) {
if( key == null )
return getForNullKey( );

int hash = hash( key.hashCode() );
for( Entry<K,V> e = table[ indexFor(hash, table.length) ];

e != null; e = e.next ) {
Object k;
if( e.hash == hash && 

( (k = e.key) == key || key.equals(k) ) )
return e.value;

}
return null;

}

Example: Using HashMap (cont’d)

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo( );
if( m.containsKey( “key” ) ) {
String s = m.get( “key” );
// can s be null?
…

}

3. Modeling and Specifications – Code Documentation
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V get( Object key ) {
if( key == null )
return getForNullKey( );

int hash = hash( key.hashCode() );
for( Entry<K,V> e = table[ indexFor(hash, table.length) ];

e != null; e = e.next ) {
Object k;
if( e.hash == hash && 

( (k = e.key) == key || key.equals(k) ) )
return e.value;

}
return null;

}

Example: Using HashMap (cont’d)

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo( );
if( m.containsKey( “key” ) ) {
String s = m.get( “key” );
// can s be null?
…

}

Is [ hash, null ] a valid entry?
Need to find and check all ways of 

entering information into table

3. Modeling and Specifications – Code Documentation
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Example: Maintaining ImageFile

Peter Müller – Software Architecture and Engineering

class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
if( image == null )
return file.hashcode( );

else
return image.hashcode( ) + file.hashcode( );

}
}

3. Modeling and Specifications – Code Documentation
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Example: Maintaining ImageFile

Peter Müller – Software Architecture and Engineering

class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
if( image == null )
return file.hashcode( );

else
return image.hashcode( ) + file.hashcode( );

}
}

Is this a suitable 
implementation 
of hashcode?

3. Modeling and Specifications – Code Documentation
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class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
if( image == null )
return file.hashcode( );

else
return image.hashcode( ) + file.hashcode( );

}
}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Code Documentation
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class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
if( image == null )
return file.hashcode( );

else
return image.hashcode( ) + file.hashcode( );

}
}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

Need to determine 
whether file may 

be null

3. Modeling and Specifications – Code Documentation
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class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
if( image == null )
return file.hashcode( );

else
return image.hashcode( ) + file.hashcode( );

}
}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

Need to determine 
whether image 

may be modified

Need to determine 
whether file may 

be null

3. Modeling and Specifications – Code Documentation
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class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
if( image == null )
return file.hashcode( );

else
return image.hashcode( ) + file.hashcode( );

}
}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

void demo( 
HashMap<ImageFile,String> m,
ImageFile f ) {

m.put( f, “Hello” );
Image i = f.getImage( );
int l = m.get( f ).length( );
…

}

Need to determine 
whether image 

may be modified

Need to determine 
whether file may 

be null

3. Modeling and Specifications – Code Documentation
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class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
if( image == null )
return file.hashcode( );

else
return image.hashcode( ) + file.hashcode( );

}
}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

void demo( 
HashMap<ImageFile,String> m,
ImageFile f ) {

m.put( f, “Hello” );
Image i = f.getImage( );
int l = m.get( f ).length( );
…

}

Need to determine 
whether image 

may be modified

With lazy initialization, 
getter may change 

hash code

Need to determine 
whether file may 

be null

3. Modeling and Specifications – Code Documentation
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class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
return getImage( ).hashcode( ) + 

file.hashcode( );
}

}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Code Documentation
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class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
return getImage( ).hashcode( ) + 

file.hashcode( );
}

}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

Need to determine 
whether file may 

be null
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class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
return getImage( ).hashcode( ) + 

file.hashcode( );
}

}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

Need to determine 
whether the result 
of getImage may 

be modified
Need to determine 
whether file may 

be null
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class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
return getImage( ).hashcode( ) + 

file.hashcode( );
}

}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

void demo( 
HashMap<ImageFile,String> m,
ImageFile f ) {

m.put( f, “Hello” );
Image i = f.getImage( );
int l = m.get( f ).length( );
…

}

Need to determine 
whether the result 
of getImage may 

be modified
Need to determine 
whether file may 

be null
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class ImageFile {
String file;
Image image;
…
boolean equals( Object o ) {
if( o.getClass( ) != getClass( ) )  return false;
return file.equals( ( (ImageFile) o ).file );

}
int hashcode( ) {
return getImage( ).hashcode( ) + 

file.hashcode( );
}

}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

void demo( 
HashMap<ImageFile,String> m,
ImageFile f ) {

m.put( f, “Hello” );
Image i = f.getImage( );
int l = m.get( f ).length( );
…

}

Need to determine 
whether the result 
of getImage may 

be modified

Hash code is not 
affected by lazy 

initialization

Need to determine 
whether file may 

be null
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Example: Extending List

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
// reduce array size if the array
// is not fully used

}
} 
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Example: Extending List

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
// reduce array size if the array
// is not fully used

}
} 

Is this an 
optimization or 
does it change 
the behavior?
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Extending List: List with Side Effects

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( elems, 0, tmp, 0, len );
elems = tmp;

}
}

} 
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Extending List: List with Side Effects

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( elems, 0, tmp, 0, len );
elems = tmp;

}
}

} 

Is this an 
optimization or 
does it change 
the behavior?
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Extending List: List with Side Effects

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( elems, 0, tmp, 0, len );
elems = tmp;

}
}

} 

elems:
2len:

list1
array

Is this an 
optimization or 
does it change 
the behavior?
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Extending List: List with Side Effects

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( elems, 0, tmp, 0, len );
elems = tmp;

}
}

} 

elems:
2len:

list1

array

array

Is this an 
optimization or 
does it change 
the behavior?
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Extending List: List with Side Effects

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( elems, 0, tmp, 0, len );
elems = tmp;

}
}

} 

elems:
2len:

list1

array

array

Is this an 
optimization or 
does it change 
the behavior?
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Extending List: List with Side Effects

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( elems, 0, tmp, 0, len );
elems = tmp;

}
}

} 

elems:
2len:

list1

array

Is this an 
optimization or 
does it change 
the behavior?
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Extending List: List with Side Effects

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( elems, 0, tmp, 0, len );
elems = tmp;

}
}

} 

elems:
2len:

list1
array

Is this an 
optimization or 
does it change 
the behavior?
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Extending List: List with Side Effects

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( elems, 0, tmp, 0, len );
elems = tmp;

}
}

} 

elems:
2len:

list1

elems:
4len:

list2

array

Is this an 
optimization or 
does it change 
the behavior?
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Extending List: List with Side Effects

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( elems, 0, tmp, 0, len );
elems = tmp;

}
}

} 

elems:
2len:

list1

elems:
4len:

list2

array

array

Is this an 
optimization or 
does it change 
the behavior?
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Extending List: List with Side Effects

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( elems, 0, tmp, 0, len );
elems = tmp;

}
}

} 

elems:
2len:

list1

elems:
4len:

list2

array

array

Is this an 
optimization or 
does it change 
the behavior?

Need to determine 
whether the elems

array may be shared
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Extending List: Reference Counting

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
rep.elems = tmp;

}
}

} 
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Extending List: Reference Counting

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
rep.elems = tmp;

}
}

} 

Is this an 
optimization or 
does it change 
the behavior?
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Extending List: Reference Counting

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
rep.elems = tmp;

}
}

} 

Is this an 
optimization or 
does it change 
the behavior?

rep:
2len:

list1

rep:
4len:

list2

array

elems:
trueshared:

rep

3. Modeling and Specifications – Code Documentation



66

Extending List: Reference Counting

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
rep.elems = tmp;

}
}

} 

Is this an 
optimization or 
does it change 
the behavior?

rep:
2len:

list1

rep:
4len:

list2

array

array

elems:
trueshared:

rep
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Extending List: Reference Counting

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
rep.elems = tmp;

}
}

} 

Is this an 
optimization or 
does it change 
the behavior?

rep:
2len:

list1

rep:
4len:

list2

array

array

elems:
trueshared:

rep
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Extending List: Reference Counting

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
rep.elems = tmp;

}
}

} 

Is this an 
optimization or 
does it change 
the behavior?

rep:
2len:

list1

rep:
4len:

list2

array

array

elems:
trueshared:

rep

Need to determine whether 
the list representation may 

be shared
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Extending List: Reference Counting

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
rep.elems = tmp;

}
}

} 

Is this an 
optimization or 
does it change 
the behavior?

rep:
2len:

list1

rep:
4len:

list2

array

array

elems:
trueshared:

rep

Need to determine whether 
the list representation may 

be shared
Need to determine 
whether the elems

array may be shared
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Extending List: Reference Counting (cont’d)

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
if( rep.shared )  rep = new ListRep<E>( );
rep.elems = tmp;

}
}

} 
rep:

2len:

list1

rep:
4len:

list2

array

elems:
trueshared:

rep
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Extending List: Reference Counting (cont’d)

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
if( rep.shared )  rep = new ListRep<E>( );
rep.elems = tmp;

}
}

} 
rep:

2len:

list1

rep:
4len:

list2

array

elems:
trueshared:

rep

Assume that the 
elems array is 

not shared
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Extending List: Reference Counting (cont’d)

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
if( rep.shared )  rep = new ListRep<E>( );
rep.elems = tmp;

}
}

} 
rep:

2len:

list1

rep:
4len:

list2

array

array

elems:
trueshared:

rep

Assume that the 
elems array is 

not shared
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Extending List: Reference Counting (cont’d)

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
if( rep.shared )  rep = new ListRep<E>( );
rep.elems = tmp;

}
}

} 
rep:

2len:

list1

rep:
4len:

list2

array

array

elems:
trueshared:

rep

elems:
falseshared:

rep

Assume that the 
elems array is 

not shared
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Extending List: Reference Counting (cont’d)

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
if( rep.shared )  rep = new ListRep<E>( );
rep.elems = tmp;

}
}

} 
rep:

2len:

list1

rep:
4len:

list2

array

array

elems:
trueshared:

rep

elems:
falseshared:

rep

Assume that the 
elems array is 

not shared
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Extending List: Reference Counting (cont’d)

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
if( rep.shared )  rep = new ListRep<E>( );
rep.elems = tmp;

}
}

} 
rep:

2len:

list1

rep:
4len:

list2

array

array

elems:
trueshared:

rep

elems:
falseshared:

rep

Assume that the 
elems array is 

not shared
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Extending List: Reference Counting (cont’d)

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
if( rep.shared )  rep = new ListRep<E>( );
rep.elems = tmp;

}
}

} 
rep:

2len:

list1

rep:
4len:

list2

array

array

elems:
trueshared:

rep

elems:
falseshared:

rep

Assume that the 
elems array is 

not shared

Need to determine 
whether the shared 

array may be modified
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Source Code is Insufficient

 Developers require information that is difficult to 
extract from source code
- Possible result values of a method, and when they occur
- Possible side effects of methods
- Consistency conditions of data structures
- How data structures evolve over time
- Whether objects are shared among data structures

 Details in the source code may be overwhelming

Peter Müller – Software Architecture and Engineering
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Source Code is Insufficient (cont’d)

 Source code does not express which properties are 
stable during software evolution
- Which details are essential and which are incidental?

Peter Müller – Software Architecture and Engineering

int find( int[ ] array, int v ) {
for( int i = 0; i < array.length; i++ )
if( array[ i ] == v )  return i;

return -1;
}
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Source Code is Insufficient (cont’d)

 Source code does not express which properties are 
stable during software evolution
- Which details are essential and which are incidental?

Peter Müller – Software Architecture and Engineering

int find( int[ ] array, int v ) {
for( int i = 0; i < array.length; i++ )
if( array[ i ] == v )  return i;

return -1;
}

Can we rely on the 
result r being the 

smallest index such 
that array[ r ] == v?
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Source Code is Insufficient (cont’d)

 Source code does not express which properties are 
stable during software evolution
- Which details are essential and which are incidental?

Peter Müller – Software Architecture and Engineering

int find( int[ ] array, int v ) {
for( int i = 0; i < array.length; i++ )
if( array[ i ] == v )  return i;

return -1;
}

int find( int[ ] array, int v ) {
if( 256 <= array.length ) {
// perform parallel search and
// return first hit

} else {
// sequential search like before

}
}Can we rely on the 

result r being the 
smallest index such 
that array[ r ] == v?
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Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Code Documentation
3.1.1 What to Document
3.1.2 How to Document

3.2 Informal Models
3.3 Formal Models
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Documentation

 Essential properties must be documented explicitly

 Documentation should focus on what the essential 
properties are, not how they are achieved
- “Whenever a ListRep object’s shared-field is false, it is 

used as representation of at most one List object”
Rather than
- “When creating a new List object with an existing ListRep

object, the shared-field is set to true”

Peter Müller – Software Architecture and Engineering

For clients:
How to use the code?

Document the interface

For implementors:
How does the code work?

Document the implementation
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Interface Documentation

 The client interface of a class consists of
- Constructors
- Methods
- Fields
- Supertypes

 We focus on methods here
- Constructors are analogous
- Fields can be viewed as getter and setter methods

Peter Müller – Software Architecture and Engineering

For clients:
How to use the code?

Document the interface
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Method Documentation: Call

 Clients need to know how to call a method correctly

Peter Müller – Software Architecture and Engineering

class InputStreamReader {
int read( char cbuf[ ], int offset, int len ) throws IOException
…

}

 Parameter values
- cbuf is non-null
- offset is non-negative
- len is non-negative
- offset + len is at most 

cbuf.length

 Input state
- The receiver is open
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Method Documentation: Results

 Clients need to know how what a method returns

Peter Müller – Software Architecture and Engineering

class InputStreamReader {
int read( char cbuf[ ], int offset, int len ) throws IOException
…

}

 Result values
- The method returns -1 if the end of the stream has been 

reached before any characters are read
- Otherwise, the result is between 0 and len, and 

indicates how many characters have been read from 
the stream
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Method Documentation: Effects

 Clients need to know how a method affects the state

Peter Müller – Software Architecture and Engineering

 Heap effects
- “result” characters have 

been consumed from 
the stream and stored in 
cbuf, from offset 
onwards

- If the result is -1, no 
characters are 
consumed and cbuf is 
unchanged

 Other effects
- The method throws an 

IOException if the 
stream is closed or an 
I/O error occurs

- It does not block
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Method Documentation: Another Example

 The method returns a shallow copy of its receiver
- The list is copied, but not its contents

 The result is a fresh object
 The method requires constant time and space

Peter Müller – Software Architecture and Engineering

class List<E> {
… 
List<E> clone( ) {
rep.shared = true;
return new List<E>( rep, len );

}
}
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Interface Documentation: Global Properties

 Some implementations have properties that affect 
all methods
- Properties of the data structure, that is, guarantees that 

are maintained by all methods together
- Requirements made by all methods

Peter Müller – Software Architecture and Engineering

 Consistency: properties of states
- Example: a list is sorted
- Gives guarantees for various methods
- Client-visible invariants

int a = list.first( );
int b = list.itemAt( 1 );
int c = list.last( );
// a <= b <= c
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Interface Document.: Global Properties (cont’d)

 Evolution: properties of sequences 
of states
- Example: a list is immutable
- Gives guarantees for various methods
- Invariants on sequences of states

Peter Müller – Software Architecture and Engineering

int a = list.first( );
// arbitrary operations
int b = list.first( );
// a == b
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Interface Document.: Global Properties (cont’d)

 Evolution: properties of sequences 
of states
- Example: a list is immutable
- Gives guarantees for various methods
- Invariants on sequences of states

 Abbreviations: requirements or 
guarantees for all methods
- Example: a list is not thread-safe

Clients must ensure they have exclusive access to the 
list, for instance, because the execution is sequential, the 
list is thread-local, or they have acquired a lock

Peter Müller – Software Architecture and Engineering

int a = list.first( );
// arbitrary operations
int b = list.first( );
// a == b
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For implementors:
How does the code work?

Document the implementation

Implementation Documentation

 Method documentation is similar to interfaces
- Often more details, for instance, effects on fields
- Includes hidden methods

 Data structure documentation is more prominent
- Properties of fields, internal sharing, etc.
- Implementation invariants

 Documentation of the algorithms inside the code
- For instance, justification of assumptions

Peter Müller – Software Architecture and Engineering
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Implementation Documentation: Example
1. elems is non-null
2. elems is pointed to by only one object
3. When the shared-field is true then 

shared, elems, and all elements of 
elems are immutable

4. When the shared-field is false, the 
ListRep object is used as 
representation of at most one List 
object

5. rep is pointed to only by List objects
6. rep is non-null
7. 0 <= len <= rep.elems.length

Peter Müller – Software Architecture and Engineering

class ListRep<E> {
E[ ] elems;
boolean shared;
…

}

class List<E> {
ListRep<E> rep;  
int len;
…

}
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Impl. Documentation: Example (cont’d)

Peter Müller – Software Architecture and Engineering

/* This method reduces the memory footprint of the list if it is uses at most
* 50% of its capacity, and does nothing otherwise. It optimizes the 
* memory consumption if the underlying array is not shared or if it is 
* shared but will be copied several times after shrinking. The list content 
* remains unchanged. */
void shrink( ) {
// perform array copy only if array size can be reduced by 50%
if( len <= rep.elems.length / 2 ) {
E[ ] tmp;
tmp = new E[ rep.elems.length / 2 ];
System.arraycopy( rep.elems, 0, tmp, 0, len );
if( rep.shared )  rep = new ListRep<E>( );
// rep is not shared, so we may update its array
rep.elems = tmp;

}
} 
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Impl. Documentation: Example (cont’d)
1. elems is non-null
2. elems is pointed to by only one object
3. When the shared-field is true then 

shared, elems, and all elements of 
elems are immutable

4. When the shared-field is false, the 
ListRep object is used as 
representation of at most one List 
object

5. rep is pointed to only by List objects
6. rep is non-null
7. 0 <= len <= rep.elems.length

Peter Müller – Software Architecture and Engineering

void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp;
tmp = new E[ l ];
System.arraycopy( … );
if( rep.shared )  
rep = new ListRep<E>( );

rep.elems = tmp;
}

} 
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Impl. Documentation: Example (cont’d)
1. elems is non-null
2. elems is pointed to by only one object
3. When the shared-field is true then 

shared, elems, and all elements of 
elems are immutable

4. When the shared-field is false, the 
ListRep object is used as 
representation of at most one List 
object

5. rep is pointed to only by List objects
6. rep is non-null
7. 0 <= len <= rep.elems.length

Peter Müller – Software Architecture and Engineering

void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp;
tmp = new E[ l ];
System.arraycopy( … );
rep.elems = tmp;

}
} 
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Impl. Documentation: Example (cont’d)
1. elems is non-null
2. elems is pointed to by only one object
3. When the shared-field is true then 

shared, elems, and all elements of 
elems are immutable

4. When the shared-field is false, the 
ListRep object is used as 
representation of at most one List 
object

5. rep is pointed to only by List objects
6. rep is non-null
7. 0 <= len <= rep.elems.length

Peter Müller – Software Architecture and Engineering

void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp;
tmp = new E[ l ];
System.arraycopy( … );
rep.elems = tmp;

}
} 
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Impl. Documentation: Example (cont’d)
1. elems is non-null
2. elems is pointed to by only one object
3. When the shared-field is true then 

shared, elems, and all elements of 
elems are immutable

4. When the shared-field is false, the 
ListRep object is used as 
representation of at most one List 
object

5. rep is pointed to only by List objects
6. rep is non-null
7. 0 <= len <= rep.elems.length

Peter Müller – Software Architecture and Engineering

void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp;
tmp = new E[ l ];
System.arraycopy( … );
rep.elems = tmp;

}
} 

3. Modeling and Specifications – Code Documentation
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Documentation: Key Properties

 Methods and constructors
- Arguments and input state
- Results and output state
- Effects

 Data structures
- Value and structural invariants
- One-state and temporal invariants

 Algorithms
- Behavior of code snippets (analogous to methods)
- Explanation of control flow
- Justification of assumptions
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For clients:
How to use the code?

Document the interface

For implementors:
How does the code work?

Document the implementation

3. Modeling and Specifications – Code Documentation
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3. Modeling and Specification

3.1 Code Documentation
3.1.1 What to Document
3.1.2 How to Document

3.2 Informal Models
3.3 Formal Models
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Comments

 Simple, flexible way of 
documenting interfaces 
and implementations

 Tool support is limited
- HTML generation
- Not present in 

executable code
- Relies on conventions

 Javadoc
- Textual descriptions
- Tags

Peter Müller – Software Architecture and Engineering

/**
* Returns the value to which the 
* specified key is mapped, or 
* {@code null} if this map contains no 
* mapping for the key.
*
* @param key the key whose associated
*  value is to be returned
* @return the value to which the 
* specified key is mapped, or
*         {@code null} if this map contains
*    no mapping for the key
* @throws NullPointerException if the 
* specified key is null and this map
*         does not permit null keys
*/

V get( Object key );
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Types and Modifiers

 Types document typically 
syntactic aspects of inputs, 
results, and invariants

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo( );
String s = m.get( “key” );

from SomeLibrary import foo
m = foo( )
s = m[ 'key' ] Python

3. Modeling and Specifications – Code Documentation
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Types and Modifiers

 Types document typically 
syntactic aspects of inputs, 
results, and invariants

 Modifiers can express some 
specific semantic properties

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo( );
String s = m.get( “key” );

from SomeLibrary import foo
m = foo( )
s = m[ 'key' ] Python

class HashMap<K,V> … {
final float loadFactor;
…

}
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Types and Modifiers

 Types document typically 
syntactic aspects of inputs, 
results, and invariants

 Modifiers can express some 
specific semantic properties

 Tool support
- Static checking
- Run-time checking
- Auto-completion

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo( );
String s = m.get( “key” );

from SomeLibrary import foo
m = foo( )
s = m[ 'key' ] Python

class HashMap<K,V> … {
final float loadFactor;
…

}
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Effect Systems

 Effect systems are extensions of type systems that 
describe computational effects
- Read and write effects
- Allocation and de-allocation
- Locking
- Exceptions

 Tool support
- Static checking

 Trade-off between overhead and benefit
Peter Müller – Software Architecture and Engineering

class InputStreamReader {
int read( ) throws IOException
…

}

try {
int i = isr.read( );

} catch( IOException e ) {
…

}
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Metadata

 Annotations allow one to 
attach additional syntactic 
and semantic information 
to declarations

 Tool support
- Type checking of 

annotations
- Static processing through 

compiler plug-ins
- Dynamic processing
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@interface NonNull{ }

@NonNull Image getImage( ) {
if( image == null ) {
// load the image

}
return image;

}

@interface UnderConstruction { 
String owner( );

}

@UnderConstruction( 
owner = “Busy Guy” )

class ResourceManager { … }
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Assertions

 Assertions specify 
semantic properties of 
implementations
- Boolean conditions that 

need to hold

 Tool support
- Run-time checking
- Static checking
- Test case generation
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void shrink( ) {
int l = rep.elems.length / 2;
if( len <= l ) {
E[ ] tmp = new E[ l ];
System.arraycopy( … );
if( rep.shared )  
rep = new ListRep<E>( );

assert !rep.shared;
rep.elems = tmp;

}
} 
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Contracts
 Contracts are stylized 

assertions for the 
documentation of 
interfaces and 
implementations
- Method pre and 

postconditions
- Invariants

 Tool support
- Run-time checking
- Static checking
- Test case generation
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class ImageFile {
String file;
invariant file != null;
Image image; 
invariant old( image ) != null ==> 

old( image ) == image;
ImageFile( String f ) 
requires f != null;

{ file = f; }
Image getImage( ) 
ensures result != null;

{
if( image == null ) { // load the image }
return image;

}
}
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Documentation: Techniques

 Trade-off between overhead, expressiveness, 
precision, and benefit
- Formal techniques require more overhead, but enable 

better tool support
- In practice, a mix of the different techniques is useful

 It is better to simplify than to describe complexity!
- If you have a procedure with ten parameters, you 

probably missed some. [ Alan J. Perlis ]

Peter Müller – Software Architecture and Engineering
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3. Modeling and Specification

3.1 Source Code
3.2 Informal Models
3.3 Formal Models
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Underspecification

 Software is typically 
designed iteratively

 Each iteration adds 
details and reflects 
design decisions that 
have been left open in 
the previous iteration
- Choice of data structures
- Choice of algorithms
- Details of control and 

data flow

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Informal Models



111

Underspecification

 Software is typically 
designed iteratively

 Each iteration adds 
details and reflects 
design decisions that 
have been left open in 
the previous iteration
- Choice of data structures
- Choice of algorithms
- Details of control and 

data flow

Peter Müller – Software Architecture and Engineering

class Student {
Program major;
…

}

class University {
Set<Student> students;
…

}
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Underspecification

 Software is typically 
designed iteratively

 Each iteration adds 
details and reflects 
design decisions that 
have been left open in 
the previous iteration
- Choice of data structures
- Choice of algorithms
- Details of control and 

data flow

Peter Müller – Software Architecture and Engineering

class Student {
Program major;
…

}

class University {
Map<Student, Program> enrollment;
…

}

class University {
Set<Student> students;
…

}

class Student {
…

}
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Underspecification (cont’d)

 Dispatch an event to all 
observers

Peter Müller – Software Architecture and Engineering

class Subject {
Set<Observer> observers;

/* This method calls update
* on each registered observer
* in an unspecified order. 
*/
void notify( ) {
for( Observer o : observers )
o.update( );

}
}
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Underspecification (cont’d)

 Dispatch an event to all 
observers

 Open bank account if 
all conditions are met
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class Subject {
Set<Observer> observers;

/* This method calls update
* on each registered observer
* in an unspecified order. 
*/
void notify( ) {
for( Observer o : observers )
o.update( );

}
}

abstract class Account {
boolean open;
abstract boolean

allConditions( … );
void open( … ) {   
if( allConditions( … ) )
open = true;

else
throw …;

}
}
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Views

 Many software engineering tasks require specific 
views on the design

 Examples
- Software architecture: Is it possible for an app to be 

terminated without prior notification?
- Test data generation: What are all the possible object 

configurations for a data structure?
- Security review: What is the communication protocol 

between a client and the server?
- Deployment: Which software component runs on which 

hardware?

Peter Müller – Software Architecture and Engineering
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Design Specifications

 Source code provides very limited support for 
leaving design choices unspecified
- Often because code is executable
- In some cases, subclassing can be used

 Some relevant design information is not 
represented in the program or difficult to extract
- Source code and documentation are too verbose
- Tools can extract some information like control or data 

flow graphs
 Design specifications are models of the software 

system that provide suitable abstractions

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Informal Models



117

Peter Müller – Software Architecture and Engineering

What is Modeling?

 Building an abstraction of reality
- Abstractions from things, people, and processes
- Relationships between these abstractions

 Abstractions are simplifications
- They ignore irrelevant details
- What is relevant or irrelevant depends on the purpose of 

the model
 Draw complicated conclusions in the reality with 

simple steps in the model
 Modeling is a means for dealing with complexity

3. Modeling and Specifications – Informal Models
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Example 1: Street Map
3. Modeling and Specifications – Informal Models
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Example 2: Atom Models in Physics

 Bohr model
- Nucleus surrounded by 

electrons in orbit
- Explains, e.g., spectra

 Quantum physics 
- Position of electrons described 

by probability distribution
- Takes into account 

Heisenberg’s uncertainty 
principle
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The Unified Modeling Language UML

 UML is a modeling language
- Using text and graphical notation
- For documenting specification, 

analysis, design, and implementation

 Importance
- Recommended OMG (Object Management Group) 

standard notation
- De facto standard in industrial software development

3. Modeling and Specifications – Informal Models
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UML Notations

 Use case diagrams – requirements of a system
 Class diagrams – structure of a system
 Interaction diagrams – message passing

- Sequence diagrams
- Collaboration diagrams

 State and activity diagrams – actions of an object
 Implementation diagrams

- Component model – dependencies between code
- Deployment model – structure of the runtime system

 Object constraint language (OCL)

3. Modeling and Specifications – Informal Models
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3. Modeling and Specification

3.1 Code Documentation
3.2 Informal Models

3.2.1 Static Models
3.2.2 Dynamic Models
3.2.3 Contracts
3.2.4 Mapping Models to Code

3.3 Formal Models
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Classes

 A class includes state (attributes) and behavior
(operations)
- Each attribute has a type
- Each operation has a signature

 The class name is the only mandatory information

TarifSchedule
zone2price: Table 
getZones( ): Enumeration 
getPrice( z: Zone ): Price 

Name
Type

Signature Operations

Attributes
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More on Classes

 Valid UML class diagrams

 Corresponding BON diagram
- No distinction between attributes 

and operations 
(uniform access principle)

TarifSchedule
zone2price
getZones( )
getPrice( )

TarifSchedule

TarifSchedule
getZones
getPrice

NONE
zone2price
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Instances (Objects)

nightTarif:TarifSchedule
zone2price = {
(‘1’, 1.60),
(‘2’, 2.40),
(‘3’, 3.20)

}

Name of an 
instance is 
underlined

Attributes are 
represented 

with their 
values

Name of an 
instance can 
contain the 
class of the

instance

:TarifSchedule
zone2price = {
(‘1’, 1.60),
(‘2’, 2.40),
(‘3’, 3.20)

}

Name of an 
instance is 

optional
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Associations

 A link represents a connection between two objects
- Ability of an object to send a message to another object 
- Object A has an attribute whose value is B 
- Object A creates object B
- Object A receives a message with object B as argument

 Associations denote relationships between classes

Person Company
works for

Optional label

employee employer

Optional rolesOptional roles
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Multiplicity of Associations

 The multiplicity of an association end denotes how 
many objects the source object can reference
- Exact number: 1, 2, etc.  (1 is the default)
- Arbitrary number: * (zero or more)
- Range: 1..3, 1..*

 1-to-(at most) 1 association

 1-to-many association

City Country

Polygon Point

1 0..1

3..*

is capital of
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Navigability

 Associations can be directed

Person Company*

Person Company*

Person Company*

Person knows 
about Company

Company knows 
about Person 

Person and Company 
know about each other
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Composition

 Composition expresses an 
exclusive part-of (“has-a”) 
relationship
- Special form of association
- No sharing

 Composition can be 
decorated like other 
associations
- Multiplicity, label, roles

3. Modeling and Specifications – Informal Models
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Aggregate
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Component
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Generalization and Specialization

 Generalization expresses a 
kind-of (“is-a”) relationship

 Generalization is 
implemented by inheritance
- The child classes inherit the 

attributes and operations of 
the parent class

 Generalization simplifies the 
model by eliminating 
redundancy

Polygon

Rectangle

Superclass

Subclass
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Example: Underspecification

 The class diagram 
leaves the choice of 
data structure 
unspecified

Peter Müller – Software Architecture and Engineering

class Student {
Program major;
…

}

class University {
Map<Student, Program> enrollment;
…

}

class University {
Set<Student> students;
…

}

class Student {
…

}

University

Student

Program

*

*
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Example: Views

 The class diagram 
represents only 
the structure of the 
system, not the 
dynamic behavior

 Some relevant 
invariants are 
represented
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Collection

RefCountList
len: int

ArrayList
len: int

Array

Array

ListRep
shared: bool

*
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3. Modeling and Specification

3.1 Code Documentation
3.2 Informal Models

3.2.1 Static Models
3.2.2 Dynamic Models
3.2.3 Contracts
3.2.4 Mapping Models to Code

3.3 Formal Models
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Dynamic Models

 Static models describe the structure of a system

 Dynamic models describe its behavior

Sequence diagrams 
describe collaboration 

between objects

State diagrams
describe the lifetime of a 

single object 

3. Modeling and Specifications – Informal Models



135

Peter Müller – Software Architecture and Engineering

UML Sequence Diagrams

:Client :Terminal

insertCard( )

insertPIN( )

Actors and 
objects: 
columns

Lifelines: 
dashed lines

Activations: 
narrow 

rectangles

Messages: arrows
Time
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Nested Messages

 The source of an arrow indicates the activation 
which sent the message

 An activation is as long as all nested activations

:Client :Terminal

insertCard( )

:ClientData

check( data )

ok / nok

:Display

displayMessage( text )

Data flow
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Creation and Destruction

 Creation is denoted by a message arrow pointing to 
the object

:Terminal

:Session
start( )

log( )

close( )

Creation
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Creation and Destruction

 Creation is denoted by a message arrow pointing to 
the object

 In garbage collection environments, destruction can 
be used to denote the end of the useful life of an 
object

:Terminal

:Session
start( )

Destruction
log( )

close( )

Creation
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Example: Underspecification and Views
s : Subject o1: Observer o2: Observer

setState( … )

notify( )

update( )

getState( )

update( )

getState( )

par
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State

 An abstraction of the attribute values of an object

 A state is an equivalence class of all those attribute 
values and links that do not need to be 
distinguished for the control structure of the class

 Example: State of an account
- An account is open, closed, or pending
- Omissions: account number, owner, etc.
- All open accounts are in the same equivalence class, 

independent of their number, owner, etc.
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UML State Diagrams

 Objects with extended lifespan often have state-
dependent behavior

 Modeled as state diagram (also called state chart)

Peter Müller – Software Architecture and Engineering

State 1

do / activity
entry / action
exit / action

State 2

do / activity
entry / action
exit / action

Event( par ) [ condition ] / action

States: 
rounded 

rectangles
Transitions: 

arrows
Start 

marker
End 

marker
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Events, Actions, and Activities

 Event: Something that happens at a point in time
- Examples: Receipt of a message, change event for a 

condition, time event

 Action: Operation in response to an event
- Example: Object performs a computation upon receipt of 

a message

 Activity: Operation performed as long as object is in 
some state
- Example: Object performs a computation without external 

trigger
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abstract class Account {
boolean open;
abstract boolean allConditions( … );
void open( … ) {   
if( allConditions( … ) ) open = true;
else throw …;

}
}

Example: Underspecification

Peter Müller – Software Architecture and Engineering

Closed

Open

open( )

3. Modeling and Specifications – Informal Models
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entry / review( )

[ all conditions met ]
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[ condition violated ]
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Example: Views

Not Running Foregroundlaunch( )

BackgroundSuspended

other app
is launched / 
free memory

Notified[ low memory ]

3. Modeling and Specifications – Informal Models
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Practical Tips for Dynamic Modeling

 Construct dynamic models only for classes with 
significant dynamic behavior

 Consider only relevant attributes
- Use abstraction if necessary

 Look at the granularity of the application when 
deciding on actions and activities

3. Modeling and Specifications – Informal Models
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3. Modeling and Specification

3.1 Code Documentation
3.2 Informal Models

3.2.1 Static Models
3.2.2 Dynamic Models
3.2.3 Contracts
3.2.4 Mapping Models to Code

3.3 Formal Models
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Diagrams are not Enough

Person

marry( )

spouse

0..1

“is married to”

3. Modeling and Specifications – Informal Models
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Diagrams are not Enough

 Carol is married to Alice, Alice is married to Bob, 
and Bob is not married at all

 A valid instantiation of the class diagram!
 Associations describe relations between classes

Person

marry( )

spouse

0..1
Carol: Person

Alice: PersonBob: Person

spouse

spouse“is married to”
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Diagrams are not Enough (cont’d)

 Carol is married to Alice, who is only eleven
 A valid instantiation of the class diagram!
 Class diagrams do not restrict values of attributes

Person

age

spouse

0..1

Alice: Person

spouse

spouse

age = 11

Carol: Person

age = 18
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Diagrams are not Enough (cont’d)

 Carol is married to Alice, who is only eleven
 A valid instantiation of the class diagram!
 Class diagrams do not restrict values of attributes

Person

age

spouse

0..1

Married persons are at 
least 16 years old Alice: Person

spouse

spouse

age = 11

Carol: Person

age = 18
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Object Constraint Language – OCL

 The contract language for UML

 Used to specify
- Invariants of objects
- Pre- and postconditions of operations
- Conditions (for instance, in state diagrams)

 Special support for
- Navigation through UML class diagram
- Associations with multiplicities

3. Modeling and Specifications – Informal Models
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Form of OCL Invariants

 Constraints can mention
- self: the contextual 

instance
- Attributes and role names
- Side-effect free methods 

(stereotype <<query>>)
- Logical connectives
- Operations on integers, 

reals, strings, sets, bags, 
sequences

- Etc.

context Person inv: 
self.age >= 0

The context is 
an instance of 
a class in the 
UML diagram 

Declares an 
invariant

A boolean 
constraint
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OCL Invariants

 A savings account has 
a non-negative balance

 Checking accounts are 
owned by adults

context SavingsAccount inv: 
self.balance >= 0

Account
balance

CheckingAccountSavingsAccount

Customer
age

* owner

context CheckingAccount inv: 
self.owner.age >= 18

Role name
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OCL Pre- and Postconditions

Peter Müller – Software Architecture and Engineering

context Account::Withdraw( a: int )
pre: a >= 0
post: GetBalance( ) = GetBalance@pre( ) - a

Context specifies 
method signature

Suffix @pre is 
used to refer to 
prestate values
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3. Modeling and Specification

3.1 Code Documentation
3.2 Informal Models

3.2.1 Static Models
3.2.2 Dynamic Models
3.2.3 Contracts
3.2.4 Mapping Models to Code

3.3 Formal Models
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Implementation of UML Models in Java

Person
age: int

class Person {
private int age;

public void setAge( int a ) 
{ age = a; }

public int getAge( ) 
{ return age; }

}
Programmer

writeCode( )
class Programmer extends Person {
public void writeCode( ) 
{ … }

}
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Model-Driven Development: Idea

 Work on the level of design models
 Generate code automatically

 Advantages
- Supports many implementation platforms
- Frees programmers from recurring activities
- Leads to uniform code
- Useful to enforce coding conventions 

(e.g., getters and setters) 
- Models are not mere documentation
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Problem: Abstraction Mismatch

 UML models may use 
different abstractions than 
the programming 
language

 Model should not depend 
on implementation 
language

 Models cannot always be 
mapped directly to code

Person
age: int

Programmer

writeCode( )

Subject

notify( ) 

How to map
multiple inheritance?

3. Modeling and Specifications – Informal Models



159

Peter Müller – Software Architecture and Engineering

Problem: Specifications are Incomplete 

class App {
private State state;
public App( ) 
{ state = NOT_RUNNING; }

public void launch( )
requires state == NOT_RUNNING;
{ state = FOREGROUND; }

public void event( ) 
requires state == FOREGROUND;
{ }

}

Not Running Foregroundlaunch( )

event( )
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Problem: Specifications are Incomplete 

class App {
private State state;
public App( ) 
{ state = NOT_RUNNING; }

public void launch( )
requires state == NOT_RUNNING;
{ state = FOREGROUND; }

public void event( ) 
requires state == FOREGROUND;
{ }

}

Where is the 
interesting 
behavior?

Not Running Foregroundlaunch( )

event( )
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Problem: Specifications may be Informal 

public void open( ) 
requires state == CLOSED;
requires “all conditions met” || “condition violated”;

{
if ( “all conditions met” )  state = OPEN;
else { state = PENDING; review( ); }

}

Closed

Open

open( )

Pending
entry / review( )

[ all conditions met ]
open( )

[ condition violated ]
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Problem: Specifications may be Informal 

public void open( ) 
requires state == CLOSED;
requires “all conditions met” || “condition violated”;

{
if ( “all conditions met” )  state = OPEN;
else { state = PENDING; review( ); }

}
How to map 

informal 
specifications?

Closed

Open

open( )

Pending
entry / review( )

[ all conditions met ]
open( )

[ condition violated ]
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Problem: Switching between Models and Code

 Code has to be changed manually
- Add interesting behavior
- Clarify informal specifications
- Implement incomplete specifications

 Modification of code requires complicated 
synchronization between code and models
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Model-Driven Development: Reality

 Works in specific domains 
(e.g., business process modeling)

 Code generation works for basic properties
 Interesting code is still implemented manually
 Problems

- Maintaining code that has no models (reverse-
engineering)

- Once code has been modified manually, going back to 
the model is difficult (or impossible)
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Mapping Classes and Inheritance

 Classes may be split into interfaces and 
implementation classes

 Attributes should be non-public
- Generate getters and setters with appropriate visibility

 Methods are straightforward
 Inheritance can be mapped to inheritance or 

subtyping plus aggregation and delegation
Person

Programmer

Subject Person

Programmer

ISubject

Subject
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Mapping Associations

 Associations are 
typically mapped to 
fields

or separate objects 
(collections)

Peter Müller – Software Architecture and Engineering

class Student {
Program major;
… }

class University {
Map<Student, Program> enrollment;
… }

class University {
Set<Student> students;
… }

class Student {
… }

University Student Program**
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Mapping Sequence Diagrams

:Client :Terminal

insertCard( )

:ClientData

check( data )

ok / nok

:Display

displayMessage( text )

public void insertCard( ) {
boolean res = clientData.check( data );
display.displayMessage( text );

}
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Mapping Sequence Diagrams

:Client :Terminal

insertCard( )

:ClientData

check( data )

ok / nok

:Display

displayMessage( text )

public void insertCard( ) {
boolean res = clientData.check( data );
display.displayMessage( text );

}

Synchronous 
messages are 

implemented by 
method calls
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Mapping State Diagrams

Closed

Open

open( )

Pending
entry / review( )

[ all conditions met ]
open( )

[ condition violated ]

open( )
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Mapping State Diagrams (cont’d)

public void open( ) throws … {
switch( state ) {
case CLOSED: 
if ( “all conditions met” )  
state = OPEN;

else { 
state = PENDING; 
review( ); 

}
break;

case PENDING: 
break;

default: 
throw new UnexpectedStateException( );

}
}
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Mapping State Diagrams (cont’d)

public void open( ) throws … {
switch( state ) {
case CLOSED: 
if ( “all conditions met” )  
state = OPEN;

else { 
state = PENDING; 
review( ); 

}
break;

case PENDING: 
break;

default: 
throw new UnexpectedStateException( );

}
}

Introduce state 
variable for 

current state 
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Mapping State Diagrams (cont’d)

public void open( ) throws … {
switch( state ) {
case CLOSED: 
if ( “all conditions met” )  
state = OPEN;

else { 
state = PENDING; 
review( ); 

}
break;

case PENDING: 
break;

default: 
throw new UnexpectedStateException( );

}
}

Introduce state 
variable for 

current state 

Check 
condition of 
transition
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Mapping State Diagrams (cont’d)

public void open( ) throws … {
switch( state ) {
case CLOSED: 
if ( “all conditions met” )  
state = OPEN;

else { 
state = PENDING; 
review( ); 

}
break;

case PENDING: 
break;

default: 
throw new UnexpectedStateException( );

}
}

Introduce state 
variable for 

current state 

Transition

Check 
condition of 
transition
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Mapping State Diagrams (cont’d)

public void open( ) throws … {
switch( state ) {
case CLOSED: 
if ( “all conditions met” )  
state = OPEN;

else { 
state = PENDING; 
review( ); 

}
break;

case PENDING: 
break;

default: 
throw new UnexpectedStateException( );

}
}

Introduce state 
variable for 

current state 

Transition

Check 
condition of 
transition

Perform 
action
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Mapping State Diagrams (cont’d)

public void open( ) throws … {
switch( state ) {
case CLOSED: 
if ( “all conditions met” )  
state = OPEN;

else { 
state = PENDING; 
review( ); 

}
break;

case PENDING: 
break;

default: 
throw new UnexpectedStateException( );

}
}

Introduce state 
variable for 

current state 

Transition

Check 
condition of 
transition

Perform 
action

Illegal state 
or message
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Informal Modeling: Summary

Strengths
 Describe particular 

views on the overall 
system

 Omit some information 
or specify it informally

 Graphical notation 
facilitates 
communication

Weaknesses
 Precise meaning of 

models is often unclear

 Incomplete and 
informal models 
hamper tool support

 Many details are hard 
to depict visually

Peter Müller – Software Architecture and Engineering
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3. Modeling and Specification

3.1 Source Code
3.2 Informal Models
3.3 Formal Models
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Formal Modeling

 Notations and tools are based on mathematics, 
hence precise

 Typically used to describe some aspect of a system

Peter Müller – Software Architecture and Engineering

Carol: Person

Alice: PersonBob: Person

spouse

spouse

context SavingsAccount inv: 
self.amount >= 0

 Formal models enable 
automatic analysis
- Finding ill-formed 

examples

- Checking properties

3. Modeling and Specifications – Formal Models



179

Alloy

 Alloy is a formal modeling language based on set 
theory

 An Alloy model specifies a collection of constraints 
that describe a set of structures

 The Alloy Analyzer is a solver that takes the 
constraints of a model and finds structures that 
satisfy them
- Generate sample structures
- Generate counterexamples for invalid properties
- Visualize structures

Peter Müller – Software Architecture and Engineering
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Alloy Documentation and Download

 Documentation
- Useful tutorials available at 

alloy.mit.edu
- Book by Daniel Jackson

 Download
- Get latest version at 

alloy.mit.edu/alloy/download.html
- Requires JRE 6

Peter Müller – Software Architecture and Engineering
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3. Modeling and Specification

3.1 Source Code
3.2 Informal Models
3.3 Formal Models

3.3.1 Static Models
3.3.2 Dynamic Models
3.3.3 Analyzing Models
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Signatures

 A signature declares a set of 
atoms
- Think of signatures as classes
- Think of atoms as immutable 

objects
- Different signatures declare 

disjoint sets

 Extends-clauses declare 
subsets relations
- File and Dir are disjoint 

subsets of FSObject

Peter Müller – Software Architecture and Engineering

sig FSObject { }

sig File extends FSObject { }
sig Dir extends FSObject { }
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Operations on Sets

 Standard set operators
- + (union)
- & (intersection)
- - (difference)
- in (subset)
- = (equality)
- # (cardinality)
- none (empty set)
- univ (universal set)

 Comprehensions

Peter Müller – Software Architecture and Engineering

sig File extends FSObject { }
sig Dir extends FSObject { }

#{ f: FSObject | f in File + Dir } 
>= #Dir

#( File + Dir ) >= #Dir
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More on Signatures

 Signature can be abstract
- Like abstract classes

Peter Müller – Software Architecture and Engineering

abstract sig FSObject { }
sig File extends FSObject { }
sig Dir extends FSObject { }

3. Modeling and Specifications – Formal Models



185

More on Signatures

 Signature can be abstract
- Like abstract classes
- Closed world assumption: the 

declared set contains exactly 
the elements of the declared 
subsets

Peter Müller – Software Architecture and Engineering

abstract sig FSObject { }
sig File extends FSObject { }
sig Dir extends FSObject { }

FSObject = File + Dir
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More on Signatures

 Signature can be abstract
- Like abstract classes
- Closed world assumption: the 

declared set contains exactly 
the elements of the declared 
subsets

 Signatures may constrain 
the cardinalities of the 
declared sets
- one: singleton set
- lone: singleton or empty set
- some: non-empty set

Peter Müller – Software Architecture and Engineering

abstract sig FSObject { }
sig File extends FSObject { }
sig Dir extends FSObject { }

one sig Root 
extends Dir { }

FSObject = File + Dir
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Fields

 A field declares a relation 
on atoms
- f is a binary relation with 

domain A and range given by 
expression e

- Think of fields as associations

Peter Müller – Software Architecture and Engineering

sig A {
f: e

}
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Fields

 A field declares a relation 
on atoms
- f is a binary relation with 

domain A and range given by 
expression e

- Think of fields as associations
 Range expressions may 

denote multiplicities
- one: singleton set (default)
- lone: singleton or empty set
- some: non-empty set
- set: any set

Peter Müller – Software Architecture and Engineering

abstract sig FSObject {
parent: lone Dir

}

sig A {
f: e

}

sig Dir extends FSObject { 
contents: set FSObject

}
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Operations on Relations

 Standard operators
- -> (cross product)
- . (relational join)
- ~ (transposition)
- ^ (transitive closure)
- * (reflexive, transitive closure)
- <: (domain restriction)
- >: (range restriction)
- ++ (override)
- iden (identity relation)
- [ ] (box join: e1[ e2 ] = e2.e1)

Peter Müller – Software Architecture and Engineering

abstract sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject { 
contents: set FSObject

}

one sig Root extends Dir { }

FSObject in Root.*contents
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Operations on Relations

 Standard operators
- -> (cross product)
- . (relational join)
- ~ (transposition)
- ^ (transitive closure)
- * (reflexive, transitive closure)
- <: (domain restriction)
- >: (range restriction)
- ++ (override)
- iden (identity relation)
- [ ] (box join: e1[ e2 ] = e2.e1)

Peter Müller – Software Architecture and Engineering

abstract sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject { 
contents: set FSObject

}

one sig Root extends Dir { }

FSObject in Root.*contents

All file system objects 
are contained in the 

root directory
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Relational Join: Example

 Consider a structure 
with four FSObject
atoms
- r: Root,  d1, d2: Dir,  

f: File
and contents relation

 The reflexive, transitive 
closure *contents is

 The relational join 
Root.*contents is

Peter Müller – Software Architecture and Engineering

(r)(r,d1) (d1,d2) (d2,f)

(r,d1) (d1,d2) (d2,f)
(d1,f) (r,d2) (r,f)

(r,r) (d1,d1) (d2,d2) (f,f)

(r,d1)
(d1,d2)
(d2,f)
(d1,f)
(r,d2)
(r,f)
(r,r)

(d1,d1)
(d2,d2)

(f,f)

(d1)
(d2)
(f)
(r)

. =

*contents

Root
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Relational Join: Example

 Consider a structure 
with four FSObject
atoms
- r: Root,  d1, d2: Dir,  

f: File
and contents relation

 The reflexive, transitive 
closure *contents is

 The relational join 
Root.*contents is
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(r)(r,d1) (d1,d2) (d2,f)

(r,d1) (d1,d2) (d2,f)
(d1,f) (r,d2) (r,f)

(r,r) (d1,d1) (d2,d2) (f,f)

(r,d1)
(d1,d2)
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(r,d2)
(r,f)
(r,r)
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(d1)
(d2)
(f)
(r)

. =

*contents
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Relational Join: Example

 Consider a structure 
with four FSObject
atoms
- r: Root,  d1, d2: Dir,  

f: File
and contents relation

 The reflexive, transitive 
closure *contents is

 The relational join 
Root.*contents is
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Relational Join: Example

 Consider a structure 
with four FSObject
atoms
- r: Root,  d1, d2: Dir,  

f: File
and contents relation

 The reflexive, transitive 
closure *contents is

 The relational join 
Root.*contents is
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Relational Join: Example
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Relational Join: Example
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Relational Join: Example
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Relational Join: Example
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Relational Join: Example

 Consider a structure 
with four FSObject
atoms
- r: Root,  d1, d2: Dir,  

f: File
and contents relation

 The reflexive, transitive 
closure *contents is
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Root.*contents is
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Relational Join: Example

 Consider a structure 
with four FSObject
atoms
- r: Root,  d1, d2: Dir,  

f: File
and contents relation

 The reflexive, transitive 
closure *contents is

 The relational join 
Root.*contents is
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(r)(r,d1) (d1,d2) (d2,f)

(r,d1) (d1,d2) (d2,f)
(d1,f) (r,d2) (r,f)

(r,r) (d1,d1) (d2,d2) (f,f)

(r,d1)
(d1,d2)
(d2,f)
(d1,f)
(r,d2)
(r,f)
(r,r)

(d1,d1)
(d2,d2)

(f,f)

(d1)
(d2)
(f)
(r)

. =

*contents

Root

FSObject in Root.*contents
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More on Fields

 Fields may range over relations
 Relation declarations may include multiplicities on 

both sides
- one, lone, some, set (default)

 Range expressions may depend on other fields

Peter Müller – Software Architecture and Engineering

sig University { 
enrollment: Student set -> one Program

}

sig University { 
students: set Student,
enrollment: students set -> one Program

}
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Constraints

 Boolean operators
- ! or not (negation)
- && or and (conjunction)
- || or or (disjunction)
- => or implies (implication)
- else (alternative)
- <=> or iff (equivalence)

 Four equivalent constraints

 Quantified expressions
- some e 

e has at least one tuple
- no e 

e has no tuples
- lone e 

e has at most one tuple
- one e 

e has exactly one tuple

Peter Müller – Software Architecture and Engineering

F => G else H
F implies G else H

(F && G) || ((!F) && H)
(F and G) or ((not F) and H)

no Root.parent
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 Alloy supports five different 
quantifiers
- all x: e | F

F holds for every x in e
- some x: e | F

F holds for at least one x in e
- no x: e | F

F holds for no x in e
- lone x: e | F

F holds for at most one x in e
- one x: e | F

F holds for exactly one x in e

Quantification

 Quantifiers may 
have the following 
forms
- all x: e | F
- all x: e1, y: e2 | F
- all x, y: e | F
- all disj x, y: e | F

 contents-relation is
acyclic

Peter Müller – Software Architecture and Engineering

no d: Dir | d in d.^contents
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Predicates and Functions 

 Predicates are named, parameterized formulas

 Functions are named, parameterized expressions

Peter Müller – Software Architecture and Engineering

fun f[ x1: e1, …, xn: en ]: e { E }

pred p[ x1: e1, ..., xn: en ] { F }

pred isLeave[ f: FSObject ] {
f in File || no f.contents

}

fun leaves[ f: FSObject ]: set FSObject {
{ x: f.*contents | isLeave[ x ] }

}
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Exploring the Model

 The Alloy Analyzer can search for structures that 
satisfy the constraints M in a model

Peter Müller – Software Architecture and Engineering

fun f[ x1: e1, …, xn: en ]: e { E }

pred p[ x1: e1, ..., xn: en ] { F }

run p

run f

 Find instance of a predicate
- A solution to 

M && 
some x1: e1, …, xn: en | F

 Find instance of a function
- A solution to 

M && 
some x1: e1, …, xn: en, 
res: e | res = E
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Exploring the Model: Scopes

 The existence of a structure that satisfies the 
constraints in a model is in general undecidable

 The Alloy Analyzer searches exhaustively for 
structures up to a given size
- The problem becomes finite and, thus, decidable

Peter Müller – Software Architecture and Engineering

run isLeave
run isLeave for 5

run isLeave for 5 Dir, 2 File
run isLeave for exactly 5 Dir
run isLeave for 5 but 3 Dir

run isLeave for 5 but exactly 3 Dir
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Exploring the Model: Example

Peter Müller – Software Architecture and Engineering

abstract sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject { 
contents: set FSObject

}

one sig Root extends Dir { }
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Exploring the Model: Example

Peter Müller – Software Architecture and Engineering

abstract sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject { 
contents: set FSObject

}

one sig Root extends Dir { }
Root should not 
have a parent
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Exploring the Model: Example

Peter Müller – Software Architecture and Engineering

abstract sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject { 
contents: set FSObject

}

one sig Root extends Dir { }
Root should not 
have a parent

A directory 
should not 

contain itself

3. Modeling and Specifications – Formal Models
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Exploring the Model: Example

Peter Müller – Software Architecture and Engineering

abstract sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject { 
contents: set FSObject

}

one sig Root extends Dir { }
Root should not 
have a parent

A directory 
should not 

contain itself

contents and 
parent should be 
inverse relations
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Adding Constraints

 Facts add constraints that always hold
- run searches for solutions that satisfy all constraints

 Facts express value and structural invariants of the 
model 

Peter Müller – Software Architecture and Engineering

fact { F }
fact f { F }

sig S { … } { F }
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Adding Constraints: Example

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Formal Models



213

Adding Constraints: Example

Peter Müller – Software Architecture and Engineering

Root should not 
have a parent

fact { no Root.parent }

3. Modeling and Specifications – Formal Models
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Adding Constraints: Example

Peter Müller – Software Architecture and Engineering

Root should not 
have a parent

contents and 
parent should be 
inverse relations

fact { no Root.parent }

fact { all d: Dir, o: d.contents | o.parent = d }

3. Modeling and Specifications – Formal Models
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Adding Constraints: Example

Peter Müller – Software Architecture and Engineering

Root should not 
have a parent

A directory 
should not 

contain itself

contents and 
parent should be 
inverse relations

fact { no Root.parent }

fact { no d: Dir | d in d.^contents }

fact { all d: Dir, o: d.contents | o.parent = d }
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Checking the Model

 Exploring models by manually inspecting instances 
is cumbersome for non-trivial models

 The Alloy Analyzer can search for structures that 
violate a given property
- Counterexample to an assertion
- The search is complete for the given scope

Peter Müller – Software Architecture and Engineering

assert a { F }

check a scope

 For a model with 
constraints M, find a 
solution to M && !F
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 Finding a counterexample

 Proving a property

Checking the Model: Example

Peter Müller – Software Architecture and Engineering

pred isLeave[ f: FSObject ] {
f in File || no f.contents

}

assert nonEmptyRoot { !isLeave[ Root ] }
check nonEmptyRoot for 3

assert acyclic { no d: Dir | d in d.^contents }
check acyclic for 5
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 Finding a counterexample

 Proving a property

Checking the Model: Example

Peter Müller – Software Architecture and Engineering

pred isLeave[ f: FSObject ] {
f in File || no f.contents

}

assert nonEmptyRoot { !isLeave[ Root ] }
check nonEmptyRoot for 3

assert acyclic { no d: Dir | d in d.^contents }
check acyclic for 5

Validity is checked 
only within the 
given scope
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Under and Over-Constrained Models

 Missing or weak facts under-constrain the model
- They permit undesired structures
- Under-constrained models are typically easy to detect 

during model exploration (using run) and assertion 
checking (using check)

 Unnecessary facts over-constrain the model
- They exclude desired structures

 Inconsistencies are an extreme
case of over-constraining
- They preclude the existence 

of any structure
- All assertion checks will succeed!

Peter Müller – Software Architecture and Engineering

assert nonSense { 0 = 1 }
check nonSense

fact acyclic { 
no d: Dir | d in d.*contents 

}


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Guidelines to Avoid Over-Constraining

 Simulate model to check consistency
- Use run to ensure that structures exist
- Create predicates with desired configurations and use 

run to ensure they exist

 Prefer assertions over facts
- When in doubt, check whether current model already 

ensures a desired property before adding it as a fact

Peter Müller – Software Architecture and Engineering

pred show { }
run show

fact acyclic { no d: Dir | d in d.*contents }

3. Modeling and Specifications – Formal Models



221

Implementation Documentation: Example
1. elems is non-null
2. elems is pointed to by only one object
3. When the shared-field is true then 

shared, elems, and all elements of 
elems are immutable

4. When the shared-field is false, the 
ListRep object is used as 
representation of at most one List 
object

5. rep is pointed to only by List objects
6. rep is non-null
7. 0 <= len <= rep.elems.length

Peter Müller – Software Architecture and Engineering

class ListRep<E> {
E[ ] elems;
boolean shared;
…

}

class List<E> {
ListRep<E> rep;  
int len;
…

}
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Reference Counting List: Alloy Model (1)

Peter Müller – Software Architecture and Engineering

open util/boolean

sig E { }

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }

sig ListRep {
elems: Array,
shared: Bool

}

fact inv2 { all disj lr1, lr2: ListRep | lr1.elems != lr2.elems }
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Reference Counting List: Alloy Model (1)

Peter Müller – Software Architecture and Engineering

open util/boolean

sig E { }

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }

sig ListRep {
elems: Array,
shared: Bool

}

fact inv2 { all disj lr1, lr2: ListRep | lr1.elems != lr2.elems }

Use library mode 
for booleans
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Reference Counting List: Alloy Model (1)

Peter Müller – Software Architecture and Engineering

open util/boolean

sig E { }

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }

sig ListRep {
elems: Array,
shared: Bool

}

fact inv2 { all disj lr1, lr2: ListRep | lr1.elems != lr2.elems }

Use library mode 
for booleans

Encode 
generic type 
parameter
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225

Reference Counting List: Alloy Model (1)

Peter Müller – Software Architecture and Engineering

open util/boolean

sig E { }

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }

sig ListRep {
elems: Array,
shared: Bool

}

fact inv2 { all disj lr1, lr2: ListRep | lr1.elems != lr2.elems }

Use library mode 
for booleans

Encode 
generic type 
parameter

Introduce array 
signature to model 
potential sharing
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Reference Counting List: Alloy Model (1)

Peter Müller – Software Architecture and Engineering

open util/boolean

sig E { }

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }

sig ListRep {
elems: Array,
shared: Bool

}

fact inv2 { all disj lr1, lr2: ListRep | lr1.elems != lr2.elems }

Use library mode 
for booleans

Encode 
generic type 
parameter

Introduce array 
signature to model 
potential sharing

Array elements 
may be null

3. Modeling and Specifications – Formal Models



227

Reference Counting List: Alloy Model (1)

Peter Müller – Software Architecture and Engineering

open util/boolean

sig E { }

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }

sig ListRep {
elems: Array,
shared: Bool

}

fact inv2 { all disj lr1, lr2: ListRep | lr1.elems != lr2.elems }

Use library mode 
for booleans

Encode 
generic type 
parameter

Introduce array 
signature to model 
potential sharing

Array elements 
may be null

A fact 
guaranteed 
by the Java 
semantics
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Reference Counting List: Alloy Model (1)

Peter Müller – Software Architecture and Engineering

open util/boolean

sig E { }

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }

sig ListRep {
elems: Array,
shared: Bool

}

fact inv2 { all disj lr1, lr2: ListRep | lr1.elems != lr2.elems }

Use library mode 
for booleans

Encode 
generic type 
parameter

Introduce array 
signature to model 
potential sharing

Array elements 
may be null

A fact 
guaranteed 
by the Java 
semantics

elems is non-null 
(inv1)
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Reference Counting List: Alloy Model (1)

Peter Müller – Software Architecture and Engineering

open util/boolean

sig E { }

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }

sig ListRep {
elems: Array,
shared: Bool

}

fact inv2 { all disj lr1, lr2: ListRep | lr1.elems != lr2.elems }

Use library mode 
for booleans

Encode 
generic type 
parameter

Introduce array 
signature to model 
potential sharing

Array elements 
may be null

A fact 
guaranteed 
by the Java 
semantics

elems is non-null 
(inv1)

elems is not 
shared (inv2)
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Reference Counting List: Alloy Model (2)

Peter Müller – Software Architecture and Engineering

sig List {
rep: ListRep, 
len: Int

}

fact inv4 { all lr: ListRep | isFalse[ lr.shared ] => lone l: List | l.rep = lr }

fact inv7 { all l: List | 0 <= l.len && l.len <= l.rep.elems.length }
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Reference Counting List: Alloy Model (2)

Peter Müller – Software Architecture and Engineering

sig List {
rep: ListRep, 
len: Int

}

fact inv4 { all lr: ListRep | isFalse[ lr.shared ] => lone l: List | l.rep = lr }

fact inv7 { all l: List | 0 <= l.len && l.len <= l.rep.elems.length }

shared conservatively 
tracks sharing (inv4)
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Reference Counting List: Alloy Model (2)

Peter Müller – Software Architecture and Engineering

sig List {
rep: ListRep, 
len: Int

}

fact inv4 { all lr: ListRep | isFalse[ lr.shared ] => lone l: List | l.rep = lr }

fact inv7 { all l: List | 0 <= l.len && l.len <= l.rep.elems.length }

shared conservatively 
tracks sharing (inv4)

rep is non-null 
(inv6)
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Reference Counting List: Alloy Model (2)

Peter Müller – Software Architecture and Engineering

sig List {
rep: ListRep, 
len: Int

}

fact inv4 { all lr: ListRep | isFalse[ lr.shared ] => lone l: List | l.rep = lr }

fact inv7 { all l: List | 0 <= l.len && l.len <= l.rep.elems.length }

shared conservatively 
tracks sharing (inv4)

rep is non-null 
(inv6)

len is between zero 
and array size (inv7)
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Invariants Revisited
1. elems is non-null
2. elems is pointed to by only one object
3. When the shared-field is true then 

shared, elems, and all elements of 
elems are immutable

4. When the shared-field is false, the 
ListRep object is used as 
representation of at most one List 
object

5. rep is pointed to only by List objects
6. rep is non-null
7. 0 <= len <= rep.elems.length

Peter Müller – Software Architecture and Engineering
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Invariants Revisited
1. elems is non-null
2. elems is pointed to by only one object
3. When the shared-field is true then 

shared, elems, and all elements of 
elems are immutable

4. When the shared-field is false, the 
ListRep object is used as 
representation of at most one List 
object

5. rep is pointed to only by List objects
6. rep is non-null
7. 0 <= len <= rep.elems.length

Peter Müller – Software Architecture and Engineering

Alloy does not allow 
the model to 

constrain fields not 
declared in the model 

Alloy does not allow 
the model to 

constrain fields not 
declared in the model 
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Invariants Revisited
1. elems is non-null
2. elems is pointed to by only one object
3. When the shared-field is true then 

shared, elems, and all elements of 
elems are immutable

4. When the shared-field is false, the 
ListRep object is used as 
representation of at most one List 
object

5. rep is pointed to only by List objects
6. rep is non-null
7. 0 <= len <= rep.elems.length

Peter Müller – Software Architecture and Engineering

So far, our model 
does not contain 
dynamic behavior

Alloy does not allow 
the model to 

constrain fields not 
declared in the model 

Alloy does not allow 
the model to 

constrain fields not 
declared in the model 
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Example: Underspecification

Peter Müller – Software Architecture and Engineering

class Student {
Program major;
…

}

class University {
Map<Student, Program> enrollment;
…

}

class University {
Set<Student> students;
…

}

class Student {
…

}

sig Student { }
sig Program { }
sig University { }
sig State {
enrollment: University -> Student -> one Program

}

 The Alloy 
model leaves 
the choice of 
data structure 
unspecified
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sig E { }
sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }
sig ListRep {
elems: Array,
shared: Bool

}
fact inv2 { 
all disj lr1, lr2: ListRep | lr1.elems != lr2.elems 

}

Example: Views

 The Alloy model 
represents only 
the structure of 
the system, not 
the dynamic 
behavior

 Some relevant 
invariants are 
represented

Peter Müller – Software Architecture and Engineering
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Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Source Code
3.2 Informal Models
3.3 Formal Models

3.3.1 Static Models
3.3.2 Dynamic Models
3.3.3 Analyzing Models
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Dynamic Behavior

 Alloy has no built-in model of execution
- No notion of time or mutable state

 State or time have to be modeled explicitly

Peter Müller – Software Architecture and Engineering

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}

pred update[ a, a’: Array, i: Int, e: E ] {
a’.length = a.length &&
a’.data = a.data ++ i -> e

}
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Describing Mutation via Different Atoms

 Alloy models describe operations declaratively
- Relating the atoms before and after the operation

Peter Müller – Software Architecture and Engineering

pred update[ a, a’: Array, i: Int, e: E ] {
a’.length = a.length &&
a’.data = a.data ++ i -> e

}
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Describing Mutation via Different Atoms

 Alloy models describe operations declaratively
- Relating the atoms before and after the operation

Peter Müller – Software Architecture and Engineering

pred update[ a, a’: Array, i: Int, e: E ] {
a’.length = a.length &&
a’.data = a.data ++ i -> e

}
A regular 
identifier
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Describing Mutation via Different Atoms

 Alloy models describe operations declaratively
- Relating the atoms before and after the operation

Peter Müller – Software Architecture and Engineering

pred update[ a, a’: Array, i: Int, e: E ] {
a’.length = a.length &&
a’.data = a.data ++ i -> e

}Equality, not 
assignment

A regular 
identifier
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Describing Mutation via Different Atoms

 Alloy models describe operations declaratively
- Relating the atoms before and after the operation

 Modeling mutations via different atoms is 
cumbersome if atoms occur in several relations

Peter Müller – Software Architecture and Engineering

pred update[ a, a’: Array, i: Int, e: E ] {
a’.length = a.length &&
a’.data = a.data ++ i -> e

}

pred removeAll[ d, d': Dir ] {
d’.parent = d.parent &&
d’.contents = none

}

Equality, not 
assignment

A regular 
identifier
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Describing Mutation via Different Atoms

 Alloy models describe operations declaratively
- Relating the atoms before and after the operation

 Modeling mutations via different atoms is 
cumbersome if atoms occur in several relations

Peter Müller – Software Architecture and Engineering

pred update[ a, a’: Array, i: Int, e: E ] {
a’.length = a.length &&
a’.data = a.data ++ i -> e

}

pred removeAll[ d, d': Dir ] {
d’.parent = d.parent &&
d’.contents = none

}

d’ is not 
automatically in 

d.parent.contents

Equality, not 
assignment

A regular 
identifier
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Abstract Machine Idiom

 Move all relations and operations to a global state

 Operations modify the global state

Peter Müller – Software Architecture and Engineering

sig State { … }
pred op1[ s, s’: State, … ] { … }
pred opn[ s, s’: State, … ] { … }
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Abstract Machine: Example

Peter Müller – Software Architecture and Engineering

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
{
contents = ~parent
live in root.*contents

}

abstract sig FSObject { }
sig File, Dir extends FSObject { }

3. Modeling and Specifications – Formal Models
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Abstract Machine: Example

Peter Müller – Software Architecture and Engineering

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
{
contents = ~parent
live in root.*contents

}

abstract sig FSObject { }
sig File, Dir extends FSObject { }

FileSystem is 
the global state
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Abstract Machine: Example

Peter Müller – Software Architecture and Engineering

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
{
contents = ~parent
live in root.*contents

}

abstract sig FSObject { }
sig File, Dir extends FSObject { }

FileSystem is 
the global state root is a 

directory in this 
file system
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Abstract Machine: Example

Peter Müller – Software Architecture and Engineering

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
{
contents = ~parent
live in root.*contents

}

abstract sig FSObject { }
sig File, Dir extends FSObject { }

FileSystem is 
the global state root is a 

directory in this 
file system

Every object 
except root has 

exactly one parent
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Abstract Machine: Example (cont’d)

Peter Müller – Software Architecture and Engineering

pred removeAll[ s, s': FileSystem, o: FSObject ] {
o in s.live - s.root &&
s'.live = s.live - o.*(s.contents) &&
s'.parent = s'.live <: s.parent

}

3. Modeling and Specifications – Formal Models
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Abstract Machine: Example (cont’d)

Peter Müller – Software Architecture and Engineering

pred removeAll[ s, s': FileSystem, o: FSObject ] {
o in s.live - s.root &&
s'.live = s.live - o.*(s.contents) &&
s'.parent = s'.live <: s.parent

}

Precondition: 
o is a live object
other than root
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Abstract Machine: Example (cont’d)

Peter Müller – Software Architecture and Engineering

pred removeAll[ s, s': FileSystem, o: FSObject ] {
o in s.live - s.root &&
s'.live = s.live - o.*(s.contents) &&
s'.parent = s'.live <: s.parent

}

Precondition: 
o is a live object
other than root

Remove o and 
everything it 
(transitively) 

contains
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Abstract Machine: Example (cont’d)

Peter Müller – Software Architecture and Engineering

pred removeAll[ s, s': FileSystem, o: FSObject ] {
o in s.live - s.root &&
s'.live = s.live - o.*(s.contents) &&
s'.parent = s'.live <: s.parent

}

Precondition: 
o is a live object
other than root

Remove o and 
everything it 
(transitively) 

contains Restrict 
domain of 

parent relation
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Abstract Machine: Example (cont’d)

Peter Müller – Software Architecture and Engineering

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
{
contents = ~parent
live in root.*contents

}

pred removeAll[ s, s’: FileSystem, o: FSObject ] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent

}
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Abstract Machine: Example (cont’d)

Peter Müller – Software Architecture and Engineering

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
{
contents = ~parent
live in root.*contents

}

pred removeAll[ s, s’: FileSystem, o: FSObject ] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent

}

What about 
s’.root and 

s’.contents?
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Abstract Machine: Example (cont’d)

Peter Müller – Software Architecture and Engineering

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
{
contents = ~parent
live in root.*contents

}

pred removeAll[ s, s’: FileSystem, o: FSObject ] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent

}

What about 
s’.root and 

s’.contents?

Constraints ensure that 
s.root = s’.root

and that
s’.contents = ~(s’.parent)
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Abstract Machine: Example (cont’d)

Peter Müller – Software Architecture and Engineering

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
{
contents = ~parent
live in root.*contents

}

pred removeAll[ s, s’: FileSystem, o: FSObject ] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent

}

What about 
s’.root and 

s’.contents?

Constraints ensure that 
s.root = s’.root

and that
s’.contents = ~(s’.parent)

In general, we also 
have to specify what 
remains unchanged
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Declarative Specifications

 Alloy specifications are purely declarative
- The describe what is done, not how it is done
- Specifications abstract over irrelevant details

Peter Müller – Software Architecture and Engineering

int find( int[ ] array, int v ) {
for( int i = 0; i < array.length; i++ )
if( array[ i ] == v )  return i;

return -1;
}

pred find[ a: Array, v: Int, res: Int ] {
a.data[ res ] = v ||
res = -1 && (no i: Int | a.data[ i ] = v)

}
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Declarative Specifications

 Alloy specifications are purely declarative
- The describe what is done, not how it is done
- Specifications abstract over irrelevant details

Peter Müller – Software Architecture and Engineering

int find( int[ ] array, int v ) {
for( int i = 0; i < array.length; i++ )
if( array[ i ] == v )  return i;

return -1;
}

int find( int[ ] array, int v ) {
if( 256 <= array.length ) {
// perform parallel search 

} else {
// sequential search like before

}
}

pred find[ a: Array, v: Int, res: Int ] {
a.data[ res ] = v ||
res = -1 && (no i: Int | a.data[ i ] = v)

}

3. Modeling and Specifications – Formal Models



261

Abstract Machine Idiom (cont’d)

 In static models, invariants are expressed as facts

 In dynamic models, invariants can be asserted as 
properties maintained by the operations

Peter Müller – Software Architecture and Engineering

sig State { … }
pred op1[ s, s’: State, … ] { … }
pred opn[ s, s’: State, … ] { … }
pred init[ s’: State, … ] { … }
pred inv[ s: State ] { … }

assert initEstablishes {
all s’: State, … | init[ s’, … ] => inv[ s’ ]

}
check initEstablishes
assert opiPreserves {
all s, s’: State, … |
inv[ s ] && opi[ s, s’, … ] => inv[ s’ ]

}
check opiPreserves
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Abstract Machine Example: Initialization

Peter Müller – Software Architecture and Engineering

pred inv[ s: FileSystem ] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

pred init[ s’: FileSystem ] {
#s’.live = 1

} 

assert initEstablishes {
all s’: FileSystem | 
init[ s’ ] => inv[ s’ ]

}
check initEstablishes

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
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Abstract Machine Example: Initialization

Peter Müller – Software Architecture and Engineering

pred inv[ s: FileSystem ] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

pred init[ s’: FileSystem ] {
#s’.live = 1

} 

assert initEstablishes {
all s’: FileSystem | 
init[ s’ ] => inv[ s’ ]

}
check initEstablishes

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
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Abstract Machine Example: Initialization (c’d)

Peter Müller – Software Architecture and Engineering

pred init[ s’: FileSystem ] {
#s’.live = 1 && 
s’.contents[ s’.root ] = none

} 

assert initEstablishes {
all s’: FileSystem | 
init[ s’ ] => inv[ s’ ]

}
check initEstablishes

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}



pred inv[ s: FileSystem ] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

3. Modeling and Specifications – Formal Models



265

Abstract Machine Example: Preservation

Peter Müller – Software Architecture and Engineering

pred inv[ s: FileSystem ] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

pred removeAll[ s, s’: FileSystem, o: FSObject ] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent

}

assert removeAllPreserves {
all s, s’: FileSystem, o: FSObject |
inv[ s ] && removeAll[ s, s’, o ] => inv[ s’ ]

}
check removeAllPreserves
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Abstract Machine Example: Preservation

Peter Müller – Software Architecture and Engineering

pred inv[ s: FileSystem ] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

pred removeAll[ s, s’: FileSystem, o: FSObject ] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent

}

assert removeAllPreserves {
all s, s’: FileSystem, o: FSObject |
inv[ s ] && removeAll[ s, s’, o ] => inv[ s’ ]

}
check removeAllPreserves
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Abstract Machine Example: Preservation

Peter Müller – Software Architecture and Engineering

pred inv[ s: FileSystem ] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

pred removeAll[ s, s’: FileSystem, o: FSObject ] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent

}

assert removeAllPreserves {
all s, s’: FileSystem, o: FSObject |
inv[ s ] && removeAll[ s, s’, o ] => inv[ s’ ]

}
check removeAllPreserves

Constraints no longer 
ensure that

s’.contents = ~(s’.parent)
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Abstract Machine Example: Preservation (c’t)

Peter Müller – Software Architecture and Engineering

pred inv[ s: FileSystem ] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

pred removeAll[ s, s’: FileSystem, o: FSObject ] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent &&
s’.contents = s.contents :> s’.live

}

assert removeAllPreserves {
all s, s’: FileSystem, o: FSObject |
inv[ s ] && removeAll[ s, s’, o ] => inv[ s’ ]

}
check removeAllPreserves
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Temporal Invariants

 The invariants specified and modeled so far were 
one-state invariants

 Often, one needs to explore or check properties of 
sequences of states such as temporal invariants

 Model sequences of execution steps of an abstract 
machine (execution traces)

Peter Müller – Software Architecture and Engineering

3. When the shared-field is true then 
shared, elems, and all elements of 
elems are immutable
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Traces of an Abstract Machine

 Define a linear order on all states
- First state is the initial state
- Subsequent states are created by performing operations 

of the abstract machine

Peter Müller – Software Architecture and Engineering

open util/ordering[ State ]
…
fact traces {
init[ first ] &&
all s: State - last |
(some … | op1[ s, s.next, … ])  or
… 
(some … | opn[ s, s.next, … ])

}
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Traces of an Abstract Machine

 Define a linear order on all states
- First state is the initial state
- Subsequent states are created by performing operations 

of the abstract machine

Peter Müller – Software Architecture and Engineering

open util/ordering[ State ]
…
fact traces {
init[ first ] &&
all s: State - last |
(some … | op1[ s, s.next, … ])  or
… 
(some … | opn[ s, s.next, … ])

}

Parametric 
library defines 

linear order
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Traces of an Abstract Machine

 Define a linear order on all states
- First state is the initial state
- Subsequent states are created by performing operations 

of the abstract machine

Peter Müller – Software Architecture and Engineering

open util/ordering[ State ]
…
fact traces {
init[ first ] &&
all s: State - last |
(some … | op1[ s, s.next, … ])  or
… 
(some … | opn[ s, s.next, … ])

}

Parametric 
library defines 

linear order
Initial state is 
the first in the 

order
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Traces of an Abstract Machine

 Define a linear order on all states
- First state is the initial state
- Subsequent states are created by performing operations 

of the abstract machine

Peter Müller – Software Architecture and Engineering

open util/ordering[ State ]
…
fact traces {
init[ first ] &&
all s: State - last |
(some … | op1[ s, s.next, … ])  or
… 
(some … | opn[ s, s.next, … ])

}

Parametric 
library defines 

linear order
Initial state is 
the first in the 

order

Subsequent states 
are created by one 
of the operations
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Traces of an Abstract Machine

 Define a linear order on all states
- First state is the initial state
- Subsequent states are created by performing operations 

of the abstract machine

Peter Müller – Software Architecture and Engineering

open util/ordering[ State ]
…
fact traces {
init[ first ] &&
all s: State - last |
(some … | op1[ s, s.next, … ])  or
… 
(some … | opn[ s, s.next, … ])

}

Parametric 
library defines 

linear order
Initial state is 
the first in the 

order

Subsequent states 
are created by one 
of the operations

Existential quantifier abstracts 
over the arguments to the 

operations
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Properties of Traces

 One-state invariants can be asserted more 
conveniently
- No separate initialization and preservation checks

 Temporal invariants can be expressed
- Use s.next, lt[ s, s’ ], or lte[ s, s’ ] to relate states

Peter Müller – Software Architecture and Engineering

assert invHolds {
all s: State | inv[ s ]

}

assert invtemp {
all s, s’: FileSystem | s.root = s’.root

}
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Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Source Code
3.2 Informal Models
3.3 Formal Models

3.3.1 Static Models
3.3.2 Dynamic Models
3.3.3 Analyzing Models
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Consistency and Validity

 An Alloy model specifies a collection of 
constraints C that describe a set of structures

Peter Müller – Software Architecture and Engineering
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Consistency and Validity

 An Alloy model specifies a collection of 
constraints C that describe a set of structures

 Consistency:
A formula F is consistent (satisfiable) if it evaluates 
to true in at least one of these structures

Peter Müller – Software Architecture and Engineering

 ∃s • C(s) ∧ F(s)
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Consistency and Validity

 An Alloy model specifies a collection of 
constraints C that describe a set of structures

 Consistency:
A formula F is consistent (satisfiable) if it evaluates 
to true in at least one of these structures

 Validity:
A formula F is valid if it evaluates to true in all of 
these structures

Peter Müller – Software Architecture and Engineering

 ∃s • C(s) ∧ F(s)

 ∀s • C(s) ⇒ F(s)
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Analyzing Models within a Scope

 Validity and consistency checking for Alloy is 
undecidable

 The Alloy analyzer sidesteps this problem by 
checking validity and consistency within a given 
scope
- A scope gives a finite bound on the sizes of the sets in 

the model (which makes everything else in the model 
also finite)

- Naïve algorithm: enumerate all structures of a model 
within the bounds and check formula for each of them

Peter Müller – Software Architecture and Engineering
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Consistency Checking

Peter Müller – Software Architecture and Engineering

Translate constraints and 
formula into formula over 

boolean variables

Check whether this 
formula has a satisfying 

assignment

Formula is consistent:
Translate satisfying 

assignment back to model

Formula is inconsistent 
within the given scope

Yes

No
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Translation into Formula over Boolean Vars

 Internally, Alloy represents all data types as 
relations
- A relation is a set of tuples

Peter Müller – Software Architecture and Engineering

sig Node {
next: lone Node

}
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Translation into Formula over Boolean Vars

 Internally, Alloy represents all data types as 
relations
- A relation is a set of tuples

Peter Müller – Software Architecture and Engineering

sig Node {
next: lone Node

}

next is a binary 
relation in 

Node × Node
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Translation into Formula over Boolean Vars

 Internally, Alloy represents all data types as 
relations
- A relation is a set of tuples

 Constraints and formulas in the model are 
represented as formulas over relations

Peter Müller – Software Architecture and Engineering

sig Node {
next: lone Node

}

next is a binary 
relation in 

Node × Node

fact {
all n: Node | n != n.next

}
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Translation into Formula over Boolean Vars

 Internally, Alloy represents all data types as 
relations
- A relation is a set of tuples

 Constraints and formulas in the model are 
represented as formulas over relations

Peter Müller – Software Architecture and Engineering

sig Node {
next: lone Node

}

next is a binary 
relation in 

Node × Node

fact {
all n: Node | n != n.next

}
∀n • (n,n) ∉ next
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Translation into Boolean Formula (cont’d)

 A relation is translated into boolean variables
- Introduce one boolean variable for each tuple that is 

potentially contained in the relation
sig Node {
next: lone Node

}
pred show { }
run show for 3

Peter Müller – Software Architecture and Engineering
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Translation into Boolean Formula (cont’d)

 A relation is translated into boolean variables
- Introduce one boolean variable for each tuple that is 

potentially contained in the relation
sig Node {
next: lone Node

}
pred show { }
run show for 3

next is a binary 
relation in 

Node × Node

Peter Müller – Software Architecture and Engineering
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Translation into Boolean Formula (cont’d)

 A relation is translated into boolean variables
- Introduce one boolean variable for each tuple that is 

potentially contained in the relation
sig Node {
next: lone Node

}
pred show { }
run show for 3

n00, n01, n02,
n10, n11, n12,
n20, n21, n22

next is a binary 
relation in 

Node × Node

Peter Müller – Software Architecture and Engineering
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Translation into Boolean Formula (cont’d)

 A relation is translated into boolean variables
- Introduce one boolean variable for each tuple that is 

potentially contained in the relation
sig Node {
next: lone Node

}
pred show { }
run show for 3

n00, n01, n02,
n10, n11, n12,
n20, n21, n22

next is a binary 
relation in 

Node × Node

For the given 
scope, the next 

relation may 
contain nine 

different tuples

Peter Müller – Software Architecture and Engineering
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Translation into Boolean Formula (cont’d)

 A relation is translated into boolean variables
- Introduce one boolean variable for each tuple that is 

potentially contained in the relation

 Constraints and formulas are translated into 
boolean formulas over these variables

sig Node {
next: lone Node

}
pred show { }
run show for 3

n00, n01, n02,
n10, n11, n12,
n20, n21, n22

next is a binary 
relation in 

Node × Node

For the given 
scope, the next 

relation may 
contain nine 

different tuples

Peter Müller – Software Architecture and Engineering

fact {
all n: Node | n != n.next

}

¬(n00 ∧ n01) ∧ ¬(n00 ∧ n02) ∧ ¬(n01 ∧ n02) ∧
¬(n10 ∧ n11) ∧ ¬(n10 ∧ n12) ∧ ¬(n11 ∧ n12) ∧
¬(n20 ∧ n21) ∧ ¬(n20 ∧ n22) ∧ ¬(n21 ∧ n22) ∧

¬n00 ∧ ¬n11 ∧ ¬n22
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Check for Satisfying Assignments

 Satisfiability of formulas over boolean variables is a 
well understood problem
- Find a satisfying assignment if one exists and return 

UNSAT otherwise
- The problem is NP-complete

 In practice, SAT solvers are extremely efficient

Peter Müller – Software Architecture and Engineering

n 0 1 2
0 F F F
1 F F T
2 F T F

¬(n00 ∧ n01) ∧ ¬(n00 ∧ n02) ∧ ¬(n01 ∧ n02) ∧
¬(n10 ∧ n11) ∧ ¬(n10 ∧ n12) ∧ ¬(n11 ∧ n12) ∧
¬(n20 ∧ n21) ∧ ¬(n20 ∧ n22) ∧ ¬(n21 ∧ n22) ∧

¬n00 ∧ ¬n11 ∧ ¬n22
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Translation Back to Model

 A satisfying assignment can be translated back to 
relations

and then visualized

Peter Müller – Software Architecture and Engineering

n 0 1 2
0 F F F
1 F F T
2 F T F

next = { (1,2), (2,1) }

3. Modeling and Specifications – Formal Models



293

Interpretation of UNSAT

 If a boolean formula has no satisfying assignment, 
the SAT solver returns UNSAT

 The boolean formula encodes an Alloy model 
within a given scope
- There are no structures within this scope, 

but larger structures may exist
- The model may be, but is not necessarily inconsistent

Peter Müller – Software Architecture and Engineering
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Interpretation of UNSAT

 If a boolean formula has no satisfying assignment, 
the SAT solver returns UNSAT

 The boolean formula encodes an Alloy model 
within a given scope
- There are no structures within this scope, 

but larger structures may exist
- The model may be, but is not necessarily inconsistent

Peter Müller – Software Architecture and Engineering

sig Node { next: lone Node }
fact { #Node = 4 }
pred show { }
run show for 3
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Interpretation of UNSAT

 If a boolean formula has no satisfying assignment, 
the SAT solver returns UNSAT

 The boolean formula encodes an Alloy model 
within a given scope
- There are no structures within this scope, 

but larger structures may exist
- The model may be, but is not necessarily inconsistent

Peter Müller – Software Architecture and Engineering

sig Node { next: lone Node }
fact { #Node = 4 }
pred show { }
run show for 3
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Validity and Invalidity Checking

 A formula F is valid if it evaluates to true in all
structures that satisfy the constraints C of the model

 Enumerating all structures within a given scope is 
possible, but would be too slow

 Instead of checking validity, the Alloy Analyzer 
checks for invalidity, that is, looks for 
counterexamples

Peter Müller – Software Architecture and Engineering

 ∀s • C(s) ⇒ F(s)

 ¬(∀s • C(s) ⇒ F(s)) ≡ (∃s • C(s) ∧ ¬F(s)) 
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Validity and Invalidity Checking

 A formula F is valid if it evaluates to true in all
structures that satisfy the constraints C of the model

 Enumerating all structures within a given scope is 
possible, but would be too slow

 Instead of checking validity, the Alloy Analyzer 
checks for invalidity, that is, looks for 
counterexamples

Peter Müller – Software Architecture and Engineering

 ∀s • C(s) ⇒ F(s)

 ¬(∀s • C(s) ⇒ F(s)) ≡ (∃s • C(s) ∧ ¬F(s)) 

This is a 
consistency 

check
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Validity Checking

Peter Müller – Software Architecture and Engineering

Translate constraints and 
negated formula into 

formula over boolean vars

Check whether this 
formula has a satisfying 

assignment

Formula is invalid:
Translate satisfying 

assignment back to model

Formula is valid
within the given scope

Yes

No
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Interpretation of UNSAT

 Validity checking searches for a counterexample 
within a given scope
- UNSAT means there are no structures within this scope, 

but larger structures may exist
- The model may be, but is not necessarily valid

Peter Müller – Software Architecture and Engineering
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Interpretation of UNSAT

 Validity checking searches for a counterexample 
within a given scope
- UNSAT means there are no structures within this scope, 

but larger structures may exist
- The model may be, but is not necessarily valid

Peter Müller – Software Architecture and Engineering

sig Node { next: Node }
assert demo { all n: Node | some m: Node | m.next = n }
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Interpretation of UNSAT

 Validity checking searches for a counterexample 
within a given scope
- UNSAT means there are no structures within this scope, 

but larger structures may exist
- The model may be, but is not necessarily valid

Peter Müller – Software Architecture and Engineering

sig Node { next: Node }
assert demo { all n: Node | some m: Node | m.next = n }

check demo for 1

3. Modeling and Specifications – Formal Models



302

Interpretation of UNSAT

 Validity checking searches for a counterexample 
within a given scope
- UNSAT means there are no structures within this scope, 

but larger structures may exist
- The model may be, but is not necessarily valid

Peter Müller – Software Architecture and Engineering

sig Node { next: Node }
assert demo { all n: Node | some m: Node | m.next = n }

check demo for 1
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Interpretation of UNSAT

 Validity checking searches for a counterexample 
within a given scope
- UNSAT means there are no structures within this scope, 

but larger structures may exist
- The model may be, but is not necessarily valid

Peter Müller – Software Architecture and Engineering

sig Node { next: Node }
assert demo { all n: Node | some m: Node | m.next = n }

check demo for 2

check demo for 1
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Interpretation of UNSAT

 Validity checking searches for a counterexample 
within a given scope
- UNSAT means there are no structures within this scope, 

but larger structures may exist
- The model may be, but is not necessarily valid

Peter Müller – Software Architecture and Engineering

sig Node { next: Node }
assert demo { all n: Node | some m: Node | m.next = n }

check demo for 2

check demo for 1
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Analyzing Models: Summary

 Consistency checking
- Performed by run command within a scope
- Positive answers are definite (structures)

 Validity checking
- Performed by check command within a scope
- Negative answers are definite (counterexamples)

 Small model hypothesis:
Most interesting errors are found by looking at 
small instances

Peter Müller – Software Architecture and Engineering
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